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I. Introduction

Empirical studies indicate that individual stock returns and the U.S. market return co-

move more strongly in market downturns (low returns) than in market upturns (high re-

turns), which indicates the existence of asymmetric dependence (Kroner and Ng, 1998; Lon-

gin and Solnik, 2001; Silvapulle and Granger, 2001; and Ang and Chen, 2002). Nevertheless,

the dominant paradigm in the literature still maintains joint normal and symmetry assump-

tions for the return distributions.1 There remain two open and important questions: how

should the asymmetries in dependence be measured and if the observed difference in comove-

ments statistically are significant?

Conditional correlation is one of the most widely-used measures of codependence in the

literature. Let R1t and R2t be the returns on two portfolios between period t − 1 and

t; additionally, both of them are assumed to be stationary with E(Ri) = µi,Var(Ri) =

σ2
i , and i = 1, 2. The conditional correlation between R1t and R2t when both variables

belong to some subset S is defined as

ρS = corr (R1t, R2t|R1t, R2t ∈ S) .

The conditional correlation is easy to estimate and various tests of determining asymmetric

conditional correlation have been proposed and discussed (Ang and Chen, 2002; and Hong,

Tu, and Zhou, 2007). Among these tests, Hong, Tu, and Zhou (2007) (hereafter HTZ) first

develop a model-free test of asymmetric exceedance correlations.2 For a vector of exceedance

levels c = (c1, c2, · · · cm)′, HTZ show that under the null hypothesis of symmetric exceedance

correlation, the test statistic Jc = T (ρ̂+ − ρ̂−)
′
Ω̂−1 (ρ̂+ − ρ̂−) asymptotically follows a χ2

m

1In the finance literature, the benchmark scenario of a portfolio choice problem usually assumes that a
representative investor is interested in maximizing a portfolio’s Sharpe ratio in which only the means and
variances of asset returns matter.
2For a given non-negative exceedance level c, HTZ test the null hypothesis of ρ+c = ρ−c , where ρ+c and ρ−c are
conditional correlations when both of the two variables exceed c standard deviations away from their means;
i.e.,

ρ+c = corr(R1t, R2t|R1t > µ1 + cσ1, R2t > µ2 + cσ2),

ρ−c = corr(R1t, R2t|R1t < µ1 − cσ1, R2t < µ2 − cσ2).
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distribution. Based on their examination, many commonly used portfolio returns, such as

book-to-market portfolios and momentum portfolios, do not exhibit a significant difference

in comovement in the market up- and downturns. These results make us doubt the power

of the HTZ test.

The HTZ test measures the difference in the conditional correlation, which captures only

“linear” dependence. As pointed out by Embrechts, McNeil, and Straumann (2002) and many

others, stock returns are not generally elliptically-distributed. The dependence between stock

returns cannot be fully captured by a linear correlation. Hence, an insignificant difference

in the conditional correlations does not necessarily imply general symmetric codependence.

We propose a modified mutual information measure that is constructed from the perspective

of the whole return distribution rather than the first two moments. A model-free test is

then proposed for testing asymmetric dependence based on this measure. The new method

directly tests the equality of the “general” dependence of returns in any domains of the joint

distribution. Skaug and Tjøstheim (1993) and Maasoumi and Racine (2008) derive the formal

inference theory underlying our general statistic and its bootstrap implementation. More

recently, Giannerini, Maasoumi, and Dagum (2015) develop the asymptotic distribution

of resampled general information theory test statistics. It includes as a special case the

Kullback-Leibler measure of dependence employed in this paper. Our simulation study is

innovative as it utilizes copulas to generate controlled levels of “general dependence” to

evaluate the power and size of the tests. Furthermore, we find that a bootstrap resampling

technique can significantly improve the finite sample performance of the HTZ test, which

suggests that the HTZ test after revision can serve as an important ingredient in testing

random variables’ asymmetric dependence.

Unlike our paper, which tests asymmetries in dependence, Denuit and Scaillet (2004) de-

velop test procedures for positive quadrant dependence via a probability distribution function

and copulas. Schmidt and Stadtmüller (2005) use tail copulas to describe the structure of
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tail dependence and provide a non-parametric estimation process. Tjøstheim and Huftham-

mer (2013) propose a local Gaussian correlation measure of dependence by approximating a

bivariate density locally using densities of Gaussian family. Støve and Tjøstheim (2012) and

Støve, Tjøstheim, and Hufthammer (2014) apply the local Gaussian correlation measure to

examine various empirical questions in finance. However, their measure is not suitable for

testing dependence asymmetries in different domains of the return distribution.

The rest of the paper is organized as follows. Section 2 discusses a potential shortcoming

of the conditional correlation measure and introduces the test for general asymmetric de-

pendence based on the mutual information measure. The asymptotic size and finite sample

performance of the test statistic are then examined. Section 3 extends the original HTZ test

by developing a bootstrap resampling counterpart. The finite sample performance of the test

is examined and compared with the results obtained via the asymptotic theory. In section

4, we apply the test to investigate asymmetric dependence in common portfolios sorted by

size, book-to-market, and momentum. Section 5 concludes.

II. A Relative Entropy-based Test on Asymmetric Dependence

Symmetry of the comovements between two random variables implies the existence of

symmetries of the moments of all orders in sub-domains, assuming they exist. However,

a sample moment-based measure of dependence, such as an exceedance correlation, only

captures dependence up to a certain order of the moment. As pointed out by Jiang, Wu,

and Zhou (2015), using an HTZ type of test, any possible higher order dependence other

than the second would be ignored, which implies a potentially large information loss when

the underlying distribution is not jointly elliptical.

In this section, we first present a scenario where there only exists a higher order dependence

between two random variables and the commonly used exceedance correlation measure fails

to describe the dependence between these two random variables. An entropy-based measure

of exceedance dependence, which is motivated by the Kullback-Leibler mutual information
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measure, is then proposed. Based on our measure, we further develop a test for asymmet-

ric dependence. A bootstrap algorithm for obtaining the sampling distribution of the test

statistic is also discussed in detail.

II.1. The Failure of Conditional Correlation.

Consider a random variable X distributed piece-wisely uniform, following the density func-

tion:

fX(x) =


c X ∈ (−a, 0),

d X ∈ [0, b).

(1)

The random variable Y is a quadratic function of X, plus some white noises:

Y =


−e (X + a/2)2 + ε1 X ∈ (−a, 0), ε1 ∼ Normal(0, σ2

1),

f (X − b/2)2 + ε2 X ∈ [0, b), ε2 ∼ Normal(0, σ2
2),

(2)

where parameters a, b, c, d, e, and f are positive constants and ε1 and ε2 are independent

from each other. We are interested in investigating whether the comovements of X and Y

are asymmetric at the exceedance level c = 0. We choose a set of parameter values, which

are in Panel A of Table 1. One can verify that under this set of parameters, the exceedance

correlation ρ+ and ρ− is simply the correlation calculated by using the observations in the

first and the third quadrant, respectively.

[Insert Figure 1 about here]

Figure 1 shows the scatter plot of one realization of X and Y generated from distribution

(1) and (2). It is clear that X and Y co-move with each other in both the first and the

third quadrant (for the exceedence level c = 0). Moreover, the patterns of comovement are

different, which indicates the existence of asymmetries in variables’ dependence structures.

However, if the exceedance correlation measure is used to describe the two variables’ comove-

ments, as in HTZ and many others, we conclude that X and Y co-move symmetrically at
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c = 0 because ρ+
c and ρ−c are equal to 0 under this particular set of parameters. The failure

of the exceedance correlation measure in this example suggests that in order to accurately

test the asymmetric comovement behavior of random variables, we need a new measure of

general dependence. This dependence measure should not be moment-based because of the

potential information loss associated with the higher order moments and the non-existence of

finite moments for certain distributions. Hence, an ideal general dependence measure should

be constructed from the distribution perspective, which is able to summarize the dependence

structure in any domain of any given distribution, even those with no finite moments.

[Insert Table 1 about here]

II.2. A Relative Entropy-based Measure of Exceedance Dependence.

Originating in physics and information theory, entropy has a long history of use as an ag-

gregate measure of information contained in a distribution. During recent years, Kullback-

Leibler relative entropy (Kullback and Leibler, 1951) has been employed more frequently

in finance and economics research (see, for example, Hansen, 2012; Backus, Chernov, and

Zin, 2014). In particular, Kullback-Leibler relative entropy has also been used to construct

a widely used mutual information (MI) measure that can measure the mutual stochastic

dependence between two random variables.

The MI for random variables R1 and R2 is defined as the Kullback-Leibler relative entropy

between the joint density g(R1, R2) and the product of their marginals g1(R1) · g2(R2):

I(R1;R2) ≡ E(log
g(R1, R2)

g1(R1) · g2(R2)
) =

∫ +∞

−∞

∫ +∞

−∞
g(R1, R2) log

g(R1, R2)

g1(R1) · g2(R2)
dR1dR2.

(3)

Essentially, MI measures the expected difference between the log likelihood of g(R1, R2)

and the product distribution g1(R1) · g2(R2), which represents independence. To serve as

a measure for dependence, the MI measure possesses the following desirable properties.

First, MI is theoretically always non-negative, i.e., I(R1;R2) ≥ 0. I = 0 if and only if
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R1 and R2 are independent and this value increases as the dependence between R1 and R2

grows.3 Second, the measure is obtained by comparing the entire distributions g(R1, R2) and

g1(R1) · g2(R2). Hence, it captures all higher order dependence between R1 and R2 beyond

the commonly employed moment-based and/or linear dependence measures. Moreover, it

can also be shown that the integrand in the Kullback-Leibler mutual information measure

log g(R1,R2)
g1(R1)g2(R2) is exactly equal to the log copula density (Sklar, 1959).4 This is a function

that is widely used in statistics to capture the general dependence structure between random

variables.

Motivated by the fact that I(R1, R2) measures the dependence between R1 and R2 in the

whole sample space R2, we propose a modified MI measure that is defined on subspaces in

R2 to measure the variables’ exceedance dependence. For a given exceedance level c, we

define the upper and lower tail exceedance dependence as:

ρ−c,o =

∫ µ2−cσ2

−∞

∫ µ1−cσ1

−∞
g(R1, R2) log

g(R1, R2)

g1(R1) · g2(R2)
dR1dR2, (4)

ρ+
c,o =

∫ +∞

µ2+cσ2

∫ +∞

µ1+cσ1

g(R1, R2) log
g(R1, R2)

g1(R1) · g2(R2)
dR1dR2, (5)

where ρ+
c,o and ρ−c,o measures the general dependence between R1 and R2 in the upper tail

[in the subspace (µ1 + cσ1,+∞)× (µ2 + cσ2,+∞)] and lower tail [in the subspace (−∞, µ1−

cσ1)× (−∞, µ2 − cσ2)], respectively.

If the dependence structure of a return distribution is symmetric around a certain ex-

ceedance level c, we will have ρ+
c,o = ρ−c,o. Therefore, testing for asymmetric dependence

simply requires testing the following hypothesis:

H0 : ρ+
c,o = ρ−c,o. (6)

3See, for example, Cover and Thomas (2006), page 42, for reference.
4The detailed derivation is given in Appendix A.
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Although the exceedance MI measures in Eq.(4) and Eq.(5) are not invariant under general

linear transformations, the following theorem shows that the invariability holds under simple

standardization.

Theorem II.1. Under the assumptions made in Section II.2, the exceedance MI measure

is invariant under simple standardization, i.e., for standardized returns Xt = R1t−µ1
σ1

and

Yt = R2t−µ2
σ2

, we have ∀c, ρ+
c,o = ρ+

c and ρ−c,o = ρ−c . Here ρ−c and ρ+
c are given by:

ρ−c =

∫ −c
−∞

∫ −c
−∞

f(X,Y ) log
f(X,Y )

f1(X)f2(Y )
dXdY,

ρ+
c =

∫ +∞

c

∫ +∞

c
f(X,Y ) log

f(X,Y )

f1(X)f2(Y )
dXdY,

where f(X,Y ), f1(X), and f2(Y ) denote the joint and marginal densities for the standardized

returns, respectively.

Proof. See Appendix B. �

Therefore, to compare the exceedance dependence of R1 and R2 at any given level c, it is

equivalent to test the symmetry of the upper- and lower-tail dependence between standard-

ized returns X and Y at the same exceedance level; i.e.,

H0 : ρ+
c = ρ−c for a given exceedance level c.

Following the literature, we work with the standardized returns X and Y with a zero mean

and unit variance in the rest of this paper. The rejection of the null hypothesis will lead to

the asymmetric alternative H1 : ρ+
c 6= ρ−c .

II.3. The Non-parametric Estimator.

We now consider how to estimate the exceedance MI measure given the data. Similar to the
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MI in Eq.(3), ρ−c and ρ+
c can also be interpreted as expectations?

ρ−c =
∫ +∞
−∞

∫ +∞
−∞ f(X,Y ) log f(X,Y )

f1(X)f2(Y ) · 1(X < −c, Y < −c)dXdY

= E(log f(X,Y )
f1(X)f2(Y ) · 1(X < −c, Y < −c)),

ρ+
c =

∫ +∞
−∞

∫ +∞
−∞ f(X,Y ) log f(X,Y )

f1(X)f2(Y ) · 1(X > c, Y > c)dXdY

= E(log f(X,Y )
f1(X)f2(Y ) · 1(X > c, Y > c)),

where 1(·) denotes the indicator function. ρ−c and ρ+
c can be estimated by their sample

analogues. For a random sample of returns that consists of T observations {Xt, Yt}Tt=1, we

can express the sample exceedance dependence as:

ρ̂−c =
1

T

T∑
t=1

log
f̂(Xt, Yt)

f̂1(Xt)f̂2(Yt)
1(Xt < −c, Yt < −c), (7)

ρ̂+
c =

1

T

T∑
t=1

log
f̂(Xt, Yt)

f̂1(Xt)f̂2(Yt)
1(Xt > c, Yt > c), (8)

where the probability density functions f̂(Xt, Yt), f̂1(Xt), and f̂2(Yt) are estimated by ro-

bust non-parametric kernel estimators as proposed in Rosenblatt (1956) and Parzen (1962).

Kernel estimation provides consistent estimators for the joint density of a set of random

variables. Given a series of m-dimensional random vectors Z that consists of T observations

z1, z2, . . . , zT , the Parzen-Rosenblatt kernel density estimator of f(z) is:

f̂(z) =
1

Th1h2 · · ·hm
·
T∑
t=1

K

(
zt − z
h

)
, (9)

where K
(
zt−z
h

)
≡
∏m
i=1 k

(
zi,t−zi
hi

)
. k(·) is a symmetric non-negative bounded function and

hi is the bandwidth (or smooth parameter). Various studies (see, for example, Epanechnikov,

1969) suggest that different kernel functions have very little impact on estimations; hence, we

use the popular Gaussian kernel k(z) = 1√
2π
e−z

2/2. On selecting the bandwidth, we choose

to use the likelihood cross-validation method. Specifically, it solves the following maximum
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likelihood problem:

max
h1,h2,··· ,hm

L =
T∑
t=1

ln
[
f̂−t(z)

]
, (10)

where

f̂−t(z) =
1

Th1h2 · · ·hm
·
T∑
s 6=t

K

(
zt − z
h

)
, (11)

which is equal to f̂(z) without the t-th realization. For stationary and weakly dependent

data such as stock returns, the estimated density in Eq.(9) converges to the actual density

at a fairly fast speed (see, e.g., Li and Racine, 2006, for technical details).

II.4. Test Statistic and Its Sampling Distribution.

Let θ̂ = ρ̂+
c − ρ̂−c . Symmetries in exceedance dependence can be tested using an intuitive

t-type test statistic:

t̂ =
θ̂

σ̂θ
. (12)

Although the asymptotic theory for the MI measure under the null hypothesis of indepen-

dence has been developed in previous research [see, for example, Robinson (1991) and Hong

and White (2005)], the asymptotic distribution for the exceedance MI measures ρ̂+
c and ρ̂−c

are unknown when allowing for general dependence. Moreover, various studies, including

Rilstone (1991) and Robinson (1991), report that inferences based on the asymptotic distri-

bution are not reliable in finite samples. Part of the reason is that the test statistic does

not depend on bandwidth asymptotically, as the optimal bandwidth ĥ vanishes when the

number of observations T → ∞. In finite samples, however, the test statistic is highly sen-

sitive to ĥ, which varies across different approaches for bandwidth selection. Following the

suggestion of Racine (1997), Hong and White (2005), and many others, we construct the

sampling distribution for t̂ using the pivotal bootstrap resampling approach.5

We follow Künsch (1989) to take into account the dependent structure in weakly-dependent

time series data using a bootstrap procedure with overlapping blocks. Stationarity is ensured

by letting the length of each block be randomly sampled from the geometric distribution

5General properties of the bootstrap resampling approach can be found in Efron (1982). Horowitz (2001)
provides excellent reviews of the literature.
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(Politis and Romano, 1994), whose mean is determined by the algorithm proposed in Politis

and White (2004) and Patton, Politis, and White (2009). We use their method because it is

designed to minimize the mean squared error of the estimated long-run variance of the time

series. The details of the bootstrap resampling procedure are described below.

We compute θ̂0 using Eq.(7) and Eq.(8). The standard error σ̂θ, which is crucial for

achieving asymptotic refinement, is obtained by the nested resampling method (Hinkley

and Shi, 1989; Efron and Tibshirani, 1993). In this paper, we use the stationary geometric

bootstrap to create a sequence of B1 nested samples from the original data sample. For

each of the B1 nested samples, we calculate its sample estimates for θ̂ and form a sequence

{θ̂(i)
0 }

B1
i=1. The standard error for the original data sample is simply the sample standard

deviation of these B1 nested samples:

σ̂θ0 =
1

B1 − 1

B1∑
i=1

(
θ̂

(i)
0 − θ̂

(i)
0

)2

.

Given both θ̂0 and σ̂θ0 , t̂0 can be directly computed by Eq.(12).

For the sampling distribution of the t-statistic, we first generate B bootstrap samples from

the original data set using the stationary block bootstrap. For the jth bootstrap sample,

we calculate θ̂j following Eq.(7) and Eq.(8). σ̂θj is also constructed using the nested block

bootstrap resampling with the same mean in the underlying geometric distribution. We

create B1 nested bootstrap samples by resampling from the given bootstrap sample and

calculating θ̂(i)
j for each nested sample. σ̂θj is then simply computed by the sample standard

deviation of {θ̂(i)
j }

B1
i=1. Following Horowitz (2001), the t-statistics from the bootstrap samples

are adjusted for the sampling bias:

t̂j =
θ̂j − θ̂0

σ̂θj
.

We then estimate the empirical distribution F for {t̂j}Bj=1 and report the percentile of t̂0

under F . For a given level of significance α, the null hypothesis of symmetric dependence

will be rejected if t̂0 is located in the upper 1− α/2 or lower α/2 percentile.
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II.5. Simulation Results.

A valid test should possess the following asymptotic properties: first, as the sample size

increases, the probability of falsely rejecting a true null hypothesis should converge to the

nominal size; second, the power of the test increases monotonically with the sample size and

converges to 1 when the sample size approaches infinity. We examine both the asymptotic

size and finite sample performance (size and power) of the asymmetric dependence test using

the simulation and present the results in this subsection.

To examine the size and power of the asymmetric dependence test in finite samples, data

with different asymmetry levels in exceedance dependence are needed. A natural choice for

our simulation is to generate samples using parametric copulas with different comovement

behaviors at certain exceedance levels.

To study the asymptotic size of our test, a copula with symmetric exceedance dependence

is needed; i.e., ρ−c = ρ+
c . In this paper, we use Student’s t copula:

Cd(u, v; ρ) = td,ρ(t
−1
d (u), t−1

d (v)),

where td,ρ (·) is the cdf of the bivariate Student’s t distribution with d degree of freedom

and ρ ∈ (−1, 1) is the correlation coefficient between the marginal distributions. Compared

with the Gaussian copula, the t copula has fatter tails and thus is an ideal candidate for

examining the empirical size of our test in large samples.

To study the power of our test, we use a distribution with different levels of asymmetric

dependence. Following HTZ and many others, random samples are generated using the mix-

ture copula. Different levels of asymmetric dependence are achieved by mixing the Gaussian

copula, which has symmetric exceedance dependence around its mean, with the Clayton

copula, which exhibits stronger left-tail dependence. The mixture Gaussian-Clayton copula

has the following specification:

Cmix(u, v; ρ, τ, κ) = κCnor(u, v; ρ) + (1− κ)Cclay(u, v; τ), κ ∈ [0, 1]. (13)



A TEST OF GENERAL ASYMMETRIC DEPENDENCE 13

The parameter ρ in the Gaussian copula is the correlation coefficient and the parameter τ

governs the dependence between the marginal distributions in the Clayton copula. A higher

τ indicates stronger left-tail dependence. The parameter κ represents the weight we place on

the Gaussian copula. Different levels of asymmetric dependence can be achieved by adjusting

κ. When κ = 1, Eq.(13) reduces to the Gaussian copula with symmetric tail dependence.

Asymmetries in tail dependence gradually increase as κ decreases. When κ = 0, Eq.(13)

reduces to the Clayton copula, which displays the strongest asymmetric tail dependence. In

this paper, we consider κ = 0, 0.25, 0.375, 0.5, and 1 in the simulation; which represents five

levels of dependence asymmetries, from the highest to the lowest.

The parametric copula only determines the dependence structure between two random

variables. In order to obtain the joint density, the marginal density of each random variable

is needed. Since our ultimate goal is to investigate whether asymmetric dependence exists

between a stock portfolio and market returns, marginal distributions that mimic portfolio

return distributions are used in our simulation. As in HTZ and Jiang, Wu, and Zhou

(2015), the value-weighted size 5 portfolio is selected as the benchmark. Following the

finance literature, we model the marginal distributions of a stock return with a GARCH

(1,1) specification with no ARMA components.

In our simulations, we first fit the copula-GARCH model to the portfolio and market

returns and obtain Maximum Likelihood Estimates (MLE) of parameters in the copula and

GARCH specification. The true data-generating process (DGP) is assumed to follow the

copula-GARCH model with all parameters set at the MLE. One thousand simulated random

samples are generated under the same DGP for each sample size T , on which the properties

of the test are examined.

II.5.1. Asymptotic Size.

The asymptotic size of our test is examined on simulated random samples of size 1,000

and 1,500, respectively. Table 2 shows the probabilities of rejecting the null hypothesis of

symmetric dependence at the exceedance level c = 0 under the nominal sizes of 10%, 5%,
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and 1%. The rejecting probabilities are computed as the portion of rejection decisions made

in 1,000 simulated random samples. For each random sample, the inference is based on 199

stationary bootstraps. Since the random samples are generated using the t-copula, the null

hypothesis of symmetric exceedance dependence is correct under the true DGP. The rejecting

probabilities are thus empirical sizes for each corresponding nominal level. Simulation results

are reported in Table 2. When the sample size T=1,000, the empirical sizes read 10.3%, 5.2%,

and 1.4% for the 10%, 5%, and 1% nominal levels, respectively. This suggests that the sizes

of our test are quite accurate for a fairly large sample size. If we further increase the sample

size to 1,500, we obtain almost identical empirical and nominal sizes, which are 10%, 5%, and

1.1% for 10%, 5%, and 1%, respectively. The simulation results in this section clearly show

that the empirical sizes of our test converge monotonically to the sizes at all nominal levels

as the sample size increases. In other words, our test exhibits accurate size asymptotically.

[Insert Table 2 about here]

II.5.2. Finite Sample Performance.

The finite sample performance of our test is evaluated with the simulated copula-GARCH

samples whose dependence structure follows the mixture copula as shown in Eq.(13). Three

sample sizes (T = 240, 420, and 600) are considered, which corresponds to 20, 35, and

50 years of monthly data, respectively. In our simulation, the empirical size and power are

computed as the relative frequency of rejecting the null hypothesis of a symmetric exceedance

dependence at the exceedance level c = 0 in 1,000 simulated samples. Statistical inferences

are made based on 199 stationary block bootstraps. To mitigate the concern that different

bandwidth selection methods may have an impact on the final result, we also examine the

robustness of our test results with respect to different bandwidth selection approaches.

Table 3 reports the empirical size and power of our asymmetric dependence test at the

nominal levels of 10%, 5%, and 1%. For any given nominal size when asymmetric dependence

exists in the true DGP, which corresponds to κ = 0, 0.25, 0.375, and 0.5 in the simulation,
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the empirical power of our test increases monotonically with the sample size. When κ =

0, 0.25, and 0.375 in our simulation, which corresponds to a stronger asymmetric exceedance

dependence, our test possesses excellent power even for the smallest sample size of T = 240,

where we are able to detect the asymmetries in exceedance dependence 83.1% of the time

at the conventional 5% level of significance. As the sample size increases to 600, we are

even able to reject almost all simulated samples at the 1% level. When κ = 0.5, the test’s

power decreases slightly, especially for the smallest sample; however, the power recovers as

the sample size increases. When T = 600, the power of our test reaches about 70% at the

5% level, which is more than twice as large as the power in T = 240. The size of the test

also looks promising as the falsely rejecting probabilities are very close to the corresponding

nominal sizes for all three sample sizes. Combining findings in this section with the results of

the asymptotic size, we are able to claim that our bootstrap-based asymmetric dependence

test is both asymptotically accurate and consistent.

[Insert Table 3 about here]

Although the asymmetric dependence test performs well in finite samples, the robustness

of all results requires further investigation. As we discussed in section II.4, the main reason

for not using the asymptotic distribution is that the value of our kernel-based test statistic

relies on the choice of bandwidth parameters in finite samples. Hence, it is worthwhile to

investigate the impact of different bandwidth selection methods on the test.

Aside from the likelihood cross validation approach adopted in the previous simulation, the

optimal bandwidth in the kernel estimation can also be obtained using the least square cross

validation (LSCV) and plug-in method. We apply both approaches in the kernel estimation

and keep the rest settings the same. Table 4 provides the empirical size and power of the

asymmetric dependence test under different bandwidth selection approaches. The results of

the least square cross validation and the plug-in approach are presented in Panel A and Panel

B, respectively. Comparing the results of both approaches to those obtained by the likelihood
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cross validation, we find similar patterns across all three tables: the power of the asymmetric

dependence test increases with the sample size no matter which bandwidth selection method

is used. Moreover, the rejection probabilities are generally of the same magnitude for all

three bandwidth selection methods. For example when κ = 0.5, the empirical power of 600

samples at the 5% nominal level is 69.4%, 63.8%, and 72.5% for the three bandwidth selection

approaches. The empirical size under different bandwidth selection approaches also shows

a promising pattern. The plug-in method uses the bandwidth calculated under the normal

density assumption; therefore, it provides the most accurate empirical size in finite samples.

The empirical size from the LSCV approach is relatively less accurate in the sample, but

we can still see that the empirical size converges to the nominal level as the sample size

increases.

In a nutshell, our simulation results indicate that changing bandwidth selection methods

has almost no impact on the testing results.

[Insert Table 4 about here]

III. A Resampling Extension of Hong, Tu, and Zhou (2007)

Our asymmetric dependence test possesses great power in small samples when the asym-

metry in DGP is relatively higher; i.e., for κ ≤ 37.5% in the mixture copula process (13).

When the asymmetry in DGP is relatively lower; i.e., for κ = 50%, we observe a large de-

crease in the empirical power, especially when the sample size is small. The non-parametric

estimator in Eq.(7) and Eq.(8) converges at a slower rate than
√
T , which is the convergence

rate of a linear estimator. Hence, any failure in rejecting the null hypothesis of symmet-

ric dependence may be simply due to the slower convergence rate of the non-parametric

estimator.

On the other hand, the null hypothesis of symmetric dependence would be rejected if any

moment exhibits asymmetries. Moreover, when the degree of asymmetry decreases, the linear

correlation can better serve as a dependence measure. Hence, in this section, we develop a
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bootstrap version of the HTZ test that works well in finite samples. We conduct both the

original and bootstrap HTZ test on simulated samples. The finite sample performance is

subsequently compared and discussed.

III.1. An Improved HTZ Test in Finite Samples: A Bootstrap Approach.

The theoretical attractiveness of the original HTZ test does not guarantee its usefulness in

practice. As we will shortly see, the performance of the original HTZ test is very poor in

small samples, which is mainly due to the fact that the sampling distribution of the original

HTZ test statistic is obtained via the asymptotic theory.

We approximate the sampling distribution of the HTZ test statistic using a suitable boot-

strap resampling approach. The HTZ test statistic is pivotal; hence, the bootstrap sampling

distribution is able to achieve asymptotic refinement once we have imposed the null hypoth-

esis by subtracting the finite-sample bias of the HTZ test statistic. As in the asymmetric

dependence test, we use the stationary block bootstrap approach to take into account the

dependence structure embedded in the data.

For a given exceedance level c, consider θ = ρ+
c − ρ−c . θ0 = 0 under the null hy-

pothesis of the symmetric exceedance correlation, which implies no adjustment is needed

when calculating the test statistic. The test statistic of the original sample is Jc,0 =

T
(
θ̂0 − θ0

)′
Ω̂−1

0

(
θ̂0 − θ0

)
, where θ̂0 is simply the difference between the sample right and

left exceedance correlation and the covariance matrix Ω̂0 is estimated by the nested resam-

pling method (Hinkley and Shi, 1989; Efron and Tibshirani, 1993). More specifically, we

use the stationary geometric bootstrap to create a sequence of B1 nested samples from the

original data sample. For each of the B1 nested samples, we calculate the sample estimates

for θ̂ and form a sequence {θ̂(i)
0 }

B1
i=1. The covariance matrix Ω0 for the original data sample

is simply estimated by:

Ω̂0 =
1

B1 − 1

B1∑
i=1

(
θ̂

(i)
0 − θ̂

(i)
0

)(
θ̂

(i)
0 − θ̂

(i)
0

)′
,
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where θ̂(i)
0 = 1

B1

∑B1
i=1 θ̂

(i)
0 . Given both θ̂0 and Ω̂0, Ĵc,0 can be directly computed.

For the sampling distribution of Jc, we first generate B bootstrap samples from the original

data set using the stationary block bootstrap. For the ith bootstrap sample, we estimate

θ̂i using the sample conditional correlation. The estimation of the covariance matrix Ω̂i is

conducted in the same manner as the original sample. The test statistic of Jc is calculated

after adjusting for the sampling bias θ̂0 via Ĵc,i = T
(
θ̂i − θ̂0

)′
Ω̂−1
i

(
θ̂i − θ̂0

)
. We collect{

Ĵc,i

}B
i=1

and form its empirical cumulative distribution function (ECDF) F . We report

the percentile of Ĵc,0 under F for a given level of significance α; the null hypothesis of

the symmetric exceedance correlation will be rejected if Ĵc,0 is located in the upper 1 − α

percentile, as in the case of the χ2 distribution.

III.2. Finite Sample Performance of the HTZ Test.

We conduct tests based on the asymptotic theory and bootstrap resampling with the same

simulated samples of sizes T = 240, 420, and 600. In our simulation, the empirical size and

power are computed as the relative frequency of rejecting the null hypothesis of symmetric

correlation at the exceedance level c = 0 in 1,000 simulated random samples. For each ran-

dom sample, the p-value of the asymptotic HTZ test statistic is obtained from its asymptotic

distribution, which is χ2
1, as shown in Hong, Tu, and Zhou (2007). The bootstrap HTZ tests

are based on 199 stationary bootstraps.

[Insert Table 5 about here]

In Table5, we present the empirical size and power of the HTZ tests. The performance of

the original HTZ test is reported in Panel A of the table. Unsurprisingly, the test performs

poorly in finite samples, even for the largest sample size of 600. The empirical size of the

test is distorted at all commonly used nominal levels for all three sample sizes. The test

based on the asymptotic theory fails to cause any rejection in the finite sample. Moreover,

when the level of asymmetry is low; e.g., κ = 50%, the power of the asymptotic HTZ

test is very low. It almost cannot detect the asymmetry for all sample sizes at the 1%
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level; for the conventional 5% level of significance, the asymptotic HTZ test only rejects

1.4% of the samples when T = 600. In Panel B of the table, we report the results of

the bootstrap HTZ test on the same simulated samples. Empirical size suggests that the

problem of size distortion lessens for the bootstrap HTZ test. At the 10% (5%) nominal

level, for instance, the empirical sizes are 10.1% (4.0%), 9.5% (4.3%), and 11.2% (5.4%) for

samples with different sizes, respectively. At the 1% level, although the empirical size is

slightly distorted for T = 240 (0.6%) and 420 (0.7%), the concern is mitigated for T = 600

(1.2%). Meanwhile, the test power improves dramatically. When the level of asymmetry is

high (κ = 0, 0.25), we are able to make correct decision more than 95% of the time even

when the sample size is small (T = 240). The rejection power increases monotonically with

the sample size; for a fairly large sample (T = 600), the rejecting power of the bootstrap

HTZ test is still about 82.7% (at the conventional 5% level) for the samples with the most

indistinguishable asymmetry (κ = 0.5).

Comparing the results in Table 5, we show that our bootstrap version HTZ test provides a

more accurate empirical size and stronger rejecting power than the asymptotic-based original

HTZ test. Our test can serve as a useful tool for researchers, especially in empirical studies

where the sample size is not large enough for the asymptotic theory to be valid.

III.3. A Two-step Procedure for Testing General Asymmetric Dependence.

In our simulation, the power of the asymmetric dependence test is lower than the bootstrap

HTZ test, especially when the level of asymmetry is weak. The exceedance correlation mea-

sure is estimated using sample moments, which converge at the usual rate of
√
T . However,

the kernel estimation, while consistent, converges at a lower rate. Therefore, although the

general test of asymmetric dependence subsumes the correlation-based null, the power dif-

ference in the previous section implies that the failure of rejecting the symmetric dependence

ρ+
c = ρ−c may simply be the result of a slower convergence rate of the non-parametric es-

timator. In order to test the existence of general asymmetric dependence, both tests are

needed.
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To take advantages of both tests, a two-step contingent procedure can be motivated in

practice for testing asymmetries in general exceedance dependence. For a given exceedance

level, one may first conduct the asymmetric dependence test. If the null hypothesis of the

symmetric exceedance dependence is rejected, one may infer asymmetric inference and stop.

If one is interested to learn more about the nature of the dependence, perhaps as a guide to

modeling, or if the asymmetric dependence test fails to reject its null, we continue with the

bootstrap HTZ test. We retain the null hypothesis of symmetric dependence only if we fail

to reject the null hypothesis by the general test.

We now reconsider the example presented in Section II.1 and apply our two-step method

to test for asymmetric dependence. As shown in the upper half of Panel B of Table 1, we

first apply the asymmetric dependence test on the simulated samples; the empirical power of

the test is close to 70.3% at the conventional 5% level, indicating we have a high probability

in making a correct decision to reject the null hypothesis of symmetric dependence. We

are also interested in knowing the dependence structure by continuing the second bootstrap

HTZ test on the same simulated sample. The lower half of Panel B in Table 1 reports the

empirical power of the bootstrap HTZ test. The null hypothesis of the symmetric exceedance

correlation is correct and hence the bootstrap HTZ test merely reports the empirical size

of the test. The testing results show that the empirical size is close to the nominal size for

all commonly used nominal levels, which suggests that we are very unlikely to reject the

null hypothesis of the symmetric correlation. We can therefore further proceed to propose a

model that only contains a higher order dependence to describe the data.

IV. Asymmetric Dependence in Stock Returns

In this section, we apply our two-step general asymmetric dependence test to equity

portfolios sorted by size, book-to-market, and momentum in order to investigate whether

asymmetric comovement is a common phenomenon in stock returns. It should be noted that

previous empirical studies report mixed results.
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IV.1. Data.

Similar to Ang and Chen (2002) and Hong, Tu, and Zhou (2007), we consider excess returns

for value-weighted size and book-to-market decile portfolios and equal-weighted decile mo-

mentum portfolios that are formed based on cumulative returns from 12 to 2 months prior to

formation. The CRSP (Center for Research in Security Prices) value-weighted index return,

which includes all stocks listed in the NYSE/AMEX/NASDAQ, is used as a proxy for the

market return. All returns are recorded in excess of the rate on one-month T-bill. The entire

data set is available on Kenneth French’s website.6 Monthly observations are from January

1965 to December 2013, which totals 588 observations.

IV.2. Empirical Results.

We apply the two-step general asymmetric dependence test to the equity portfolios. The

exceedance level is set at 0 for both tests. P -values of the test are calculated based on

399 stationary bootstrap resamplings. Table 6 provides the sample estimates of the ρ+
c ,

ρ−c , ρ−c − ρ+
c , and the p-values of the two-step general asymmetric dependence test on all

three sets of portfolios. We are able to reject the null hypothesis of symmetric dependence

for the 1st to the 5th smallest size portfolios (Panel A) at the 5% level. In the second

step of the bootstrap HTZ test, we further reject the null of the asymmetric correlation

for size 6-8 portfolios. Our finding supports the necessity of including the bootstrap HTZ

test in the second step if we fail to reject the null of symmetric dependence in the first

step. This finding is consistent with previous literature. Since our proxy for the market

portfolio is a value-weighted index, larger firms co-move with the market symmetrically.

Therefore, the asymmetries in general dependence vanish as the firm size increases. For

value-weighted book-to-market portfolios (Panel B), the general asymmetric dependence test

rejects symmetry for the tenth BE/ME portfolios. The symmetric dependence hypothesis can

be rejected for the fifth, eighth, and ninth BE/ME portfolios if we apply the bootstrap HTZ

test in the second step. Our findings are consistent with Ang and Chen (2002) and Jondeau

6We are grateful to Kenneth French for making the data available at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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(2015). Value stocks exhibit more asymmetric comovement with the market. However,

Hong, Tu, and Zhou (2007) report that they fail to detect any asymmetry for all book-

to-market portfolios using the asymptotic HTZ test, which indicates the impreciseness of

the asymptotic theory-based test in finite samples. In Panel C, we present the results for

equal-weighted momentum portfolios. Both the bootstrap HTZ test and the asymmetric

dependence test show the overwhelming favor of the alternative hypothesis of asymmetry.

This means that a statistically significant difference exists in the equal-weighted momentum

portfolios at the 1% level under our general asymmetric dependence test.

[Insert Table 6 about here]

V. Conclusion

Whether or not individual stock returns significantly co-move with the market return more

during market downturns than during upturns, and whether the phenomenon is prevailing

enough to be considered in asset management is of great current interest. Ang and Chen

(2002) give positive answers to both questions, but their test concerns joint normality rather

than asymmetry. Hong, Tu, and Zhou (2007) give an opposite answer based on a model-free

test; however, their result lacks sufficient power in finite samples because it relies on first

order asymptotic theory.

In this paper, we propose a model-free test of general asymmetric dependence between

stock returns and the market return. Our general test may be used alone or in a two-

step procedure for testing asymmetries in the exceedance correlation and exceedance mutual

information, respectively. We find greater test power in finite samples than is shown in

the previous model-free test by Hong, Tu, and Zhou (2007). The power comes from finite

sample refinement using bootstrap resampling. Furthermore, our general method is able to

test higher order dependence asymmetries, which is crucial in view of the fact that stock

returns are not elliptically distributed (Embrechts, McNeil, and Straumann, 2002).
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Using the new test of general asymmetric dependence, we test common U.S. portfolios

sorted by size, book-to-market ratios and momentum. We find that most of the time, al-

though asymmetries cannot be detected using the asymptotic theory-based HTZ test, those

portfolios are in fact asymmetric in dependence. Portfolio managers should pay more atten-

tion to risk-hedging down markets due to this asymmetry.

Appendix A. Connections between Mutual Information and Copulas

A copula density is defined as the second-order partial derivatives of a copula function

with respect to the uniform marginal distribution functions. Consider two random variables

X and Y and a copula function C(U, V ), where U = Fx(X) and V = Fy(Y ) are uniform

marginal distributions. Mathematically, the copula density can be written as:

c(u, v) ≡ ∂

∂Fy

(
∂C

∂Fx

)
=
∂2C(u, v)

∂Fy∂Fx
. (14)

Note that if we transform the original variables via their CDF functions, then the joint density

function of the transformed variables U and V are actually the copula density c(u, v). We

know that any joint distribution can be written in terms of copulas; i.e.,

C(u, v) = F (x, y). (15)

Taking second-order partial derivatives with respect to x and y, respectively, on both sides

yields:

∂

∂y

(
∂C(u, v)

∂x

)
= f(x, y), (16)

∂2C(u, v)

∂Fy∂Fx

∂Fx
∂x

∂Fy
∂y

= f(x, y), (17)

c(u, v)f(x)f(y) = f(x, y). (18)
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The last equation follows from the definition of copula density given in Eq.(14). Dividing

the product of the marginal density functions on both sides of Eq.(18), we have:

c(u, v) =
f(x, y)

f(x)f(y)
. (19)

Note that the RHS of Eq.(19) is exactly the integrand in the Kullback-Leibler mutual in-

formation measure (3). The above equation tells us that the MI measures are equal to the

copula densities. As we know that copula density captures the general dependence structure

between random variables, the MI-based test we propose can also capture the dependence

structure.

Appendix B. Proofs of Theorem II.1

Proof. We want to show that the exceedance dependence measure is invariant under simple

standardization. Without loss of generality, we will prove the equality for upper tail depen-

dence measures ρ+
c,o and ρ+

c in detail. The same proof also works for lower tail dependence

measures ρ−c,o and ρ−c .

Under simple standardization

X =
R1 − µ1

σ1
and Y =

R2 − µ2

σ2
. (20)

The following equalities hold for the marginal densities g1, g2 and f1, f2:

g1(R1) =
1

σ1
f1

(
R1 − µ1

σ1

)
=

1

σ1
f1(X),

g2(R2) =
1

σ2
f2

(
R2 − µ2

σ2

)
=

1

σ2
f2(Y ).

For the joint density g and f , we have

g(R1, R2) = f

(
R1 − µ1

σ1
,
R2 − µ2

σ2

)
· |J |,
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where J is the Jacobian of the transformation, which is defined as

J =

 ∂X
∂R1

∂X
∂R2

∂Y
∂R1

∂Y
∂R2

 .

Particularly under the simple standardization (20),

det(J) =

∣∣∣∣∣∣∣
1
σ1

0

0 1
σ2

∣∣∣∣∣∣∣ =
1

σ1σ2
.

Hence,

ρ+
c,o =

∫ +∞

µ2+cσ2

∫ +∞

µ1+cσ1

g(R1, R2) log
g(R1, R2)

g1(R1)g2(R2)
dR1dR2

=

∫ +∞

c

∫ +∞

c
|J | · f(X,Y ) log

|J | · f(X,Y )
1

σ1σ2
· f1(X)f2(Y )

· 1

|J |
dXdY

= ρ+
c .

Similarly, we also have:

ρ−c,o = ρ−c .

�
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Table 1. Failure of the Exceedance Correlation

Panel A. Value of parameters Panel B. Test on Asymmetries
in Distribution (1) and (2) in Distribution (1) and (2)

a 2.582 Nominal size Power
b 1.162

Asy. Dep.
10% 0.802

c 0.120 5% 0.703
d 0.594 1% 0.429
e 2.000
f 4.444

HTZ
10% 0.092

σ1 0.250 5% 0.041
σ2 0.250 1% 0.010

Note: Panel A of this table reports the parameter values we choose in distribution (1) and (2). Under this
set of parameters, the random variables X and Y have zero means and unit standard deviations. Panel B
presents the probabilities of rejecting the null hypothesis using the asymmetric dependence test and bootstrap
HTZ test under different nominal sizes, respectively. The rejection probabilities are defined as the relative
frequencies of rejection made in 1,000 simulated random samples. For each random sample, the inferences
are made based on 199 stationary bootstrap resamplings and the exceedance level c = 0 in all scenarios.

Table 2. Asymptotic Size of the Asymmetric Dependence Test

Sample size (T) 1000 1500
Nominal size 10% 5% 1% 10% 5% 1%
Empirical size 0.103 0.052 0.014 0.100 0.050 0.011

Note: The table reports the probabilities of rejecting the null hypothesis of symmetric exceedance
dependence under different nominal sizes, which are estimated based on the statistical inferences
made in 1,000 simulated random samples. The random samples are generated by a t copula,
which exhibits symmetric tail dependence. For each random sample, the inferences are made
based on 199 stationary bootstrap resamplings and the exceedance level c = 0 in all scenarios.
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Table 3. Size and Power of the Asymmetric Dependence Test in Finite Samples

Weight on Normal Copula (κ %)
Sample size (T) Nominal size 100%

(Size)
50% 37.50% 25% 0%

240
10% 0.122 0.455 0.897 0.992 0.999
5% 0.062 0.319 0.831 0.977 0.999
1% 0.016 0.121 0.562 0.918 0.978

420
10% 0.110 0.668 0.986 1.000 1.000
5% 0.056 0.523 0.974 1.000 1.000
1% 0.011 0.261 0.862 0.997 0.997

600
10% 0.119 0.808 0.999 1.000 1.000
5% 0.061 0.694 0.997 1.000 1.000
1% 0.014 0.380 0.961 0.999 1.000

Note: The table reports the probabilities of rejecting the null hypothesis of the symmetric exceedance de-
pendence under different nominal sizes, which are estimated based on the statistical inferences made in
1,000 simulated random samples. All random samples are generated by the mixture copula in Eq.(13),
whose degree of asymmetry in the exceedance dependence is governed by the parameter κ. When κ = 1,
Eq.(13) reduces to a Gaussian copula with symmetric tail dependence. In all other cases, Eq.(13)
produces distributions with asymmetric tail dependence. For each random sample, the inferences are
made based on 199 stationary bootstrap resamplings and the exceedance level c = 0 in all scenarios.



A TEST OF GENERAL ASYMMETRIC DEPENDENCE 31

Table 4. Size and Power of the Asymmetric Dependence Test Using Different
Bandwidth Selection Methods

Panel A. Asymmetric Dependence Test with the LSCV Bandwidth Selection Approach

Weight on Normal Copula (κ %)
Sample size (T) Nominal size 100%

(Size)
50% 37.5% 25% 0%

240
10% 0.142 0.434 0.880 0.990 0.998
5% 0.087 0.323 0.803 0.974 0.995
1% 0.021 0.121 0.526 0.887 0.934

420
10% 0.135 0.638 0.979 1.000 1.000
5% 0.066 0.486 0.964 1.000 1.000
1% 0.015 0.232 0.832 0.992 0.994

600
10% 0.127 0.769 0.998 1.000 1.000
5% 0.068 0.638 0.996 1.000 1.000
1% 0.020 0.339 0.950 1.000 1.000

Panel B. Asymmetric Dependence Test with the Plug-in Bandwidth Selection Approach

Weight on Normal Copula (κ %)
Sample size (T) Nominal size 100%

(Size)
50% 37.5% 25% 0%

240
10% 0.106 0.458 0.847 0.965 0.999
5% 0.048 0.320 0.751 0.923 0.996
1% 0.012 0.119 0.451 0.761 0.961

420
10% 0.090 0.686 0.978 1.000 1.000
5% 0.046 0.551 0.959 0.999 1.000
1% 0.009 0.269 0.804 0.981 0.998

600
10% 0.093 0.820 0.997 1.000 1.000
5% 0.053 0.725 0.994 1.000 1.000
1% 0.011 0.438 0.941 0.999 1.000

Note: The table reports the probabilities of rejecting the null hypothesis of the symmetric exceedance de-
pendence under different nominal sizes, which are estimated based on the statistical inferences made in
1,000 simulated random samples. All random samples are generated by the mixture copula in eq.(13),
whose degree of asymmetry in the exceedance dependence is governed by the parameter κ. When κ = 1,
Eq.(13) reduces to a Gaussian copula with symmetric tail dependence. In all other cases, Eq.(13) pro-
duces distributions with asymmetric tail dependence. For each random sample, the optimal bandwidth
is obtained using the least square cross validation and plug-in method, respectively. The inferences are
made based on 199 stationary bootstrap resamplings and the exceedance level c = 0 in all scenarios.
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Table 5. Size and Power Comparison: Asymptotic and Bootstrap HTZ Test

HTZ Asymmetric Correlation Test with c=0

Panel A. Asymptotic Theory Panel B. Stationary Bootstrap
Sample Nominal Weight on Normal Copula (κ %) Weight on Normal Copula (κ %)
size (T) size 100% (Size) 50% 37.5% 25% 0% 100% (Size) 50% 37.5% 25% 0%

240
10% 0.000 0.013 0.204 0.691 0.933 0.101 0.582 0.923 0.989 0.998
5% 0.000 0.004 0.083 0.487 0.849 0.040 0.409 0.831 0.960 0.994
1% 0.000 0.000 0.008 0.166 0.576 0.006 0.130 0.509 0.771 0.931

420
10% 0.000 0.031 0.455 0.943 0.992 0.095 0.801 0.994 1.000 0.999
5% 0.000 0.008 0.240 0.827 0.971 0.043 0.687 0.981 0.999 0.998
1% 0.000 0.001 0.031 0.428 0.852 0.007 0.355 0.807 0.980 0.996

600
10% 0.000 0.068 0.731 0.998 0.998 0.112 0.910 0.999 1.000 1.000
5% 0.000 0.014 0.426 0.969 0.993 0.054 0.827 0.995 1.000 1.000
1% 0.000 0.000 0.084 0.740 0.960 0.012 0.541 0.942 0.995 0.999

Note: The table reports the probabilities of rejecting the null hypothesis of the symmetric exceedance correlation under different nominal sizes, which
are estimated based on the statistical inferences made in 1,000 simulated random samples. All random samples are generated by the mixture copula in
Eq.(13), whose degree of asymmetries in exceedance dependence is governed by the parameter κ. When κ = 1, Eq.(13) reduces to a Gaussian copula
with a symmetric tail dependence. In all other cases, Eq.(13) produces distributions with asymmetric tail dependence. For each random sample, the
sampling distribution is obtained using both asymptotic theory and 199 stationary bootstrap resamplings. The exceedance level c = 0 in all scenarios.
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Table 6. Asymmetric Dependence in Returns of Commonly Used Portfolios

Panel A. Value-weighted Panel B. Value-weighted Panel C. Equal-weighted
Size Portfolios Book-to-Market Portfolios Momentum Portfolios

Portfolio ρ−c ρ+c ∆ρc
Asym. Boot. Portfolio ρ−c ρ+c ∆ρc

Asym. Boot. Portfolio ρ−c ρ+c ∆ρc
Asym. Boot.

Dep. HTZ Dep. HTZ Dep. HTZ

Size 1 0.317 0.221 0.096 0.000 0.000 BE/ME 1 0.458 0.470 -0.012 0.679 0.378 L 0.277 0.190 0.087 0.000 0.000
Size 2 0.395 0.304 0.091 0.000 0.000 BE/ME 2 0.571 0.577 -0.006 0.799 0.065 2 0.345 0.268 0.078 0.000 0.000
Size 3 0.433 0.363 0.069 0.000 0.000 BE/ME 3 0.560 0.543 0.017 0.584 0.058 3 0.371 0.303 0.068 0.003 0.000
Size 4 0.437 0.387 0.051 0.005 0.000 BE/ME 4 0.521 0.515 0.007 0.807 0.125 4 0.399 0.332 0.067 0.015 0.000
Size 5 0.479 0.435 0.044 0.008 0.000 BE/ME 5 0.452 0.448 0.004 0.920 0.028 5 0.390 0.331 0.059 0.015 0.000
Size 6 0.534 0.485 0.048 0.053 0.010 BE/ME 6 0.478 0.469 0.009 0.784 0.226 6 0.410 0.353 0.057 0.023 0.000
Size 7 0.584 0.560 0.024 0.514 0.038 BE/ME 7 0.424 0.421 0.002 0.947 0.158 7 0.420 0.353 0.067 0.003 0.000
Size 8 0.644 0.610 0.034 0.193 0.048 BE/ME 8 0.410 0.372 0.037 0.203 0.023 8 0.409 0.333 0.075 0.003 0.000
Size 9 0.684 0.715 -0.032 0.286 0.356 BE/ME 9 0.412 0.359 0.053 0.060 0.030 9 0.408 0.302 0.106 0.000 0.000
Size 10 0.681 0.721 -0.040 0.218 0.150 BE/ME 10 0.324 0.267 0.057 0.005 0.033 W 0.350 0.270 0.080 0.000 0.000

Note: The table reports the p-values of the asymmetric dependence and bootstrap HTZ test on commonly used portfolios sorted by size, book-to-
market, and momentum at the exceedance level 0. The exceedance dependence measures ρ+c and ρ−c and the difference ∆ρc = ρ−c − ρ+c are reported as
well. The sample period is from January 1965 to December 2013. P-values of both tests are computed based on 399 stationary bootstrap resamplings.
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Figure 1. Variables with Symmetric Exceedance Correlation but Asym-
metric Comovements

Note: The figure shows the scatter plot for the random variables X and Y , which are
drawn independently from the distribution (1) and (2). The parameter values are chosen
such that the exceedance correlation between X and Y is symmetric at the level c = 0.
However, this figure clearly suggests that X and Y have different comovement patterns.
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