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Abstract

We study estimates of return volatility sampled at different time scales ranging from one

minute to one day. Our main finding is that as sampling frequency increases, volatility becomes

rougher and displays stronger memory. Traditional continuous-time volatility models invoked

to capture these features are based on the fractional Brownian motion, and thus, necessarily,

display either roughness or long memory. These models are therefore inadequate to explain the

data. We propose new continuous-time models of log-volatility capable of decoupling roughness

properties (local behavior) from memory properties (global behavior) in a simple and parsimo-

nious way, which allows us to adequately model volatility at all intraday time scales. Our main

candidate model will be based on the Brownian semistationary process, and we derive some

theoretical properties of this model related to our setting. We compare these new models with

existing alternatives in a forecasting exercise, and find that for the higher intraday sampling

frequencies our models outperform the competition.

Keywords: Stochastic volatility; roughness; long memory; forecasting; Brownian semistationary

process.

1 Introduction

Intraday modelling of volatility is of importance in several applications, including derivatives pric-

ing, algorithmic trading, and risk management (Andersen et al., 2000; Rossi and Fantazzini, 2015).

The frequency at which one samples the volatility process might vary depending on the goal at

hand: for instance, a high-frequency (algorithmic) trader might be concerned with stock returns

over very short periods, such as a minute or even less, and would therefore like to assess volatility

over the same time scale. On the other hand, for different purposes it might make sense to sample
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the process at a lower frequency; for instance, Andersen et al. (1999) show that if the goal is to

forecast daily volatility then sampling at moderate frequencies, such as one hour, outperforms the

alternative choices of either very high frequencies (e.g. one minute) or very low frequencies (e.g.

one day).

The present work has two main contributions. The first is an in-depth examination of the time

series behavior of (log) volatility at a wide range of scales: from a sampling frequency less than a

minute all the way to daily sampling. Three main conclusions emerge from this exercise: volatility

is rough, it has significant memory and it is non-Gaussian.1 What is more, these facts become

more pronounced as sample frequency increases; indeed, when sampling at very high frequencies

volatility is extremely rough and has very strong long memory. The second contribution is to

suggest mathematical models which can accomodate these findings. In particular, we propose

to use either the Cauchy class (Gneiting and Schlather, 2004) or the Brownian semistationary

(BSS) process (Barndorff-Nielsen and Schmiegel, 2007, 2009). These processes are flexible in the

sense that they allow decoupling of the short-scale behavior (roughness) from the global behavior

(memory). Both candidate processes are stationary, but only the BSS process accomodates easy

inclusion of non-Gaussianity, of leverage effects, and of fast and efficient simulation. Consequently,

the BSS process will be our main candidate for a model of log-volatility, and we derive some

general theoretical results related to the memory properties of this process.

Recently, there has been considerable interest in rough models of volatility. This is due to

both theoretical developments (Fukasawa, 2015) as well as empirical evidence (Gatheral et al.,

2014, and Section 2.3, this paper). A prominent contribution to this literature is the seminal

Gatheral et al. (2014) which modifies the fractional stochastic volatility (FSV) model of Comte

and Renault (1996). Both of these models rely on the fractional Brownian motion (fBm) as the

driving stochastic process, but while Comte and Renault (1996) model volatility using an fBm with

Hurst index H > 1/2 to arrive at a model with the long memory property, Gatheral et al. (2014),

by contrast, model with an fBm with H < 1/2 to allow for roughness. They thus term their model

the rough fractional stochastic volatility model (RFSV). In Bayer et al. (2015) the RFSV model

is extended to the rough Bergomi (rBergomi) model to allow for pricing of financial contracts in a

rough volatility setup. The downside of the RFSV and rBergomi models is that they do not allow

for the long memory property, which is a well-established stylized fact of volatility (e.g. Andersen

et al., 2003). As we shall see below this is actually a deficiency of any model based on a self-

similar process such as the fBm. In fact, such models have either long memory or rough paths

(Gneiting and Schlather, 2004). To overcome the dichotomy long memory/roughness, Corlay et al.

(2014) model volatility using a multifractional Brownian motion (mBm), which allows the Hurst

parameter to change through time. The effect of this is decoupling of the local regularity properties

from the long-range dependence properties – i.e. exactly what we aim to do in this paper – but

1’Roughness’ refers, more or less, to the Hölder regularity of the paths of volatility. Section 2.3 will give the exact

mathematical definition of what we mean by ’roughness’.
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the price to pay is intractability and complicated estimation procedures relying on quantization-

based curbature methods. In contrast, the models presented in this work are parsimonious, easy

to estimate, easy to simulate, and easy to forecast.

The rest of the paper is structured as follows. In Section 2 we present our data and perform em-

pirical investigations which show that volatility is rough, has strong memory, and is non-Gaussian

across all relevant intradaily scales. Section 3 go on to present mathematical models of stochastic

processes which are able to capture these findings. This section also discusses simulation of the

resulting stochastic volatility model. Section 4 presents estimation results of the various models

we consider, using both parametric and semiparametric estimation procedures. Section 5 presents

a forecasting exercise where we compare our new models to existing alternatives. Finally, section

6 concludes. Proofs of the technical results are relegated to the Appendix.

2 Empirical behavior of log-volatility

We consider a simple model for high-frequency asset returns,

dSt
St

= σtdBt, t ≥ 0, (2.1)

where B = (Bt)t≥0 is a Brownian motion and σ = (σt)t≥0 is a volatility process. The following

sections will explain the data we use for S, how we estimate the latent σ process, and the subsequent

empirical findings for this process.

2.1 Data description and extraction of latent volatility

We consider E-mini futures data from January 2, 2013 until December 31, 2014 excluding weekends

and holidays which results in 516 trading days. Of these days, 18 days were not full trading days;

we removed these days to arrive at a total of 498 days in our sample. We consider only the time of

day when the NYSE is open: from 9.30 a.m. until 4 p.m. Eastern Standard Time (EST). Below we

will calculate estimates of integrated variance (IV) based on the realized kernel (RK) over intervals

as short as one minute. In some of these intervals the RK will be zero due to no trading taking

place in that particular interval; this will cause problems as we will work on the logarithm of the

RK. When such a zero occurs we will replace it by the lowest non-zero value of the RK obtained

on the same day. The effect of this data cleaning should be minimal, as there are not many zeros

observed when the NYSE is open. For instance, when the sampling frequency is one minute this

results in 498 × 6.5 × 60 = 194, 220 observations of which only around 1900 – or less that 1% –

were zeros. When sampling at a 2 minute frequency we have 210 zeros out of 97, 110 observations,

or roughly 0.2% of the observations.

We seek to approximate the latent volatility process σt; we can not observe this process directly,

but instead have access to high frequency prices observed every second. For a time step ∆ > 0 we
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therefore seek to estimate the integrated variance (IV),

IV ∆
t :=

∫ t

t−∆
σ2
sds, t = ∆, 2∆, . . . .

Estimators of IV are much studied in the literature, prominent examples being realized variance

(Andersen et al., 2001; Barndorff-Nielsen and Shephard, 2002), realized kernels (Barndorff-Nielsen

et al., 2008), two-scale estimators (Zhang et al., 2005), and pre-averaging methods (Jacod et al.,

2009). Except for the former, these methods are robust to market microstructure effects, which is

crucial when sampling at higher frequencies. By choosing ∆ sufficiently small and assuming that

volatility does not vary too much in each time interval of size ∆ we approximate

σ̂2
t = ∆−1ÎV

∆

t , t = ∆, 2∆, . . . ,

where ÎV
∆

t is an estimate of IV coming from one of the methods mentioned. In this paper we will

restrict attention to realized kernel measures, i.e. ÎV
∆

t = RK∆
t , where RK∆

t is the realized kernel

estimator of IV over the time interval [(t − 1)∆, t∆]. For implementation of the RK we refer to

Barndorff-Nielsen et al. (2008) and Barndorff-Nielsen et al. (2009).

We will consider T = 1 to be one day and will take ∆ ∈ (0, 1], i.e. we estimate intraday

volatility; this should be contrasted with e.g. Gatheral et al. (2014) who consider data sampled

at daily frequency. It is well-known that intraday volatility displays significant seasonality (e.g.

Andersen and Bollerslev, 1997, 1998). In particular, the ”U-shape” is ubiquitous, where volatility

is high at the opening and at the close of the market, while being low around midday.

It is important to account for this seasonality before performing any further analyses as sub-

sequent estimates could be severly biased if one does not take this into account (e.g. Rossi and

Fantazzini, 2015). We assume a multiplicative seasonality:

σt = σst σ̃t, t ≥ 0,

where σs is the seasonal component and σ̃ is the stochastic process we are interested in. To

estimate σs we use the Flexible Fourier Form (FFF) approach of Andersen and Bollerslev (1997,

1998). We then estimate σ̃2
t by ÎV t/(̂σst )

2 and will from now on be working on this data. Further,

we will abuse notation and continue to write σ even though we are now actually considering the

de-seasonalized process σ̃. Table 1 contains some simple descriptive statistics of this process and

how it behaves as ∆ increases; overall, skewness lessens and kurtosis becomes closer to 3, indicating

that the data looks more Gaussian as we sample less frequently. We will see further evidence of

this in Section 2.5 below.

2.2 Stationarity of volatility

Volatility is widely believed to be stationary. In particular, one does not expect the volatility to

wander without bound but instead to revert to some ’reasonable’ level. In Table 1 we perform unit
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Table 1: Desriptive statistics and unit root tests

∆ n Mean Skew Kurt ADF PP π̂ n(π̂ − 1)

1 minute 194220 −0.093 −1.902 11.125 0.000 0.001 0.989 −2129.3

2 minutes 97110 −0.036 −1.256 11.322 0.000 0.001 0.990 −932.9

5 minutes 38844 0.008 0.130 5.432 0.000 0.001 0.989 −443.2

15 minutes 12948 0.033 0.524 4.264 0.000 0.001 0.976 −313.0

30 minutes 6474 0.047 0.547 4.066 0.000 0.001 0.969 −203.6

1 hour 3486 0.064 0.484 3.713 0.000 0.001 0.942 −201.3

2 hours 1992 0.059 0.451 3.521 0.000 0.001 0.937 −125.4

1 day 498 0.037 0.307 3.296 0.000 0.001 0.837 −81.2

Descriptive statistics and unit root tests of log-volatility of the E-mini data set. ADF and PP refers to the P-values

of the Augmented Dickey-Fuller test with automatic lag selection and the Phillips-Perron test, respectively. π is the

persistence parameter of Hansen and Lunde (2013) and n(π − 1) is the unit root test statistic from the same paper.

The 1% and 5% critial values are −20.7 and −14.1, respectively.

root tests for the different sampling frequencies, ∆. The two classical unit root tests (ADF and

PP) always reject the null of a unit root. The Hansen and Lunde (2013) test (which is appropriate

in the present case as our estimate of σ2
t is measured with error) also rejects the presence of a unit

root. This supports the hypothesis that volatility is stationary.

2.3 Roughness in volatility

Recent studies have provided evidence that volatility is rough, see e.g. Gatheral et al. (2014) and

Bayer et al. (2015). What we mean by this is that the correlation function of log-volatility, ρ,

adheres to the asymptotic relationship

1− ρ(h) := 1− Corr(log σt, log σt+h) ∼ |h|2α+1, |h| → 0, (2.2)

for some α ∈
(
−1

2 , 0
)
. We call α the fractal index of the log-volatility process; usually one allows α

to take values in
(
−1

2 ,
1
2

)
but, as we shall see, only negative values of α will be relevant for us. This

implies that volatility is rough, meaning informally that it has a low degree of Hölder continuity.2

Rough models of volatility are consistent with some empirical aspects of the implied volatility

surface (Gatheral, 2006); in particular, as shown in Fukasawa (2015), such models can accurately

capture the short-time at-the-money volatility skew, which traditional local/stochastc volatility

models based on Itō diffusions fail to do, see also Bayer et al. (2015). To model this roughness

earlier studies have mainly relied on the canonical fractional process: the fractional Brownian

motion (fBm) with Hurst index H ∈ (0, 1). For the fBm the simple relationship H = α+1/2 holds

which means that H < 1/2 implies roughness.

The relationship (2.2) suggests a straight forward semiparametric estimation procedure of α.

Namely, consider the regression

log (1− ρ̂(h)) = c+ a log |h|+ εh, h = ∆, 2∆, . . . , L∆, (2.3)

2See e.g. Proposition 2.1. of Bennedsen (2015b) for a statement on the precise connection between the fractal

index and the degree of Hölder continuity.
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Figure 1: α̂ as a function of ∆. Estimation was done using the OLS regression (2.3) with L =

max{3, dn1/3e} lags.

for some small step size ∆ > 0 and a number of lags L ∈ N such that L∆ is still small, and where

ρ̂(h) is the empirical estimate of the correlation function at lag h ∈ R. The relationship a = 2α+ 1

lets us estimate α̂ = â−1
2 from simple OLS regression of (2.3). Confidence intervals and hypothesis

testing of α can be bootstrapped using the theory in Bennedsen (2015b), who also recommend

using L = max{3, dn1/3e}, with n being the number of observations.

Figure 1 shows an ”α signature plot” using the above estimator, i.e. the estimated value of α

as a function of sampling frequency, ∆. For very low sampling frequencies we find α̂ ≈ −1/2 and

then the estimate increases up to α̂ ≈ −0.3 at around ∆ = 1200 seconds (20 minutes), from which

point it flats out.3 Indeed, although it is not shown in the figure, we will see in Section 4 (Table

2), that for all sampling frequencies up to ∆ = 1 day we get α̂ ≈ −0.3.

To summarize: volatility is very rough, but the roughness becomes less pronounced as we

sample less often.

2.4 Long memory in volatility

That volatility is very persistent has long been a well-established fact (e.g. Bollerslev and Wright,

2000; Andersen et al., 2003). A large body of literature has therefore focused on modelling (log)

volatility using models with strong memory, i.e. volatility models which has autocorrelations

decaying at a slow polynomial rate:

ρ(h) := Corr(log σt, log σt+h) ∼ |h|−β, |h| → ∞, (2.4)

for some β ∈ (0,∞). When β ∈ (0, 1) the correlation function in (2.4) is not integrable and we

say that σ = (σt)t∈R has the long memory propterty with Hurst index H = 1 − β/2 ∈
(

1
2 , 1
)
. A

3The upward slope of the α signature plot is to be expected as we are proxying σ2
t by an estimate of integrated

volatility, i.e. by ∆−1
∫ t
t−∆

σ2
sds. This integration is a smoothing operation and we thus expect the time series to be

smoother as we integrate over a larger interval, i.e. as ∆ grows, see also Appendix C of Gatheral et al. (2014).
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Figure 2: β̂ as a function of ∆. Estimation was done using the OLS regression (2.5) with M =

bn1/4c and M ′ = bn1/3c.

somewhat tractable stochastic process which has precisely this behavior is the fractional Brownian

motion and in a series of papers, e.g. Comte and Renault (1996), Comte (1996), Comte and Renault

(1998), Comte et al. (2012) (and many more), log-volatility was modelled using an fBm.

As in the previous section, (2.4) suggests estimating β = −b semiparametrically using the OLS

regression

log ρ̂(h) = c+ b log |h|+ εh, h = M∆, (M + 1)∆, . . . ,M ′∆, (2.5)

for some numbers M,M ′ ∈ N with M ′ > M such that M∆ is large, and where ρ̂(h) is the empirical

estimate of the correlation function at lag h ∈ R.

Analogous to the previous section, Figure 2 shows a ”β signature plot” using the above esti-

mator, i.e. it shows the estimated value of β as a function of sampling frequency, ∆. In this case

we see that for very high frequency sampling we have β̂ ≈ 0.10 which is very strong long memory

indeed. As sampling frequency decreases the estimated value of β increases, that is, the memory

becomes less strong. Recall that β < 1 corresponds to long memory; the cross-over point between

long memory and non-long memory seems to be just before ∆ = 1 day (although not technically

”long memory”, the memory is still rather strong in this case). It should be noted that estimates

of the long memory parameter are notoriously imprecise and we also found that the particular es-

timates were very much dependent on what values one chooses for M and M ′. Regardless of these

tuning parameters, however, the overall picture of Figure 2 does remain: volatility has significant

memory, and the memory is decreasing as ∆ increases. In Section 4 (Table 2) we will also estimate

the β parameter in a parametric setting, which corroborates this conclusion.

2.5 (Non-)Gaussianity of log-volatility

There is some evidence that increments of log-volatility is Gaussian; this was for instance found in

the now classical papers Andersen et al. (2001), Andersen et al. (2001), and Barndorff-Nielsen and
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Figure 3: Empirical distribution of the increments of log volatility, i.e. yt = log(RKt)−log(RKt−1).

Shephard (2002), see also Gatheral et al. (2014). Specifically, Andersen et al. (2001), Andersen et al.

(2001), and Barndorff-Nielsen and Shephard (2002) looked at the empirical distribution of the time

series of the increments of daily log-realized variance, i.e of time series similar to the ones studied in

this paper, and found that the Gaussian distribution fitted this empirical distribution well. These

conclusions were largely drawn from looking at empirical histograms of daily increments of log-

realized variance and comparing with the Gaussian distribution. In Figure 3 we perform the same

analysis but now looking at several sampling frequencies. We also compare with the fitted Normal

Inverse Gaussian distribution (NIG) distribution. We see that when sampling RK at intraday

frequencies the resulting distribution is highly non-Gaussian. In contrast, the NIG distribution

seems to fit quite well. However, when sampling at a daily frequency the Gaussian distribution

provides a great fit, indicating some kind of ”aggregation to Gaussianity”; this last observation is

similar to the findings in the above cited papers.
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2.6 Empirical conclusions

As discussed above the fBm is the standard choice when modelling long memory in a continuous-

time framework. Similarly, fBm-based models are also standard choices when modelling roughness.

However, the conclusion we can draw from the previous sections is that an fBm-based model is a

poor choice when modelling intraday volatility. This is so for two reasons. Firstly, since the fBm

is self-similar the small-scale behavior (roughness, as controlled by α) is fully determined by the

large-scale behavior (memory, as controlled by β) and vice versa (Gneiting and Schlather, 2004).

In fact, it is necessarily the case that H = α+ 1
2 , where H = 1−β/2 is the Hurst index of the fBm,

meaning that β = 1 − 2α for these processes. Clearly, this restrictive relationship is violated for

the data we consider here. Indeed, for an fBm, roughness (α < 0) implies short memory (β > 1).

Similarly, long memory (β < 1) implies a smooth model (α > 0).4

Secondly, the fBm is a Gaussian process and although the findings of previous studies, discussed

in Section 2.5, have justified the use of Gaussian processes as models of log-volatility, we saw in

the same section that this assumption is violated for intraday sampling frequencies. Therefore, a

model that can accomodate non-Gaussianity is preferable.

In conclusion, traditional models such as the ones in Comte and Renault (1996), Comte (1996),

Comte and Renault (1998), Comte et al. (2012), Gatheral et al. (2014) and Bayer et al. (2015) are

inadequate due to their failure to decouple the behavior at short and long time scales; additionally

the implicit Gaussianity assumption of these models make them inadequate for intraday volatility

modelling. The next section will present stationary stochastic processes that are more adequate in

the present context.

3 Models of stochastic volatility that decouples short- and long-

term behavior

We now present our specification for the stochastic volatility process σ. Let X be a zero-mean

process that decouples fractal index from the memory parameter, i.e. let X satisfy

ρX(h) := Corr(Xt+h, Xt) ∼

1− |h|2α+1L0(h), h→ 0,

|h|−βL1(h), h→∞,
(3.1)

where α ∈ (−1/2, 1/2), β > 0, and L0, L1 are slowly varying functions at zero and infinity,

respectively.5 Intuitively, and informally, speaking this means that as |h| → ∞, ρX(h) decays

slower than |h|−β−ε but faster than |h|−β+ε for all ε > 0. A similar conclusion holds for the case

|h| → 0.

4Gatheral et al. (2014) show how their rough fBm-based model can generate spurious long memory. While this

is a possible way to account for roughness and slowly decaying autocorrelations, we prefer to model roughness and

bona fide long memory.
5Recall that a function, L, is slowly varying at c ∈ R∪{∞} if limx→c

L(tx)
L(x)

= 1 for all t > 0. For many additional

details of slowly varying functions see Bingham et al. (1989).
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Define now

σt = ξt exp

(
Xt −

1

2
E[X2

t ]

)
, t ∈ R, (3.2)

where ξ = {ξt}t∈R is the so-called forward variance swap curve (e.g. Bayer et al., 2015). As our

focus is on the process X we set ξt = ξ > 0 for all t; going into detail with the ξt process is beyond

the scope of this article. Let c(h) be the covariance function of the volatility process,

c(h) = Cov(σt+h, σt), h ≥ 0,

and let the autocorrelation function be ρ(h) := c(h)/c(0). It has been found that, empirically, both

the log-variance as well as the raw variance have similar roughness and memory properties, and we

confirmed this in our data (not reported here). Our mathematical model (3.2) accomodates this,

as we now show.

The following theorem shows that σ inherets the roughness properties of the process X.

Theorem 3.1. Let σ be given by (3.2) where X is a Gaussian process satisfying (3.1) with α ∈
(−1/2, 1/2). Now,

ρ(h) ∼ 1− |h|2α+1L0(h), |h| → 0.

The following theorem shows that σ also inherits the memory properties of X.

Theorem 3.2. Let σ be given by (3.2) where X is a Gaussian process satisfying (3.1) with β ∈
(0,∞). Now,

ρ(h) ∼ |h|−βL1(h), |h| → ∞.

3.1 Models for X

Motivated by our empirical findings we seek stationary stochastic processes, X, with arbitrary

fractal index α ∈
(
−1

2 ,
1
2

)
and memory parameter β ∈ (0,∞). Many possibilities exist, but we focus

here on two: the Cauchy process (also called the Cauchy class) and the Brownian semistationary

process.

3.1.1 The Cauchy process

A flexible process that decouples small-scale behavior and global behavior is processes of the Cauchy

class (Gneiting and Schlather, 2004). Such a process is a stationary Gaussian process, G = (Gt)t∈R,

with correlation function

ρ(h) =
(
1 + |h|2α+1

)− β
2α+1 , h ∈ R, (3.3)

where α ∈
(
−1

2 ,
1
2

)
and β > 0. In particular, this process obeys (2.2) and (2.4). The downside

of modelling with such a process is the inherent Gaussianity; indeed, we saw above the intraday
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data we consider is not Gaussian. A way to circumvent this is through volatility modulation. One

could e.g. specify a process

Xt =

∫ t

0
vsdGs, t ≥ 0, (3.4)

where G is of the Cauchy class and v = (vt)t∈R is a stochastic process, the volatility of volatility.

See e.g. Barndorff-Nielsen et al. (2009) Example 3 for how to formalize such an approach. The

downside of a model such as (3.4) is that it is non-stationary and thus not ideally suited for

modelling of log-volatility as discussed above.

3.1.2 The Brownian semistationary process

A stochastic process which is able to capture all desiderata of roughness, long memory, stationar-

ity, and non-Gaussianity is the Brownian semistationary process (BSS), which was introduced in

Barndorff-Nielsen and Schmiegel (2007, 2009). This process is defined as

Xt =

∫ t

−∞
g(t− s)vsdWs, t ≥ 0, (3.5)

where W is a standard Brownian motion defined on R, g is a square integrable kernel function and

v = {vt}t∈R is a (stationary) volatility process. Note that when v is deterministic X is Gaussian,

while a stochastic v will induce non-Gaussianity of X. To ensure existence of the process (3.5) we

assume g and v to be given such that for all t ≥ 0,∫ ∞
0

g2(x)v2
t−xdx <∞, a.s.

The kernel function g is supposed to fulfil the following assumptions,

g(x) = xαL0(x), x ∈ (0, 1], α ∈
(
−1

2
,
1

2

)
, (3.6)

g(x) = x−βL1(x), x ∈ (1,∞), β ∈
(

1

2
,∞
)
, (3.7)

where L0, L1 are functions, which are slowly varying at zero and infinity, respectively. The re-

striction on β, i.e. β > 1/2 as opposed to β > 0, is to ensure square integrability of g. Indeed,

a simple application of Karamata’s theorem (Bingham et al., 1989, Proposition 1.5.10.) shows

that α > −1/2 and β > 1/2 are necessary and sufficient conditions for g to be square integrable

under the specifications (3.6)-(3.7). The integration from −∞ in (3.5) is to ensure stationarity of

X (which holds when v is stationary as well). Proposition 2.1 in Bennedsen et al. (2015) shows

that a BSS process satisfying the above assumptions will have α as its fractal index in the sense of

Equation (2.2). The following propositions show how β controls the long-term memory properties

of X.
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Proposition 3.1. Let X be a BSS process satisfying (3.6)-(3.7) with β ∈ (1,∞) and let ρX be the

autocorrelation function of X. Now,

ρX(h) ∼ L1(h)|h|−β, |h| → ∞.

Even though Proposition 3.1 does unfortunately not provide the exact asymptotic behavior

when β ∈ (1/2, 1), it can be shown that for these values the BSS process does indeed have the

long memory property, as we would expect.

Proposition 3.2. Let X be a BSS process satisfying (3.6)-(3.7) with β ∈ (1/2, 1) and let ρX be

the autocorrelation function of X. Now,∫ ∞
0

ρX(h)dh =∞,

i.e. X has the long memory property.

An example of a kernel function that satisfies equations (3.6) and (3.7) and which will be

important for us later is the power law kernel,

Example 3.1 (Power law kernel). Let g be given by the power law kernel :

g(x) = xα(1 + x)−β−α, α ∈
(
−1

2
,
1

2

)
, β ∈

(
1

2
,∞
)
. (3.8)

The power law kernel satisfies the assumptions above. In particular, it has roughness index α and

memory properties controlled by β, as expounded in Propositions 3.1 and 3.2.

Later we will need the correlation structure of the BSS process with power law kernel (3.8).

By stationarity of v, the autocovariance function of the general BSS process (3.5) is

cX(h) := Cov(Xt, Xt+h) = E[v2
0]

∫ ∞
0

g(x)g(x+ h)dx, h ∈ R. (3.9)

From this we deduce that when g is given as in (3.8) we have

cX(0) := V ar(Xt) = E[v2
0]

∫ ∞
0

g(x)2dx

= E[v2
0]

∫ ∞
0

x2α(1 + x)−2β−2αdx

= E[v2
0]B(2α+ 1, 2β − 1),

where B(x, y) =
∫ 1

0 t
x−1(1− t)y−1dt =

∫∞
0 tx−1(1 + t)−x−ydt is the Beta function (e.g. Gradshteyn

and Ryzhik, 2007, formula 8.380.3.). To calculate the correlation function ρX(h) = cX(h)/cX(0)

we resort to numerical integration of (3.9). Note that ρX does not depend on E[v2
0].

12



3.2 Simulation of the stochastic volatility model

Fast and efficient simulation of a stochastic volatility model is advantageous for a number of

reasons. For instance, one might wish to design simulation experiments to gauge the properties of

the model, or one might wish to price financial claims by Monte Carlo simulation. We here explain

how our model can be simulated rather easily. It should be noted that easy simulation methods for

models such as the ones considered in this paper are not a given; indeed, rough models generally

rely on the entire history of the process and therefore ordinary recursive simulation methods are

inadequate. What is more, the possibility of non-Gaussianity of the BSS process poses further

problems, as this excludes simulation methods based on Gaussianity such as Cholesky factorization

and circulant embedding methods (e.g. Asmussen and Glynn, 2007).

According to our underlying assumptions, cf. equations (2.1) and (3.2), the model to be simu-

lated is

St = S0 exp

(∫ t

0
σsdBs −

1

2

∫ t

0
σ2
sds

)
,

σt = ξ exp
(
Xt − E[X2

t ]
)
,

where X is one of our candidate models for log-volatility presented in the sections above. As our

models are stationary we have that E[X2
t ] = E[X2

0 ] for all t. We will simulate S on a grid by

Riemann-sum approximation of the integrals. Consequently we need to simulate B and σ on this

grid as well, which boils down to simulating B and X. As these processes might be correlated (due

to the leverage effect), it is necessary to simulate B and X jointly.

When X is Gaussian, for instance a Cauchy process or a non-volatility modulated BSS process,

it can be simulated exactly using e.g. a Cholesky factorization of its covariance matrix. One can

even compute the joint covariance structure of the Gaussian bi-variate process (B,X) and jointly

simulate B and X, and in this way account for correlation between the two processes. This was

the approach taken in Bayer et al. (2015). However, as the authors also note, this approach is slow

and unwieldy: if one is interested in simulating many observations the Cholesky decomposition

will be slow or infeasible to implement. Instead, we recommend the use of the Hybrid Scheme of

Bennedsen et al. (2015) which is a simulation scheme designed for BSS processes. The advantages

of using this approach are that (i) simulation is fast and accurate (although approximate), (ii) it

allows for non-Gaussianity of X through volatility (of volatility) modulation, and (iii) inclusion of

leverage, i.e. correlation between X and B, is straight forward.

We refer to Bennedsen et al. (2015) for the implementation of the simulation scheme for the

general BSS process, X, in Equation (3.5). Note, that the authors explain how to include correla-

tion between v and W . However, exactly the same method can be used to implement correlation

between W and B or, indeed, between W , B, and v.
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Table 2: Estimating the models

∆ α̂OLS 95% CI β̂OLS β̂BSS 95% CI β̂Cauchy 95% CI

1 minute −0.48 (−0.49,−0.46) 0.08 0.62 (0.61, 0.63) 0.09 (0.08, 0.09)

2 minutes −0.46 (−0.47,−0.46) 0.11 0.58 (0.58, 0.58) 0.09 (0.09, 0.09)

5 minutes −0.41 (−0.42,−0.39) 0.15 0.64 (0.64, 0.64) 0.15 (0.15, 0.16)

15 minutes −0.32 (−0.34,−0.30) 0.28 0.79 (0.78, 0.79) 0.30 (0.29, 0.32)

30 minutes −0.30 (−0.37,−0.25) 0.25 0.81 (0.80, 0.81) 0.34 (0.33, 0.36)

1 hour −0.31 (−0.46,−0.20) 0.19 0.76 (0.75, 0.77) 0.34 (0.32, 0.36)

2 hours −0.32 (−0.45,−0.22) 0.32 0.73 (0.71, 0.74) 0.31 (0.28, 0.34)

1 day −0.29 (−0.35,−0.25) 1.09 0.75 (0.70, 0.80) 0.34 (0.27, 0.43)

Semiparametric estimates of α using the OLS regression (2.3) and of β using the OLS regression (2.5). Also para-

metric method of moments estimators coming from matching the empirical ACF with the theoretical ACF in our two

parametric models, the BSS model and the Cauchy model. The confidence intervals for α̂OLS are calculated using

the bootstrap method of Bennedsen (2015b) with B = 999 bootstrap replications.

4 Estimating the models

Estimation of the new models presented here is straight forward. In particular, α can be estimated

semiparametrically by the OLS regression (2.3) and similarly β from (2.5). These parameters are

the only ones we need for the models we consider, cf. the Cauchy class (3.3) and the BSS process

with the power law kernel, (3.8). This simple estimation procedure should be contrasted with

competing approaches such as the rBergomi model of Bayer et al. (2015) and the mBm model of

Corlay et al. (2014). Indeed, in Bayer et al. (2015) the authors had to guess at the parameter

values of the model; in Corlay et al. (2014) the authors employed complicated quantization-based

curbature methods.

Unfortunately, accurate estimation of the long memory parameter β can be very difficult in

finite samples. Therefore, we also estimate β parametrically, using a method of moments approach,

by fitting the theoretical autocorrelation function (ACF) of the model to the empirically observed

autocorrelations. One could simultaneously estimate α from this method of moments procedure,

but simulation results (not presented here) show that the OLS estimator of α is very precise which

cause the best overall performance to be when α is first estimated by OLS and then β is estimated

by method of moments. That is, we plug α̂OLS into the corresponding ACF so that it is only a

function of β, and then we minimize the sum of squared differences between the theoretical ACF,

as a function of β, and the empirically observed ACF. The number of lags used in this estimation

was chosen so that the theoretical ACFs fitted the empirical ACF in a, subjectively, satisfying

manner, see Figure 4. In Table 2 we estimate α and β for the different models using the different

estimation procedures. In Sections 2.3 and 2.4 we have already seen the OLS estimates of α and

β, indicating roughness and long memory of log-volatility which is corroborated here.

Using the estimates from the Cauchy and BSS models we plot the empirical autocorrelation

of the data together with the theoretical ones from the models. The result is seen in Figure 4. We

see that the models fit the empirical ACFs very well indeed; especially the BSS process is able to
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Figure 4: Empirical autocorrelation from log-volatility (blue bars) and fitted ACFs from the Cauchy

(cyan, broken line) and BSS (red, full line) models. The number of lags used in the estimation of

the β parameter is the right-most lag in the plots; e.g. for ∆ = 1 minute we used 25 lags, while for

∆ = 1 hour we used 20 lags.

fit the ACF at all time scales. Although this might not be surprising, considering the estimation

procedure, it is nonetheless a desirable feature of the Cauchy and BSS models that they have such

tractable and flexible autocorrelation functions. This should be contrasted with e.g. the OU-fBm

model which does not have this luxury, but where only (asymptotic) approximations are available.

5 Forecasting volatility

In this section we will conduct a forecasting exercise using the models proposed in this paper

and compare with existing ones. In total we consider the models: Random Walk (RW), AR(1),

AR(5), AR(10), HAR(3), ARFIMA(0, d, 0), RFSV, Cauchy, and BSS with the power law kernel

(3.8). We also include a BSS process with the so-called gamma kernel (labeled Γ-BSS), i.e. where
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g(x) = xαe−λx for λ > 0 (see Bennedsen, 2015a, for an application of this model as well as the

estimation procedure). The Γ-BSS process also has roughness properties dictated by α, but has

exponentially decaying autocorrelations i.e. very short memory; by comparing this with the BSS
process with power law kernel we can assess the effect of including strong memory in these models.

See Corsi (2009) for details of the HAR(3) model and Gatheral et al. (2014) for details of the RFSV

model. Our performance metrics will be mean squared error (MSE) as well as mean absolute error

(MAE).

In the following we will forecast both log-volatility, or basically the X process, and actual

volatility. The former will let us assess how well the various models fit the log-volatility data, as

measured by out-of-sample forecast performance. The latter might be more relevant in real-world

applications, some of which were discussed in the introduction.

What we actually forecast in the following is log(RKt) and RKt, respectively, i.e. our estimates

of integrated volatility.6 Since we use the raw estimates coming from the realized kernel, it is

important to remember to correct for the estimated seasonality before comparing our forecasts of

Xt with log(RKt) or exp(Xt) with RKt.

We estimate the AR models as well as the HAR model by OLS. The estimate of H in the RFSV

model is set to Ĥ = α̂OLS + 0.5, and for the Cauchy and BSS processes we use the parametric

estimates of β along with α̂OLS . Forecasting the AR and HAR models is straight forward. To

forecast the RFSV model we use the Riemann-sum version of the following approximation (cf.

Gatheral et al., 2014, Equation (5.1))

E
[
log σ2

t+h∆|Ft
]
≈ cos(Hπ)

π
(h∆)H+1/2

∫ t

−∞

log σ2
s

(t− s+ h∆)(t− s)H+1/2
ds,

where Ft is the filtration generated by the driving fBm.

To predict the Cauchy and BSS processes we rely on the best linear predictor, which is a

linear combination of past observations of the process, where the weights of the previous values are

derived from the ACF of the process. The best linear predictor of Xt+h∆ given X0, X∆, . . . , Xt is

(e.g. Grimmett and Stirzaker, 2001, Section 9.2.)

X̂t+h∆ =
t∑
i=0

aiXt−i∆, h ≥ 1,

where a0, a1, . . . , at ∈ R solves

t∑
i=0

aiρX(|i− j|∆) = ρ(h∆ + j∆), 0 ≤ j ≤ t.

Note, that this result relies on X being zero-mean, so in our forecasting exercise we de-mean the

data before running the exercise.

6Recall that our estimate of integrated volatility only differs from our estimate of spot volatility by a factor of

∆−1, so there is no loss of generality in forecasting integrated variance as opposed to spot variance.
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5.1 Predicting log-volatility [To be completed]

Tables 3 and 4 shows the forecasting results using the MSE metric. The corresponding results for

the MAE metric are in Tables 5 and 6. A clear picture emerges: for shorter time horizons (∆ ≤ 30

minutes) the BSS model outperforms the competition and is best in practically all situations. For

∆ = 1 hour the BSS process is still best for shorter forecast horizons, i.e. h ≤ 5. For ∆ ≥ 2 hours

the HAR(3) model is generally best; this is not surprising as this model has proven very capable

indeed (e.g. Corsi, 2009). The same conclusion holds for the MAE metric.

5.2 Predicting volatility [To be completed]

Tables 7 and 8 shows the forecasting results using the MSE metric. The corresponding results for

the MAE metric are in Tables 9 and 10. We see roughly the same picture as in the previous section

on forecasting log-volatility; namely, for MSE the BSS process is mainly best when ∆ is small7,

while the HAR(3), and now also the ARFIMA model, is a bit better for large sample horizons, ∆.

For the MAE metric things change a little bit; in particular the BSS process seems to fare even

better as compared to the competition.

6 Conclusion

In this paper we looked at the empirical characteristics of log-volatility and how they related to

the intraday sampling frequency. We found evidence of roughness and strong memory. This calls

for new models, as traditional ones based on the fBm are inadequate; we proposed two candidates,

the Cauchy process and the BSS process. Especially the latter is very promising as it allows

for stationarity, non-Gaussianity, leverage, roughness, and long memory while being easy to both

estimate and simulate. Further, we saw that this model outperformed the competition in terms of

out-of-sample forecasting, at least when roughness and memory were both very strong (i.e. for high

sampling frequencies). This paper considered mainly the BSS process with a power law kernel,

but other kernels could have been considered. We believe that there is potential for even better

results from using other kernels than the simple power law (3.8); research into this is currently

ongoing.
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Table 3: Predicting log(RK), MSE

∆ = 1 minute

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.548 0.412 0.413 0.411 0.373 0.359 0.388 0.491 0.368 0.361

h = 2 0.669 0.478 0.419 0.404 0.388 0.388 0.398 0.518 0.381 0.380

h = 5 0.710 0.541 0.430 0.411 0.397 0.392 0.398 0.542 0.389 0.388

h = 10 0.730 0.553 0.438 0.418 0.404 0.398 0.400 0.551 0.395 0.394

h = 20 0.742 0.553 0.446 0.427 0.413 0.407 0.404 0.553 0.404 0.402

∆ = 2 minutes

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.310 0.248 0.218 0.215 0.199 0.198 0.232 0.252 0.198 0.194

h = 2 0.353 0.286 0.224 0.216 0.207 0.208 0.227 0.277 0.206 0.204

h = 5 0.374 0.358 0.233 0.223 0.215 0.216 0.223 0.317 0.215 0.213

h = 10 0.387 0.384 0.242 0.230 0.223 0.226 0.227 0.352 0.223 0.221

h = 20 0.406 0.387 0.255 0.242 0.236 0.240 0.236 0.377 0.236 0.233

∆ = 5 minutes

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.145 0.128 0.112 0.125 0.102 0.101 0.161 0.107 0.099 0.098

h = 2 0.166 0.151 0.116 0.125 0.110 0.109 0.147 0.123 0.109 0.108

h = 5 0.188 0.219 0.130 0.135 0.124 0.124 0.143 0.154 0.125 0.122

h = 10 0.212 0.288 0.148 0.148 0.141 0.142 0.151 0.195 0.142 0.140

h = 20 0.247 0.316 0.173 0.171 0.165 0.167 0.169 0.247 0.166 0.163

∆ = 15 minutes

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.112 0.103 0.132 0.174 0.102 0.089 0.207 0.090 0.089 0.088

h = 2 0.139 0.129 0.139 0.175 0.119 0.110 0.187 0.114 0.111 0.108

h = 5 0.198 0.204 0.166 0.181 0.155 0.152 0.186 0.162 0.151 0.148

h = 10 0.249 0.290 0.196 0.213 0.189 0.190 0.202 0.213 0.187 0.184

h = 20 0.330 0.357 0.247 0.246 0.237 0.238 0.235 0.280 0.233 0.231

Mean squared errors for the predicting log(RK) h-period ahead. The first 200 periods were used

for initial estimation.
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Table 4: Predicting log(RK), MSE

∆ = 30 minutes

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.127 0.117 0.188 0.273 0.135 0.109 0.253 0.111 0.112 0.108

h = 2 0.181 0.164 0.191 0.263 0.162 0.149 0.237 0.153 0.150 0.146

h = 5 0.267 0.251 0.232 0.263 0.211 0.208 0.243 0.224 0.206 0.203

h = 10 0.362 0.348 0.273 0.274 0.257 0.263 0.270 0.296 0.259 0.257

h = 20 0.431 0.412 0.303 0.300 0.294 0.311 0.300 0.362 0.302 0.299

∆ = 1 hour

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.157 0.144 0.286 0.351 0.186 0.142 0.295 0.148 0.151 0.141

h = 2 0.245 0.215 0.283 0.319 0.225 0.202 0.286 0.212 0.207 0.200

h = 5 0.382 0.325 0.302 0.294 0.284 0.284 0.307 0.310 0.283 0.280

h = 10 0.469 0.413 0.325 0.339 0.321 0.337 0.335 0.382 0.334 0.330

h = 20 0.565 0.469 0.393 0.386 0.383 0.413 0.389 0.448 0.403 0.396

∆ = 2 hours

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.209 0.187 0.335 0.407 0.230 0.181 0.321 0.198 0.195 0.184

h = 2 0.327 0.275 0.316 0.370 0.272 0.253 0.321 0.278 0.258 0.253

h = 5 0.464 0.383 0.334 0.380 0.323 0.331 0.347 0.380 0.331 0.328

h = 10 0.560 0.467 0.398 0.414 0.388 0.399 0.393 0.456 0.398 0.393

h = 20 0.663 0.501 0.443 0.473 0.442 0.477 0.455 0.496 0.468 0.461

∆ = 1 day

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.322 0.269 0.395 0.534 0.294 0.256 0.366 0.285 0.269 0.259

h = 2 0.400 0.331 0.418 0.517 0.339 0.319 0.373 0.367 0.332 0.323

h = 5 0.567 0.447 0.447 0.492 0.413 0.422 0.419 0.463 0.426 0.420

h = 10 0.781 0.501 0.491 0.520 0.481 0.535 0.506 0.503 0.522 0.514

h = 20 1.040 0.539 0.543 0.550 0.536 0.635 0.610 0.539 0.604 0.592

Mean squared errors for the predicting log(RK) h-period ahead. The first 200 periods were used

for initial estimation.
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Table 5: Predicting log(RK), MAE

∆ = 1 minute

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.490 0.430 0.419 0.416 0.395 0.392 0.405 0.469 0.392 0.389

h = 2 0.530 0.460 0.420 0.410 0.401 0.401 0.406 0.483 0.398 0.397

h = 5 0.547 0.497 0.426 0.414 0.406 0.402 0.405 0.498 0.403 0.402

h = 10 0.555 0.504 0.431 0.419 0.411 0.405 0.406 0.503 0.407 0.405

h = 20 0.563 0.504 0.436 0.425 0.417 0.411 0.409 0.504 0.413 0.410

∆ = 2 minutes

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.375 0.341 0.311 0.309 0.295 0.296 0.325 0.343 0.295 0.292

h = 2 0.396 0.370 0.314 0.309 0.301 0.301 0.317 0.361 0.300 0.299

h = 5 0.408 0.424 0.322 0.314 0.308 0.307 0.312 0.393 0.308 0.305

h = 10 0.419 0.442 0.330 0.321 0.315 0.315 0.316 0.419 0.316 0.313

h = 20 0.431 0.444 0.341 0.331 0.326 0.328 0.324 0.437 0.328 0.324

∆ = 5 minutes

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.280 0.263 0.243 0.255 0.230 0.230 0.296 0.236 0.227 0.226

h = 2 0.297 0.287 0.247 0.256 0.238 0.239 0.280 0.253 0.238 0.236

h = 5 0.318 0.350 0.260 0.265 0.253 0.254 0.274 0.287 0.254 0.251

h = 10 0.339 0.405 0.279 0.278 0.271 0.274 0.282 0.326 0.274 0.270

h = 20 0.365 0.425 0.303 0.302 0.296 0.301 0.302 0.372 0.300 0.296

∆ = 15 minutes

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.245 0.236 0.264 0.306 0.230 0.215 0.345 0.217 0.215 0.213

h = 2 0.273 0.266 0.271 0.308 0.248 0.240 0.326 0.245 0.240 0.237

h = 5 0.325 0.340 0.297 0.315 0.287 0.287 0.323 0.298 0.285 0.281

h = 10 0.370 0.411 0.330 0.347 0.325 0.329 0.341 0.349 0.326 0.322

h = 20 0.434 0.458 0.379 0.379 0.373 0.377 0.372 0.405 0.371 0.368

Mean absolute errors for the predicting log(RK) h-period ahead. The first 200 periods were used

for initial estimation.
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Table 6: Predicting log(RK), MAE

∆ = 30 minutes

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.254 0.246 0.317 0.391 0.264 0.236 0.383 0.239 0.239 0.233

h = 2 0.306 0.296 0.321 0.387 0.293 0.281 0.368 0.286 0.281 0.276

h = 5 0.380 0.380 0.360 0.389 0.345 0.345 0.374 0.356 0.344 0.338

h = 10 0.451 0.453 0.399 0.405 0.391 0.397 0.399 0.417 0.393 0.390

h = 20 0.510 0.494 0.428 0.426 0.422 0.438 0.425 0.463 0.430 0.426

∆ = 1 hour

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.284 0.275 0.401 0.461 0.320 0.275 0.417 0.282 0.287 0.274

h = 2 0.361 0.346 0.402 0.439 0.358 0.338 0.410 0.345 0.344 0.334

h = 5 0.463 0.438 0.426 0.423 0.414 0.414 0.427 0.427 0.413 0.409

h = 10 0.534 0.498 0.447 0.457 0.445 0.458 0.451 0.478 0.455 0.451

h = 20 0.588 0.532 0.491 0.486 0.485 0.510 0.489 0.519 0.501 0.496

∆ = 2 hours

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.333 0.319 0.448 0.501 0.366 0.317 0.439 0.335 0.334 0.320

h = 2 0.427 0.395 0.439 0.481 0.406 0.386 0.439 0.404 0.393 0.386

h = 5 0.527 0.484 0.456 0.492 0.449 0.455 0.463 0.482 0.455 0.453

h = 10 0.583 0.534 0.498 0.505 0.492 0.502 0.493 0.528 0.500 0.496

h = 20 0.643 0.554 0.519 0.537 0.520 0.545 0.530 0.551 0.539 0.534

∆ = 1 day

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.439 0.405 0.503 0.595 0.440 0.403 0.479 0.423 0.417 0.407

h = 2 0.508 0.456 0.509 0.588 0.463 0.459 0.486 0.480 0.468 0.461

h = 5 0.601 0.526 0.524 0.547 0.506 0.517 0.507 0.536 0.513 0.509

h = 10 0.722 0.559 0.548 0.569 0.542 0.585 0.564 0.560 0.573 0.568

h = 20 0.804 0.581 0.582 0.585 0.580 0.628 0.618 0.581 0.613 0.608

Mean absolute errors for the predicting log(RK) h-period ahead. The first 200 periods were used

for initial estimation.
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Table 7: Predicting RK, MSE ×1000

∆ = 1 minute

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.129 0.127 0.116 0.115 0.108 0.102 0.128 0.161 0.110 0.106

h = 2 0.153 0.153 0.121 0.116 0.112 0.110 0.124 0.167 0.112 0.109

h = 5 0.187 0.172 0.127 0.120 0.116 0.117 0.122 0.173 0.115 0.114

h = 10 0.200 0.175 0.131 0.124 0.120 0.122 0.122 0.175 0.118 0.117

h = 20 0.208 0.175 0.135 0.128 0.124 0.127 0.124 0.175 0.122 0.121

∆ = 2 minutes

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.095 0.093 0.085 0.087 0.082 0.078 0.104 0.111 0.083 0.080

h = 2 0.127 0.117 0.089 0.088 0.085 0.085 0.100 0.119 0.086 0.084

h = 5 0.149 0.141 0.094 0.091 0.090 0.092 0.098 0.131 0.090 0.089

h = 10 0.158 0.147 0.098 0.095 0.094 0.097 0.098 0.140 0.094 0.093

h = 20 0.169 0.147 0.104 0.101 0.100 0.103 0.102 0.145 0.099 0.098

∆ = 5 minutes

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.069 0.059 0.063 0.070 0.059 0.054 0.086 0.063 0.058 0.056

h = 2 0.098 0.078 0.065 0.070 0.063 0.062 0.082 0.072 0.063 0.062

h = 5 0.112 0.101 0.071 0.074 0.069 0.068 0.079 0.084 0.069 0.068

h = 10 0.127 0.115 0.078 0.078 0.076 0.074 0.080 0.095 0.074 0.074

h = 20 0.151 0.120 0.088 0.085 0.082 0.079 0.084 0.107 0.079 0.079

∆ = 15 minutes

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.077 0.059 0.068 0.080 0.057 0.051 0.086 0.053 0.052 0.051

h = 2 0.091 0.066 0.070 0.075 0.062 0.058 0.082 0.061 0.059 0.058

h = 5 0.122 0.084 0.076 0.071 0.070 0.066 0.079 0.073 0.066 0.066

h = 10 0.176 0.098 0.074 0.075 0.072 0.071 0.080 0.083 0.071 0.071

h = 20 0.131 0.107 0.083 0.083 0.081 0.079 0.083 0.096 0.079 0.079

Mean squared errors (×1000) for the predicting log(RK) h-period ahead. The first 200 periods

were used for initial estimation.
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Table 8: Predicting RK, MSE ×1000

∆ = 30 minutes

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.064 0.050 0.069 0.067 0.051 0.044 0.077 0.046 0.045 0.044

h = 2 0.090 0.059 0.061 0.065 0.054 0.051 0.073 0.055 0.051 0.052

h = 5 0.158 0.075 0.062 0.065 0.059 0.058 0.071 0.066 0.059 0.058

h = 10 0.103 0.088 0.069 0.070 0.067 0.066 0.073 0.079 0.067 0.066

h = 20 0.159 0.095 0.076 0.076 0.075 0.076 0.078 0.089 0.076 0.076

∆ = 1 hour

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.047 0.037 0.052 0.080 0.039 0.033 0.066 0.037 0.036 0.034

h = 2 0.089 0.050 0.050 0.061 0.044 0.043 0.063 0.047 0.044 0.043

h = 5 0.080 0.065 0.057 0.055 0.054 0.052 0.063 0.063 0.054 0.052

h = 10 0.168 0.078 0.062 0.064 0.061 0.063 0.066 0.074 0.064 0.063

h = 20 0.108 0.084 0.072 0.072 0.071 0.073 0.072 0.082 0.073 0.073

∆ = 2 hours

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.056 0.039 0.057 0.074 0.039 0.033 0.064 0.040 0.037 0.034

h = 2 0.100 0.052 0.054 0.060 0.046 0.043 0.062 0.052 0.046 0.044

h = 5 0.103 0.069 0.057 0.064 0.056 0.057 0.064 0.068 0.059 0.058

h = 10 0.151 0.079 0.067 0.070 0.066 0.067 0.069 0.077 0.068 0.067

h = 20 0.119 0.082 0.075 0.078 0.075 0.077 0.076 0.081 0.077 0.076

∆ = 1 day

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 0.038 0.037 0.051 0.068 0.041 0.035 0.056 0.045 0.042 0.039

h = 2 0.058 0.050 0.057 0.066 0.048 0.046 0.056 0.055 0.050 0.049

h = 5 0.083 0.063 0.062 0.065 0.060 0.059 0.060 0.064 0.061 0.060

h = 10 0.109 0.069 0.068 0.070 0.066 0.070 0.069 0.069 0.070 0.070

h = 20 0.147 0.076 0.075 0.075 0.074 0.083 0.081 0.076 0.081 0.080

Mean squared errors (×1000) for the predicting log(RK) h-period ahead. The first 200 periods

were used for initial estimation.
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Table 9: Predicting RK, MAE ×1000

∆ = 1 minute

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 6.655 6.075 5.718 5.658 5.398 5.339 5.820 6.833 5.415 5.326

h = 2 7.046 6.649 5.800 5.640 5.505 5.474 5.742 7.026 5.494 5.435

h = 5 7.291 7.214 5.926 5.728 5.604 5.579 5.676 7.225 5.580 5.532

h = 10 7.455 7.312 6.021 5.823 5.696 5.682 5.689 7.300 5.663 5.616

h = 20 7.621 7.316 6.133 5.942 5.818 5.823 5.762 7.316 5.780 5.734

∆ = 2 minutes

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 5.021 4.724 4.233 4.240 4.050 4.027 4.687 4.961 4.079 4.005

h = 2 5.317 5.281 4.305 4.252 4.144 4.147 4.531 5.230 4.173 4.111

h = 5 5.570 6.067 4.456 4.357 4.280 4.306 4.441 5.660 4.307 4.250

h = 10 5.784 6.306 4.609 4.490 4.428 4.475 4.488 6.002 4.449 4.395

h = 20 6.034 6.327 4.815 4.701 4.640 4.688 4.629 6.241 4.644 4.595

∆ = 5 minutes

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 3.579 3.358 3.189 3.434 3.022 2.952 3.960 3.129 2.968 2.929

h = 2 3.908 3.767 3.255 3.442 3.149 3.112 3.763 3.391 3.130 3.095

h = 5 4.291 4.589 3.485 3.573 3.387 3.367 3.674 3.846 3.380 3.344

h = 10 4.648 5.195 3.754 3.760 3.650 3.631 3.771 4.321 3.635 3.598

h = 20 5.064 5.416 4.090 4.061 3.959 3.954 3.991 4.833 3.948 3.910

∆ = 15 minutes

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 2.982 2.789 3.219 3.696 2.778 2.527 3.910 2.574 2.545 2.516

h = 2 3.406 3.145 3.285 3.648 2.994 2.844 3.727 2.918 2.850 2.827

h = 5 4.118 3.864 3.553 3.606 3.388 3.321 3.680 3.455 3.300 3.283

h = 10 4.662 4.504 3.737 3.850 3.660 3.686 3.806 3.919 3.648 3.620

h = 20 4.995 4.914 4.138 4.133 4.061 4.131 4.068 4.420 4.059 4.023

Mean absolute errors (×1000) for the predicting log(RK) h-period ahead. The first 200 periods

were used for initial estimation.
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Table 10: Predicting RK, MAE ×1000

∆ = 30 minutes

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 2.997 2.775 3.569 4.013 2.955 2.597 3.933 2.646 2.641 2.589

h = 2 3.674 3.262 3.477 3.907 3.186 3.032 3.799 3.093 3.039 3.020

h = 5 4.555 3.921 3.668 3.893 3.526 3.547 3.805 3.648 3.526 3.502

h = 10 4.778 4.474 3.968 4.063 3.896 3.965 3.988 4.126 3.921 3.883

h = 20 5.543 4.814 4.255 4.254 4.216 4.387 4.232 4.529 4.291 4.252

∆ = 1 hour

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 3.143 2.882 3.852 4.666 3.164 2.791 3.985 2.859 2.894 2.794

h = 2 4.113 3.483 3.759 4.242 3.417 3.312 3.891 3.350 3.342 3.292

h = 5 4.622 4.096 4.016 3.977 3.878 3.869 4.000 3.978 3.872 3.812

h = 10 5.836 4.594 4.189 4.310 4.177 4.319 4.215 4.410 4.265 4.232

h = 20 5.780 4.857 4.569 4.507 4.510 4.740 4.535 4.745 4.636 4.590

∆ = 2 hours

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 3.640 3.205 4.290 4.902 3.399 3.045 4.063 3.170 3.192 3.060

h = 2 4.636 3.738 4.127 4.478 3.753 3.585 4.033 3.705 3.657 3.574

h = 5 5.412 4.417 4.220 4.545 4.151 4.231 4.239 4.357 4.211 4.185

h = 10 6.196 4.775 4.544 4.616 4.491 4.605 4.491 4.702 4.555 4.528

h = 20 6.249 4.910 4.664 4.816 4.675 4.921 4.767 4.881 4.828 4.790

∆ = 1 day

RW AR(1) AR(5) AR(10) HAR(3) ARFIMA RFSV Γ− BSS Cauchy BSS

h = 1 3.452 3.223 3.966 4.737 3.455 3.208 3.755 3.336 3.328 3.245

h = 2 4.152 3.589 4.039 4.591 3.636 3.639 3.802 3.738 3.689 3.636

h = 5 4.962 4.062 4.060 4.261 3.930 4.060 3.938 4.114 3.991 3.958

h = 10 6.080 4.370 4.311 4.452 4.263 4.563 4.413 4.374 4.456 4.421

h = 20 6.885 4.631 4.641 4.667 4.629 4.972 4.905 4.631 4.837 4.800

Mean absolute errors (×1000) for the predicting log(RK) h-period ahead. The first 200 periods

were used for initial estimation.
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A Proofs

Proof of Theorem 3.1. Since σ is stationary are interested in

ρ(h) = Corr(σt, σt+h) =
Cov(σt, σt+h)

V ar(σ0)
, h ≥ 0.

Suppose for simplicity that ξt = 1 for all t. We get using the definition (3.2) of σ

Cov(σt, σt+h) = E[σtσt+h]− E[σ0]2

= E[exp(Xt +Xt+h)] exp(−E[X2
0 ])− 1.

Now, by the fact that X is a zero-mean Gaussian process we get, using the moment generating

function of the Gaussian distribution,

E[exp(Xt +Xt+h)] = exp

(
1

2
V ar(Xt +Xt+h)

)
= exp (V ar(X0) + cov(X0, Xt+h))

= exp (γX(0) + γX(h)) ,

where we write γX(h) for Cov(Xh, X0) = E[XhX0]. Putting it all together, and using that

V ar(σ0) = E[σ2
0]− 1 = exp(γX(0))− 1 we arrive at

1− ρ(h) =
exp(γX(0))− 1− (exp(γX(h))− 1)

exp(γ(0))− 1

=
exp(γX(0))− exp(γX(h))

exp(γ(0))− 1

= exp(γX(0))
1− exp(γX(h)− γX(0))

exp(γ(0))− 1

=
exp(γX(0))

exp(γ(0))− 1
(1− exp(−γX(0)(1− ρX(h))))

= − exp(γX(0))

exp(γ(0))− 1

∞∑
k=1

(−γX(0)(1− ρX(h)))k

k!

∼ |h|2α+1L0(h), h ↓ 0,

where we in the second-to-last line Taylor expanded the exponential and and in the last line we

used the assumption (3.1).

Proof of Theorem 3.2. Using the same approach as in the proof of Theorem 3.1, we get by Taylor

expansion:

ρ(h) =
exp(γX(h))− 1

exp(γ(0))− 1

=
1

exp(γ(0))− 1

∞∑
k=1

γX(h)k

k!
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=
1

exp(γ(0))− 1

∞∑
k=1

γX(0)kρX(h)k

k!

=
γX(0)

exp(γ(0))− 1
ρX(h) +

1

exp(γ(0))− 1

∞∑
k=2

γX(0)kρX(h)k

k!

∼ |h|−β, h→∞,

by the assumption (3.1).

Proof of Proposition 3.1. Recall that we can write

ρX(h) =

∫∞
0 g(x)g(x+ h)dx∫∞

0 g(x)2dx
, h ≥ 0. (A.1)

Clearly we can take h > 1 and now∫ ∞
0

g(x)g(x+ h)dx =

∫ 1

0
xαL0(x)(x+ h)−βL1(x+ h)dx+

∫ ∞
1

x−β(x+ h)−βL1(x)L1(x+ h)dx

:= I1,h + I2,h,

where

I1,h =

∫ 1

0
xαL0(x)(x+ h)−βL1(x+ h)dx,

I2,h =

∫ ∞
1

x−β(x+ h)−βL1(x)L1(x+ h)dx.

Our strategy is to show that I1,h ∼ h−βL1(h) and I2,h = o
(
h−βL1(h)

)
as h → ∞, from which

we, together with (A.1) get the desired convergence rate, ρ(h) ∼ h−βL1(h). Take first I1,h. Since

β > 0,

I1,h ≤ h−β
∫ 1

0
xαL0(x)L1(x+ h)dx

= h−βL1(h)

∫ 1

0
xαL0(x)

L1 ((x/h+ 1)h)

L1(h)
dx

∼ h−βL1(h)

∫ 1

0
xαL0(x)dx, h→∞,

by the properties of slowly varying functions and where we applied the dominated convergence

theorem. Similarly, we can make the opposite evaluation:

I1,h ≥ (1 + h)−β
∫ 1

0
xαL0(x)L1(x+ h)dx

= (1 + h)−βL1(h)

∫ 1

0
xαL0(x)

L1 ((x/h+ 1)h)

L1(h)
dx

∼ h−βL1(h)

∫ 1

0
xαL0(x)dx, h→∞.
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Putting the two inequalities together we get that I1,h ∼ h−βL1(h) as h → ∞. For the second

integral we get

I2,h ≤ (1 + h)−β
∫ ∞

1
x−β(x+ h)−βL1(x)L1(x+ h)dx

= (1 + h)−βL1(h)

∫ ∞
1

x−βL1(x)
L1 ((x/h+ 1)h)

L1(h)
dx

∼ h−βL1(h)

∫ ∞
1

x−βL1(x)dx, h→∞,

where
∫∞

1 x−βL1(x)dx <∞ since β > 1.

Proof of Proposition 3.2. As we intend h to diverge to infinity we may clearly take h > 1. Recall

that

ρX(h) =

∫∞
0 g(x)g(x+ h)∫∞

0 g(x)2dx
.

Now, by Tonelli’s Theorem, we may interchange the order of integration in the following,∫ ∞
0

∫ ∞
0

g(x)g(x+ h)dxdh =

∫ ∞
0

g(x)

∫ ∞
0

g(x+ h)dhdx.

Since h > 1, we get, using Karamata’s theorem (Bingham et al., 1989, Proposition 1.5.10.),∫ y

0
g(x+ h)dh =

∫ y

0
(x+ h)−βL1(x+ h)dh ∼ (x+ y)1−βL1(x+ y), y →∞.

Since 1 − β > 0 by assumption, we have
∫∞

0 g(x + h)dh = ∞. Now, since for large enough x we

have g(x) = xβL1(x) we easily conclude that there is a set A ⊂ R+ with Leb(A) > 0 such that

g(x) > ε > 0 for x ∈ A. Therefore,∫ ∞
0

∫ ∞
0

g(x)g(x+ h)dxdh =

∫
A
g(x)

∫ ∞
0

g(x+ h)dhdx+

∫
Ac
g(x)

∫ ∞
0

g(x+ h)dhdx

≥ ε
∫
A

∫ ∞
0

g(x+ h)dhdx+

∫
Ac
g(x)

∫ ∞
0

g(x+ h)dhdx

=∞,

since Leb(A) > 0.
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