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1 Introduction

The asset market generates risk and return characteristics that continuously challenge

our thinking. To rationalize market abnormalities, economists create models under a

few generally accepted economic principles. These models are constantly scrutinized

and possibly rejected with the advent of new empirical findings, and new models are

again proposed to accommodate these new findings.

In this process, a few important diagnostic tools have been developed by the lit-

erature to restrict the behavior of a candidate model. Under the basic no-arbitrage

condition, Hansen and Jagannathan (HJ, 1991) construct a bound on the second

moment of the stochastic discount factor for a given menu of assets. This nonpara-

metric bound provides a simple way to summarize asset market data, and to help

screen candidate models. Snow (1991) extends their work by showing how to bound

higher moments of the pricing kernel. Stutzer (1995) proposes an information bound

that minimizes the Kullback-Leibler Information Criterion. Bansal and Lehmann

(BL, 1997) and Alvarez and Jermann (AJ, 2005) derive restrictions on the entropy

— a separate metric on dispersion — based on the equity risk premium. These non-

parametric bounds rely only on the fundamental no-arbitrage condition and provide

unique lens through which we can characterize asset market data, diagnose exist-

ing asset pricing models, and design new models to explain a larger set of empirical

regularities.

I contribute to this literature by first providing a unifying theory on nonpara-

metric bounds. Starting from the no-arbitrage condition alone, I show the existence

of a continuum of bounds that restrict the δ-th norm of the pricing kernel, with

δ ∈ (−∞, 0) ∪ (0, 1). Next, I show that these bounds can be naturally interpreted as

the restrictions placed by an optimizing investor with a power utility function. In par-

ticular, I define an augmented return space associated with a pricing kernel and show

that agents’ portfolio choice problems based on this augmented return space impose

constraints on moments of the pricing kernel. In a strict duality sense, I show that

my approach is complementary to the Hansen and Jagannathan approach. Lastly,

I characterize the nonparametric bound universe and discuss its exhaustiveness. In

particular, I show that the well-known entropy bound is a special case of the new

bound system.
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To facilitate the application of my bounds, I propose a new metric termed the gen-

eralized entropy function. It is a natural generalization of the basic entropy (Stutzer,

1996, Backus, Chernov and Zin, 2014, and Hansen and Sargent, 2008) and encodes all

the distributional information of a pricing kernel. I use the system of new nonpara-

metric bounds to make inference on the generalized entropy function of the pricing

kernel. Through moment expansions, similar to Martin (2008) and Backus, Cher-

nov and Martin (BCM, 2011), I show how different moments of the pricing kernel

contribute to the generalized entropy function and, more importantly, how weighted

asset return moments provide information on the entropy function.

For the empirical application, I try to make better inference on disaster models

(Rietz, 1988, Barro, 2006, Barro and Ursua, 2008, and Barro et al., 2009). The

inherent difficulty for the disaster literature is how to measure events that only happen

rarely (i.e., the pseudo problem). Similar to BCM, who evaluate disaster models’

performances against index options along several metrics, I also use option data to

infer the tail information in the pricing kernel. Unlike BCM, I consider static trading

strategies that involve option returns and rely on the newly developed bounds to

make inference.

My approach is different from and advantageous over BCM in several aspects.

First, no assumption is made on the link between macro fundamentals and the asset

market. As a result, my results are robust to model misspecifications. Second, instead

of fitting a parametric model and using it to summarize the option cross-section, I

take the realized option returns as given and study their implications on the pricing

kernel. This again alleviates the goodness-of-fit concern of empirical option pricing

models. Finally, I evaluate disaster models through the spectrum of new bounds.

Given the ability of these bounds to provide incremental information on high order

moments of both the pricing kernel and asset returns, one would expect my approach

to provide a sharper inference.

Turning to the empirical findings, I first document the unique moment character-

istics of option strategy returns from a nonparametric bound perspective. Bounds

implied by out-of-the-money (OTM) puts universally dominate bounds implied by

either the market index or straddles. This highlights the pricing of jump risks in

put options, and is precisely the type of information we need to bear on models

with tail risks. Next, I use option implied bounds to confront standard rare disaster

models. In accordance with the macro-finance literature, I mark up the permissible
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parameter region in which all nonparametric bounds are simultaneously satisfied. I

show that the new bounds provide the sharpest restrictions on the model compared

to existing bounds. Lastly, to take statistical uncertainty into account, I develop a

formal testing framework that accommodates multiple assets and different types of

bounds. In this framework, I reject the benchmark disaster model and a few alter-

native specifications.1 Despite the rejection, the model’s ability of approaching asset

market bounds does look impressive. Taken as a whole, my results suggest more

sophisticated modeling of disaster models — possibly through the time-dependency

of disaster occurrences along the lines of Barro and Ursua (2008) and Watcher (2013,

2014) — to reconcile with option returns.

The rest of the paper is organized as follows. Section 2 develops a unifying theory

on nonparametric bounds. Section 3 studies bound informativeness by introducing

the concept of the generalized entropy. Section 4 estimates nonparametric bounds

constructed from option returns and uses them to test standard disaster models.

Section 5 concludes.

2 A Unifying Theory on Nonparametric Bounds

Hansen and Jaganathan (1991), Snow (1991), Stutzer (1995), Bansal and Lehmann

(1997) and Alvarez and Jermann (2005) derive nonparametric bounds under the no-

arbitrage condition. Depending on the functional form of the non-linear transforma-

tions of the pricing kernel, strong no-arbitrage condition may be needed to guarantee

the meaningfulness of the bounds. For instance, the entropy bound (Bansal and

Lehmann, 1997, Alvarez and Jermann, 2005) relies on a logarithmic transformation

of the pricing kernel. As a result, it only makes sense if the pricing kernel is strictly

positive with probability one. To the contrary, the variance bound by Hansen and

Jaganathan (1991) in general has no sign restrictions as the pricing kernel is raised to

the second power.2 To be specific about the asset pricing environment and facilitate

discussions, I first introduce some notations that will be used throughout the paper.

1More specifically, I reject the benchmark disaster model in Barro (2006) and a few other pa-
rameterizations at 5% significance.

2The weak no-arbitrage condition requires the pricing kernel to be nonnegative. Hansen and
Jaganathan (1991, 1994) include detailed discussions on the corresponding variance bounds when
either strict positivity or nonnegativity applies to the hypothesized pricing kernel.
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Let ℵ be the collection of gross returns. Conceptually, it includes returns of all

tradable assets and portfolios of them. Under the assumption of no-arbitrage, there

exists a pricing kernel M that prices all returns in ℵ, i.e.,

E[MR] = 1, ∀R ∈ ℵ. (1)

Hansen and Jaganathan (1991, 1994) define Q++ and Q+ to be the set of strictly

positive and nonnegative pricing kernels, respectively. Similarly, I define ℵ++ =

{R : R ∈ ℵ and R > 0 with probability one} and ℵ+ = {R : R ∈ ℵ and R ≥
0 with probability one}. For the same reason as for the entropy bound, I generally

require M ∈ Q++ and R ∈ ℵ++ to derive nonparametric bounds. Therefore, I

impose these two restrictions for the rest of this section unless otherwise stated.

Notice that M ∈ Q++ is an implication of the strong no-arbitrage condition. Also,

R ∈ ℵ++ is a weak condition for the gross returns of primitive assets to satisfy due

to limited liability. Both assumptions are rather mild and facilitate the applications

of nonparametric asset pricing bounds. Nonetheless, it is possible for a portfolio of

assets to have negative gross returns in some states if the portfolio has excessive short

positions on certain primitive assets. The theories I develop will not apply to these

portfolios.

2.1 A Continuum of New Bounds

Let M ∈ Q++ and R ∈ ℵ++ be the stochastic discount factor and an arbitrary return,

respectively. Under the no-arbitrage condition, we have the following proposition:

Proposition 1. : E(M
1
p ) ≤ [E(R− q

p )]
1
q , for any p > 1, q > 1, 1

p
+ 1

q
= 1.

Proof. The proof involves simple manipulations of the Euler equation and the appli-

cation of the Hölder’s inequality:

E(M
1
p ) = E[(MR)

1
pR− 1

p ]

≤ [E([(MR)
1
p ]p)]

1
p · [E(R− 1

p )q]
1
q

= [E(MR)]
1
p [E(R− q

p )]
1
q

= [E(R− q
p )]

1
q .
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The second line applies Hölder’s inequality to (MR)
1
p and R− 1

p , and the last line uses

the Euler equation E(MR) = 1.

The above derivation is different from the proof of the HJ variance bound or,

more generally, Snow’s high-moment bounds. These bounds place restrictions on

the pth moment of the pricing kernel, with p greater than one. As a result, direct

applications of the Cauchy-Schwarz inequality or the Hölder’s inequality on the no-

arbitrage condition suffice.3 In contrast, for fractional powers of the pricing kernel,

the strategy in Proposition 1 is to first create a power transformed gross return (i.e.,

R1/p) to match the pricing kernel. By applying the Hölder’s inequality, the 1
p
th power

of the product MR is raised to the pth power, which simply becomes the product

MR and drops out of the equation via the Euler equation.

Proposition 1 bounds the 1
p
th moment of the pricing kernel by the − q

p
th moment

of a return. As p runs from one to +∞, 1/p covers the interval (0, 1). At the same

time, −q/p = 1/(1−p) goes from −∞ to zero. Therefore, we are exhausting negative

moments of the return on the right hand side. However, due to the symmetry of

M and R in the no-arbitrage condition, we can obtain a continuum of bounds on

negative moments of the pricing kernel by switching M with R in Proposition 1.

Corollary 1. : E(M δ) ≥ [E(R
−δ
1−δ )]1−δ, ∀δ ∈ (−∞, 0).

Letting δ = 1
p
, we rewrite the bounds in Proposition 1 to make them consistent

with the notations in Corollary 1:

E(M δ) ≤ [E(R
−δ
1−δ )]1−δ, ∀δ ∈ (0, 1). (2)

Combining Corollary 1 and equation (2), we find lower bounds on E(M δ) when

δ < 0 and upper bounds when δ ∈ (0, 1). The change of direction for the inequalities

at δ = 0 seems cumbersome, but I will show later that it is simply a matter of scaling.

Under appropriate transformations, the system of bounds will be smoothly connected

at zero.

The bounds developed above apply for any R ∈ ℵ++. To provide the tightest

restrictions on the pricing kernel, we can search for the optimal return R correspond-

3For an introduction on Hölder’s inequality, see Casella and Berger (2001), Chap.4.
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ing to each power δ, similar to Snow (1991) and Bansal and Lehmann (1997). In

particular, define ρ(δ) as

ρ(δ) =


sup

R∈ℵ++

[E(R
−δ
1−δ )]1−δ, if δ ∈ (−∞, 0),

inf
R∈ℵ++

[E(R
−δ
1−δ )]1−δ, if δ ∈ (0, 1).

(3)

then ρ(δ) gives the sharpest lower (upper) bound on E(M δ) when δ ∈ (−∞, 0)

(δ ∈ (0, 1)). Instead of searching for the optimal return, Bakshi and Chabi-Yo (2014)

show how to combine bounds based on multiple assets. Their focus is on combining

information from different assets. Mine is on different moment restrictions on the

same set of returns.

2.2 Interpreting Bounds

What are the economic stories behind these bounds? What does a negative moment

of the return measure? In particular, what do the two sides of these inequalities

measure? I provide a utility-based interpretation of these bounds.

Let us first introduce a risk aversion index γ(δ) defined as

γ(δ) ≡ 1

1− δ
, δ ∈ (−∞, 0) ∪ (0, 1).

Note that γ(δ) has a well-defined support as a risk aversion coefficient: γ(δ) ∈
(0, 1) if δ ∈ (−∞, 0) and γ(δ) ∈ (1,+∞) if δ ∈ (0, 1). Next, define the augmented

return space as

ℵ∗∗(M) = {R : E(MR) = 1 and R > 0 with probability one}.

It is crucial to see the difference between ℵ++ and ℵ∗∗(M). The former contains

returns of assets that are tradable in the market while the latter contains all positive

returns that satisfy the no-arbitrage condition. In other words, ℵ++ includes what-

ever the market has while the potentially much larger ℵ∗∗ includes what the market

could have. The difference between ℵ++ and ℵ∗∗ measures the degree of market

completeness.

6



Within this augmented return space ℵ∗∗(M), I seek to solve the portfolio choice

problem for an agent with a unit endowment and a risk aversion of γ(δ). This opti-

mization problem can be written as

Uδ(M) = sup
R∈ℵ∗∗(M)

E[
R1−γ(δ)

1− γ(δ)
]. (4)

The maximized utility Uδ(M) depends on the discount factor M , whose infor-

mation is embedded in ℵ∗∗. The following proposition gives the solution to this

maximization problem.

Proposition 2. The solution to the maximization problem in (4) is given by

Uδ(M) =
[E(M

γ(δ)−1
γ(δ) )]γ(δ)

1− γ(δ)
=

[E(M δ)]
1

1−δ

1− γ(δ)
, (5)

R̃δ(M) = M− 1
γ(δ)/E(M

γ(δ)−1
γ(δ) ). (6)

Proof. The appendix contains a detailed proof. The inequalities in Proposition 1 and

Corollary 1 establish the finiteness of the objective function, making the optimization

problem well-defined. The proof then proceeds in two steps. First, the optimal

portfolio choice R̃δ(M) is solved as a function of the Lagrange multiplier associated

with E(MR) = 1, viewed as a budget constraint. Second, the Lagrange multiplier

itself is solved using the no-arbitrage condition.

Now the economic meanings of the new bounds stand out. To ease interpretation,

we can rewrite the bounds in Corollary 1 and equation (2) as

[E(M δ)]
1

1−δ

1− γ(δ)
≥ E[R1−γ(δ)]

1− γ(δ)
,∀R ∈ ℵ++. (7)

By Proposition 2, the quantity on the left-hand side is the maximized utility over

the augmented return space ℵ∗∗(M) for an agent with a risk aversion coefficient of

γ(δ). It is the highest achievable utility if the market is complete in the sense that

ℵ∗∗(M) = ℵ++ or, as a weaker requirement, the optimal choice R̃δ(M) is actually

tradable, i.e., R̃δ(M) ∈ ℵ++ .
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Intuitively, although the marginal investor determines the discount rate, investors

with different levels of risk aversion all have a say in the behavior of the discount

factor. Their portfolio choices automatically place a sequence of thresholds that the

discount factor has to overcome. As the power δ goes through its admissible range,

we are essentially running through the support of the risk aversion coefficient of the

power-utility agents. This interpretation is in spirit similar to Bansal and Lehmann

(1997)’s interpretation of the growth-optimal portfolio. I am able to significantly

generalize their argument.

From a methodological perspective, it is interesting to compare my approach to

that of HJ (Hansen and Jaganathan, 1991, Gallant, Hansen and Tauchen, 1990, and

Bekaert and Liu, 2003). HJ bounds are constructed by projecting the pricing kernel

onto the space of available asset payoffs. The L2-norm of the projected pricing kernel

has the minimal standard deviation across all valid pricing kernels. I start from a

candidate pricing kernel and ask what an optimizing agent will do in an ideal world

where all “admissible” returns are tradable. Subsequently, by limiting the asset space

to the group of tradable assets, the agent’s real-world objective function dictates a

lower bar that the starting candidate pricing kernel has to satisfy. In fact, in a strict

duality sense, these two approaches are complementary to each other. I rigorously

define the duality concept and prove it in the appendix. Intuitively, HJ’s approach is

more transparent when a certain moment of the pricing kernel (e.g., variance, Sharpe

ratio, etc.) is the focus and my approach is more intuitive when a return moment

(e.g., a CRRA investor’s objective function) is the interest.

Another benefit of developing the utility-based framework in this section is to mo-

tivate the development of alternative nonparametric bounds. Replacing the CRRA

agent with a CARA agent, I show how to derive the well-known information bound

in Stutzer (1995) in the appendix. Stutzer (1995) motivates his bound using the

Kullback-Leibler distance in information theory. It is interesting to see how my frame-

work helps rationalize asset pricing restrictions that are developed in a completely

different setup.

2.3 Characterizing the Non-parametric Bound Universe

Thus far, I have established bounds for various moments of the pricing kernel, with

zero (i.e., δ = 0) being the only undefined case. Additionally, I extend the log-utility
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interpretation of the entropy bound to general power utilities. These results prompt

one to wonder whether the entropy bound is the one that fills the hole of my bound

spectrum. Indeed, it is. The following proposition formally establishes this.

Proposition 3. The bounds given in Proposition 1 and Corollary 1 both imply the

entropy bound: E(log(M)) ≤ −E(log(R)).

Proof. The proof applies the same intuition as how power utilities converge to the log

utility. I only show how bounds in Proposition 1 imply the entropy bound. Essentially

the same proof follows for bounds in Corollary 1. I start by rescaling the bounds in

equation (2):

E(M δ)− 1

δ
≤ [E(R

−δ
1−δ )]1−δ − 1

δ
.

This is true because δ > 0. Taking limits as δ ↓ 0 and under regularity conditions,4

the left-hand side is easily seen to converge to E(log(M)) using the L’Hôspital’s rule.

A careful application of the rule to the right-hand side will deliver −E(log(R)) as the

limit.

We now have all the pieces to summarize the non-parametric bound universe that

the literature has discovered. Figure 1 shows a diagram of this bound universe. When

the power s equals one, the expected marginal rate of substitution is bounded within

[ 1
maxR

, 1
minR

] for a generic R ∈ ℵ++. This seemingly informative bound becomes

redundant in the presence of a risk-free rate Rf since E(M) = 1/Rf . Starting from

s = 1 and going right, one encounters the spectrum of Snow’s high-moment bounds

and the HJ bound is sitting at s = 2. Going left, one sees the continuum of bounds I

just developed, and the BL/AJ entropy bound fills the hole at s = 0. It is intriguing

to see the symmetric pattern of these bounds around s = 1, particularly in light of

the order by which they are discovered by the literature.5

4We need conditions on moments of M and R to be able to exchange limits and expectations.
Dominated convergence will suffice. See Davidson (1994) Part IV for some specific conditions.

5Recent papers by Almeida and Garcia (2012, 2013) proposes similar nonparametric bounds.
However, there are important differences between their work and mine. First, they follow the
Hansen and Jaganathan (1991) approach but use a new objective function to derive bounds. One
can insert their optimal solution into the objective function to obtain bounds that are similar to mine
but impose a known risk-free rate. I rationalize my bounds using a utility optimization framework,
which is a systematic approach to uncover non-parametric bounds (e.g., I show how to derive Stutzer
(1995)’s information bound in my framework.) Second, I relate my bounds to the basic entropy
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Lastly, we ask if the bound system is complete. This is more than a technical ques-

tion because we do not want to leave out important information on the pricing kernel

that can be learned through asset returns. In particular, given the existence of these

one-sided inequalities for essentially all the moments of the pricing kernel, one may

wonder whether other bounds, possibly pointing in opposite directions, can further

enrich the bound universe. The following proposition eliminates such possibilities and

indirectly shows the exhaustiveness of the above bound universe.

Proposition 4. For a given power s and the corresponding upper (lower) bound

on E(M s), the lower (upper) side of E(M s) is generally unbounded. Hence, the

non-parametric bound system is exhaustive.

Proof. The idea is to construct a sequence of pricing kernels that can all price a

certain asset but has an unbounded limit for a given moment. I leave this proof to

the appendix.

2.4 Discussion

The new continuum of bounds can be extended along several dimensions. First, it

can be adapted to study the dynamic behavior of the pricing kernel. Let Mt,t+n =

Mt+1Mt+2 . . .Mt+n be the time aggregated pricing kernel andRt,t+n = Rt+1Rt+2 . . . Rt+n

be a generic multi-period return. Long-horizon asset returns provide bounds on un-

conditional moments of the time aggregated pricing kernel. These unconditional

moments of the multi-period pricing kernel reveal the dynamic dependency of the

single-period pricing kernel. Different moments shed light on different forms of dy-

namic dependency. For instance, one natural way to scale an n-period pricing kernel

is to take the fractional power 1/m on the time aggregated pricing kernel. A bound

on the scaled kernel is given by

E(M
1
m
t,t+n) ≤ [E(R

−1
m−1

t,t+n)]
m

m−1 ,m ≥ 2.

bound, which attracts a lot of attention in the recent asset pricing literature. I generalize the entropy
definition and demonstrate how the generalized entropy encodes high-order moment information.
These analytical tools allow me to dissect and evaluate state-of-the-art asset pricing models that
explore tail information.
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When m → ∞, the above bound (properly scaled) converges to the basic multi-

period entropy bound. Backus, Chernov and Zin (2014) use this to study time-

dependency in discount rates. Setting m at n, the left-hand side becomes

E[exp(
1

n

n∑
j=1

logMt+j)],

so information about the average of the log pricing kernel is revealed. Decomposing

the pricing kernel into a permanent and a transitory component (Alvarez and Jer-

mann, 2005), the basic entropy leaves the expectation of the permanent component

intact while allows the transitory component to decay at a rate of n. My bounds,

by allowing one to vary m, shed light on how fast the transitory component decays.

Liu (2013) builds on this insight to diagnose dynamic asset pricing models using the

generalized entropy bounds.

Second, conditioning information can be incorporated to sharpen bounds on un-

conditional moments (Bekaert and Liu, 2004, Gallant, Hansen and Tauchen, 1990,

and Ferson and Siegel, 2003). Notice that simply adding instruments to the condi-

tional Euler equation (Hansen and Jaganathan, 1990) is different from using returns

that are generated by a dynamic trading strategy. The utility-based interpretation

of my bounds allow me to take the latter approach. Liu (2013) uses conditioning

information to differentiate key predictability assumptions in leading asset pricing

models.

3 Bound Informativeness

What do we gain by looking at the bounds for different moments of the pricing kernel?

I perform a dissection of the bound system. Much like a doctor performing surgery, I

need a “surgical knife” that works on asset pricing bounds. I define a quantity that is

a natural generalization of the entropy concept popularized by Bansal and Lehmann

(1997), Alvarez and Jermann (2005) and Backus, Chernov and Zin (2014). I show

that it is both economically meaningful and analytically tractable. Equipped with

this tool, I apply the cumulant-expansion technique (Backus, Chernov and Martin,

2011 and Martin, 2008) to examine both sides of a bound. Insights are provided on

bound informativeness.
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3.1 A Useful Quantity

The recent asset pricing literature proposes a convenient measure to study the link

between the pricing kernel and asset returns (Bansal and Lehmann, 1997, Alvarez

and Jermann, 2005, Backus, Chernov and Martin, 2011, and Martin, 2011).6 The

entropy is used to measure pricing kernel dispersion and is bounded below by the

continuously compounded risk premium:

L(M) ≡ logE(M)− E(logM) ≥ E(logR)− log(Rf ), (8)

where R ∈ ℵ++ is an arbitrary return and Rf = 1/E(M) is the gross risk-free rate,

assuming one exists. Researchers rely on the entropy bound to gauge the amount

of dispersion that an asset pricing model has to generate. However, considering

the newly developed continuum of bounds that are relatives of the entropy bound,

one would expect to gain additional insights by using alternative bounds. I propose

a quantity that is a natural generalization of the original entropy concept. The

continuum of bounds developed in the previous section can then be brought in to

study the pricing kernel. In essence, I am normalizing the system of bounds in

reference to the entropy bound.

The Generalized Entropy Function (GEF) of a positive pricing kernel is defined

as:

GEF (s;M) ≡ logE(M)− 1

s
logE(M s) (9)

for any real-valued s. It is an extension of the original entropy because its limit at

zero is exactly the entropy, i.e.,

lim
s→0

GEF (s;M) = L(M).

Assuming the finiteness of all moments, GEF (s;M) is an everywhere continu-

ous function on the real line. Moreover, many convenient properties of the basic

entropy are maintained by the GEF. For instance, the GEF equals zero at a power

s if and only if M is a constant. Similar to the entropy, it is scale-invariant, i.e.,

GEF (ws;M) = GEF (s;M) for a constant w. Hence, GEF leaves the pricing kernel

6Notably, entropy is gaining popularity in many fields of economics and finance. See Stutzer
(1996), Hansen and Sargent (2008), Ghosh, Julliard and Taylor (2011) and Van Nieuwerburgh and
Veldkamp (2010).
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numeraire invariant. This is an appealing property empirically because we do not

need to worry about the adjustment between a nominal and a real pricing kernel.

Globally, as a function defined over the real line, the GEF has several attractive

features that will facilitate its applications. First, it can be shown to be an everywhere

concave function. Second, GEF is pivotal around (1, 0) in the sense that every GEF

has to pass (1, 0) on the two-dimensional plane. This gives a fixation point to anchor

the GEF’s corresponding to different pricing kernels. Finally, in the familiar lognormal

case, GEF (s;M) = (1− s)σ2
M/2 where σ2

M is the variance of the log pricing kernel.

The bound system developed in the previous section can be brought in to restrict

GEF (s;M). The implied restrictions can be shown as:

GEF (s;M) ≥ s− 1

s
logE(R

s
s−1 )− log(Rf ),∀s ∈ (−∞, 1). (10)

Notice how the two types of bounds in Corollary 1 and equation (2) nicely line up with

each other in terms of the directions of inequalities. The undesirable flip in direction

at zero disappears once we introduce the generalized entropy function. When s > 1,

Snow’s continuum of high-moment bounds imply

GEF (s;M) ≤ s− 1

s
logE(R

s
s−1 )− log(Rf ),∀s ∈ (1,+∞). (11)

Figure 2 plots a generic GEF with asset market bounds.

Given the convenience offered by the GEF, for the rest of the paper I will focus

on bounds given in the form of (10) or (11) unless otherwise specified. I will refer to

the system of bounds given in (10) as the generalized entropy bounds or, with a slight

abuse of terminology, simply entropy bounds.7 The bounds in (11) are termed the

high-moment bounds.

3.2 Expanding the GEF

The Cumulant-Generating Function (CGF) is another recently developed tool to

study higher order moments of the pricing kernel (Backus, Chernov and Martin, 2011

7Sometimes, to emphasize the difference between the new system of bounds (i.e., the generalized
entropy bounds) and the original entropy bound proposed by Bansal and Lehmann (1997) and
Alvarez and Jermann (2005), I refer to the original entropy bound as the basic entropy bound.
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and Martin, 2008). By Taylor-expanding the log expected pricing kernel into a power

series, it shows how higher order moments contribute to the overall entropy. Backus,

Chernov and Martin (2011) use the basic entropy as a measure of dispersion and

compare a disaster model and an empirical option pricing model through the entropy

bound. Assuming a representative agent framework and an iid consumption growth

process, Martin (2008) links macro fundamentals (e.g., the wealth-to-consumption

ratio) to moments of the consumption growth and performs a calibration exercise.

I contribute to this literature by showing that asset returns provide valuable in-

formation about the entire CGF — not just at zero, which corresponds to the basic

entropy. This significantly strengthens the link between macro fundamentals and as-

set market returns, and can potentially help us better distinguish candidate models.

I start by performing a Taylor expansion of the newly defined GEF . This amounts

to Taylor-expanding E(M s) = E(es logM) around s = 0:

GEF (s;M) =
∞∑
i=1

κi(logM)

i!
− 1

s

∞∑
i=1

κi(logM)

i!
si

=
∞∑
i=2

κi(logM)

i!
(1− si−1)

=
κ2(logM)

2!
(1− s) +

κ3(logM)

3!
(1− s2) +

κ4(logM)

4!
(1− s3) +

κ5(logM)

5!
(1− s4) + . . . . (12)

The first two lines Taylor-expand the two parts in the GEF and group similar

terms. The last two lines explicitly write out the first few terms in the expansion.

Here κi(logM) denotes the i-th “cumulant” of the log discount factor and is defined

as the i-th derivative of logE(es logM) at s = 0. Cumulants are closely related to

moments: κ1(logM) and κ2(logM) are the mean and variance of logM , respectively,

and κ3(logM) and κ4(logM) are related to the usual skewness (ν1) and excess kurtosis

(ν2) through: ν1 = κ3(logM)/[κ2(logM)]
3
2 and ν2 = κ4(logM)/[κ2(logM)]2 (see

Backus, Chernov and Martin, 2011).

The expansion of the GEF reveals that cumulants are weighted by polynomials

of s. In particular, the i-th scaled cumulant κi(logM)/i! is multiplied by (1 − si−1).

By varying the value of the argument s, the GEF puts different weights on different

moments. In this way, the GEF conveys information about all the moments of the
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pricing kernel. In particular, when evaluated at s = 0, the GEF equals the basic

entropy, which is simply the sum of {κi(logM)/i!}∞i=1.

I argue that the GEF is especially useful in teasing out tail information in the

pricing kernel. Take, for example, a standard disaster model along the lines of Barro

(2006, 2009). In such a model, large drops in consumption in disastrous states gen-

erate a huge amount of negativity in skewness and all the other odd moments. Con-

sequently, the marginal rate of substitution, which loads negatively on consumption

growth, will display excess positivity for all odd moments. At the same time, even

moments will mechanically increase as well with the presence of extreme observations

in state prices. This creates an identification problem for the ultimate source of dis-

persion. Backus, Chernov and Marin (2011) argue that odd cumulants in the basic

entropy expansion reflect the inherent asymmetry in jumps. However, given that all

moments are equally weighted in the basic entropy expansion, it is difficult to single

out the contribution from odd/even moments. I suggest taking large negative s val-

ues. A large negative s makes the weights associated with even moments positive and

those associated with odd moments negative. Thus, a “net” jump effect is singled

out by taking the difference between odd and even moments. In fact, at s = −1

odd moments disappear completely from the generalized entropy and we are left with

even moments alone. The empirical study of the paper in later sections confirms the

usefulness of the generalized entropy bounds at negative powers.

Similar expansions can be applied to returns on the right-hand side of bounds.

This is important as it gives us guidance on the selection of the most informative

assets. I cumulant-expand the right-hand side of equation (10) as:

GEF (s;M) ≥ s− 1

s

∞∑
i=1

κi(logR)

i!
(

s

s− 1
)i − logRf

= [E(logR)− logRf ]︸ ︷︷ ︸
Risk premium

+
∞∑
i=2

κi(logR)

i!
(

s

s− 1
)i−1

︸ ︷︷ ︸
High-order moments

, (13)

where κi(logR) is the i-th return cumulant.

The basic entropy bound, by setting s = 0, ignores the term
∑∞

i=2
κi(logR)

i!
( s
s−1

)i−1,

which includes high-order moments — including the variance — of returns. My

bounds take these moments into account and, by allowing one to vary the power s,

help differentiate the contribution from different high-order moments. For instance,
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for large negative s values, s
s−1

is close to one, so the first few higher order cumulants

will enter significantly into the right-hand side. This means that to provide the

tightest bounds, we need returns that possess excess (positive) skewness and kurtosis.

Option strategy returns meet these requirements (Coval and Shumway, 2001 and

Broadie, Chernov and Johannes, 2008). In the empirical section of the paper, I follow

this intuition to explore the restrictions that option strategy returns place on the

discount factor.

4 Option Market Bounds and Rare Disaster Mod-

els

Tail information, long recognized as a potential source to generate economic risk

premiums (Rietz, 1988), has recently been elevated to quantitatively explain asset

market abnormalities. Barro (2006), Barro and Ursua (2008) and Barro et al. (2009)

estimate the tail distribution of the US consumption growth by looking at inter-

national macroeconomic data. Based on the exchange economy and representative

agent framework, they argue that the calibrated rare event distribution can explain

key moments of US asset returns, particularly the equity risk premium. Gabaix

(2009), Wachter (2013, 2014) and Gourio (2008) extend the basic disaster model to

account for other salient features of asset markets.

At the heart of the rare disaster literature is the so-called pseudo problem: given

the rare occurrence disasters, one cannot estimate their distributions accurately based

on a relatively short univariate time series. As a remedy, researchers pool data from

other sources to avoid the inherent small sample problem. An alternative approach is

to use asset market returns to infer the tail information in the pricing kernel, thereby

indirectly estimating the disaster distribution. Since option prices are informative

about the investors’ ex-ante valuation of extreme event risks, they can be a useful

source of information.

Backus, Chernov and Martin (2011) use equity index options to infer the distri-

bution of the consumption growth. I also consider index options but take a different

approach. In particular, I use the newly developed nonparametric bounds to study

the tail distribution of macro fundamentals. My approach has several advantages.

First, it is based on the basic no-arbitrage condition alone and thus free from various

16



sources of model misspecifications. For instance, we do not need to specify how the

cash flow varies with the consumption growth, which in itself is empirically challeng-

ing. Second, no parametric model is needed to fit the entire cross-section of option

prices. Instead, individual option trading strategies are estimated and fed into the

nonparametric bounds. Lastly, a formal statistical testing framework is developed. It

features the simultaneous testing of several bounds. I show the discriminatory power

of the generalized entropy bounds.

4.1 Data description

For the empirical analysis, I use monthly data on the S&P 500 index, the associated

index options and the risk-free rate. The risk-free rate is from Kenneth French’s

on-line data library. The full sample for the market returns runs from July 1926 to

December 2011. The shorter sample, which coincides with the span of the option data

from OptionMetrics, is from January 1996 to December 2011, yielding 192 months of

data. All nominal returns are converted to ex-post real returns using the Consume

Price Index (CPI).

I collect European style S&P 500 index options from the OptionMetrics database.

The data set contains daily settlement prices for options with various strike prices and

maturities, as well as liquidity measures such as open interests and trading volumes.

It also includes dividend yield for the market index and interpolated zero coupon

yields. They are used to construct option trading strategies later on. To mitigate

microstructure issues, I drop option data with average bid-ask prices less than one

eighth of a dollar, with open interests less than 100 contracts or with zero trading

volumes. Finally, I use put-call parity relationships to filter out data that obviously

violate the no-arbitrage condition.

To construct equally-spaced monthly returns from option prices, I follow a proce-

dure that is similar to Coval and Shumway (2001), Buraschi and Jackwerth (2001),

and Driessen and Maenhout (2005). First, options with strike-to-spot ratio closest

to 92%, 96% and 100% are targeted on the first trading day of each month. Next,

these option contracts are followed and identified until the beginning of the subse-

quent month. Monthly holding period returns are calculated. In this process, option

contracts that expire in the third week of the same month have to be excluded. Due

to liquidity concerns, I focus on short-maturity options with around seven weeks to
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maturity at the buying date and about two weeks to maturity at the selling date.

These options have large trading volumes and are less affected by liquidity problems

(Bondarenko, 2003).

The equally-spaced return series are convenient to handle empirically, especially

when we use them to confront asset pricing models. This is because most discrete

time models specify a fixed sample frequency. Additionally, as argued by Driessen

and Maenhout (2005), thus constructed returns are more sensitive to changes in

jump or volatility risks than hold-to-maturity returns. This sensitivity is important

as risk-sensitive returns can potentially provide the most informative restrictions on

the pricing kernel. Finally, from a more technical point of view, the nonparametric

bounds require (gross) returns to have a positive support. However, hold-to-maturity

returns are at times extremely high, creating difficulty in constructing a short strategy

that always generates positive (gross) returns.

Instead of using raw option returns data, I focus on returns of a few well-known

derivative strategies. There are two main reasons for this: 1. Economically mean-

ingful strategies offer clear interpretations of the sources of risks (jump risks and/or

volatility risks) that are being traded; 2. The recent literature on option pricing

anomalies mainly focus on these trading strategies (Coval and Shuway, 2001, Bon-

darenko, 2003, Driessen and Maenhout, 2005). To be consistent and comparable with

existing studies, I focus on derivative strategies.

In particular, I use the following two strategies as the benchmark strategies:

• An out-of-the-money (OTM) put option with 96% moneyness;

• An at-the-money(ATM) straddle.

A deep OTM put is a hedge against market crashes and much less so against

volatility movements. Its price is therefore more sensitive to market jump risks than

to volatility risks. On the other hand, an ATM market-neutral straddle generates

profits when either the market volatility is high or when market crashes, so it is

exposed to both volatility and jump risks. These two option strategies are among the

most commonly traded strategies by market participants and have been extensively

studied by the recent option pricing literature (Coval and Shumway, 2001, Jackwerth,

2000, Bondarenko, 2003). I choose the 96% OTM put as the benchmark since it is less

subject to liquidity concerns than deeper OTM puts. The results hold with deeper

OTM puts.
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In addition to the benchmark strategies, I further consider two types of “crash-

neutral” variants of them. They are simply the two original options mixed with offset-

ting short positions in the 92%-OTM put option.8 For these crash-neutral strategies,

large returns when market crashes are capped off for long positions in the benchmark

strategies and symmetrically, short positions are protected against large downward

movements of the market returns.9 It would be interesting to see whether these alter-

native strategies can provide any additional information beyond what are provided

by the benchmark strategies.

Table 1 presents the summary statistics for the returns of various derivative strate-

gies as well as the market index. Consistent with the literature, long positions in these

option strategies generate large negative average returns and Sharpe ratios. The flip

side would be the potential gains generated by shorting these strategies. Moreover,

the returns are highly non-normally distributed, as reflected by the large magnitude

of skewness and kurtosis. These moment characteristics of option strategy returns

will provide useful information on the pricing kernel.

In spite of the magnitude, the mean returns for my sample are notably smaller

and about half the size of those reported by Coval and Shumway (2001), Bondarenko

(2003), and Broadie, Chernov and Johannes (2007). This is mainly driven by the

instability in estimating the mean returns for these derivative strategies. The afore-

mentioned papers mainly focus on the period before 2005 and many include the 1987

crash episode. In contrast, mine starts in 1996 and extends all the way to the most

recent period. It is worthwhile to mention that the recent six years (2006-2011) see

significant increases in returns for these strategies. For instance, the average 92%-

OTM and 96%-OTM put returns are -12.8% and -13.6% per month, respectively,

much larger than their sample averages in early years. A full investigation into the

changes in returns is beyond the scope of this paper. To the extent that my sam-

ple under-represents the option return population and overestimates mean returns,

8For details on the construction of the crash-neutral strategies, see Jackwerth (2000) and Coval
and Shumway (2001).

9This is only approximately true because the beginning-of-period 92%-OTM put and 96%-OTM
put may have different maturities. In fact, the deeper 92%-OTM put may have a higher price
than the 96%-OTM put simply because the former’s maturity is significantly longer than the latter.
This creates difficulty in interpreting the crash-neutral strategies. For instance, a short leg in the
92%-OTM put becomes a long leg. To avoid this issue, I also create robust crash-neutral puts
and straddles which essentially delete the observations for which the deeper 92%-OTM put is more
expensive than the 96%-OTM put. See the descriptions of Table 1 for details.
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the bounds constructed below can be regarded as conservative lower bounds on the

generalized entropy functions of the pricing kernel.

4.2 Bounds Implied by Option Strategies

With asset market returns and relying on the analytical tools developed in the previ-

ous sections, I explore their implications on the behavior of a pricing kernel. Ideally,

to provide the sharpest bounds, we need to search for the optimal dynamic strategy

that maximizes a certain unconditional moment of the return. However, parameter

estimates for even simple static portfolio choice problems are usually very unstable,

partly due to the volatile nature of market returns (Brandt, 1999, Sahalia and Brandt,

2001). Moreover, since we are considering portfolios that involve highly non-normally

distributed option returns, the estimation issue can only get worse. Eventually, esti-

mation uncertainty translates into bound uncertainty and this may significantly affect

our inference. To reduce estimation uncertainty, I choose to consider simple static

option strategy that has the following form

RP = Rf + αS(RS −Rf ), (14)

where αS denotes the fraction of wealth allocated to a generic return RS. Hence, only

the tradeoff between a safe asset (Rf ) and a return is considered.10

Figure 3 plots the bound frontiers (i.e., the right-hand sides) given in inequalities

(10) and (11) when the power s equals 2, 0.5, 0, -1, -3 and -8, and Table 2 reports

the optimal portfolio weights at a risk-free rate of zero per month.11 Notice that

when s = 2, the admissible region for the pricing kernel is below the depicted curves,

whereas at other powers it is above the depicted curves. I intentionally leave this

“inconvenient” feature in the graph to emphasize the flip in the direction of bounds

at s = 1. Four types of portfolios are shown on this graph: two involve the two

10In doing this, I ignore the possible utility gains from combining the market index with derivative
strategies. For a CRRA investor with a risk aversion coefficient of more than one, Driessen and
Maenhout (2005) show that the allocation to the market index is rarely significant. This indirectly
shows the limited utility gains by combining the market index with derivative strategies.

11The mean and standard deviation of the risk-free rate for the short sample (1996-2011) is 4bp
and 40bp per month, respectively. I therefore center it at zero and extend to ±3 standard deviations
away from the center in Figure 3.
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benchmark derivative strategies and, for comparison purposes, the other two that

involve the market index.

Several patterns emerge from Figure 3 and Table 2. First, strategies involving the

put option clearly dominate the other strategies across all powers and a wide range

of the risk-free rate. At s = 2, which is the HJ bound, the Sharpe ratio essentially

determines the strength of bounds that a given security imposes on the pricing kernel.

As a result, in accordance with the rankings of the absolute Sharpe ratios in Table

1, the 96%-OTM put implies the sharpest constraint, and is followed by the market

index and lastly the ATM straddle.

At other powers, the bounds belong in the realm of the generalized entropy bounds

and hence have utility-based interpretations as discussed previously. In particular, a

bound at power s corresponds to the transformed optimized utility of a power utility

agent with a risk-aversion of 1
1−s

. In a closely related empirical paper, Driessen and

Maenhout (2005) study the asset allocation problem of an investor who has access

to index options. Their empirical results lend support to my results, especially at

s = 0.5 and s = 0. At s = 0.5, both their paper and my results show that an agent

with a risk-aversion of two (= 1
1−0.5

) has a significant short position in the 96%-OTM

put: their paper, allowing the market index to be in an investor’s choice set, has an

estimate of about −10% for αS while I have an estimate of around -20% by excluding

the market index. At s = 0, which corresponds to the logrithmic utility case as in the

original entropy bound, their estimate is around -15% and mine again roughly doubles

their estimate. Putting aside the difference in asset menus and sample periods, both

studies show the economic benefits by allowing investors to trade deep OTM put

options. The two panels in Figure 3 (i.e., s = 0.5 and s = 0) illustrate these benefits

by highlighting the differences in utility gains among the four candidate strategies.

As s becomes negative, the corresponding risk-aversion coefficient becomes even

smaller so the relative gains in expected returns by shorting put options further

outweigh the losses in variance and other high-order moments. Consequently, the

optimal bounds require even larger positions in the OTM put. Notably, the ATM

straddle yields an unimpressive mean relative to the 96%-OTM put and a much higher

variance compared to the market index. Accordingly, strategies involving the straddle

imply inferior bounds compared to those involving either the put option or the market

index.
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To gain a deeper insight into the above empirical findings, it is worthwhile to

repeat the discussion in Section 2.2. Although the marginal or representative investor

determines the market prices of jump and volatility risks,12, investors with different

risk attitudes all reveal valuable information about these prices through their asset

allocations. For example, all else being equal, higher prices of jump risks imply more

expensive deep OTM puts. With a fixed physical jump distribution, this implies a

lower ex-ante and ex-post average return for buying puts for the representative agent.

However, for an agent who is less risk averse and hence does not value the put option’s

hedging ability as much as the representative agent, she treats the increase in put

option prices as a lucrative trading opportunity. By shorting more, she increases her

expected utility. Following this logic, the above empirical findings (i.e., strategies

involving put options imply sharper bounds than alternative strategies) highlight

the more important role of priced jump risks than volatility risks in option prices.

Notice that this is not saying that volatility risks matter little to investors in all

circumstances, as we are only looking at the static asset allocation problems of a power

utility agent. To have priced volatility risks appear more important to an investor,

we have to study dynamic strategies given the strong predictability in volatilities.13

This is left to future research.

Besides the two benchmark option strategies, I also consider alternative strate-

gies. They may appear attractive for certain CRRA investors and thereby providing

tighter bounds on the pricing kernel. Figure 4 and 5 show the bounds implied by two

alternative put option strategies and two crash-neutral strategies, respectively, and

Table 3 shows the corresponding weights. Figure 4 shows that the strategy that shorts

the 96%-OTM put option turns out to be the dominating one across all powers that

belong to the realm of the generalized entropy bounds. This is somewhat surprising

since we would expect its performance to be in between the strategy involving the

92%-OTM put and the one involving the ATM put. A closer look at the admissible

portfolio weights reveal that strategies that short the 92%-OTM put have stronger

weight restrictions: given that the maximum net return is close to 4 (see Table 1), the

maximum proportion one can short in the 92%-OTM put is 1/(1− (4 + 1)) = −0.25

at a risk-free rate of zero. This is significantly smaller in magnitude than the allow-

12The compensation for jump and volatility risks in the market index is well documented by the
option pricing literature. Buraschi and Jackwerth (2001), Coval and Shumway (2001) and Bakshi
and Kapadia (2003) show the presence of volatility risk premiums. Bates (2002), Pan (2002) and
Ait-Sahalia, Wang and Yared (2001) show the presence of jump risk premiums.

13Liu (2013) uses the generalized entropy bounds to study the implications of dynamic strategies
on representative agent models.
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able 0.45 short position in the 96%-OTM put, as shown in Table 2. Consequently,

despite the fact that the 92%-OTM put has a more negative average return than the

96%-OTM put, weight constraints prevent investors from exploiting it any further.

This phenomenon, although irrelevant for the strategy dominance results that our

analysis relies on (i.e., strategies involving the 96%-OTM put are more attractive and

thus dominating those involving the 92%-OTM put partly because they allow more

aggressive short positions), points to the instability of the in-sample asset allocation

problem.14 I will come back to this issue shortly.

Figure 5 shows that bounds based on the benchmark put option strategy dominate

those based on the crash-neutral strategies at s = 2 and perform well for the other

three powers. In particular, the OTM put strategy weakly dominates the crash-

neutral put strategy at s = 0.5, is on par with the latter at s = 0, and is a little less

informative at s = −4. The key observation is that the differences between bounds

based on these two strategies are significantly smaller than the differences between

these two strategies and the other two strategies (i.e., ATM straddle and its crash-

neural counterpart). Taken as a whole, Figure 4 and 5 suggest the informativeness

of deep OTM put strategies (especially strategies with 96%-OTM put) in effectively

shaping the admissible region for moments of a candidate pricing kernel. They reveal

information about the pricing of jump risks in the economy and empirically provide

the sharpest bounds that any valid SDF ought to satisfy.

The optimized bounds found above can be directly used to confront candidate

pricing kernels. However, they may appear too stringent for several reasons. First,

in-sample asset allocation generates portfolio weight estimates that are too noisy (see

Brandt, 2000, Driessen and Maenhout, 2005). What is perhaps more troublesome in

our setup is the boundary-dependence of the optimal weights. As seen in Table 2 and

3, weights for several strategies are close to their boundary values for large negative

powers. This exacerbates the in-sample instability issue since extreme observations

are more sample-dependent than sample moments. Second, transaction costs and

margin requirements for real-world option trading strategies may limit the amount

that we can short. Although traction costs are small for the index option market

14Notice that the in-sample asset problems are well-defined both theoretically and numerically in
our context. In particular, although sometimes the solutions are close to the boundary (see Table 2
when s = −1,−3 or −8), the infinitely large marginal utility at the boundary for an CRRA investor
will restrict the optimal weight to be well within the boundary. However, the boundary-dependence
for the optimal weight is exacerbated in our context because the CRRA investor’s risk aversion
coefficient is sometimes close to zero (e.g., s = −8 implies a risk aversion of 1/9 = 1/[1− (−8)]). As
a remedy, I consider more robust weights later on to alleviate this boundary-dependence issue.
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(Bakshi, Cao and Chen, 1997) and our long positions in the risk-free asset can serve

as margins, microstructure and liquidity issues may become non-negligible if we have

excessive short positions in index options. Third, weights for these optimal bounds

depend on the prevailing risk-free rate and are thus time-varying. This is cumbersome

for our application since a different bound has to calculated for a different risk-free

rate.

On further inspection of Figure 4 and 5 we notice that option implied bounds are

almost constant across a wide range of bond rates. This motivates us to consider

option strategies that are independent of the bond rates. I propose a simple way

to create conservative and interest rate independent investment strategies. For the

most informative 96%-OTM put, I set a lower threshold of αL = −35% for the

short position to avoid excessive shorting,15 and fix the weight on the put option at

the optimal zero-interest weight given in Table 2 if the weight does not exceed the

threshold, or at αL otherwise.

In doing this, we end up having the following three OTM put strategies: a long

50% strategy at s = 2, a short 20% strategy at s = 0.5, and a short 35% strategy at

other powers. Figure 6 shows the bounds for these conservative strategies together

with those from the two benchmark strategies. Not surprisingly, they agree well with

the optimal strategies for s = 2, 0.5 and 0. At s = −4, the discrepancy is about

1% across different levels of the bond rate. This is much smaller than the difference

(around 8%) between the bounds implied by the ATM straddle and the OTM put

strategy. For the rest of the paper, I use these simple yet efficient strategies to bear

on candidate pricing kernels. Had we missed important information by employing

these sub-optimal strategies, they still provide valid, albeit conservative restrictions

on the pricing kernel.

4.3 Rare Disaster Models and Option Return Bounds

I consider a representative-agent exchange economy model with infrequent large de-

clines in consumption growth. More specifically, I focus on models with an iid en-

vironment. This is a first step in understanding the distribution of tail events in

consumption growth. Moreover, since we restrict ourselves to simple static option

15This number is chosen to approximately equal the optimal weight at s = 0 and a risk-free rate
of zero. It is also about 10% away from the boundary value, which helps alleviate the boundary-
dependence of the optimal weights.
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strategies in the construction of bounds, it is only fair to consider a pricing kernel

that features iid shocks. I also adopt a Possion-normal specification for the jump

component in consumption growth.16 This parametric setup has two appealing fea-

tures: 1. It is flexible enough to match many of the empirical regularities on rare

event distributions (Barro, 2006, Barro et al., 2009); 2. It is infinitely divisible, al-

lowing us to “zoom” in on an arbitrarily small frequency. I state the model at the

annual frequency but will use its monthly counterpart to match bounds constructed

from monthly returns.

The time-additive utility representation for the representative agent is given by

E0(
∞∑
t=0

βt C
1−γ
t

1− γ
),

where γ governs investor risk-aversion. The pricing kernel is known to be

logMt+1 = log β − γ logGt+1, (15)

where Gt+1 ≡ Ct+1/Ct is the consumption growth growth. Log consumption growth

is assumed to be driven by two independent shocks,

logGt+1 = ϵt+1 + ηt+1, (16)

where ϵt+1 ∼ N (µ, σ2) is the normally distributed component and the distribution of

the jump component ηt+1 is given by

ηt+1|(J = j) ∼ N (jθ, jν2), J ∼ Poisson(ω). (17)

To derive entropy-related quantities for this kernel, we start from calculating the

moment-generating functions (MGF) of the two shocks. The MGF for the normal

shock is E(esϵt+1) = exp(µs + σ2s2/2). The MGF for the Poisson-normal part, as

shown in Backus, Chernov and Martin (2011), is

E(esηt+1) = exp(ω[esθ+(sν)2/2 − 1]). (18)

16For its applications in the macro-finance literature, see Naik and Lee (1990), Martin (2007) and
Backus, Chernov and Zin (2014).
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By independence of the two shocks, the cumulant-generating function (CGF) can be

shown to be

CGF (s) ≡ logE(es logMt+1) = s log β − γµs+
1

2
γ2σ2s2 + ω[e−γsθ+(γsν)2/2 − 1]. (19)

By setting s = 1, the continuously compounded one-period riskfree rate rf ≡ − logE(Mt+1)

is given by

rf = −(log β − γµ+
1

2
γ2σ2 + ω[e−γθ+(γν)2/2 − 1]). (20)

Finally, combining the above two pieces, the generalized entropy function (GEF) can

be shown to be

GEF (s) =
1

2
γ2σ2(1− s) + ω[e−γθ+(γν)2/2 − 1

s
e−γsθ+(γsν)2/2 − s− 1

s
]. (21)

When s → 0, GEF (s) converges to the original entropy

L(M) =
1

2
γ2σ2 + ω[e−γθ+(γν)2/2 + γθ − 1]. (22)

The stacked parameter vector for a disaster model is (β, γ, µ, σ2, ω, θ, ν2)′, which

has seven components. To better concentrate on economically interesting parameters

such as the disaster intensity ω and size θ, I perform a “partial derivative” exercise.

First, as shown in Panel A of Table 4, I fix the two preference parameters (i.e.,

β and γ), the risk-free rate, and two variance statistics related to the consumption

growth. The total variance in consumption growth σ2+ω(θ2+ν2) is fixed at the sam-

ple estimate based on the US real consumption data (Backus, Chernov and Martin,

2011). The variance for the normal component of the Poisson-normal shock is fixed

at its estimate based on the realized disasters from international macroeconomic data

(Barro, 2006). These second moments are estimated with much more precision than

first moments (i.e., µ and θ) and my choices agree with the disaster literature.

Next, to illustrate the usefulness of the GEF, I fix the expected loss when a disaster

happens at ωθ = −0.006 and consider three ω and θ combinations that represent

light, mild and severe disaster types, respectively, as given in Panel B of Table 4.17

These three types of disaster distributions imply an increase in disaster size (or,

17The mean µ of the normal shock component is used to match the interest rate.
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equivalently, a decrease in disaster frequency) and roughly agree with the historical

consumption data of the US, an average country in Barro’s sample (Barro, 2006),

and a few European countries that experienced large drops in per capita GDP during

World War II, respectively. Note that these three model specifications are difficult

to differentiate empirically as they imply the same total volatility in consumption

growth, interest rate, and, by a first-order approximation, mean consumption growth

rate.18 It is therefore interesting to see whether GEF can better distinguish these

models and, more importantly, whether asset market returns provide support for any

of them.

Figure 7 shows the GEF plots for the three disaster models. I focus on the region

from -3.5 to 1. As the power s goes above 1 or below -3.5, either the severe disaster

case or the light disaster case will go off the charts. I will show later that bounds at

these powers are less informative. Starting at s = 1 where all three GEF ’s equal zero

and going left, the GEF of the severe disaster type rises more steeply than the other

two GEF’s and reaches its peak around s = 0.8. At its peak, the GEF more than

triples that of either the mild or light disaster type. Going further left, it remains the

dominating one until s reaches -3, at which the GEF from for the light disaster type

catches up. The GEF of the mild disaster type follows a similar pattern, rising faster

than the GEF of the light disaster case initially and meeting it at around s = −2.

Eventually, all three GEF’s start rising sharply for large negative powers, with the

light disaster case being the dominant one.

To see how different weighting schemes on the cumulants generate the patterns in

the GEF, Table 8 presents the contributions from the second to the sixth weighted

cumulants (i.e.,
κj(logM)

j!
, j = 2, 3, . . . , 6) to the overall entropy.19 I choose to focus on

the first two types of disaster distributions.20

We can view the case at s = 0 as the benchmark, since all individual cumulants

are weighted equally. At s = 0, both disaster types imply the same second cumulant

18By equation (20), rf = −(log β−γµ+ 1
2γ

2σ2+ω(−γθ+(γν)2/2)) through a first-order approx-
imation. Our calibration in Panel A of Table 4 therefore makes sure that the mean consumption
growth µ+ ωθ is the same across the three model specifications.

19Strictly speaking, as in equation (12), the j-th individual cumulant of the log pricing kernel is
κj(logM). However, with a slight abuse of terminology, I sometimes refer to the factorial adjusted

cumulant
κj(logM)

j! as cumulant since the factorial provides a natural scaling of the raw cumulant.

The j-th weighted cumulant is defined as κ2(logM)
j! (1−sj−1). See Backus, Chernov and Martin (2011)

for the derivation of the individual cumulants for shocks following a Poisson-normal distribution.
20The severe type displays explosive behavior (compared to the other two types) for the sixth

moment and beyond. To offer a better comparison, I focus on the other types.
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(i.e., variance) by our calibration. However, the mild disaster case implies higher

third to sixth cumulants. As a result, its overall entropy is higher.21 At s = 2,

which corresponds to the HJ bound, the signs for the cumulants are reversed and,

more importantly, high-order cumulants are magnified compared to the case at s = 0.

This is because the polynomial coefficients give more weights to higher order terms at

s = 2. This also explains the relatively large magnitude in entropy when the power

goes above one, as shown in Figure 7. At s = −1, interestingly, all odd cumulants

vanish and the entropy is a sum of even moments only. Given the extensive literature

on skewness preferences,22 it is interesting to see whether even moments alone can

rationalize asset market returns. In other words, stronger restrictions on the pricing

kernel might be found by focusing on s = −1 since skewness or in general odd

cumulants are no longer present to help boost up the entropy. Finally, at s = −3,

odd cumulants show up as negative and cancel out even cumulants. This explains why

the light disaster GEF dominates the mild disaster GEF at s = −3: the relatively

larger disaster size θ for the mild disaster model generates disproportionately high

weighted odd cumulants that reduce the overall entropy. In sum, the generalized

entropy seems to offer unique insights about the pricing kernel by allowing a flexible

weighting of the individual moments of the pricing kernel.

I now confront the rare disaster models with option implied bounds. Analogous to

the calibration approach in the macro-finance literature, the plan is to mark up the

admissible parameter space corresponding to a set of asset market bounds. Similar

approaches have been taken by Hansen and Jaganathan (1991) to depict the efficient

mean-variance frontier based on the market Sharpe ratio and by Bansal and Lehmann

(1994) to restrict the representative agent’s risk aversion based on the equity premium.

Note that these papers do not explicitly deal with the uncertainty in the estimation

of the bounds/moments. I take this into account in the next section by rigorously

testing the bound restrictions.

Again, to sharpen our focus on economically interesting quantities, I choose to

consider the triple (ω, θ, γ)′. To avoid a negative volatility, this time I choose to fix

the variance σ2 of the normal shock component.23 Also, risk aversion is released as a

21Of course, higher order cumulants matter, so we need to extrapolate from the patterns seen
from the second to the sixth cumulant.

22See Kraus and Litzenberger (1976), Rubinstein (1973), and Harvey and Siddique (2000).
23I choose to fix the total variance before so it has a partial derivative flavor. This time, however,

since we are searching over the entire (ω, θ, γ) space, a fixed total variance may sometimes imply a
negative σ2. To avoid this, I set σ2 at 0.0352 instead. In fact, given the absence of severe disasters
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free parameter to match bounds. Other than these changes, our calibrations are the

same as those in Panel A of Table 4.

Absent estimation uncertainty, asset pricing bounds essentially delineate a domain

in the three-dimensional (ω, θ, γ) space. To ease visualization, I plot the contours on

the two-dimensional (ω, γ) plane. Figure 9 shows these contours for four values of

disaster size θ. Several interesting patterns emerge from this figure.

First, as expected, a larger magnitude of θ requires a smaller risk aversion. At

θ = −0.10, a 4% annual equity risk premium asks for a risk aversion of around 5.5

if disasters occur every 60 years. When θ drops to -0.50, a risk aversion of 2.3 would

suffice. Fixing the disaster frequency at 1/60, as θ changes from -0.10 to -0.50, the

required risk aversion by the most stringent entropy bound drops from slightly above

10 to around 6. In particular, at Barro’s calibration (ω = 1/60, θ = −0.38), I calculate

that a risk aversion of 7.2 is needed to satisfy the entropy bound at s = −1. Such a

high level of risk aversion may be regarded as too high to reconcile with many aspects

of an individual’s risk taking behavior.

Second, returns based on options require much larger risk aversion coefficients than

the equity risk premium. In particular, at 1/ω = 100 and across various disaster size

specifications, the HJ bound implied by longing 50% in the 96%-OTM put typically

requires an extra 0.5 units in risk aversion compared to the HJ bound implied by

the market. On top of that, the entropy bound at s = 0 (by shorting 40% in the

96%-OTM put) asks for an additional 2 units in risk aversion.

Finally, the incremental requirement imposed by the most stringent entropy bound

at s = −1 is around 0.5 to 1 in units of risk aversion. Changes in risk aversion may be

hard to quantify economically; a better way to read the economic significance off the

figure is to reverse the horizontal and the vertical axis. For instance, when θ = −0.50

and fixing the risk aversion at 6, the entropy bound at s = −1 implies that disasters

need to happen on average at least once every 50 years, whereas a duration of around

100 years would suffice for the entropy bound at s = 0. A 50% drop in consumption

that happens twice every century is certainly much worse than the case with only one

drop every century. The differences in implications between the generalized entropy

bounds and the original entropy bound are hence economically significant. In unre-

ported results, I consider alternative interest rates and entropy bounds at even more

for the US consumption history, it makes more sense to match σ2 rather than the total variance
with the US consumption data.
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negative powers. An annual risk-free rate in the range of (1.00, 1.06) results in little

change in the contour plots. This is due to the insensitivity of option implied bounds

to interest rates, as discussed previously. Entropy bounds at more negative powers do

not substantially improve on the parameter frontiers required by the entropy bound

at s = −1.

To relate my findings to the literature, it is important to emphasize the difference

in methodology. In particular, Backus, Chernov and Martin (2011) try to infer rare

event information from option data. Two strong assumptions are made in their

paper to make the task feasible: 1. Dividend is a levered claim on consumption; 2. A

Merton-type option pricing model is chosen to summarize the cross-section of option

data. Both are based more on convenience than reality. It is difficult to evaluate how

small deviations from them could affect the inference on the tail distribution. My

approach, on the other hand, is model-free. Based on the fundamental no-arbitrage

condition, it asks how much (generalized) dispersion a pricing kernel has to generate

in order to rationalize the profits from trading options. Although it cannot deliver

a definitive point estimate, informative bounds provide valuation information about

the pricing kernel.

In terms of the empirical findings, Backus, Chernov and Martin (2011) conclude

that option prices imply lower probabilities of extreme adverse events than what

international macroeconomic data imply. My results, to the contrary, show that more

frequent and/or severe disasters are probably needed to explain the option data.24 To

reconcile my findings with theirs, note that their approach has two sources of error

compared to mine. First, a parametric model for the option cross-section may miss

important moment characteristics in option returns. Second, they evaluate the pricing

kernel against the option pricing model only through the lens of the basic entropy. My

approach bypasses the first source of error by looking at the raw option data. At the

same time, it evaluates a model through the spectrum of the generalized entropies.

4.4 Testing Rare Disaster Models with Option Return Bounds

In this section, I study the statistical significance of the violation of bounds. I start by

laying down a testing framework. Suppose the set of parameters governing the model

24My results are consistent with the option pricing literature. In particular, Jackwerth (2000)
and Bondarenko (2003) find that more frequent crashes are needed to explain put option returns.
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is Π. In the case of a disaster model, Π = (β, γ, µ, σ2, ω, θ, ν2)′. The transformed

moment vector of the pricing kernel is defined as

ΩM(Π;S) =


[EM s1 ]

1
1−s1 · Is1∈[0,1)

[EM s2 ]
1

1−s2 · Is2∈[0,1)
. . .

[EM sN ]
1

1−sN · IsN∈[0,1)

 , (23)

where S = (s1, s2, . . . , sN)
′ denotes the collection of powers we are interested in and

Isj∈[0,1) equals −1 if sj ∈ [0, 1) and 1 otherwise. At s = 0, Is∈[0,1) = −1 and the corre-

sponding transformed moment E(M s)
1

1−s should be understood as E(logM). These

sign functions (i.e., Isj∈[0,1)’s) adjust the directions of bounds so that the left-hand

side (moments of the pricing kernel) always dominate the right-hand side (moments

of market returns). Similarly, the transformed return moment vector is given by

ΩR(R;S) =


E(R

s1
s1−1

1 ) · Is1∈[0,1)
E(R

s1
s1−1

2 ) · Is2∈[0,1)
. . .

E(R
s1

s1−1

N ) · IsN∈[0,1)

 , (24)

where Rj denotes the return of an asset that is chosen to restrict the sj-th moment

of the pricing kernel. At s = 0, the return moment E(R
s

s−1 ) should be understood

as −E(logR). For a given parameterization Π of the pricing kernel, the difference

between ΩM(Π;S) and ΩR(R;S) should be nonnegative, i.e.,

Θ(S) ≡ ΩM(Π;S)− ΩR(R;S) ≥ 0. (25)

The element-wise nonnegativity of Θ(S) = (θ(s1), θ(s2), . . . , θ(sN))
′ constitutes

the basic testable assumption. In the actual estimation, the population moments of

returns can be replaced by their sample counterparts for a given sample size T:

Θ̂(S) = ΩM(Π;S)−


1
T

∑T
t=1R

s1
s1−1

t,1 · Is1∈[0,1)
1
T

∑T
t= R

s2
s2−1

t,2 · Is2∈[0,1)
. . .

1
T

∑T
t=1R

sN
sN−1

t,N · IsN∈[0,1)

 . (26)
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Applying the Generalized Method of Moments of Hansen and Singleton (1982), we

can easily find the asymptotic distribution of Θ̂(S) for this just identified system.

However, our problem is a non-standard multivariate inequality test. The usual Wald

or Likelihood-ratio test does not apply. The difficulty lies in the specification of a null

hypothesis that generates easy-to-calculate critical values. Following the multivariate

testing literature (Gourieroux, Holly and Monfort 1982, Wolak, 1987, and Patton

and Timmermann, 2010), I set the null at Θ(S) = 0, which is least favorable to the

alternative Θ(S) ≥ 0. To find p-values, I simulate a large number of draws from

the estimated empirical limiting distribution of Θ̂(S) and calculate the fraction of

draws that generate an element-wise nonnegative Θ. This is similar to the simulation

exercise in Patton and Timmerman (2010).

The above testing procedure ignores the estimation uncertainty in the GMM

asymptotic variance-covariance matrix. This uncertainty could be large given the

option return data that are highly skewed and fat-tailed. As an alternative, I boot-

strap the historical return data to provide robust p-values. In particular, I sample the

historical return series with replacement for a large number of times. For each sample,

I calculate the in-sample ΩR(R;S) vector and compare it to ΩM(Π;S). I calculate

the fraction of times that ΩM(Π;S) does not lie above ΩR(R;S) in an element-wise

sense.

Ideally, we would like to jointly consider the generalized entropy bounds at dif-

ferent powers with multiple assets. However, a few statistical concerns restrict the

way that we can form these tests. First, testing moment restrictions at different pow-

ers using the same asset is problematic. This is because the disturbance terms are

perfectly correlated in a nonlinear fashion, violating the basic ergodicity assumption

that is necessary for most asymptotic theories to work. Second, the estimation of the

joint limiting distribution becomes increasingly unstable as we increase the number

of the test statistics. Given a few hundred monthly observations, this puts a practical

limit on the number of bounds we can simultaneously consider. Facing these issues,

I choose to consider two types of bound tests. One is the univariate entropy bound

test using the market return only. This also serves as the benchmark test since recent

papers studying the equity risk premium impose such a bound (Backus, Chernov and

Martin, 2011, Martin, 2008, and Alrevaz and Jermann, 2005). The other type is the

joint test of the entropy bound using the market return and a generalized entropy

bound using an option trading strategy. The two types of tests are acronymed MKT

and MKT+OPT, respectively. As discussed in previous sections, bounds at powers
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of 2, 0.5, 0, -1 and -2 are considered and the corresponding optimal option trading

strategies are given in Section 4.2.

To focus on important quantities and to isolate the impact of the risk-free rate,

I use the following procedure to generate a null hypothesis for the parameter vector

Π. First, similar to before, I treat (β, σ2, ν2) as known parameters and set them

at (0.99, 0.0352, 0.22). Second, I set the real annualized risk-free rate at 0.95, 1.00

and 1.05, which roughly correspond to the lower bound, mean and upper bound of a

sensible estimate of the risk-free rate based on the US history. Lastly, given a point of

interest for the triple (ω, θ, γ)′, I choose µ to match the required interest rate. In doing

this, I give (ω, θ, γ)′ the freedom in meeting bounds from option data and the burden

in meeting a target interest rate is transferred onto µ. A large deviation of µ from

the mean historical consumption growth rate indicates a failure of the hypothesized

parameter vector Π. I choose to report the disaster-adjusted mean consumption

growth µ+ ωθ instead.25

Table 5 reports the testing results for the baseline disaster model with ω = 0.02

and θ = −0.35. This roughly corresponds to the ω = 0.017, θ = −0.38 estimate based

on the empirical distribution of international disasters by Barro (2006), and is close

to the baseline parameter choice of the rare disaster literature in Martin (2009) and

Backus, Chernov and Zin (2014). At γ = 5, both the entropy bound (i.e., s = 0) for

the index and the HJ bound (i.e., s = 2) for the optimal option strategy are satisfied,

as demonstrated by the positivity of the corresponding Mdiff statistics. Notably, at

s = 0 and for the univariate test with the market only (i.e., MKT test), the model

implied entropy is in excess of the risk premium by at least 5% per annum. Hence,

not surprisingly, the MKT test has p-values well above 0.90 across all interest rate

specifications, suggesting no evidence of rejecting the entropy bound based on the

market. This is also the case when the HJ bound is added (i.e., MKT + OPT test

at s = 2), indicating no discriminatory power from the HJ bound. When we include

option strategy returns at the basic entropy bound (i.e., s = 0), the p-values drop to

10-18%. The reduction in the p-value is impressive. Nonetheless, the model survives

at the conventional significance level. When s goes to −1 and −2, the p-values drop

to well below 5%, suggesting a strong rejection of the baseline disaster model across

all interest rate specifications.

25For reasonable ω and θ pairs, the difference between Ec = µ+ ωθ and µ is small.
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Clearly, the generalized entropy bounds at s = −1 and s = −2 give us power to

reject the baseline model, which cannot be rejected under the basic entropy bound

(i.e., s = 0). Note that the underlying option strategies are the same under both types

of bounds: we short 35% in the 96%-OTM put option. Therefore, compared to the

basic entropy bound, the additional discriminatory power provided by the generalized

entropy bounds comes from their functional forms or, more specifically, the way they

weigh different moments of both the pricing kernel (i.e., left-hand side) and the asset

returns (i.e., the right-hand side).

To remedy the rejection, one must increase the amount of dispersion in the gen-

eralized entropy function. As we learned from the previous section (see Figure 9),

one way to achieve this is to increase the marginal investor’s risk aversion. Indeed,

when γ is raised to 6, the model is borderline accepted at the 1% significance level,

and, at γ = 7, the p-values show no signs of rejection at all. However, as the risk

aversion gets larger, the implied mean growth rate becomes implausibly high. For

instance, the implied mean growth rate Ec is about 5% when γ = 6 and Rf = 1.00;

when γ = 7, Ec is in the range of 7-9%. These numbers are in contradiction with

the historical consumption data for the US. Clearly, a tension exists between the risk

aversion and the risk-free rate.

A look at equation (20) tells us why this is the case. Compared to standard models

with normal shocks, disaster models carry an extra term ω[e−γθ+(γν)2/2 − 1]. Since

disasters rarely happen (ω is small), this term is small for low γ values. However, as

the risk aversion rises, it grows exponentially and quickly dominates the intertemporal

substitution effect (γµ) and the precautionary savings effect (1
2
γ2σ2) in standard

models. In particular, at γ = 7 and assuming a mean consumption growth rate of

2%, this term is four times the value of the substitution effect and 20 times the value

of the precautionary savings effect. Intuitively, in a disaster model framework, the

agent’s hedging demand for rare event risks is high for even moderately high levels

of risk aversion. Given a mean consumption growth rate of 2%, this strong hedging

motive requires a low risk aversion to reconcile with the relatively high interest rate.

On the other hand, asset market returns (in particular option returns) ask for a high

risk aversion to meet the generalized entropy bounds. Hence, there is a tradeoff in

determining the representative agent’s risk attitude. Taken as a whole, the baseline

disaster model is unable to explain the bond market and the option market at the

same time.
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If the disaster distribution extrapolated from international data cannot explain the

US asset market, what can? I next test disaster models with alternative distributional

assumptions. Table 6 reports the results at ω = 0.02, θ = −0.10, which is arguably

what the US has experienced.26 Table 7 and 8 show the results based on further

perturbations around the baseline disaster model.

In Table 6, as expected, the rejections from violating the generalized entropy

bounds are stronger than those in the baseline case. Indeed, the risk aversion has

to go all the way up to 9 to pass the bound test at s = −1 at the 5% level. At

the same time, the hedging demand at θ = −0.10 is substantially lower than that

at θ = −0.35. As a result, the US type disaster model still implies a sensible mean

consumption growth even at γ = 9. If one is willing to accept such a high level of risk

aversion, the US type disaster specification can reconcile with the asset market. For

the severe type model in Table 7, a risk aversion of 5.5 suffices to satisfy option return

bounds, but a 8% mean growth rate in consumption seems implausibly high. Finally,

turning to the less severe but more frequent type shown in Table 8, a somewhat

high mean growth rate around 3.5% and a somewhat high risk aversion of γ = 7 are

simultaneously needed to pass all the tests.

One may wonder whether the demanding entropy bounds at negative powers come

from the excessive short positions that we allow investors to hold. Put it differently,

given the statistical uncertainties around the optimal allocation rules, maybe the

selected representative option trading strategies imply in-sample moment character-

istics that are too harsh for any representative agent type of model to satisfy. I

address this concern in two ways.

First, I reduce αL (i.e., the short positions in the 96%-OTM put) by half and

redo all the tests at γ = 5, the typically assumed risk aversion threshold in disaster

models. Table 9 shows the results. We see that although all the p-values associated

with s = 0,−1 and −2 are somewhat larger than their counterparts in the previous

tables, the rejections are still strong. In particular, the baseline model is rejected at

the 5% significance level for s = −1 and s = −2 across all interest rate specifications.

For the US type and the mild type disaster models, none of the specifications can

pass the generalized entropy bound tests at s = 0,−1 or −2. For the severe type, the

26For the US, a consumption decline in the magnitude of 10% only happened once: in 1931, the
per capita consumption dropped by 9.9%. Hence, strictly speaking, my assumption on the disaster
frequency doubles what the US has actually experienced. A lower ω value makes the rejections in
Table 6 even more stronger.
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p-values are now well above 5%. But it still does not qualify as a successful model

since the implied mean consumption growth rate is too high.

Second, I consider other prevailing representative agent models. In particular,

I test the long-run risk model as parameterized by Bansal, Kiku and Yaron (2012)

and the baseline habit model in Campbell and Cochrane (1999). Table 10 shows the

results ... (to be added)

To summarize the above empirical findings, I show how standard disaster models

under several parameterizations fail to meet the nonparametric bounds based on ro-

bust option trading strategies. The discriminatory power of the generalized entropy

bounds with negative powers are highlighted. However, I consider these findings as

suggestive as opposed to conclusive. First, although I find evidence against static

disaster models, their abilities in magnifying pricing kernel dispersion (as measured

by the generalized entropy) through tail distortions are impressive. With a risk aver-

sion of ten, even the US type specification can meet all the entropy bounds with a

reasonable mean consumption growth rate. This leads one to conjecture that more

sophisticated variants of disaster models may survive my tests(see Barro and Ursua,

2008 and Watcher, 2013, 2014). Second, even for the current version of the disaster

model, I have not exhausted all possible parameter choices. For instance, the vari-

ance ν2 for the normally distributed individual jump is shown to have a large impact

on the risk-free rate when risk aversion is high. Yet I set it at 0.2 for simplicity. A

more extensive examination of the seven dimensional parameter vector Π may yield

a winner.

Despite these caveats, there are a few important takeaways from the above ex-

ercise. First and foremost, confronting a model with the equity risk premium alone

is not enough, especially when tail information is the core of the model. In fact,

except for γ = 2 and a risk-free rate below one, the equity risk premium constraint is

satisfied across all specifications, most of the time with a p-value close to one. This

reveals its lack of power in discriminating alternative tail distributions for the pricing

kernel. By subjecting a discount factor to a spectrum of representative option trading

strategies, we gain a better sense of its all-around performance. Second, it is crucial

to consider the generalized entropy bounds at negative powers, not only because of

their informativeness through mean moment restrictions as demonstrated by Figure

9, but also because of the statistical powers they provide to reject candidate mod-

els. The unique moment characteristics of option returns, combined with the flexible
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weighting scheme offered by the generalized entropy bounds, provide a set of exacting

moment constraints that help us make better inference on the tail distribution in the

fundamentals.

5 Conclusion

Under the fundamental no-arbitrage condition, this paper develops a spectrum of

new nonparametric bounds that significantly enrich the existing nonparametric bound

universe. These bounds measure the discrepancy between what an optimizing agent

could achieve if all admissible assets were tradable and what she can actually achieve

in the real-world market, thereby providing an economically meaningful way to re-

strict candidate pricing kernels. Motivated by these new bounds, I propose to use the

generalized entropy function — a natural extension of the original entropy — to sys-

tematically study market implied asset pricing bounds. Through moment-expansions

on both sides of the new bounds, I show how they provide unique information about

the pricing kernel and asset returns.

Equipped with these analytical tools, I study index option returns and their bear-

ings on macro fundamentals through the representative-agent model framework. I

find that strategies with short positions in OTM put options dominate both the mar-

ket index and other representative option strategies in constraining moments of the

pricing kernel. This highlights the pricing of jump risks in index options. I then pos-

tulate a pricing kernel that follows a standard static disaster model and use option

return bounds to differentiate among alternative parameterizations. Both point esti-

mates and formal hypothesis tests suggest the deficiency of standard disaster models

in reconciling with option data. Both tail distortion and time-dependency might be

needed to meet bounds implied by option returns.

A study of the joint behavior of the time-varying disaster distribution and option

returns is an obvious avenue to pursue. This not only helps achieve the unconditional

option return bounds but also generates insights into the time-series properties of

option returns. The newly developed bound system, in particular an extended version

that takes conditioning information into account, is expected to be instrumental.
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A Tables and Figures

Mean Std. Sharp Skew. Kurt. Max Min Corr.

Index (1926-2011) 0.007 0.055 0.113 0.225 10.323 0.384 -0.285 NA
Index (1996-2011) 0.005 0.049 0.087 -0.605 3.666 0.118 -0.177 1.000

0.92-OTM put -0.236 0.728 -0.325 2.756 13.049 3.944 -0.877 -0.305
0.96-OTM put -0.201 0.611 -0.330 1.519 4.839 2.261 -0.849 -0.277
1.00-OTM put -0.082 0.627 -0.132 1.897 7.990 3.256 -0.849 -0.323
ATM straddle -0.017 0.340 -0.052 1.702 6.809 1.501 -0.778 0.001

C-neutral put -0.310 0.996 -0.312 -2.553 18.805 2.135 -7.438 -0.096
C-neutral straddle -0.015 0.428 -0.035 -0.528 13.847 1.665 -2.823 0.077

R-C-neutral put -0.212 0.724 -0.293 -0.075 7.469 3.135 -2.960 -0.119
R-C-neutral straddle -0.025 0.422 -0.059 -0.660 14.602 2.665 -1.823 0.059

Table 1: Summary statistics. This table reports the summary statistics for the
monthly returns of the S&P 500 index and eight option strategies. The longer index
series is from July 1926 to December 2011 and the shorter index series is from January
1996 to December 2011, which is also the time period for all the option strategies. The
first column displays the strategy name and the last column reports the correlation
of the strategy returns with the short-sample market index. “C-neutral put” and
“C-neutral straddle” denote crash-neutral put and straddle, for which the original
96%-OTM put and ATM straddle are mixed with a short leg on the 92%-OTM put
option, respectively. See Coval and Shumway (2001) for the construction of the crash-
neutral put and Jackwerth (2000) for the construction of the crash-neutral straddle.
“R-C-neutral put” and “R-C-neutral straddle” denote robust crash-neutral put and
straddle, respectively. They are the original crash neutral series excluding the date on
which the 92%-OTM put maturity date is more than three trading weeks longer than
the 96%-OTM put maturity date at the moment of buying. Under this condition, six
observations are deleted from the 192 monthly observations, including two months
during which the 92%-OTM put has a higher price than the 96%-OTM put. Skewness
and kurtosis are the standardized central third and fourth moments, respectively. The
risk-free rate is 60bp annualized for the long sample and 54bp for the short sample.
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Power (s) Market 96%-OTM put ATM straddle

Panel A: Optimal weights
2 -1.954 0.489 0.149
0.5 0.941 -0.199 -0.070
0 1.839 -0.341 -0.137
−1 3.450 -0.437 -0.260
−3 5.428 -0.442 -0.461
−8 5.667 -0.442 -0.663

Panel B: Constraints on weights
αS(min) -9.589 -0.450 -0.680
αS(max) 5.369 1.175 1.281

Table 2: Optimal portfolio weights for benchmark option strategies and market index.
Panel A shows the optimal portfolio weights for the optimization problems described in Figure 3
at a fixed interest rate of zero. Panel B shows the range of the portfolio weights that guarantee
the positivity of the portfolio returns. For a generic return series {Rt}Tt=1, the range is given by
[αS(min), αS(max)] = [1/(1− max

1≤t≤T
{Rt}), 1/(1− min

1≤t≤T
{Rt})].

Power(s) 92%-OTM put ATM put R-C-neutral put R-C-neutral straddle

Panel A: Optimal weights
2 0.406 0.207 0.253 0.138
0.5 -0.129 -0.088 -0.184 -0.070
0 -0.202 -0.162 -0.331 -0.138
−4 -0.253 -0.306 -0.467 -0.545

Panel B: Constraints on weights
αS(min) -0.254 -0.307 -0.468 -0.601
αS(max) 1.141 1.178 0.253 0.354

Table 3: Optimal portfolio weights for alternative put and crash-neutral strategies.
Panel A shows the optimal portfolio weights for the optimization problems described in Figure 4
and 5 at a fixed interest rate of zero. Strategies involving the 92%-OTM put, ATM put, crash-neutral
put and crash-neutral straddle are described in Table 1. Panel B shows the range of the portfolio
weights that guarantee the positivity of the portfolio returns. For a generic return series {Rt}Tt=1,
the range is given by [αS(min), αS(max)] = [1/(1− max

1≤t≤T
{Rt}), 1/(1− min

1≤t≤T
{Rt})].
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Parameter Value

Panel A
β 0.99
γ 5
rf 0.02

σ2 + ω(θ2 + ν2) 0.0352

ν2 0.22

Panel B
ωL 0.04
θL -0.15

ωM 0.02
θM -0.30

ωS 0.01
θS -0.60

Table 4: Parameter specifications for disaster models. This table shows the parameter
specifications for the disaster model introduced in Section 4.3. Panel A shows the fixed parameters.
The total variance in consumption growth is given by σ2 + ω(θ2 + ν2). Panel B shows the disaster
intensity and size combinations that represent three types of disaster distributions: the light disaster
type (ωL, θL), the mild disaster type (ωM , θM ), and the severe disaster type (ωS , θS).
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MKT MKT + OPT

s = 0 s = 2 s = 0.5 s = 0 s = −1 s = −2
γ = 2 Rf = 0.95 Mdiff −0.081 −1.018 −0.315 −0.500 −0.387 −0.566

(Ec =-0.025) Pa-value 0.029 0.004 0.001 0.003 0.000 0.000
P b-value 0.031 0.005 0.001 0.005 0.000 0.000

Rf = 1.00 Mdiff −0.030 −1.120 −0.263 −0.449 −0.361 −0.532
(Ec = 0.001) Pa-value 0.252 0.017 0.009 0.025 0.001 0.000

P b-value 0.234 0.017 0.011 0.027 0.001 0.000
Rf = 1.05 Mdiff 0.019 −1.218 −0.215 −0.400 −0.337 −0.500

(Ec = 0.025) Pa-value 0.666 0.023 0.036 0.063 0.002 0.000
P b-value 0.664 0.022 0.041 0.066 0.003 0.001

γ = 5 Rf = 0.95 Mdiff 0.057 2.698 −0.213 −0.362 −0.303 −0.444
(Ec = 0.018) Pa-value 0.906 0.904 0.046 0.096 0.003 0.002

P b-value 0.901 0.908 0.052 0.100 0.006 0.002
Rf = 1.00 Mdiff 0.108 2.628 −0.162 −0.311 −0.278 −0.409

(Ec = 0.028) Pa-value 0.995 0.994 0.100 0.139 0.010 0.003
P b-value 0.995 0.995 0.104 0.135 0.012 0.004

Rf = 1.05 Mdiff 0.157 2.561 −0.114 −0.262 −0.253 −0.376
(Ec = 0.044) Pa-value 1.000 1.000 0.179 0.173 0.017 0.005

P b-value 1.000 1.000 0.182 0.175 0.020 0.007
γ = 6 Rf = 0.95 Mdiff 0.202 9.103 −0.093 −0.217 −0.223 −0.331

(Ec = 0.039) Pa-value 1.000 1.000 0.227 0.225 0.030 0.014
P b-value 1.000 1.000 0.225 0.216 0.034 0.016

Rf = 1.00 Mdiff 0.253 9.088 −0.043 −0.165 −0.197 −0.296
(Ec = 0.048) Pa-value 1.000 1.000 0.364 0.288 0.046 0.024

P b-value 1.000 1.000 0.350 0.269 0.047 0.032
Rf = 1.05 Mdiff 0.302 9.074 0.005 −0.116 −0.173 −0.263

(Ec = 0.056) Pa-value 1.000 1.000 0.519 0.336 0.071 0.042
P b-value 1.000 1.000 0.506 0.322 0.069 0.045

γ = 7 Rf = 0.95 Mdiff 0.485 10.831 0.149 0.067 −0.072 −0.121
(Ec = 0.074) Pa-value 1.000 1.000 0.885 0.590 0.275 0.202

P b-value 1.000 1.000 0.886 0.587 0.257 0.200
Rf = 1.00 Mdiff 0.536 10.831 0.199 0.118 −0.046 −0.086

(Ec = 0.081) Pa-value 1.000 1.000 0.944 0.659 0.348 0.292
P b-value 1.000 1.000 0.948 0.644 0.338 0.286

Rf = 1.05 Mdiff 0.585 10.831 0.246 0.167 −0.021 −0.052
(Ec = 0.088) Pa-value 1.000 1.000 0.976 0.727 0.435 0.361

P b-value 1.000 1.000 0.979 0.715 0.416 0.365

Table 5: Baseline disaster model testing results. This table reports the testing
results for the baseline disaster model with ω = 0.02, θ = −0.35. Rf is the annual
risk-free rate and Ec = µ+ωθ is the implied mean consumption growth. MKT denotes
the test of the entropy bound with the market return alone, and MKT+OPT denotes
the joint test of the (generalized) entropy bounds with both the market and the option
strategy as the test assets. Mdiff is the difference between the model implied moment
and the sample asset return moment given in equation (26). Mdiff is calculated for
the market return under MKT, and for the option strategy return under MKT +
OPT. P a-value and P b-value are the p-values generated from the theoretical limiting
distribution and a bootstrap procedure, respectively.
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MKT MKT + OPT

s = 0 s = 2 s = 0.5 s = 0 s = −1 s = −2
γ = 2 Rf = 0.95 Mdiff −0.089 −1.054 −0.319 −0.507 −0.392 −0.574

(Ec = −0.028) Pa-value 0.020 0.002 0.001 0.003 0.000 0.000
P b-value 0.023 0.004 0.001 0.004 0.000 0.000

Rf = 1.00 Mdiff −0.037 −1.156 −0.268 −0.456 −0.366 −0.540
(Ec = −0.003) Pa-value 0.196 0.012 0.008 0.019 0.001 0.000

P b-value 0.191 0.013 0.010 0.023 0.001 0.000
Rf = 1.05 Mdiff 0.012 −1.254 −0.219 −0.407 −0.342 −0.507

(Ec = 0.022) Pa-value 0.601 0.016 0.036 0.060 0.001 0.000
P b-value 0.610 0.017 0.037 0.062 0.003 0.000

γ = 5 Rf = 0.95 Mdiff −0.054 −0.731 −0.298 −0.472 −0.364 −0.518
(Ec = −0.004) Pa-value 0.107 0.023 0.003 0.010 0.000 0.000

P b-value 0.110 0.027 0.006 0.013 0.001 0.001
Rf = 1.00 Mdiff −0.003 −0.831 −0.247 −0.421 −0.338 −0.483

(Ec = 0.006) Pa-value 0.468 0.060 0.019 0.047 0.001 0.000
P b-value 0.473 0.062 0.020 0.048 0.002 0.001

Rf = 1.05 Mdiff 0.046 −0.926 −0.198 −0.372 −0.314 −0.451
(Ec = 0.016) Pa-value 0.860 0.060 0.052 0.087 0.005 0.002

P b-value 0.862 0.064 0.060 0.090 0.005 0.003
γ = 7 Rf = 0.95 Mdiff 0.010 2.272 −0.252 −0.409 −0.320 −0.387

(Ec = 0.006) Pa-value 0.595 0.590 0.019 0.054 0.002 0.004
P b-value 0.588 0.584 0.024 0.060 0.005 0.005

Rf = 1.00 Mdiff 0.061 2.199 −0.201 −0.357 −0.294 −0.352
(Ec = 0.013) Pa-value 0.925 0.921 0.053 0.094 0.006 0.009

P b-value 0.927 0.928 0.058 0.099 0.009 0.012
Rf = 1.05 Mdiff 0.110 2.128 −0.152 −0.309 −0.26 −0.319

(Ec = 0.020) Pa-value 0.995 0.994 0.111 0.135 0.012 0.015
P b-value 0.995 0.994 0.116 0.135 0.013 0.019

γ = 9 Rf = 0.95 Mdiff 0.167 10.814 −0.123 −0.252 −0.221 0.418
(Ec = 0.022) Pa-value 1.000 1.000 0.162 0.186 0.031 0.998

P b-value 1.000 1.000 0.160 0.185 0.032 0.998
Rf = 1.00 Mdiff 0.218 10.813 −0.073 −0.201 −0.195 0.455

(Ec = 0.028) Pa-value 1.000 1.000 0.289 0.239 0.044 0.999
P b-value 1.000 1.000 0.274 0.232 0.050 1.000

Rf = 1.05 Mdiff 0.267 10.813 −0.025 −0.152 −0.171 0.490
(Ec = 0.033) Pa-value 1.000 1.000 0.417 0.297 0.070 0.999

P b-value 1.000 1.000 0.409 0.286 0.072 1.000

Table 6: US type disaster model testing results. This table reports the testing
results for the US type disaster model with ω = 0.02, θ = −0.10. Rf is the annual
risk-free rate and Ec = µ+ωθ is the implied mean consumption growth. MKT denotes
the test of the entropy bound with the market return alone, and MKT+OPT denotes
the joint test of the (generalized) entropy bounds with both the market and the option
strategy as the test assets. Mdiff is the difference between the model implied moment
and the sample asset return moment given in equation (26). Mdiff is calculated for
the market return under MKT, and for the option strategy return under MKT +
OPT. P a-value and P b-value are the p-values generated from the theoretical limiting
distribution and a bootstrap procedure, respectively.
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MKT MKT + OPT

s = 0 s = 2 s = 0.5 s = 0 s = −1 s = −2
γ = 2 Rf = 0.95 Mdiff −0.077 −0.974 −0.312 −0.496 −0.385 −0.563

(Ec = −0.023) Pa-value 0.037 0.007 0.001 0.005 0.000 0.000
P b-value 0.034 0.006 0.001 0.004 0.000 0.000

Rf = 1.00 Mdiff −0.026 −1.075 −0.260 −0.444 −0.359 −0.529
(Ec = 0.003) Pa-value 0.281 0.018 0.009 0.027 0.000 0.000

P b-value 0.278 0.022 0.011 0.034 0.001 0.000
Rf = 1.05 Mdiff 0.023 −1.172 −0.212 −0.396 −0.334 −0.497

(Ec = 0.028) Pa-value 0.703 0.020 0.037 0.067 0.002 0.001
P b-value 0.703 0.029 0.046 0.072 0.003 0.001

γ = 5 Rf = 0.95 Mdiff 0.213 9.786 −0.076 −0.206 −0.224 −0.339
(Ec = 0.049) Pa-value 1.000 1.000 0.279 0.230 0.028 0.012

P b-value 1.000 1.000 0.262 0.232 0.031 0.014
Rf = 1.00 Mdiff 0.264 9.777 −0.026 −0.154 −0.198 −0.305

(Ec = 0.059) Pa-value 1.000 1.000 0.417 0.286 0.049 0.019
P b-value 1.000 1.000 0.413 0.291 0.053 0.027

Rf = 1.05 Mdiff 0.313 9.768 0.022 −0.106 −0.174 −0.271
(Ec = 0.069) Pa-value 1.000 1.000 0.566 0.349 0.066 0.033

P b-value 1.000 1.000 0.554 0.334 0.075 0.037
γ = 5.5 Rf = 0.95 Mdiff 0.379 10.818 0.068 −0.040 −0.137 −0.220

(Ec = 0.075) Pa-value 1.000 1.000 0.707 0.438 0.123 0.072
P b-value 1.000 1.000 0.699 0.427 0.125 0.076

Rf = 1.00 Mdiff 0.430 10.817 0.118 0.011 −0.111 −0.185
(Ec = 0.084) Pa-value 1.000 1.000 0.821 0.512 0.172 0.110

P b-value 1.000 1.000 0.828 0.499 0.175 0.102
Rf = 1.05 Mdiff 0.479 10.817 0.165 0.060 −0.086 −0.151

(Ec = 0.093) Pa-value 1.000 1.000 0.906 0.587 0.228 0.158
P b-value 1.000 1.000 0.904 0.574 0.220 0.156

Table 7: Severe type disaster model testing results. This table reports the
testing results for the severe type disaster model with ω = 0.01, θ = −0.60. Rf is the
annual risk-free rate and Ec = µ+ωθ is the implied mean consumption growth. MKT
denotes the test of the entropy bound with the market return alone, and MKT+OPT
denotes the joint test of the (generalized) entropy bounds with both the market and
the option strategy as the test assets. Mdiff is the difference between the model
implied moment and the sample asset return moment given in equation (26). Mdiff

is calculated for the market return under MKT, and for the option strategy return
under MKT + OPT. P a-value and P b-value are the p-values generated from the
theoretical limiting distribution and a bootstrap procedure, respectively.
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MKT MKT + OPT

s = 0 s = 2 s = 0.5 s = 0 s = −1 s = −2
γ = 2 Rf = 0.95 Mdiff −0.085 −1.039 −0.317 −0.503 −0.389 −0.569

(Ec = −0.026) Pa-value 0.025 0.003 0.001 0.003 0.000 0.000
P b-value 0.028 0.004 0.002 0.003 0.000 0.000

Rf = 1.00 Mdiff −0.033 −1.141 −0.266 −0.452 −0.363 −0.535
(Ec = −0.001) Pa-value 0.222 0.013 0.007 0.022 0.000 0.000

P b-value 0.215 0.014 0.010 0.026 0.001 0.000
Rf = 1.05 Mdiff 0.016 −1.239 −0.217 −0.403 −0.339 −0.502

(Ec = 0.024) Pa-value 0.633 0.018 0.036 0.060 0.001 0.000
P b-value 0.634 0.021 0.038 0.066 0.003 0.001

γ = 5 Rf = 0.95 Mdiff −0.009 −0.011 −0.266 −0.427 −0.336 −0.477
(Ec = 0.005) Pa-value 0.426 0.249 0.010 0.043 0.001 0.001

P b-value 0.415 0.250 0.014 0.045 0.002 0.002
Rf = 1.00 Mdiff 0.043 −0.104 −0.215 −0.376 −0.310 −0.442

(Ec = 0.015) Pa-value 0.841 0.396 0.040 0.080 0.004 0.001
P b-value 0.840 0.383 0.048 0.088 0.006 0.003

Rf = 1.05 Mdiff 0.092 −0.193 −0.167 −0.327 −0.286 −0.409
(Ec = 0.025) Pa-value 0.983 0.376 0.091 0.117 0.007 0.002

P b-value 0.984 0.361 0.096 0.122 0.008 0.003
γ = 7 Rf = 0.95 Mdiff 0.159 7.682 −0.136 −0.260 −0.235 −0.274

(Ec = 0.027) Pa-value 1.000 1.000 0.139 0.185 0.027 0.032
P b-value 1.000 1.000 0.138 0.179 0.026 0.039

Rf = 1.00 Mdiff 0.210 7.655 −0.085 −0.208 −0.209 −0.239
(Ec = 0.035) Pa-value 1.000 1.000 0.253 0.231 0.035 0.053

P b-value 1.000 1.000 0.244 0.222 0.041 0.056
Rf = 1.05 Mdiff 0.259 7.629 −0.037 −0.159 −0.184 −0.206

(Ec = 0.042) Pa-value 1.000 1.000 0.392 0.296 0.060 0.086
P b-value 1.000 1.000 0.376 0.274 0.058 0.088

γ = 8 Rf = 0.95 Mdiff 0.335 10.803 0.012 −0.083 −0.135 −0.012
(Ec = 0.046) Pa-value 1.000 1.000 0.533 0.381 0.122 0.459

P b-value 1.000 1.000 0.517 0.369 0.125 0.468
Rf = 1.00 Mdiff 0.387 10.803 0.062 −0.032 −0.108 0.024

(Ec = 0.052) Pa-value 1.000 1.000 0.683 0.454 0.178 0.560
P b-value 1.000 1.000 0.689 0.443 0.178 0.555

Rf = 1.05 Mdiff 0.435 10.803 0.109 0.017 −0.084 0.058
(Ec = 0.058) Pa-value 1.000 1.000 0.811 0.525 0.241 0.649

P b-value 1.000 1.000 0.806 0.508 0.230 0.640

Table 8: Mild type disaster model testing results. This table reports the testing
results for the mild type disaster model with ω = 0.04, θ = −0.15. Rf is the annual
risk-free rate and Ec = µ+ωθ is the implied mean consumption growth. MKT denotes
the test of the entropy bound with the market return alone, and MKT+OPT denotes
the joint test of the (generalized) entropy bounds with both the market and the option
strategy as the test assets. Mdiff is the difference between the model implied moment
and the sample asset return moment given in equation (26). Mdiff is calculated for
the market return under MKT, and for the option strategy return under MKT +
OPT. P a-value and P b-value are the p-values generated from the theoretical limiting
distribution and a bootstrap procedure, respectively.
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MKT MKT + OPT

s = 0 s = 2 s = 0.5 s = 0 s = −1 s = −2
(ω = 0.02, θ = −0.35) Rf = 0.95 Mdiff 0.057 2.698 −0.213 −0.286 −0.151 −0.198

(Ec = 0.018) Pa-value 0.901 0.907 0.045 0.006 0.003 0.002
P b-value 0.906 0.908 0.045 0.008 0.004 0.003

Rf = 1.00 Mdiff 0.108 2.628 −0.162 −0.234 −0.125 −0.164
(Ec = 0.028) Pa-value 0.993 0.994 0.097 0.019 0.011 0.015

P b-value 0.995 0.995 0.102 0.022 0.013 0.013
Rf = 1.05 Mdiff 0.157 2.561 −0.114 −0.186 −0.101 −0.131

(Ec = 0.038) Pa-value 1.000 1.000 0.186 0.047 0.032 0.032
P b-value 1.000 1.000 0.180 0.055 0.033 0.040

ω = 0.02, θ = −0.10 Rf = 0.95 Mdiff −0.054 −0.731 −0.298 −0.396 −0.212 −0.272
(Ec = −0.004) Pa-value 0.106 0.025 0.003 0.000 0.000 0.000

P b-value 0.112 0.026 0.004 0.000 0.000 0.000
Rf = 1.00 Mdiff −0.003 −0.831 −0.247 −0.345 −0.186 −0.238

(Ec = 0.006) Pa-value 0.474 0.061 0.016 0.001 0.000 0.000
P b-value 0.478 0.059 0.019 0.002 0.001 0.001

Rf = 1.05 Mdiff 0.046 −0.926 −0.198 −0.296 −0.162 −0.205
(Ec = 0.016) Pa-value 0.863 0.063 0.054 0.004 0.001 0.002

P b-value 0.857 0.058 0.062 0.007 0.003 0.004
ω = 0.04, θ = −0.15 Rf = 0.95 Mdiff −0.009 −0.011 −0.266 −0.351 −0.184 −0.232

(Ec = 0.005) Pa-value 0.427 0.256 0.013 0.001 0.000 0.001
P b-value 0.419 0.246 0.014 0.001 0.001 0.001

Rf = 1.00 Mdiff 0.043 −0.104 −0.215 −0.300 −0.158 −0.197
(Ec = 0.015) Pa-value 0.842 0.383 0.041 0.004 0.002 0.004

P b-value 0.841 0.374 0.049 0.006 0.003 0.003
Rf = 1.05 Mdiff 0.092 −0.193 −0.167 −0.251 −0.133 −0.164

(Ec = 0.025) Pa-value 0.984 0.375 0.097 0.013 0.006 0.009
P b-value 0.984 0.365 0.095 0.018 0.008 0.014

ω = 0.01, θ = −0.60 Rf = 0.95 Mdiff 0.213 9.786 −0.076 −0.129 −0.072 −0.094
(Ec = 0.049) Pa-value 1.000 1.000 0.273 0.123 0.091 0.095

P b-value 1.000 1.000 0.269 0.129 0.094 0.094
Rf = 1.00 Mdiff 0.264 9.777 −0.026 −0.078 −0.046 −0.059

(Ec = 0.059) Pa-value 1.000 1.000 0.418 0.243 0.193 0.209
P b-value 1.000 1.000 0.408 0.240 0.204 0.199

Rf = 1.05 Mdiff 0.313 9.768 0.022 −0.029 −0.022 −0.026
(Ec = 0.069) Pa-value 1.000 1.000 0.569 0.402 0.341 0.361

P b-value 1.000 1.000 0.560 0.396 0.338 0.347

Table 9: Robust option strategies testing results. This table reports the testing
results for various disaster models with robust option strategies. In particular, the
short position in 96%-OTM put is halved to 20% at s = 0,−1 and −2. Rf is the
annual risk-free rate and Ec = µ+ωθ is the implied mean consumption growth. MKT
denotes the test of the entropy bound with the market return alone, and MKT+OPT
denotes the joint test of the (generalized) entropy bounds with both the market and
the option strategy as the test assets. Mdiff is the difference between the model
implied moment and the sample asset return moment given in equation (26). Mdiff

is calculated for the market return under MKT, and for the option strategy return
under MKT + OPT. P a-value and P b-value are the p-values generated from the
theoretical limiting distribution and a bootstrap procedure, respectively.
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Figure 1: The non-parametric bound universe
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Figure 2: A typical plot of GEF (s;M) and asset market bounds. This figure
plots a generic GEF and asset market bounds. The thick solid line depicts the GEF
and the thin dashed line depicts asset market bounds.
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Figure 3: Bounds implied by benchmark option strategies and market index. This
figure plots the non-parametric bound frontiers (right-hand sides in inequalities (10) and (11)) for
the benchmark option trading strategies and the market index across different hypothetical risk-free
rates. The estimation is done, at each hypothetical risk-free rate, by conducting a nonlinear search
on the optimal portfolio weight αS to either maximize or minimize the right-hand sides of inequalities
(10) and (11). The solid line, thin dashed line, dotted line and thick dashed line depict the frontiers
for the passive market strategy, active market strategy, ATM straddle strategy and 96%-OTM put
option strategy, respectively. The passive market strategy simple sets αS at zero at each level of the
hypothetical risk-free rate and the active market strategy involves a search as described above.
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Figure 4: Bounds implied by benchmark option strategies and two alternative OTM put
strategies. This figure plots the non-parametric bound frontiers (right-hand sides in inequalities
(10) and (11)) for the benchmark option trading strategies and the market index across different
hypothetical risk-free rates. The estimation is done, at each hypothetical risk-free rate, by conducting
a nonlinear search on the optimal portfolio weight αS to either maximize or minimize the right-hand
sides of inequalities (10) and (11). The solid line, thin dashed line, dotted line and thick dashed line
depict the frontiers for the 92%-OTM put, ATM put, ATM straddle and 96%-OTM put strategy,
respectively.
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Figure 5: Bounds implied by benchmark option strategies and two robust crash-neutral
strategies. This figure plots the non-parametric bound frontiers (right-hand sides in inequalities
(10) and (11)) for the benchmark option trading strategies and the market index across different
hypothetical risk-free rates. The estimation is done, at each hypothetical risk-free rate, by conducting
a nonlinear search on the optimal portfolio weight αS to either maximize or minimize the right-hand
sides of inequalities (10) and (11). The two robust crash-neutral strategies are described in Table
1. The solid line, dot-dashed line, dotted line and thick dashed line depict the frontiers for the
crash-neutral straddle, crash-neutral put, ATM straddle and 96%-OTM put strategy, respectively.
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Figure 6: Bounds implied by optimal and conservative benchmark strategies. This
figure plots the non-parametric bound frontiers (right-hand sides in inequalities (10) and (11)) for
the benchmark option trading strategies and the market index across different hypothetical risk-free
rates. The estimation is done, at each hypothetical risk-free rate, by conducting a nonlinear search
on the optimal portfolio weight αS to either maximize or minimize the right-hand sides of inequalities
(10) and (11). The dotted line and the thick dashed line depict the frontier for the ATM straddle
and 96%-OTM put strategy, respectively. The solid lines for s = 2, 0.5, 0,−4 depict the frontiers for
the risk-free rate independent strategies that long 50%, short 20%, short 35% and short 35% in the
96%-OTM put option strategy, respectively.
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Figure 7: Generalized entropy function plots for three disaster models.
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Figure 8: Weighted cumulants for two disaster models. This figure displays
the second to sixth weighted cumulants for the mild and light disaster model at
s = 2, 0,−1 and −3. The j-th weighted cumulant is defined as

κj(logMt+1)

j!
(1 − sj−1)

in equation (12). The left (dark) bar and the right (light) bar measure the weighted
cumulant for the mild and light disaster model, respectively.
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Figure 9: Risk aversion bounds implied by index option returns. This figure
shows the required risk aversion coefficients corresponding to different disaster fre-
quency ω, disaster size θ and entropy bounds based on option returns. The thin dotted
line depicts the required risk aversion in generating a 4% annual equity risk premium.
The thin dash-dotted line, thick dash-dotted line, thick solid line, thick dashed line
and thick dotted line depict the required risk aversion coefficients in satisfying the
entropy bounds at power s = 2, 0.5, 0,−1 and -2, respectively.
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B Proofs

B.1 Proof of Proposition 2.

The optimization problem we want to solve is

sup
R

E[
R1−γ

1− γ
]

s.t. (1) E(MR) = 1,

(2) R > 0.

For simplicity, I succinctly denote γ(δ) by γ. Moreover, to save space, I only solve the case

when γ ∈ (0, 1). For γ ∈ (1,∞) the maximization problem is essentially a minimization

problem and a similar proof follows. For γ ∈ (0, 1), the maximization problem will be

well-defined if all moments of M are assumed to exist. This is because

E(R1−γ) = E(R1−γM1−γMγ−1)

≤ [E([(MR)1−γ ]
1

1−γ )]1−γ · [E(Mγ−1)
1
γ ]γ

= E(M
γ−1
γ )γ .

Note that I am using the same trick as in the proof of the new bounds. Also, for γ ∈ (1,∞)

a lower bound for E(R1−γ) exists so the corresponding minimization problem is also well-

defined.

Let the state density function be f(s) and let the Lagrange multipliers associated with

E(MR) = 1 and R(s) > 0 be λ and µ(s), respectively, then the Lagrange function is

L(R(s), λ, µ(s)) =
1

1− γ

∫
R(s)1−γf(s)ds− λ(

∫
M(s)R(s)f(s)ds− 1)− µ(s)R(s).

It is easy to see that the objective function 1
1−γ

∫
R(s)1−γf(s)ds is concave in R(s). Addi-

tionally, the constraint
∫
M(s)R(s)f(s)ds = 1 is linear in R(s). Under these two conditions,
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the Kuhn-Tucker first-order conditions are both necessary and sufficient for a maximum of

this problem. The first-order condition for the argument R(s) is

R(s)−γf(s)− λM(s)f(s)− µ(s) = 0.

Since returns need to have a positive support, the Lagrange multiplier associated with the

positivity constraint µ(s) will be zero in every state. Assuming an everywhere positive f(s),

we arrive at the following solution for R(s)

R(s) = [λ(1− γ)]
− 1

γM(s)
− 1

γ . (27)

To express λ as a moment of the pricing kernel, we can multiply both sides of equation (27)

by M(s)f(s) and sum across states. This leave us with the following equation for λ

[λ(1− γ)]
− 1

γE(M
1− 1

γ ) = 1. (28)

Combining equation (27) and (28), we get the optimal portfolio choice as a function of M

only

R̃ = M
− 1

γ /E(M
γ−1
γ ). (29)

Note that, by assumption, M ∈ Q++, so R̃ ∈ ℵ++. This validates the earlier step in setting

µ(s) to zero. Finally, by plugging the optimal choice R̃ into the objective function, we have

U(M) =
E(R̃1−γ)

1− γ
=

[E(M
γ−1
γ )]γ

1− γ
. (30)

Equation (29) and (30) give the optimal solution to this problem.
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B.2 Duality Definition and Proof

For an optimizing investor with a risk-aversion coefficient of γ, her optimization problem is

sup
R

E[
R1−γ

1− γ
]

s.t. (1) E(MR) = 1,

(2) R > 0.

Denote the maximized objective function by UY L(M) and the optimal choice variable by

RY L(M), respectively. Note that they are both functionals on M and can be thought of

as operators: they operate on any pricing kernel defined on ℵ++ and yield a value function

and a choice return variable. Symmetrically, a Hansen-Jaganathan type of optimization on

the δ-th moment of the pricing kernel can be presented by

inf
M

[E(M δ)]
1

1−δ

1− γ(δ)

s.t. (1) E(MR) = 1,

(2) M > 0.

where γ(δ) = 1
1−δ is what I will term the dual parameter transformation. Similarly, let

UHJ(R) and MHJ(R) be the associated functionals (operators). Then a duality between

these two optimization problems is satisfied iff the following conditions hold:

RY L(MHJ(R)) ≡ R

MHJ(RY L(M)) ≡ M.

In words, these relationships say the following: 1. The pricing kernel that satisfies the HJ

problem with a given return R is the only kernel that can yield an optimal choice of R in

my optimization problem; 2. The return that is the optimal choice under my optimization

scheme for a given pricking kernel M is the only return that can yield M as the optimal
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choice in the HJ problem. If two operators satisfy these above duality conditions, then

inverse operators can be defined straightforwardly as

R−1
Y L(R) ≡ MHJ(R)

M−1
HJ(M) ≡ RY L(M).

Given the duality definition, it is easy to see that HJ and my optimization are indeed dual

problems. To see this, we only need to work out MHJ(R). Similar to Proposition 1, it can

be shown that

MHJ(R) = C(R) ·R
1

δ−1 , (31)

where the normalizing constant C(R) is equal to 1/E(R
δ

δ−1 ). By plugging the formulae in

equation (29) and (31) into the duality conditions, it is readily seen that these conditions

are satisfied.

B.3 Deriving the Information Bound in Stutzer (1995)

To be added.

B.4 Proof of Proposition 3.

I prove by giving an example. I construct a sequence of pricing kernels that can all price a

riskless bond but have either explosive or degenerate δ-th moment in the limit.

Let the state space be (0, 1) and let X be a random variable that is uniformly distributed

on (0, 1): X ∼ U(0, 1). Let {Mn}∞n=1 be a sequence of pricing kernels that are defined by

Mn =


n− αn if X ∈ (0,

1

n
),

αn

n− 1
if X ∈ [

1

n
, 1)

(32)

where {αn}∞n=1 is a sequence that satisfies αn < n and αn
n → 0 (For simplicity, αn can be set

at the constant one). Pricing kernels defined in such a way can be understood as describing
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economies with rare disasters. Rare events happen with a probability 1
n and the state price

is high in disaster states. Note that a one-period riskless bond has a gross return of one,

since E(Mn) = 1 for any n. Notice that E(M δ
n) goes to ∞ since

E(M δ
n) ≥ (n− αn)

δ 1

n
→ ∞

for any δ > 1. However, if a riskless bond is the only security, then return moments are

all equal to one. Therefore, no upper bound can be imposed on E(M δ). Similarly, for

δ ∈ (0, 1), we have

E(M δ
n) = (n− αn)

δ 1

n
+ (

αn

n− 1
)δ(1− 1

n
) → 0,

so no lower bound (except the trivial zero bound) exists for δ ∈ (0, 1). Lastly, if δ ∈ (−∞, 0)

then no upper bound exists.
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