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ABSTRACT

In a tractable stochastic volatility model, we identify the price of the smile as the price

of the unspanned risks traded in SPX option markets. The price of the smile reflects two

persistent volatility and skewness risks, which imply a downward sloping term structure of

low-frequency variance risk premia in normal times. In periods of distress, the term structure

is upward sloping and dominated by a high-frequency premium for jump variance. This

dichotomy is consistent with the puzzling skew sensitivities of option markets with credit-

constrained intermediaries and it builds a challenge for many reduced-form and structural

models of stochastic volatility.
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Understanding the properties of the market price of volatility risk is a key issue in

financial economics, as the recent macroeconomic literature has shown that time-varying

uncertainty is a source of risk with real economic effects (e.g., Bloom (2009), Gourio (2012)

and Gourio (2014)). The recent financial literature has reached a consensus on the fact

that aggregate uncertainty shocks are priced in modern financial markets, by estimating a

typically negative average excess return for long variance portfolios over different investment

horizons. However, far less is known about (i) which characteristics of the volatility generate

the volatility risk premium, (ii) the time-variation of the premium and its dependence on

the investment horizon, (iii) the relation between the volatility risk premium and the premia

of the unspanned risks traded in option markets, and (iv) the link between volatility risk

premia and market equity premia.

While all these questions are key for understanding the properties of the price of volatility

risk, addressing them in a single coherent arbitrage-free model is a challenge. First, evidence

in Bates (2000), Gruber, Tebaldi and Trojani (2010), Calvet, Fearnley, Fisher and Leippold

(2013) and Andersen, Fusari and Todorov (2015), among others, shows that volatility risk

originates from multiple risks with distinct persistence properties. These risks comove dy-

namically and can contribute in distinct ways to the price of volatility. Second, volatility risk

is a particular form of unspanned risk, which is tradeable in liquid option markets together

with others risks, such as skewness risk. Therefore, its price needs to be studied consistently

with the price of all tradeable unspanned risks, i.e., consistently with the price of the smile;

see Buraschi and Jackwerth (2001), among others.1 Third, the specification of the volatility

has to be consistent with the cross-sectional and time series properties of the option-implied

volatility smile, because shocks to option-implied volatilities reveal useful information for

identifying the unspanned risks driving option prices. Importantly, such an identification is

impaired by most existing arbitrage-free models, such as Bates (2000), because of the coun-

terfactually tight relation these models induce between volatility and skewness, as noted in,

e.g., Gruber et al. (2010), Andersen et al. (2015) and Constantinides and Lian (2015).

In this paper, we study the relation between the price of the smile and variance risk

premia, using a single coherent arbitrage-free framework that systematically addresses ques-

tions (i)-(iv). We jointly identify the unspanned risks traded in option markets and the price

1This consistency precludes unplausible arbitrage opportunities between option portfolios that trade
distinct characteristics of unspanned risks. Unspanned risks can be traded in option markets using either
(i) dynamically hedged option portfolios, which typically require model assumptions about different option
price sensitivities with respect, e.g., to time-varying volatility and skewness, or (ii) model-free static option
portfolios that are dynamically delta hedged in the forward market; see Bergomi (2004), Bergomi (2005),
Bergomi (2008), Bergomi (2009), Kozhan, Neuberger and Schneider (2010), Schneider and Trojani (2014a)
and Schneider and Trojani (2014b), among others.
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of the smile, by estimating a parsimonious three-factor stochastic volatility model in the

class of matrix affine jump diffusion (AJD) proposed by Leippold and Trojani (2008). Our

model features two important properties that are useful to better identify and interpret the

unspanned risks traded in option markets and the price of the smile. First, a specification

based on three interdependent risks, which are mutually-exciting and have distinct degrees

of persistence. Second, a stochastic skewness and a price of the smile that are not linearly

spanned by the level of the spot volatility. By weakening the tight link between volatility

and skewness induced by most arbitrage-free models, our model produces a more accurate

description of the cross-section and the time series of option-implied volatilities. In a similar

way, the weaker link between the price of the smile and volatility in our model allows us

to better identify risk premium components that are genuinely driven by a time-varying

skewness.2

We estimate the model using a simple two-step procedure, based on the joint information

of a panel of S&P500 index (SPX) option prices and a panel of excess returns of option

volatility portfolios, in the sample period from January 1996 to January 2013. In the first

step, we exploit the information from the panel of option prices to estimate the physical

and risk neutral dynamics of the unspanned risks driving the SPX implied volatility surface,

together with the risk-neutral parameters of the jump component in the underlying’s returns.

In this way, we identify the time series of unspanned risks traded in the SPX option market

and the price of the smile. In the second step, we estimate the parameters of the jump

variance risk premium, from a simple arbitrage-free regression of the payoffs of synthetic

variance swaps on the unspanned risks identified in the first step. With this identification

strategy, we estimate the time series of unspanned risks in option markets, the price of the

smile and the term structure of variance risk premia, without relying on direct information

about S&P 500 index returns or a complete specification of the index equity premium.

The main findings resulting from our model estimation are the following. First, our

model produces an excellent fit of the cross-sectional and the time series properties of SPX

option-implied volatility smiles, relative to benchmark arbitrage-free models in the literature,

such as a two-factor Bates (2000) model. Importantly, the improved fit of the smile induces a

good identification of unspanned risks, in terms of three interdependent state variables X22,

X12 and X11 driving the volatility dynamics in our model. These state variables capture risk

and risk premium dynamics at three distinct frequencies, inducing different contributions to

the price of the smile, over time and in dependence of the investment horizon.

2Our model specification nests a number of important affine stochastic volatility models in the literature,
such as Bates (2000) two-factor jump diffusion or Heston (1993)-type two-factor volatility models.
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Second, the unspanned risks in our model have a natural interpretation as directly ob-

servable characteristics of the smile. The first state variable (X22) has a half life of about

five weeks and models the high frequency component of the spot volatility. It closely follows

the 30-days at-the-money implied variance, with a weekly correlation of 91%. The second

state variable (X12) has a half life of about one quarter and captures the component of the

stochastic skewness that is not generated by shocks in the spot volatility. It closely targets

the 30-days implied skew, with a weekly correlation of −89%. The third state variable (X11)

has a half life of more than one year and models the low frequency component of the spot

volatility. It closely traces the 12 months at-the-money implied variance, with a weekly cor-

relation of 91%. According to this evidence, the unspanned risks traded in option markets

are naturally summarized by three dynamically correlated state variables, which closely re-

flect transient implied volatility shocks, moderately persistent implied skewness shocks and

highly persistent implied volatility shocks.

Third, we find that the price of the smile is negative, highly time-varying and fully

explained by the level of the two more persistent risks X11 and X12. Therefore, these state

variables can be interpreted as risk premium factors driving the price of unspanned risks in

option markets. The structure of the price of the smile is striking. We document that the

price of the most persistent volatility risk X11 is proportional to the level of X11 itself. In

this sense, a shock in long-term implied volatilities is also a shock in the risk premium of

long-term implied volatility risk. In contrast, the price of the moderately persistent skewness

risk X12 is explained by the levels of both X11 and X12. Therefore, shocks in short-term

implied skewness only partly explain the risk premium for short-term implied skewness risk.

Finally, we find that the price of the highly transient volatility risk X22 is proportional to

the level of X12. In this sense, shocks in short-term implied skewness are directly linked to

shocks in the risk premium for high-frequency volatility risk. However, since risks X22 and

X12 are only weakly correlated, a shock in high-frequency volatility risk can materialize even

in absence of a variation in its price. These findings have natural implications for the term

structures of the price of the smile, defined by the risk premia of swap cantracts with floating

leg 1
τ

∫ τ
0
Xijtdt, where τ > 0 is the swap time to maturity. As this term structure depends

on linear combinations of risks X11 and X12 alone, it is naturally downward sloping. It is

typically steeper for the persistent risks X11 and X22, while it flattens out early, at horizons

of about one quarter, for the more transient risk X22.

Fourth, we address the relation between the unspanned risks traded in options markets,

the price of the smile and the excess returns of popular variance swaps. The time-variation

of all unspanned risks implies highly time-varying and unambiguously negative variance

risk premia, ranging between zero and −16 percent squared (−11 percent squared), on an
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annualized basis, for a monthly (an annual) investment horizon. At short horizons of one

month, variance risk premia are almost completely explained by a time-varying premium

for pure jump variance risk, while at horizons of twelve months the premium for diffusive

variance explains about one quarter of the total variance risk premium. This structure of

the variance risk premium is fully consistent with the properties of the unspanned risks and

the price of the smile estimated with our model. Indeed, at short horizons the dynamics of

the pure jump variance risk premium is completely explained by the probability of a jump

in returns, which is a linear function of all unspanned risks X11, X12 and X22. In contrast, at

longer horizons variance risk premia are more systematically explained by the term structure

of the price of the smile, which is a linear function of the two more persistent unspanned

risks X11 and X12 alone.

Fifth, the unspanned risks and the price of the smile in our model generate sharp impli-

cations for the term structure of variance risk premia. While this term structure is usually

downward sloping, reflecting the higher price of option insurance at longer horizons, it can

become strongly upward sloping for short periods of time. This feature is explained by the

interplay of the term structure of the price of the smile with the term structure of the ex-

pected number of future large negative returns. The first of these term structures implies a

downward sloping term structure of the risk premia for exposure to future diffusive variance

or jump intensity realizations. When jump intensities are sufficiently large, the second term

structure is typically downward sloping, due to the mean reversion of unspanned risks. This

yields an upward sloping term structure of pure jump variance risk premia, because the vari-

ance risk premium of a sure jump of unknown size is negative. Thus, the term structure of

variance risk premia is upward sloping, whenever the term structure of pure jump variance

risk premia dominates the term structure of the smile at short horizons. We document that

an upward sloping term structure typically emerges in conditions of market distress. These

market conditions naturally reflect transient states, in which short-term market downside

risk can become extraordinarily high and insurance against a sudden large market downturn

is particularly expensive. Therefore, it is plausible that precisely in such states the Value At

Risk constraints of credit-constrained suppliers of option insurance are particularly binding;

see again Constantinides and Lian (2015).

Finally, we test our model specification and findings along several additional dimensions,

by means of different robustness checks, documented in detail in Section III. of the Online

Appendix. We verify in a more nonparametric predictive regression context the role of

unspanned risks traded in option markets as risk premium factors for equity and variance

risk premia. Predictive regressions results suggest that unspanned risks have an economically

relevant predictive power, both for S&P 500 index and variance swap excess returns, with a
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dominating contribution to the predictive power deriving from the two persistent unspanned

risks. The affine specification of variance risk premia in our model is preferred by the out-of-

sample predictability results, providing additional support to our specification of the price

of variance risk. In contrast, affine predictive relations for S&P 500 index excess returns

are dominated by a nonlinear threshold specification, in which unspanned risks generate a

significant degree of predictability only in states of sufficiently persistent volatility. This

finding further motivates an identification of variance risk premia that does not directly

depend on an affine specification of index equity premia.

Review of the Literature.

Our work borrows from an enormous literature that has studied the economic sources of

volatility variations, the dynamics of the option-implied volatility smile, the origins of a

negative variance premium and the relation with market equity premia. We contribute to

this literature along several dimensions.

First, we make use of a novel specification of stochastic volatility, which parsimoniously

identifies the multi-frequency unspanned risks traded in option markets, together with the

price of the smile and the term structure of variance risk premia. Following Heston (1993)’s

seminal model, it has been early recognized that volatility is a multi-frequency object de-

pendent on risks with distinct persistence and variability properties. Bates (2000) was the

first to estimate with a panel of option prices a tractable two-factor model for index returns.

Subsequent papers, such as Huang and Wu (2004) and Christoffersen, Heston and Jacobs

(2009), have quantified the improvements in the fit of the option-implied volatility smile

using two-factor models with independent volatility components. The more recent literature

has explored reacher three-factor specifications. Carr and Wu (2009a), Gruber et al. (2010)

and Andersen et al. (2015), among others, clearly improve on the fit of the smile provided by

benchmark two-factor models. Our specification of stochastic volatility is different and com-

plements these approaches, based on three mutually-exciting risks that follow an affine jump

diffusion on the state space of symmetric positive definite matrices, under the physical and

the pricing measures.3 This approach yields a direct identification and interpretation of cor-

related unspanned risks. By embedding a dynamic skewness component disconnected from

the spot volatility, it also avoids the puzzling skew sensitivities of benchmark arbitrage-free

models noted in Constantinides and Lian (2015). Our goal is also different from Carr and

Wu (2009a) and Andersen et al. (2015). Carr and Wu (2009a) identify in a semi-structural

3See, among others, Gourieroux (2006), da Fonseca, Grasselli and Tebaldi (2008) and Buraschi, Porchia
and Trojani (2010) for examples and applications of affine matrix-valued diffusions, as well as Leippold and
Trojani (2008) for a broad class of affine matrix jump diffusion processes.
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model the economic channels generating the equity volatility, by mapping them on a lever-

age, a volatility feedback and a self-exciting component. Andersen et al. (2015) identify with

a penalized nonlinear least-squares approach the unspanned risks revealed by a panel of SPX

options. They remain agnostic about the specification of the price of the smile and study

the role of unspanned risks as risk premium factors for equity and volatility risk. We rely on

a different approach to study in a coherent no-arbitrage setting the unspanned risks traded

in option markets, the price of the smile and variance risk premia. Given the need for a

parsimonious specification of physical and risk neutral state dynamics, we adopt a matrix

jump diffusion with jumps in index returns. While it would be possible to introduce jumps

in the volatility process, a parsimonious model would require not innocuous additional as-

sumptions, in order to identify the jump components of the volatility and jump volatility

risk premia.4

Second, our paper borrows from a large literature that has studied the trading of un-

spanned risks in option markets, the market price of volatility and the term structure of

variance risk premia. In a first strand of this literature, Dupire (1993) and Neuberger (1994)

where among the first to propose synthetic option portfolio strategies for trading proxies

of realized variance, followed by Carr and Madan (1998), Demeterfi, Derman, Kamal and

Zou (1999) and Britten-Jones and Neuberger (2000), among others. From the price of such

portfolios, the price of variance can be measured in a model-free way, giving rise to a vari-

ety of synthetic variance swap contracts. Recent papers have focused on the properties of

variance swaps in presence of jumps and on swap contracts for trading higher-order risks,

such as, e.g., skewness and kurtosis.5 A key insight of this literature, which motivates our

work, is the tradeability of variance, skewness and higher-order unspanned risks by means of

appropriate option portfolios. Given the no-arbitrage constraints prevailing in liquid option

markets, the prices of these risks may be naturally interconnected and difficult to study in

isolation. Therefore, a coherent treatment of the price of variance risk naturally calls for

a joint arbitrage-free specification of the unspanned risks traded in option markets and the

price of the smile.

A second strand of this literature has established the existence of a negative risk premium

4For instance, Carr and Wu (2009a) assume that the probability of a co-jump in returns and volatility
follows a pure-jump single-factor dynamics. Such an assumption restricts the jump variance risk premia to
be perfectly correlated across horizons, which we feel excessively constrains the term structure of variance
risk premia for our analysis.

5Martin (2012), Neuberger (2012) and Bondarenko (2014) introduce definitions of variance swap payoffs
robust to jumps. Kozhan et al. (2010) propose a synthetic skew swap to study skewness vs. variance risk
premia, while Schneider and Trojani (2014b) trade and price fear using Hellinger skew swaps. More broadly,
Schneider and Trojani (2014a) introduce power divergence swaps for trading general nonlinear risks and
characterize in a model-free way the premia for divergence risks of different orders.
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for market volatility and has studied its properties. Buraschi and Jackwerth (2001) test

the spanning properties of option markets and conclude in favour of models with priced

unspanned risks, such as stochastic volatility or jump risk. Bakshi and Kapadia (2003)

provide first direct evidence on a negative variance risk premium using delta-hedge call option

positions. Similar evidence is obtained by Wu (2011), using the payoffs of (over-the-counter)

variance swaps, and by Carr and Wu (2009b), using synthetic variance swaps on several

underylings. Todorov (2010) and Bollerslev and Todorov (2011) conclude that variance risk

premia are dominated by a premium for jump variance risk, which tends to increase after

a negative jump has occurred. Our findings are consistent with the evidence in this strand

of the literature. Importantly, we obtain a new decomposition of variance risk premia, into

the contribution of three economically interpretable unspanned risks. These risks feature

distinct persistence features and are priced very differently. With this decomposition, we

document that in periods of distress the term structure of variance risk premia is partly

disconnected from the price of the smile at the short end, when volatility and jump risk are

large and particularly transient. In contrast, the long end of the term structure of variance

risk premia is more systematically spanned by the price of the smile and the risk premia for

persistent risks.

A third strand of this literature has studied the properties of the term structure of

variance risk premia. Ait-Sahalia, Karaman and Mancini (2012) and Filipovic, Gourier and

Mancini (2015) estimate an affine and a quadratic two-factor volatility model, based on (over-

the-counter) variance swap rates of maturities between two months and two years, focusing

on the implications for the term structure of equity vs. variance risk premia and on the

structure of optimal portfolios with variance swaps, respectively. The first paper estimates

an unambiguously negative and downward sloping term structure of variance risk premia.

The second paper documents that the optimal portfolio contains an important long-short

position in long versus short term variance swaps, which earns the premium implied by the

decreasing term structure of variance risk premia and simultaneously limits portfolio losses

when volatility increases. Dew-Becker, Giglio, Le and Rodriguez (2014) estimate a discrete-

time version of Ait-Sahalia et al. (2012)’s model, using different sets of variance swaps with

maturities from 1 month to 14 years. They document that a steep term structure of variance

risk premia at the short end is a strong puzzle for recent parameterizations of structural

long-run risk models, such as Drechsler and Yaron (2011) and Wachter (2013), but less so for

models with a time-varying stock market exposure to rare disasters, such as Gabaix (2012).

Our paper studies the term structure of variance risk premia with a different approach, by

recognizing the joint tradeability of variance, skewness and higher-order unspanned risks by

means of appropriate option portfolios. In this way, we jointly identify in a parsimonious

three-factor model the unspanned risks traded in option markets, the price of the smile and
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the term structure of variance risk premia. In contrast to the literature, we find that while

the term structure of variance risk premia is downward sloping in normal times, it can be

strongly inverted in periods of financial distress when jump variance risk premia are unusually

large.6 Importantly, both low- and high-frequency unspanned risks are key to understand

these dynamics. The long end of the term structure is strongly connected to the price of

the smile, which is jointly explained by a moderately persistent skewness risk and a highly

persistent volatility risk. In contrast, the short end of the term structure depends also on a

high-frequency volatility risk, which can be very substantial in phases of market distress. As

this risk is not a risk premium factor, it does not directly contribute to variations in the price

of the smile. However, since it is positively related to the probability of a negative jump in

returns, it can generate sizable jump variance risk premia in states of large and transient

volatility, together with a steep inverted term structure of variance risk premia.

The insights provided by our findings can help to understand different structural mech-

anisms for explaining variance risk premia. Our evidence indicates that the equilibrium

mechanisms implied by long-run risk models might be useful to understand the persistent

dynamics of the long end of the term structure of variance risk premia. In contrast, the

term structure dynamics in periods of distress may be better explained by high-frequency

volatility shocks, which materialize without affecting much the price of the smile. Such a

mechanism may be rationalized by structural rare disaster models with a time-varying stock

market exposure that is only weakly correlated with aggregate consumption shocks, as in

Gabaix (2012). More generally, the multi-frequency structure of variance risk premia in

our model is consistent with a price of volatility risk that can depend on high frequency

shocks generated by situations of financial distress. Adrian and Rosenberg (2008) decom-

pose market volatility into two weakly persistent components with a half-life of less than

a quarter, which are priced in the cross-section of stock returns. They explicitly interpret

their highest frequency volatility component as a proxy of skewness risk reflecting the tight-

ness of financial constraints. Adrian and Shin (2010) show that expansions and contractions

of repo and commercial paper funding predict variations in option-implied volatility, while

Adrian, Moench and Shin (2013) document empirically the link between financial intermedi-

aries balance sheets and asset prices. Muir (2013) emphasizes the high-frequency character

of financial crises and explains in a theoretical model with financial intermediation why the

term structure of the price of volatility and the term structure of variance risk premia can

be inverted in phases of financial turmoil. Barras and Malkhozov (May 2014) document

that the variance risk premia inferred from option markets contain a component related

6These features have likely implications for optimal portfolios including variance swaps, as shorting long
against short term variance swaps when the term structure is inverted can be potentially very costly.
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to measures of the financial standing of intermediaries, which explains the difference with

the variance risk premium estimated from equity markets. The dynamics of variance risk

premia estimated by our model, in particular the high-frequency character of the inverted

term structure of variance risk premia in periods of financial distress, is consistent with the

economic intuition motivating this literature.

Finally, our paper is related to the literature studying the risk premium factors for

market returns and their relation to variance risk premia. Bollerslev, Tauchen and Zhou

(2009) where the first to document the predictive power of variance risk premia, proxied by

the difference of implied and realized volatilities, for future S&P500 index returns. More

recently, Andersen et al. (2015) identify from a panel of SPX options three unspanned risks,

in order to address their role as risk premium factors for index and variance risk premia. They

find that a single risk capturing option-implied skewness unspanned by volatility has a large

predictive power for variance and S&P 500 index returns. Our predictive regression results

are consistent with these findings and generate a number of additional insights. Coherently

with Andersen et al. (2015), we document that two persistent unspanned risks disconnected

from the spot volatility jointly exhaust the large (in-sample) predictive power for S&P 500

index returns; see Section III.C. of the Online Appendix. Interestingly, we find that these

risk premium factors naturally span the risk premium factor for unspanned option-implied

skewness in Andersen et al. (2015).7 Importantly, we provide a clear interpretation of these

risk premium factors, in terms of observable option-implied volatility and skew components,

and we identify their relation with the price of the smile and variance risk premia in a

coherent no-arbitrage model. In this way, we obtain a more structural understanding of

the multi-frequency dynamics of the term structures of the price of the smile and variance

risk premia. Finally, we document that the relation between unspanned risks and S&P 500

index equity premia is possibly not affine and dependent on the frequency-composition of

the volatility. This evidence further supports the robustness of our two-step identification of

the price of the smile and variance risk premia.

The rest of the paper is organized as follows. Section I. introduces our three-factor

stochastic volatility model, together with the closed-form expressions for the term structure of

variance risk premia. Section II. presents our empirical findings, while Section III. concludes

and highlights avenues for future developments.

7To illustrate, full sample regressions of the predictive factor for unspanned skewness in Andersen et al.
(2015) on our two persistent unspanned risks produces significant results and R2s of about 95%. We are
grateful to Nicola Fusari for having provided us with the time series of the unspanned risks identified in
Andersen et al. (2015).
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I. Model

Our model is characterized by three mutually exciting unspanned risks, a time-varying skew-

ness partly disconnected from the spot volatility and a compensation for variance risk that

can vary separately from the spot volatility. To motivate our modelling approach with re-

spect to well-known benchmarks in the literature, we embed Bates (2000) two-factor jump

diffusion in a more general state dynamics, within the class of matrix affine jump diffusions

(AJD) proposed in Leippold and Trojani (2008).

A. Bates (2000) Benchmark Volatility Model

In Bates (2000) model, returns are driven by two independent unspanned risks and follow

a Poisson-Normal jump process. We denote by St the value of an equity index at time t,

by r and q the (constant) interest rate and dividend yield, and by v1t, v2t the two volatility

components. Under the risk-neutral probability measure Q, the return dynamics is:

dSt
St−

= (r − q − λtk)dt+
√
v1tdz1t +

√
v2tdz2t + kdNt , (1)

where z1, z2 are independent standard Brownian motions and the volatility components have

the dynamics:

dvit = (αi − βivit) dt+ σi
√
vitdwit ; i = 1, 2 , (2)

where w1 and w2 are independent standard Brownian motions, having correlation ρ1 and ρ2

with z1 and z2, respectively. Return jumps kdNt feature an affine jump intensity

λt := Pt(dNt = 1)/dt = λ0 + λ1v1t + λ2v2t , (3)

and a jump size k with expected value k̄ = EQ(k).8 The well-known volatility feedback effect

is captured by the (stochastic) covariance between returns and diffusive variance v1t + v2t:

Covt (dSt/St−, d(v1t + v2t)) = ρ1v1t + ρ2v2t . (4)

In addition to the volatility feedback effect, the time varying jump intensity (3) generates a

jump-driven channel for stochastic return skewness.

Two features of Bates (2000) model are interesting for motivating our modelling ap-

8Different assumptions can be made on the distribution of log return jumps ln(1 + k). Bates (2000),

e.g., assumes ln(1 +k) ∼ N
(

ln
(
1 + k̄

)
− δ2

2 , δ2
)

. Alternative specifications include a double exponential or

similar distributions.
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proach. First, v1t and v2t are mutually independent. Therefore, they may be difficult to

interpret in terms of observable, potentially correlated, unspanned risks traded in option

markets. Second, jump intensity (3) and volatility-feedback effect (4) are functions of v1t

and v2t alone, meaning that shocks to risk neutral skewness always correlate with a shock

to the spot volatility. This feature produces a tight link between risk-neutral volatility and

risk-neutral skewness, which is hardly consistent with the data and can impair the iden-

tification of unspanned skewness risks in the smile dynamics.9 Figure 1 documents more

systematically this important aspect.

[Insert Figure 1 about here.]

In Figure 1, we scatter plot two measures of the short-term risk-neutral skewness and the

slope of the term structure of at-the-money implied volatilities. In panel A, we compute such

measures both model-free (grey data points), based on the panel of SPX options in the time

span from January 1996 to January 2013, and using the fitted parameters and states of Bates

(2000) model (black data points). We isolate in two ways the effect of the level of the volatility

on the risk-neutral skewness and the slope of the implied volatility term structure. First, we

scale both proxies by the 30-days at-the-money implied volatility. Second, we stratify the

sample in four subsamples associated with different at-the-money implied volatilities. In this

way, we document two important stylized facts. First, in each scatter plot the model-free

proxies have a very large degree of variability, reflecting a dynamics of the SPX volatility

smile that is partially disconnected from the level of the implied volatility. Second, the two

proxies of the smile in Bates (2000) model are linked by a virtually deterministic relation,

showing that the two-factor specification counterfactually constrains the dynamics of the

smile. A different evidence emerges from the scatter plots in panel B of Figure 1. These

plots are produced by our three-factor model in Section II.B. and are clearly better consistent

with the loose link between risk-neutral skewness and steepness of the implied volatility term

structure in the data.10

9In models with perfectly correlated spot volatility and jump intensity, Constantinides and Lian (2015)
highlight a counterfactual negative relation between (i) the risk-neutral skewness and (ii) the risk-neutral
variance or the disaster index. As demonstrated in Figure 1 of the Online Appendix, these puzzling skew
sensitivities do not arise in an unconstrained two-factor Bates (2000) model with not perfectly correlated
volatility and jump intensity.

10Gruber et al. (2010) discuss the role of dynamically interacting components of short-run volatility, long-
run volatility and unspanned skewness for parsimoniously capturing the dynamics of the option-implied
volatility surface.
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B. The Three-Factor Matrix AJD Volatility Model

Motivated by the previous evidence, we nest Bates (2000) model in a broader three-factor

dynamics, driven by a matrix-valued diffusion X of symmetric and positive definite matrices

Xt :=

(
X11t X12t

X12t X22t

)
. (5)

Positive definiteness of matrix Xt allows us to coherently specify diagonal elements X11 and

X22 as (diffusive) variance risks, while out-of-diagonal element X12 can be used to model

shocks in jump intensities and volatility feedbacks that are unspanned by X11 and X22.

B.1. State Dynamics

We obtain a tractable affine dynamics for state Xt, using the Wishart diffusion of Bru (1991).

Assumption 1 Symmetric positive semi-definite process Xt follows the affine dynamics11

dXt = [βQ′Q+MXt +XtM
′]dt+

√
XtdBtQ+Q′dB′t

√
Xt , (6)

where β > 1, M,Q are 2×2 parameter matrices and B is a 2×2 standard Brownian motion

under risk-neutral martingale measure Q.
√
Xt denotes the symmetric square root of Xt.

Note that when matrices M or Q are not diagonal, all states X11t, X22t and X12t are dy-

namically interconnected, because their drifts and volatilities depend on all state variables

in equation (6). When M and Q are diagonal, vector (X11t, X22t) is an autonomous Markov

process with components distributed as independent Heston (1993) volatility processes. For

this case, the state dynamics of Bates (2000) model is nested in equation (6).

B.2. Risk-Neutral Return Dynamics and Nested Models

We specify the risk-neutral return dynamics by the following affine jump-diffusion.

Assumption 2 Under risk neutral probability measure Q, the dynamics of St is given by:

dSt
St−

= (r − q − λtk)dt+ tr(
√
XtdZt) + kdNt , (7)

11Positive semi-definiteness (positive definiteness) ofXt follows if β > 1 (β > 3), ensuring that the volatility
components cannot cross (reach) the zero boundary.
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where Xt follows the dynamics (6),

Zt = BtR +Wt

√
I2 −RR′ , (8)

with tr(·) denoting the trace operator, W another 2× 2 standard Brownian motion, indepen-

dent of B, and R a 2× 2 matrix such that I2 −RR′ is positive semi-definite. Return jumps

follow a compound Poisson process kdNt with jump intensity λt = λ0 + tr(ΛXt), for λ0 ≥ 0,

a 2× 2 matrix Λ and an iid jump size k such that k̄ = EQ[k]. The distribution of log return

jumps J := ln(1 + k) is a double exponential with parameter λ+, λ− > 0 and density:12

f(J) =
λ+λ−

λ+ + λ−

[
e−λ

−J−−λ+J+
]
, (9)

with J+ := max(J, 0) (J− := max(−J, 0)) the positive (negative) part of log return jumps.

The expression for the return variance in model (7) is given by:

V art (dSt/St−) = tr(Xt) + λtE(k2) = X11t +X22t + λtE(k2) . (10)

This shows that state variable X12 is instantaneously unrelated to the (diffusive) spot vari-

ance V art (dSct /S
c
t ) = tr(Xt). However, X12 does in general affect the jump intensity

λt = λ0 + tr(ΛXt) and the volatility feed-back effect, because:

Covt

(
dSt
St−

, d(X11t +X22t)

)
= 2tr(R′QXt) . (11)

In summary, whenever RQ′ and Λ are not diagonal matrices, state variable X12 impacts the

jump-driven volatility, the jump-driven skewness and the diffusive skewness. At the same

time, it is absent from the diffusive variance.

Remark 3 A diagonal matrix R′Q (Λ) gives rise to Bates (2000) specification of volatility

feedbacks (stochastic intensities). Thus, a diagonal model in Assumption 2 (with diagonal

matrices M,Q,R and Λ) is simply Bates (2000) model.13 Note that all diagonal models in our

setting have independent volatility risks, as well as jump intensities and volatility feedbacks

that are linear functions of the (diffusive) variance risks. Table 1 of the Online Appendix

gives a summary of benchmark models related to Assumption 2. We denote by SVrq diffusion

12We adopt a double exponential distribution for risk-neutral log return jumps because of its parsimony
and flexibility. We have estimated our model also using a normal distribution, as in Bates (2000), and we
have obtained similar results to those reported in the paper.

13In order to fully nest Bates (2000)- and Heston (1993)-models in our setting, we specify β as a diagonal
matrix B when both Q and M are diagonal.
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and by SV Jrq jump diffusion models, according to the numbers r and q of state variables

and skewness components disconnected from volatility, respectively. For comparison, we also

report the total number of parameters necessary for a complete specification of the risk-neutral

and the physical dynamics in our two-step estimation approach.

It is useful to note that the three-factor return specification in Assumption 2 is only slightly

less parsimonious than Bates (2000) model, with three additional parameters. In constrast, a

three-factor Bates (2000)-type model implies seven additional parameters. Parsimony of our

three-factor specification helps the good identification of parameters and unspanned risks in

our two-step estimation procedure.

B.3. Option Valuation

Assumption 2 and Assumption 7 yield closed-form risk-neutral transforms in our matrix

AJD setting, which are useful to compute the prices of plain vanilla options; see Carr and

Madan (1999) and Duffie, Pan and Singleton (2000), among others. Following Leippold and

Trojani (2008), the exponentially affine conditional Laplace transform for YT := log(ST ) is

given by:

Ψ(τ ; γ) := Et [exp (γYT )] = exp
(
γYt + tr

[
A(τ)Xt

]
+B(τ)

)
, (12)

where τ = T − t and A(τ) := C22(τ)−1C21(τ), with 2 × 2 matrices Cij(τ) and scalar B(τ)

given in closed form in Section I.A. of the Online Appendix.

Remark 4 In contrast to Bates (2000)-model, the computation of the risk neutral trans-

form cannot be reduced to calculations that involve only scalar exponential and logarithmic

functions, because Cij(τ) and B(τ) depend on a matrix exponential and a matrix logarithm.

This makes the computation of Laplace transform (12) computationally more intensive by

at least one order of magnitude. We obtain an efficient computation using a version of the

Cosine-FastFourierTransform (COS) method proposed by Fang and Oosterlee (2008).

B.4. Affine Market Price of Risk and Physical Dynamics

Consistently with Leippold and Trojani (2008), we can price the matrix B of Brownian shocks

in Assumption 2, driving the unspanned risks in our model, with a stochastic discount factor

that preserves an affine dynamics under the physical probability measure P. The resulting

market price of risk is detailed in the next assumption.
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Assumption 5 The change of measure from the physical probability P to the risk neutral

probability Q is such that:

dB∗ = dB −
(√

XtΓ +
1

2
√
Xt

(β∗ − β)Q′
)
dt , (13)

where either β∗ > 3 or β∗ = β, Γ is a 2 × 2 parameter matrix and B∗ is 2 × 2 standard

Browian motion under the physical probability measure.14

Remark 6 Given Assumption 5, the X−dynamics under the physical probability P is:

dXt = [β∗Q′Q+M∗Xt +Xt(M
∗)′]dt+

√
XtdB

∗
tQ+Q′dB∗t

′
√
Xt , (14)

where

M∗ = M + ΓQ . (15)

When β 6= β∗, the condition β∗ > 3 implies that process X is positive definite under proba-

bility P. In all other cases, we require β∗ = β, i.e., a completely affine market price of risk.15

When β 6= β∗, we obtain an extended affine market price of risk that allows the price of the

volatility factors X11t and X22t to be inversely related to the (diffusive) volatility. Cheridito,

Filipovic and Kimmel (2007) propose a class of yield curve models with an extended affine

market price of risk in the context of affine models with standard state spaces.

A convenient feature of Assumption 5 is that the price of a shock in any of the unspanned

risks can depend on all other risks X11, X22 and X12. This feature implies a price of the smile

having rich interconnections, as can be seen from the difference of the P and Q expectation

of a shock in state X, which summarizes the instantaneous risk premia of unspanned risks:

1

dt
(EP − EQ)[dXt] = (β∗ − β)Q′Q+ ΓQXt +XtQ

′Γ′ . (16)

This matrix of risk premia is state dependent when M∗−M = ΓQ 6= 0. Moreover, when ΓQ

is a diagonal matrix with diagonal components D1, D2, the risk premia of unspanned risks

are disconnected:

1

dt
(EP − EQ)

[
d

(
X11t X12t

X12t X22t

)]
= (β∗ − β)Q′Q+

(
2D1X11t (D1 +D2)X12t

(D1 +D2)X12t 2D2X22t

)
,

141/
√
Xt denotes the unique inverse square root of symmetric positive definite matrix Xt.

15Empirically, our model estimations suggest that β∗ < 3, which effectively reduces the number of param-
eters that need to be estimated.
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because the risk premium of each unspanned risk is proportional to the level of the risk itself.

This is the situation emerging, e.g., in Bates (2000)-type models. In cases where matrix ΓQ

is not diagonal, the risk premium of the diagonal risk X11t (X22t) is an affine function of

both X11t (X22t) and X12t, while the risk premium of the out-of-diagonal risk X12t is an affine

function of all unspanned risks. In this case, the compensation for diffusive variance risk in

the model can vary in a way partly disconnected from the diffusive variance itself.

B.5. Stochastic Discount Factor

In our model, three types of shocks can be priced: (i) a diffusive shock in index returns, (ii)

a diffusive shocks in the X−dynamics for the unspanned risks and (iii) a jump-type shock

in index returns. According to Assumption 2, these shocks correspond to the scalar Brow-

nian shock dWt, the matrix-valued Brownian shock dBt and the compound poisson shock

(eJ − 1)dNt, respectively. Given the incompleteness of our model setting, a multiplicity of

stochastic discount factors for pricing these shocks exists. Existence of a stochastic discount

factor is ensured by a corresponding density for an equivalent change of measure from the

physical to the risk neutral probability. Given suitable matrix processes {Γ1t}, {Γ2t} and

our double-exponential specification for log return jumps, such a density can take the form:

dQ
dP

∣∣∣∣
FT

= exp

{
tr

(
−
∫ T

0

Γ1tdW
∗
t +

1

2

∫ T

0

Γ′1tΓ1tdt−
∫ T

0

Γ2tdB
∗
t +

1

2

∫ T

0

Γ′2tΓ2tdt

)}
dt

×
N∗T∏
i=1

exp

{
−(λ− − λ∗−)J∗i

− − (λ+ − λ∗+)J∗i
+ + ln

(
1/λ∗− + 1/λ∗+

1/λ− + 1/λ+

)}
,

where the second line defines the change of measure for return jumps. This choice implies a

double exponential distribution with density (9) for return jumps, having parameters λ∗+,

λ∗− and λ+, λ− under the physical and the risk neutral distribution, respectively. Our

implicit specification of Γ2t in Assumption 5 is:

Γ2t =
√
XtΓ +

1

2
√
Xt

(β∗ − β)Q′ . (17)

Together with Assumption 1, this implies a well-defined change of probability measure for

pricing the B∗−shocks driving the unspanned risks in our model. It is straightforward to

introduce a well-defined concrete specification of the market price of risk Γ1t for W−shocks.

For instance, under Assumptions 1 and 5, the specification

Γ1t =
√
Xt∆ +

µ0 − (r − q)√
Xt

, (18)
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where ∆ is a 2 × 2 parameter matrix and µ0 > r − q a scalar parameter, implies a change

of measure with affine dynamics for index returns under the physical and the risk-neutral

probability measures.16 However, it is important to realize that this last assumption is not

necessary for the validity of our identification of unspanned risks and the price of the smile,

which is robust with respect to the form of the market price of risk Γ1t defining the underlying

density process.

B.6. Term Structure of Variance Risk Premia

We characterize the risk premia of variance swap contracts that can be synthetized by a

dynamically delta hedged static option portfolio, consistently with the definition of the

CBOE (2009) VIX index. As shown in Neuberger (1994), among others, the floating leg

RVt+τ (τ) of these contracts is proportional to the delta-hedged payoff of a log contract:

RVt+τ (τ) :=
2

τ

[
− ln(St+τ/St) +

∫ t+τ

t

dSs/Ss−

]
(19)

=
1

τ

∫ t+τ

t

1

S2
s

d[S, S]cs +
2

τ

∑
t≤s≤t+τ

E(Ss/Ss−) , (20)

where [S, S]cs is the continuous index quadratic variation and E(Ss/Ss−) := − ln(Ss/Ss−) +

Ss/Ss− − 1 the Itakura-Saito divergence of a jump in index returns at time s.17 Since the

variance risk premium V RPt(τ) is the difference of the P and Q expectations of RVt+τ (τ),

Assumptions 1 and 5 give:

V RPt(τ) = (EP
t − E

Q
t )

[
1

τ

∫ t+τ

t

tr(Xs)ds

]
+ (EP

t − E
Q
t )

[
2

τ

∑
t≤s≤t+τ

E
(
Ss
Ss−

)]
.

The first term on the right hand side is the diffusive variance risk premium, i.e., the pre-

mium contribution from continuous index shocks. The second term is the jump variance

risk premium, i.e., the premium contribution from index return jumps. Under our previ-

ous assumptions, the first term is affine in state X and is by construction spanned by the

term structure of the price of the smile. The second term is not fully specified, because

we did not yet specify the structure of the jump intensity and the expected Itakura-Saito

divergence under the physical measure. These specifications need to consider the challenges

16Section I. C. of the Online Appendix provides a formal proof of the fact that under Assumptions 1 and
5 the market price of risk specifications (17) and (18) imply a well defined density process {dQdP |FT

}T≥0 that
is a martingale.

17See Schneider and Trojani (2014a) for details.
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in identifying the term structure of variance risk premia from a time series of unspanned

risks X11, X12, X22 and from the realized payoffs of variance swaps for different maturities

τ . An affine specification of the physical intensity λ∗t allows for a simple linear identifica-

tion based on standard regression methods and requires the estimation of five additional

parameters in the most general case, of which only four are identified.18 In our empirical

analysis, we investigated different affine specifications and found that a specification with

proportional physical and risk-neutral intensities is preferred by the out-of-sample analysis of

variance swap payoffs. Given the indistinguishability of λ∗t and EP[E(St/St−)] from the term

structure of variance risk premia, we assume identical physical and risk-neutral intensities

for identification. This identification assumption is consistent with the stochastic discount

factor specification detailed in Section B.5.

Assumption 7 Physical and risk-neutral intensities are identical: λ∗t := λt = λ0 + tr(ΛXt).

For later reference, we denote by β∗Λ = EP[E(1 + k)]/EQ[E(1 + k)] the ratio of the physical

and the risk neutral expected Itakura-Saito divergence of index return jumps. With this

notation, we have under Assumption 7:

(EP
t − E

Q
t )

[
2

τ

∑
t≤s≤t+τ

E
(
Ss
Ss−

)]
= EQ[E(1 + k)](β∗ΛE

P
t − E

Q
t )

[
2

τ

∫ t+τ

t

tr(ΛXs)ds

]
.

Therefore, the jump variance risk premium is affine in the unspanned risks X11, X12 and X22.

Proposition 1 Given Assumptions 1, 2, 5 and 7, the variance risk premium for time to

maturity τ > 0 is given by:

V RPt(τ) = V RP c
t (τ) + V RP d

t (τ) , (21)

where diffusive and jump variance risk premia V RP c
t (τ) and V RP d

t (τ) read explicitly:

V RP c
t (τ) = tr[XP

∞ −XQ
∞ + AP

τ (Xt −XP
∞)− AQ

τ (Xt −XQ
∞)],

V RP d
t (τ) = 2EQ[E(1 + k)]tr[Λ(β∗ΛX

P
∞ −XQ

∞ + β∗ΛA
P
τ (Xt −XP

∞)− AQ
τ (Xt −XQ

∞))] ,

with 2× 2 matrices XQ
∞, XP

∞ such that:

βQ′Q = XQ
∞M +M ′XQ

∞ ; β∗Q′Q = XP
∞M

∗ +M∗′XP
∞ , (22)

18An affine specification of the form λ∗t = λ∗0 + tr(Λ∗Xt), where Λ∗ is a symmetric 2 × 2 matrix, implies
four additional parameters. As expected jump realized variance under the physical measure depends on the
product of EP

t [
∫ t+τ
t

λ∗sds] and the (constant) expected Itakura-Saito divergence EP[E(St/St−)], only four
parameters are identifiable.
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and linear matrix operators AP
τ (·) and AQ

τ (·) defined explicitly in Section I.B. of the Online

Appendix.

Remark 8 (i) With the exception of parameter β∗Λ, all states and parameters in Proposition

1 are identifiable from the information in the panel of index option prices. (ii) It is easy to

see that when matrices Q, M and M∗ are diagonal, V RP c
t (τ) depends only on unspanned

risks X11 and X22. If additionally matrix Λ is diagonal, then V RP d
t (τ) only depends on

X11 and X22, inducing a perfect correlation between shocks in variance risk premia and the

spot (diffusive) variance. This situation emerges in Bates (2000) and similar models. In

non-diagonal models, the term structure of variance risk premia depends also on shocks to

risk X12, which are partially separated from shocks to the spot volatility.

It is important to realize that jump variance risk premia reflect two types of risk, future

jump intensity risk and future pure jump variance risk. This naturally motivates the de-

composition of V RP d
t (τ) into the sum of a jump intensity and a pure jump variance risk

premium V RP dc
t (τ) and V RP dj

t (τ), respectively:19

V RP dc
t (τ) = (EP

t − E
Q
t )

[∫ t+τ

t

tr(ΛXs)ds

]
· EQ[E(1 + k)] , (23)

V RP dj
t (τ) = EP

t

[∫ t+τ

t

tr(ΛXs)ds

]
· (EP[E(1 + k)]− EQ[E(1 + k)]) . (24)

Under our assumptions, both components of the premium are affine in state X. However,

while V RP dc
t (τ) is by construction spanned by the term structure of the price of the smile,

V RP dj
t (τ) is spanned by the term structure of expected average future jump intensities. This

distinction is key to understand the relation between the price of the smile and the term

structure of variance risk premia.

B.7. Model-Free Variance Swap Payoffs and Variance Risk Premia

Denoting by Ft the S&P 500 index future for maturity τ ≥ t, the payoff of a variance swap

with maturity τ is the following delta-hedged payoff of a static option portfolio:

RV e
t+τ (τ) := RVt+τ (τ)− EQ

t [RVt+τ (τ)] =
2

τ

[∫ ∞
0

Ot+τ (K)

K2
dK +

∫ t+τ

t

(
1

Fs−
− 1

Ft

)
dFs

]
−2

τ

∫ ∞
0

EQ
t [Ot+τ (K)]

K2
dK , (25)

19The second component of the premium is zero if and only jump variance risk is not priced by the
stochastic discount factor of Section II.B.5.
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where for K < Ft (K ≥ Ft) payoff Ot+τ (K) := (K−St+τ )+ (Ot+τ (K) := (St+τ −K)+) is the

payoff of an out-of-the-money European put (call) option on index futures, with maturity

τ and strike price K. We compute RV e
t+τ (τ) in a model-free way, using the panel of SPX

options and the time-series of high-frequency S&P 500 index futures prices. This motivates

the second step of our identification procedure for the term structure of variance risk premia,

in which we estimate parameter β∗Λ from an arbitrage-free linear regression of payoff RV e
t+τ (τ)

on unspanned risks X11, X12, X22. The explicit form of this regression is directly motivated

by Proposition 1 and is detailed in the next result.

Proposition 2 For any τ > 0, define the following variables:

Yt+τ (τ) := RV e
t+τ (τ)− V RP c

t (τ)− 2EQ[E(1 + k)]tr[Λ(XQ
∞ + AQ

τ (Xt −XQ
∞))] , (26)

Ut(τ) := 2EQ[E(1 + k)]tr[Λ(XP
∞ + AP

τ (Xt −XP
∞))] . (27)

Given Assumptions 2-7 and maturities τ1 < . . . < τn, the following is an arbitrage-free linear

regression model,
Yt+τ1(τ1)

...

Yt+τn(τn)

 = β∗Λ


Ut(τ1)

...

Ut(τn)

+


ηt+τ1(τ1)

...

ηt+τn(τn)

 , (28)

where error term ηt+τ (τ) := (ηt+τ1(τ1), . . . , ηt+τn(τn))′ is such that EP
t [ηt+τ (τ)] = 0.

Note that all quantities in the definition of Yt+τ (τ) and Ut(τ) above are computable from the

synthetic variance swap payoffs RV e
t+τ (τ) and a first-step estimation that estimates param-

eters β, β∗,M,M∗, Q, λ0,Λ, λ
+, λ− and filtered states {X̂t} from the panel of SPX options.

This insight allows us to separate the estimation of parameter β∗Λ from the estimation of all

other parameters in the model, using our two-step identification procedure for the price of

the smile and the term structure of variance risk premia.

II. Empirical Analysis

A. Data and Estimation

We collect from OptionMetrics daily data of end-of-day prices of S&P 500 index options

(SPX), traded at the Chicago Board Options Exchange, for the sample period from January

1996 to January 2013 and maturities up to one year.20 The sample consists of 4298 trading

20We obtain end-of-day midquotes as simple averages of end-of-day bid and ask call prices and force the
put-call parity to hold when calculating the implied dividend yields.
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days, which we reduce to 883 weekly observations (each Wednesday). In order to allow for

an out-of sample evaluation of our model, we further split these 883 observations into an

in-sample period (from January 1996 to December 2002) with 359 observations and an out-

of sample period (from January 2003 to January 2013) with 524 observations. We apply a

number of standard filtering procedures outlined, e.g., in Bakshi, Cao and Chen (1997).

For our first-step estimation of model parameters and unspanned risks in option markets,

we make use of all options with an absolute Black-Scholes delta between 0.1 and 0.9. On

average, this gives about 138 option prices per trading day, having an average time to

maturity of 130 days and an average moneyness S/K = 0.99. Table 2 of the Online Appendix

presents a summary of the main characteristics of our option data set. For the calculation of

the model-free variance payoffs in equation (25), we make use of all available options. The

delta hedging component in the variance payoff is computed using tick-by-tick data for the

S&P 500 index future traded at the CBOE, obtained from tickdata.com and sampled at 60

second intervals.

In the first step of the estimation, we use the panel of SPX in-sample observations to

estimate the structural model parameters, together with the time series of unspanned risks

X11t, X22t and X12t. The time series of these states uncovers their distinct roles as drivers

of tradeable unspanned risks in option markets. The parameter estimates shed light on the

dynamic interactions between unspanned riks, as well as their relation to the price of the

smile. We estimate the model parameters Q, M , M∗, R, λ0, Λ, λ+, λ−, β, β∗, by maximizing

the likelihood defined on the option-implied volatility forecasting errors in a Kalman filter.

For identification, we require matrices M , M∗, Λ, R and Q to be triangular, giving a total

of 20 parameters to estimate. We borrow from Bates (2000) and conveniently discretize the

matrix transition dynamics for state process X, accounting for the variability of conditional

first and second moments. For the observation equation, we assume Gaussian errors and

account for a potential autocorrelation of option pricing errors. Details on the estimation

procedure are provided in Section II. of the Online Appendix.

In the second step, we estimate the term structure of variance risk premia, by estimating

parameter β∗Λ in Assumption 7 in a set of simple arbitrage-free linear regressions of realized

variance swap payoffs on the time series of model-implied variance risk premia. Precisely, we

first compute synthetic variance swap payoffs for maturities τ1, τ2, . . . , τn = 1, 2, 3, 4, 5, 6, 9, 12

months and construct a time series of in-sample weekly observations for variables Zt :=

(Yt+τi(τi), Ut(τi))i=1,...,n in linear model (28), where t = 1, . . . , N and the in-sample sample

size is N = 359. We then estimate the single unknown parameter β∗Λ in equation (28) with

a pooled linear regression.
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B. Option Pricing Performance and Model Fit

We quantify the option pricing performance and the statistical fit of our model (SV J31), in

relation to the benchmark models in Table 1 of the Online Appendix. Since these models

are linked to different degrees of parametrization and to state spaces of different dimensions,

we control for overfitting using our in-sample (from January 1996 to December 2002) and

out-of-sample (from January 2003 to January 2013) periods. Beyond good in-sample pricing

performance and fit, we require that higher dimensional models achieve a stable pricing

performance and statistical fit out-of-sample. The out-of-sample period includes phases of

very low volatility and benign markets, such as the conundrum, as well as periods of very high

volatility and market turmoil, such as the recent financial crisis and the US downgrade. It

therefore represents a reasonably challenging benchmark. We estimate all models using only

in-sample weekly data and compute proxies of pricing accuracy, such as the weekly absolute

average implied volatility error, by computing option implied volatility pricing errors for

each week of our in- and out-of-sample periods, using the filtered states implied by the

in-sample parameter estimates. Finally, we compare the statistical fit of different models

using the in- and the out-of-sample value of the average likelihood function, evaluated at the

in-sample parameter estimates. Table 3 of the Online Appendix summarizes the resulting

pricing performance and statistical fit across models.

The results indicate that our model produces the best pricing performance and statisti-

cal fit, both in- and out-of-sample. For instance, the pricing error is substantially reduced

relative to a Bates (2000)-type model (SJV20), by to about 19.4% in-sample and 29.2%

out-of-sample, using the MAIV E (mean absolute implied volatility) metric. The improve-

ment of the in-sample (out-of-sample) value of the likelihood function is 4.5% (9.7%) and

is statistically significant at conventional significance levels.21 Our model also implies the

smallest deteriorations in out-of sample performance. The out-of-sample MAIV E is only

6.1% higher than the in-sample MAIV E. In contrast, in the SV J20 (SV J30) models, the

out-of-sample MAIV E are 20.8% (10.7%) higher, respectively. Similarly, while the average

out-of-sample likelihood in model SV J31 is only 6.1% lower than the in-sample likelihood,

the out-of-sample likelihood of the SV J20 (SV J30) model is 11.1% (6.7%) lower. In sum-

mary, the improvements of our model are not due to overfitting, as the model’s performance

is quite similar in- and out-of-sample.

21Our model (SV J31) also improves with respect to a three-factor Bates (2000)-type model (SV J30),
despite having four parameters less in its specification of the physical and risk-neutral dynamics. The
improvement in pricing performance is about 3% in-sample and 5% out-of-sample, with respect to the
MAIV E metric. Our more parsimonious model SV J31 also attains a higher average likelihood in- and
out-of-sample, with improvements of 2.1% in-sample and 1.6% out-of-sample.
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Table 4 of the Online Appendix compares MAIV E pricing errors of our model and the

benchmark Bates (2000) model (SV J20), across different moneyness and maturity bins (in

days). It shows that our model especially improves on the modeling of out-of-the money

options of maturities of 30 days or higher. To illustrate, the in-sample (out-of-sample)

MAIV E of model SV J31 for maturities τ < 30, 30 ≤ τ < 75, 75 ≤ τ < 180 and τ ≥ 180

is 10.0% (17.0%), 25.2% (31.5%), 4.1% (18.1%), 22.9% (33.5%) and 19.1% (27.1%) lower,

respectively, than for model SV J20. Similarly, the in-sample (out-of-sample) MAIV E of

model SV J31 for option deltas |∆| < 0.2, 0.2 ≤ |∆| < 0.4, 0.4 ≤ |∆| < 0.6, 0.6 ≤ |∆| < 0.8

and |∆| ≥ 0.8 is 13.3% (29.8%), 17.7% (24.4%), 9.8% (13.6%), 19.2% (25.2%) and 28.0%

(33.7%) lower, respectively. In summary, this evidence shows that our model clearly improves

on the specification of the option-implied volatility smile of benchmark models.

C. Mutually Exciting Unspanned Risks

The times series of unspanned risks X11, X22 and X12 are presented in Figure 2 and imply

half-lives (volatilities) of 1.275, 0.277 and 0.108 years (0.009, 0.010 and 0.026), respectively,

see also Table 6 of the Online Appendix.

[Insert Figure 2 about here.]

The diffusive variance tr(Xt) is thus decomposed into two positive non-Markovian com-

ponents with significantly different persistences and volatilities of volatility, where X22 has on

average a larger contribution to the diffusive variance than X11, besides being more volatile

and less persistent. Unspanned risk X12 is positive most of the time and takes as X22 the

largest values in periods of significant turmoil or distress, as during the recent financial crisis

and around the US downgrade. Interestingly, the persistent unspanned risk X11 also spikes

substantially in periods of distress, but often with a lag or a lead with respect to risks X12

and X22. Such large variations in the relative importance of unspanned risks X11, X22 and

X12 have important implications for the structure of both the jump and diffusive variances.

Panel B of Figure 2 quantifies this aspect by scaling X11t and X12t with the diffusive variance

tr(Xt) = X11t +X22t. It appears that the fraction of persistent diffusive variance generated

by X11 can vary essentially from zero to one. The top plot of Panel B in Figure 2 shows that

this fraction is basically zero during the whole conundrum period, it is about one shortly

before the collapse of the NASDAQ bubble and it rapidly increases from about 0.2 to 0.9

shortly after the US downgrade. The middle plot of Panel B shows that the relative impor-

tance of X12 also varies a lot. X12t can be as large as 50% of tr(Xt) during phases of market

turnoil, e.g, shortly after the devaluation of the Thai Bhat, the beginning of the Russian
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crisis, the Lehman default and the US downgrade.22 Note that while X12 is not present in

the diffusive variance, it has a significant contribution to the jump intensity. Therefore, it is

directly related to the fraction of pure jump variance in the total variance of returns. Given

the predominant role of X12 in periods of market distress, this risk is a key driver of the

jump variance dynamics in these periods.

The time series of unspanned risks in option markets uncovers the dynamic properties

of these state variables. In contrast, the estimated model parameters directly capture the

dynamic interactions between these risks and their relation with the price of the smile. Table

1 presents the parameter estimates for our model and different benchmark models.

[Insert Table 1 about here.]

All parameters are significant, with the exception of constant λ0 in the intensity process.

Since we cannot reject the null hypothesis β∗ = β, the data support a completely affine

specification of the market price of risk in our matrix AJD setting. In all parameter matrices

M , M∗, Λ and R, the out-of-diagonal element is strongly significant, indicating that option

prices are better described by a three-factor matrix AJD than by a two-factor diagonal model

with independent components. The estimated jump parameters λ− � λ+ directly reflect

the negative risk-neutral skewness of the distribution of log return jumps.

The large negative coefficient M∗
22 indicates that risk X22 has the strongest autonomous

mean reversion, which induces the lowest persistence across unspanned risks in our sample.

Since Q22 � Q11, risk X22 also has the largest local volatility. Due to the positivity of M∗
12,

X22’s mean reversion is dampened (reinforced) in states where X12 is positive (negative).

Recalling that X12 is positive most of the time, with stronger excursions during phases of

market distress, this feature induces a mutually-exciting behaviour of risks X22 and X12 in

such phases. Note that besides driving the high-frequency component of the diffusive vari-

ance, X22 also creates high-frequency movements in the jump variance, because parameter

Λ22 is positive and significant. Thus, X22 is a high-frequency component of the total variance,

featuring mutually exciting dynamics with X12 in phases of distress.

The negative coefficient M∗
11 indicates that risk X11 is also mean-reverting, but clearly

more persistent and less volatile than X22, as Q22 � Q11. The mean-reversion of X11 is

dampened in phases of distress, so that overall the total diffusive variance follows a mutually-

exciting dynamics withX12 in such periods. Positivity of parameter Λ11 shows thatX11 is also

a low-frequency component of the jump variance. Thus, X11 is a low-frequency component

of the total variance, featuring mutually-exciting behaviour with X12 in periods of distress.

22The ratio |X12t|/tr(Xt) is less than 0.5 by construction, because of the positive definiteness of Xt.
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The negative coefficients M∗
11 and M∗

22 indicate that risk X12 has an autonomous mean-

reversion between the one of the high- and low-frequency risks X11 and X22. The local mean

reversion of X12 depends on X11 and X22 and is asymmetric. It is increased (dampened) in

states where X12 is negative (positive), making X12 more persistent and mutually-exciting in

phases of distress. By construction, X12 loads on the jump variance, via the jump intensity,

but is absent from the diffusive variance. The large loading Λ12 indicates that X12 is a key

state variable for the jump variance in periods of distress. Therefore, it has the interpretation

of a risk factor for jump variance risk, or jump skewness risk, featuring mutually-exciting

dynamics with X11 and X22 in phases of turbulences in financial markets.

D. The Price of the Smile

According to our estimation results in Table 1, we cannot reject the null hypothesis M∗
22 −

M22 = 0, implying that high-frequency risk X22 does not directly explain variations of the

price of the smile. Since M∗
11 −M11 < 0 and M∗

12 −M12 < 0, a direct implication is that

the instantaneous risk premium for X22−shocks is proportional to risk X12, while the risk

premium for X11−shocks is negative and proportional to X11 itself. In contrast, the risk

premium for X12−shocks is a linear combination of X11 and X12, which is unambiguously

negative in our sample period and largest in absolute value when risks X11 and X12 are large.

The estimated instantaneous risk premia for X11−, X22− and X12−shocks read explicitly:23

1

dt
(EP

t − E
Q
t )[dX11t] = −1.0776X11t , (29)

1

dt
(EP

t − E
Q
t )[dX12t] = −0.6283X11t − 0.5388X12t , (30)

1

dt
(EP

t − E
Q
t )[dX22t] = −1.2566X12t . (31)

Given these estimated coefficients, we conclude that the more persistent risks X11 and X12

are risk premium factors that completely explain the price of the smile. The most persistent

risk premium is the one for X11−shocks, as intuitively expected. The second most persistent

risk premium is the one of X12−shocks, while the most transient risk premium is the one

for X22−shocks. The persistence properties of these risk premia have direct implications for

the term structure of the price the smile. This term structure is defined by the risk premia

23Recalling that we cannot reject the hypotheses β = β∗ and M∗22 = M22, we obtain (see Table 1):

1

dt
(EP

t − E
Q
t )[dXt] =

(
−0.5388 0
−0.6283 0

)
Xt +Xt

(
−0.5388 −0.6283

0 0

)
.

The risk premium for X12−shocks is always negative when X12 is positive. Given that M∗11 −M11 < 0, the
contribution of X12 to its premium can be positive when state X12t is negative.
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of swap contracts that have as floating leg the realized unspanned risk 1
τ

∫ t+τ
t

Xijsds, where

τ ≥ 0 is the swap time to maturity. Consistently with the variance risk premium literature,

the risk premium of these swaps is given by:

(EP
t − E

Q
t )

[
1

τ

∫ t+τ

t

Xijsds

]
.

Figure 3 illustrates the time series of the term structure of the price of the smile for two

fixed maturities τ = 3, 12 months.

[Insert Figure 3 about here.]

Unspanned risks X11 and X12 imply an unambiguously negative term structure of the

price of the smile. The term structure of the price of the smile for risk X22 is also downward

sloping most of the time, but it can turn marginally upward sloping occasionally. Consistent

with the previous findings, all components of the term structure of the price of the smile

are larger in absolute value during phases of distress and reflect the different persistence

properties of unspanned risks X11, X12 and X22. The slope of these term structures is

procyclical, in the sense that it becomes more negative in periods of financial distress, and

it is typically increasing (in absolute value) in the persistence of the unspanned risk. This

feature is particularly apparent in the term structure of the smile of high-frequency risk X22,

which is essentially flat for times to maturity from 3 months on.

Using the model-implied expressions, we can decompose more precisely the term struc-

ture of the price of the smile, in terms of the contributions of each unspanned risk; see

Table 7 of the Online Appendix for details. As expected from our previous findings, the

term structure of the price of the smile is a linear function only of risks X11 and X12, which

are risk premium factors fully explaining the dynamics of the term structure. The relative

contribution of X11 and X12 to the different components of this term structure is different,

however. The term structure of the price of the smile for realized risk 1
τ

∫ τ
0
X11tdt is a func-

tion of the level of X11 alone. Therefore, it reflects a low-frequency risk premium that implies

a usually downward sloping term structure also at long horizons. The term structure of the

price of the smile for realized risk 1
τ

∫ τ
0
X12tdt is a function of both X11 and X12, but it is

predominantly influenced at the long end by the low frequency dynamics of X11. Therefore,

this term structure is also typically downward sloping at long horizons, even though in a less

pronounced way than for realized risk 1
τ

∫ τ
0
X11tdt. Finally, the term structure for realized

risk 1
τ

∫ τ
0
X22tdt is predominantly determined by the less persistent dynamics of X12. This

explains its flatness for horizons above three months.
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E. Interpretation of Unspanned Risks Traded in Option Markets

To gain some economic interpretation for the unspanned risks X11, X12, X22, it is useful to

link them to directly observable characteristics of the option-implied volatility smile. Given

that the state X captures both unspanned risks and the price of the smile, such an approach

can help to link the price of particular option strategies to the different components of the

price of the smile.

We find the high-frequency risk X22 to be closely related to the 30-day at-the-money

implied variance, with a weekly correlation of 91% and virtually identical persistence prop-

erties. Given their different persistence properties, unspanned risks X12 and X11 are only

weakly correlated with X22, with a weekly correlation of only 59% and 26%, respectively.

Therefore, a good fraction of their conditional variation is orthogonal to X22. We find that

risk X12 is closely related to the 30-days option-implied skew, with a weekly correlation of

−89%. Similarly, X11 closely targets the long end of the implied volatility curve and has

a weekly correlation of 91% with the 12 months at-the-money implied variance. Figure 4

summarizes the properties of the time series of model-implied unspanned risks and compares

these to the time series of the one-month implied variance, the one-month implied skew and

the 12 month implied variance.

[Insert Figure 4 about here.]

From this evidence, we conclude that the term structure of the price of the smile, which

is a linear function of risks X11 and X12 alone, is directly related to observable proxies

of short term option-implied skewness and long-term option-implied volatility, respectively.

These proxies contain a substantial component that is unspanned by high-frequency volatility

shocks and are naturally related to the price of particular option portfolios, such as risk

reversals or calendar spreads, which are designed to jointly profit from changes in short-term

option-implied skewness and long-term option-implied volatilities. According to our findings,

we can interpret the prices of these portfolios as observable risk premium factors that span

the term structure of the price of the smile and are naturally related to the term structure of

variance risk premia. From a different perspective, this evidence also stresses the importance

of a joint treatment of the price of the smile and the price of variance risk.

F. Term Structure of Variance Risk Premia

The point estimate β∗Λ = 0.323 in Table 1 for the pooled arbitrage-free linear regression of

Proposition 2 yields a pure jump variance risk premium in equation (24) that is unambigu-

ously negative, as intuitively expected. Together with the term structure of the price of the

smile, this identifies the term structure of variance risk premia.
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F.1. Variance Risk Premia

The model-implied variance risk premia for horizons τ = 1, 12 months are plotted in Figure

5, together with their difference, as a proxy for the slope of their term structure.

[Insert Figure 5 about here.]

Variance risk premia are unambiguously negative and highly time-varying. They range

from −0.1% to −16% (−0.4% to −11%) squared for horizons of τ = 1 month (12 months)

and provide a plausible description for the first conditional moment of variance swap payoffs.

Consistent with intuition, the variability of variance swap payoffs around the conditional first

moment is state dependent and can be extremely high during periods of distress. In such

periods, when the price of option-implied insurance is large, variance risk premia are largest

in absolute value, as, e.g., during the Asian and Russian crises in the late nineties, shortly

before the collapse of the internet bubble in 2000, shortly after the Lehmann bankruptcy in

September 2008 and the US downgrade in August 2011. The slope of the term structure of

variance risk premia is most of the time negative, reflecting a more expensive price of option

insurance for longer horizons. However, it can also be strongly upward sloping for short

periods of time, roughly for 12% of the observations in our sample. The most prominent

cases in which we observe an inversion of the term structure arise immediately after both

the Lehmann default in September 2008 and the US downgrade in August 2011, when the

spread between annualized 12 month and 1 month variance risk premia has been as large as

+5.8% squared and +2% squared, respectively.

Table 8 of the Online Appendix makes use of the closed-form model expressions to

decompose the term structure linearly, into the contribution of unspanned risks X11, X12

and X22. It shows that the loading of risk X11 (risks X12 and X22) on the term structure

increases (decreases) monotonically with the horizon in absolute value. These features imply

a clearly different role of low- and high-frequency risks for the slope of the term structure.

Indeed, while a positive shock in risk X11 decreases the slope, a positive shock in either

X22 or X12 increases the slope. For instance, while the loading of risk X11 on the slope of

the term structure between 12 and 3 months is −0.574, the loadings of X22 and X12 are

0.121 and 0.325, respectively; see Table 8 of the Online Appendix for details. These findings

document the conceptually different impact of a shock in a low-frequency or a high-frequency

unspanned risk on the term structure of variance risk premia.

F.2. Premia for Diffusive and Jump Variance Risk

Low- and high-frequency unspanned risks have different implications for different constituents

of the variance risk premium, such as the diffusive and jump variance risk premium (V RP c
t (τ)
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and V RP d
t (τ)) in Proposition 1. This is highlighted by Figure 6, where we plot these com-

ponents for horizons of 3 months and 12 months, together with their difference as a measure

of the slope of their term structure.

[Insert Figure 6 about here.]

Variance risk premia at all horizons are dominated by their jump component, as V RP d
t (τ)

is always at least 85% (65%) of the total premium for horizon τ = 3 (τ = 12) months.

More importantly, the dynamics of the term structures of diffusive and jump variance risk

premia are substantially different. The term structure of diffusive variance risk premia is

unambiguously downward sloping, a finding that directly follows from the downward sloping

term structure of the price of the smile in Section II.D.24 While the term structure of jump

variance risk premia is slightly downward sloping most of the time, it is upward sloping for

about 28% of the observations in our sample. The absolute differences between 12 months

and 3 months jump variance risk premia are typically very small when the term structure

is downward sloping, i.e., smaller than for diffusive variance risk premia, but they can be

very substantial otherwise. As intuitively expected, the term structure of jump variance

risk premia is upward sloping in periods of distress, when short term option insurance is

very expensive, e.g., immediately before the Lehmann default, with a spread of about +7%

squared between 12 months and 3 months risk premia, or around the US downgrade, with a

spread of almost +3% squared between 12 months and 3 months risk premia. The closed-form

decompositions in Table 8 of the Online Appendix stress a second characterizing feature of

the term structure of jump variance risk premia. Indeed, while the term structure of diffusive

variance risk premia is spanned by the term structure of the price of the smile, which is itself

a linear function or risks X11 and X12 alone, the term structure of jump variance risk premia

depends on all unspanned risks, including high-frequency risk X22. The upward sloping term

structure arises in the case of large positive shocks to risks X22 and X12 and is therefore a

primarily high-frequency phenomenon.

F.3. Premia for Pure Jump Variance Risk

Low- and high-frequency unspanned risks have different implications also for the decompo-

sition of jump variance risk premia into the jump intensity and pure jump variance risk pre-

mia in equations (23) and (24), respectively. Similar to the diffusive variance risk premium,

V RP dc
t (τ) is a premium for unexpected future variations in jump intensity and is spanned by

24As the diffusive realized variance is the sum of the realized risks associated with X11 and X22, the
properties of the term structure of diffusive variance risk premia are directly inherited from the properties
of the term structure of the price of the smile.
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the price of the smile. Instead, V RP dj
t (τ) is the product of an instantaneous jump variance

risk premium 2(EP[E(1+k∗)]−EQ[E(1+k)]) and the expected average jump intensity under

the physical probability. Average expected intensities depend on all unspanned risks traded

in option markets, because the estimated jump intensity process depends on all these risks

as well:

tr(ΛXt) = 25.67 ·X11t + 40.43 ·X12t + 15.98 ·X22t . (32)

As a consequence, the pure jump variance risk premium depends in a much more substantial

way than all other components of the variance risk premium on high-frequency unspanned

risks. These features have natural consequences for the term structure of pure jump variance

risk premia. Figure 7 shows that this term structure is upward sloping for about 72% of the

observations in our sample, while in all other cases it is virtually flat.

[Insert Figure 7 about here.]

This is intuitive, as in all cases where both X12 and X22 are small, expected jump

intensities at all horizons are small and the term structure is flat. In contrast, when either

risk X12 or risk X22 is unusually large, expected intensities are large at short horizons and

much lower at longer horizons, because of the fast mean reversion of these risks. This

feature induces a strongly upward sloping term structure of pure jump variance risk premia

in phases of distress, because the risk premium for instantaneous jump variance risk is

negative: EP[E(1 + k)]−EQ[E(1 + k)] < 0. The substantially larger loading of the intensity

process on risks X11 and X12 also implies that the upward sloping term structure of pure

jump variance risk premia is a typically high-frequency phenomenon.

III. Conclusions and Outlook

Motivated by the joint tradeability of variance and skewness risk, we study the price of

variance consistently with the price of the unspanned risks traded in liquid option markets,

i.e., the price of the smile. In this way, we preclude arbitrage opportunities between option

portfolios that trade distinct characteristics of unspanned risks.

Coherently with the time series and cross-sectional properties of the SPX volatility smile,

we identify the price of the smile and the term structure of variance risk premia with a par-

simonious three-factor specification of stochastic volatility. In constrast to most existing

arbitrage-free models, our specification incorporates three dynamically correlated and dif-

ferently persistent state variables, which (i) are linked to a stochastic skewness and a price

of the smile not spanned by the spot volatility and (ii) produce a sharp identification of the
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uspanned risks traded in option markets.

We show that the unspanned risks identified with our approach have a clear interpre-

tation in terms of observable properties of the smile, as they closely follow the one-month

implied variance, the one-month implied skew and the one-year implied variance, respec-

tively. Moreover, they induce distinct contributions to the price of the smile and the term

structure of variance risk premia. Shocks in the transient component of the volatility gener-

ate high frequency variations of jump variance risk and the term structure of variance risk

premia. In parallel, shocks in the two more persistent components of the volatility generate

lower-frequency varations in the downward sloping term structure of the price of the smile.

These features imply a term structure of variance risk premia that is downward sloping most

of the time, but which can be strongly upward sloping in periods of market distress, when

high-frequency risk escalates.

In a more general perspective, our findings concretely emphasize the importance of a joint

specification of the price of second- and higher-order unspanned risks, as we find that the

prices of high-frequency volatility risk and jump variance risk are both strongly related to the

level of one month option-implied skewness. Such a joint specification is a strong challenge

for a large class of reduced-form and structural models, which induce a counterfactually

tight link between option-implied volatility and skewness. Our results also highlight the

importance of structural equilibrium mechanisms that can explain a dichotomy between

high-frequency unspanned risks and their time-varying price.
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Panel A: Data vs. Bates (2000) model (SV J20)
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Panel B: Data vs. our model (SV J31)
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Figure 1: Option-implied skew S at 1-month horizon versus term structureM, both normal-
ized by the 30-day at the money implied volatility. Every dot corresponds to the volatility
surface of one trading day. Grey dots: Data. Black dots – panel A: Fitted values of a two
factor Bates model (SV J20). Black dots – panel B: Fitted values of our model (SV J31).
We stratify by the 30-day at the money implied volatility at ±5% around the selected level,
i.e., 17.1%-18.9% for the second panel. The exact calculation method for the option-implied
skewness S and term structure M is explained in Section II.D. of the Online Appendix.
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Panel A: Unspanned risks X11, X12 and X22
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Panel B: Scaled unspanned risks and diffusive variance tr(Xt)
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Figure 2: Panel A – Filtered unspanned risks X11t, X12t, X22t. Panel B – Scaled unspanned
risks X11t/tr(Xt), X12t/tr(Xt) and diffusive variance tr(Xt) := X11t + X12t. Grey areas
highlight NBER recessions; vertical lines indicate the following crisis events:

(1) 1997-07-02 Start of Asian Crisis (4) 2008-05-30 Bear Sterns bailout
(2) 1998-08-17 Start of Russian Crisis (5) 2008-09-15 Lehman bankruptcy
(3) 2000-03-10 NASDAQ maximum (6) 2011-08-05 US downgrade
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Panel A: Price of risk X11
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Panel B: Price of risk X12
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Figure 3: Term structure of the price of the smile. We plot for each unspanned risk X11, X12

and X22 the corresponding component of the annualized difference (EP
t −E

Q
t )
[

1
τ

∫ t+τ
t

Xsds
]

between physical and risk-neutral expectations of the integrated state, for horizons of 3
months (black lines) and 12 months (grey lines). Grey areas highlight NBER recessions;
vertical lines indicate important crisis events as listed in the caption of Figure 2.
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Panel A: Unspanned risk X11 as 12-month at-the-money implied variance
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Figure 4: Unspanned risks as observable components of the volatility surface. Panel A:
X11 (black line, left scale) and the 12-month at-the-money implied variance (grey line, right
scale). Panel B: Negative value of X12 (black line, left scale) and option-implied skew S
at 1-month horizon (grey line, right scale). Panel C: X22 (black line) and one-month at-
the-money implied variance (grey line). See Section II.D. of the Online Appendix for the
calculation method of skew S. Grey areas highlight NBER recessions; vertical lines indicate
important crisis events as listed in the caption of Figure 2.
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Panel A: 1 month variance risk premium
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Panel B: 12 months variance risk premium
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Panel C: Term structure of variance risk premia
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Figure 5: Variance risk premium and slope of the term structure of variance risk premia.
In panel A (B), we plot the annualized model-implied 1 month (12 months) variance risk
premium (black lines) and the payoffs of synthetic variance swaps (grey lines). In panel C,
we plot the slope of the model-implied term structure of variance risk premia, computed as
the difference of 12-months and 1-month variance risk premia. Grey areas highlight NBER
recessions; vertical lines indicate important crisis events as listed in the caption of Figure 2.
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Panel A: 3 months diffusive and jump variance risk premium
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Panel B: 12 months diffusive and jump variance risk premium
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Panel C: Term structure of diffusive and jump variance risk premia
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Figure 6: Diffusive and jump variance risk premia V RP c
t (τ) (black line) and V RP d

t (τ) (grey
line). Panel A: 3 months horizon; Panel B: 12 months horizon. In panel C, we plot the slope
of the model-implied term structure of diffusive and jump variance risk premia, computed as
the difference of 12 months and 3 months risk premia. Grey areas highlight NBER recessions;
vertical lines indicate important crisis events as listed in the caption of Figure 2.
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Panel A: 3 months intensity and pure jump variance risk premium
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Panel B: 12 months intensity and pure jump variance risk premium
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Panel C: Term structure of intensity and pure jump variance risk premia
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Figure 7: Intensity and pure jump variance risk premia V RP dc
t (τ) (grey line) and V RP dj

t (τ)
(black line). Panel A: 3 months horizon, Panel B: 12 months horizon. In panel C, we plot the
slope of the model-implied term structure of intensity and pure jump variance risk premia,
computed as the difference of 12 months and 3 months risk premia. Grey areas highlight
NBER recessions; vertical lines indicate important crisis events as listed in the caption of
Figure 2.
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Panel A: Diffusion parameters

SV20 SV30 SV31 SV J20 SV J30 SV J31
M11 -0.3121 -0.0844 -1.0716 -0.3242 -0.1231 -0.0079

( 0.0063) ( 0.0020) ( 0.0185) ( 0.0067) ( 0.0023) ( 0.0002)
M22 -5.0719 -5.4283 -4.9213 -4.4564 -4.2041 -2.6808

( 0.1040) ( 0.1254) ( 0.0489) ( 0.0895) ( 0.0582) ( 0.0261)
M33 -1.4410 -0.5517

( 0.0307) ( 0.0104)
M21 14.3050 1.0265

( 0.2173) ( 0.0120)
Q11 0.2370 0.1957 0.0556 0.0903 0.0742 0.0698

( 0.0024) ( 0.0026) ( 0.0006) ( 0.0015) ( 0.0010) ( 0.0009)
Q22 0.4209 0.4498 0.5256 0.4204 0.2853 0.2924

( 0.0057) ( 0.0062) ( 0.0033) ( 0.0054) ( 0.0026) ( 0.0024)
Q33 0.0718 0.0738

( 0.0019) ( 0.0016)
Q12 -0.1440 -0.0770

( 0.0021) ( 0.0012)
R11 -1.0000 -1.0000 -0.0431 -1.0000 -0.9997 -0.2970

( 0.0131) ( 0.0134) ( 0.0008) ( 0.0227) ( 0.0189) ( 0.0036)
R22 -0.5348 -1.0000 -0.6405 -0.3823 -0.7111 -0.4057

( 0.0087) ( 0.0192) ( 0.0055) ( 0.0069) ( 0.0117) ( 0.0048)
R33 0.9633 -0.1178

( 0.0255) ( 0.0026)
R12 -0.7672 -0.8708

( 0.0110) ( 0.0121)
β11 1.0000 1.0031 1.0000 1.0006 1.0064 1.0012

( 0.0160) ( 0.0169) ( 0.0118) ( 0.0191) ( 0.0180) ( 0.0116)
β22 1.0000 1.0007 1.0000 1.0042

( 0.0187) ( 0.0219) ( 0.0197) ( 0.0153)
β33 1.0162 1.0146

( 0.0235) ( 0.0187)
M∗11 -1.4051 -1.2204 -0.6378 -0.7395 -0.8289 -0.5467

( 0.0266) ( 0.0298) ( 0.0091) ( 0.0172) ( 0.0134) ( 0.0083)
M∗22 -1.8593 -2.2558 -2.7528 -1.9462 -1.2661 -2.6808

( 0.0401) ( 0.0584) ( 0.0435) ( 0.0477) ( 0.0221) ( 0.0334)
M∗33 -0.4869 -0.5539

( 0.0116) ( 0.0093)
M∗21 1.9200 0.3982

( 0.0284) ( 0.0051)
β∗11 1.0000 1.0017 1.0000 1.0006 1.0064 1.0012

( 0.0203) ( 0.0216) ( 0.0162) ( 0.0200) ( 0.0190) ( 0.0124)
β∗22 1.0000 1.0046 1.0000 1.0042

( 0.0201) ( 0.0199) ( 0.0251) ( 0.0232)
β∗33 1.0693 1.0146

( 0.0316) ( 0.0208)

Panel B: Jump parameters

SV J20 SV J30 SV J31
λ0 0.0000 0.0003 0.0000

( 0.0003) ( 0.0002) ( 0.0002)
Λ11 43.8971 57.3248 25.6671

( 0.9240) ( 0.9276) ( 0.3193)
Λ22 1.0566 11.9429 15.9795

( 0.0265) ( 0.1899) ( 0.1933)
Λ33 0.0454

( 0.0008)
Λ12 40.4278

( 0.6332)
k̄ -0.1500 -0.1500

( 0.0030) ( 0.0019)
δ 0.1500 0.1500

( 0.0027) ( 0.0020)
λ− 7.1518

( 0.0372)
λ+ 58.3547

( 0.7690)
β∗Λ 0.3230

( 0.0553)

Table 1: In-sample (1996/01-2002/12) parameter estimates and standard errors. Panel A:
diffusion parameters. Panel B: jump parameters. For consistency and for brevity, all param-
eter values are reported using a notation based on matrix AJD, i.e., by considering Bates-
and Heston-type models as nested diagonal matrix AJD models.
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I. Additional Results in the Matrix AJD Model

A. Pricing Transform in the Matrix AJD Model

Under Assumption 2 and Assumption 7, the closed-form exponentially affine risk-neutral

transform for YT := log(ST ) is given by:

Ψ(τ ; γ) := Et [exp (γYT )] = exp
(
γYt + tr

[
A(τ)Xt

]
+B(τ)

)
, (A-1)

where τ = T − t, A(τ) = C22(τ)−1C21(τ) and the 2× 2 matrices Cij(τ) are the ij−th blocks

of the matrix exponential:(
C11(τ) C12(τ)

C21(τ) C22(τ)

)
= exp

[
τ

(
M + γQ′R −2Q′Q

C0(γ) −(M ′ + γR′Q)

)]
. (A-2)

The explicit expressions for the 2× 2 matrix C0 is:

C0(γ) =
γ(γ − 1)

2
I2 + Λ

[
ΘY (γ)− 1− γΘY (1)

]
, (A-3)

and real-valued function B(τ) is given by:

= τ
{

(γ − 1)r + λ0

[
ΘY (γ)− 1− γΘY (1)

]}
−β

2
tr[ln(C22(τ)) + τ(M ′ + γR′Q)] (A-4)

where ln(·) is the matrix logarithm and ΘY (γ) is the univariate Laplace transform of the

return jump size distribution. In the case of the double exponential distribution,

ΘY
DX(γ) =

λ+λ−

λ+λ− + γ(λ+ − λ−)− γ2
.

In the case of the lognormal distribution

ΘY
LN(γ) = (1 + k)γ exp

(
γ(γ − 1)

δ2

2

)
,

see, e.g., Leippold and Trojani (2008).

2



B. Variance Risk Premium in the Matrix AJD Model

The affine expression for the variance risk premium in Proposition 1 is obtained by recalling

the relations:

V RPt(τ) = tr

(
(EP

t − E
Q
t )

[
1

τ

∫ t+τ

t

Xsds

])
+ (EP

t − E
Q
t )

[
1

τ

∫ t+τ

t

(dSs/Ss−)2

]
= tr

(
(EP

t − E
Q
t )

[
1

τ

∫ t+τ

t

Xsds

])
+EQ[E(1 + k)]tr

(
Λ(β∗ΛE

P
t − E

Q
t )

[
1

τ

∫ t+τ

t

Xsds

])
.

This shows that V RPt(τ) is the sum of two-affine functions of state Xt. To compute these

functions in closed-form, we need to compute the P and Q expectation of the average inte-

grated state X in our model. These expectations are available in closed-form:

EQ
t

[
1

τ

∫ t+τ

t

Xsds

]
= XQ

∞ +
1

τ

∫ τ

0

eMu(Xt −XQ
∞)eM

′udu , (A-5)

where the long-run mean XQ
∞ is the unique solution of the Lyapunov equation MXQ

∞ +

XQ
∞M

′ = βQ′Q. Similarly,

EP
t

[
1

τ

∫ t+τ

t

Xsds

]
= XP

∞ +
1

τ

∫ τ

0

eM
∗u(Xt −XP

∞)eM
∗′udu , (A-6)

where XP
∞ is such that M∗XP

∞ +XP
∞M

∗′ = β∗Q′Q. This implies, for any 2× 2 matrix D:

tr

(
DEQ

t

[
1

τ

∫ t+τ

t

Xsds

])
= tr

(
D(XQ

∞ + AQ
τ (Xt −XQ

∞))
)
,

tr

(
DEP

t

[
1

τ

∫ t+τ

t

Xsds

])
= tr

(
D(XP

∞ + AP
τ (Xt −XP

∞))
)
,

where, for any 2× 2 matrix H:

AQ
τ (H) :=

1

τ

∫ τ

0

eMuHeM
′udu ; AP

τ (H) :=
1

τ

∫ τ

0

eM
∗uHeM

∗′udu .

Since these two functions are linear in H, the variance risk premium is affine in Xt. This

conclude the proof. �
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C. Stochastic Discount Factor in the Matrix AJD Model

Existence of a well-defined stochastic discount factor to price all shocks in our model is

ensured by a proper density for an equivalent change of measure, from the physical to the

risk neutral probability. To this end, we specify matrix processes {Γ1t}, {Γ2t} for the market

prices of Brownian shocks dW ∗
t , dB∗t , and an appropriate distribution for return jumps.

Following Assumption 2, we specify a double exponential distribution for log return jumps,

with parameters λ+∗, λ−
∗

and λ+, λ−, respectively, under the physical and the risk neutral

probabilities. We show that, under Assumption 5, a proper density process consistent with

these properties is defined for any T ≥ 0 by:

dQ
dP

∣∣∣∣
FT

= exp

{
tr

(
−
∫ T

0

Γ1tdW
∗
t +

1

2

∫ T

0

Γ′1tΓ1tdt−
∫ T

0

Γ2tdB
∗
t +

1

2

∫ T

0

Γ′2tΓ2tdt

)}
dt

×
N∗T∏
i=1

exp

{
−(λ− − λ∗−)J∗i

− − (λ+ − λ∗+)J∗i
+ + ln

(
1/λ∗− + 1/λ∗+

1/λ− + 1/λ+

)}
,

(A-7)

where

Γ1t =
√
XtΓ +

1

2
√
Xt

(β∗ − β)Q′ , (A-8)

and

Γ2t =
√
Xt∆ +

µ0 − (r − q)√
Xt

, (A-9)

with µ0 − (r − q) ≥ 0 and ∆ a 2 × 2 parameter matrix. The first (second) line of equality

(A-7) defines a possible change of measure for diffusive (jump) shocks in our model.

Under Assumption 5, the stochastic exponential in the first line of (A-7) is a well-defined

positive local martingale, and hence a supermartingale. Therefore, to show that this term is

a martingale, it is enough to show that it has a constant expectation:

1 = EP
0

[
exp

{
tr

(
−
∫ T

0

Γ1tdW
∗
t +

1

2

∫ T

0

Γ′1tΓ1tdt−
∫ T

0

Γ2tdB
∗
t +

1

2

∫ T

0

Γ′2tΓ2tdt

)}
dt

]
.

In our matrix AJD setting, this property does not follow from a standard Novikov-type

condition. However, it follows from a localization argument; see, e.g., Mayerhofer (2014).

We now show that the second line of (A-7) also defines a martingale process. Using the

independence between IID log jump sizes J∗ and counting process N∗ under the physical
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probability, it is enough to show that:

1 = EP
0

[
exp

{
−(λ− − λ∗−)J∗− − (λ+ − λ∗+)J∗+

} 1/λ∗− + 1/λ∗+

1/λ− + 1/λ+

]
. (A-10)

Explicit calculations of the expectation on the right hand side yield:

λ∗−λ∗+

λ∗− + λ∗+
· 1/λ∗− + 1/λ∗+

1/λ− + 1/λ+

∫ ∞
−∞

exp
(
−λ−J∗− − λ+J∗+

)
dJ∗ = 1 .

With respect to the risk-neutral probability Q, log return jumps follows a double exponential

distribution with parameters λ− , λ+. Indeed, for any u ∈ R it follows:

EQ [exp(uJ)] =
λ−λ+

λ− + λ+

∫ ∞
−∞

euJe−λ
−J−−λ+J+

dJ ,

which is the Laplace transform of a double exponential distribution with parameter λ−, λ+.

This concludes the proof.

�

II. Estimation Procedure

A. First Step: Kalman filter

The first estimation step is performed using a Kalman filter of the linearized process, using

exclusively options in the observation equation. Thus we can estimate all risk-neutral pa-

rameters via the observation equation and the physical parameters of the state dynamics via

the transition equation. We denote the set of all parameters estimated in the first step by

θ := (M,Q,R, β, λ0,Λ; M∗, β∗).

The physical dynamics of our state variable is given in (14):

dXt = [β∗Q′Q+M∗X ′t +XtM
∗′] dt+

√
XtdB

∗
tQ+Q′dB∗′t

√
Xt

We discretize this process on a weekly grid with ∆k = 7 calendar days. When there is

no data for a given Wednesday, we skip the respective week and set ∆k = 14.

We initialize the filtered state X̂t to be the steady state XP
∞, which can be computed by

solving the Lyapunov equation M∗XP
∞+XP

∞(M∗)′ = Q′Q. We initialize the variance matrix

of X̂t as Σ̂0 = 0. At each step, we compute exact expectations of mean and variance of Xt+∆
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given Xt from the Laplace transform (A-1)

X t+∆ = β µ+ ΦX̂tΦ
′ (A-11)

V t+∆ = (I4 +K4)
(

ΦX̂tΦ
′ ⊗ µ+ β µ⊗ µ+ µ⊗ ΦX̂tΦ

′
)

(A-12)

with

µ = −1

2
C12C

′
11

Φ = e∆M∗

C = exp

[
∆

(
M∗ −2Q′Q

0 −(M∗)′

)]
=

(
C11 C12

C21 C22

)

where C11, C12, C21, C22 are all square 2×2 matrices and K4 is the 4×4 commutation matrix.

These calculations are used in the transition equation:

X̃t+∆ = X t+∆ (A-13)

The predicted state X̃t+∆ is then used to compute the observation equations:

Ôt+∆,i = Ot+∆,i(X̃t+∆; θ) + εt+∆,i, i = 1, . . . , Nt+∆ (A-14)

where Ôt+∆,i denotes the Black-Scholes implied volatility of the i−th option on day t + ∆,

Nt+∆ the total number of options observed on that day, Ot+∆,i(X̃t+∆; θ) the model-implied

option prices and εt+∆,i is an iid noise with zero mean and variance σr. We also allow for

autocorrelation in the noise:

corr(εt+∆, εt) = ρr

where εt is the mean error over all options on day t.

We finally update the state using a linearization of the dynamics. We first linearize the

transition equation and the observation equations by computing the Jacobian matrices:

F =
∂X t+∆

∂X̂t

= Φ⊗ Φ

Gt =
∂Ot+∆

∂X̃t

where we applied the identity ∂
∂X
BXC = C ′ ⊗ B to obtain F , while G is calculated via

numerical differentiation. The variance matrix of the state is:

Σ̃t+∆ = F Σ̂tF
′ + V t+∆ (A-15)
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Finally we update the state and the variance matrix to be used in the next step:

St = GtΣ̃t+∆G
′
t + σ2

rI2

Ht = Σ̃t+∆G
′
tS
−1
t

X̂t+∆ = X̃t+∆ +Ht

(
Ôt+∆,i −Ot+∆,i(X̃t+∆, θ)

)
Σ̂t+∆ = (I2 −HtGt)Σ̃t+∆

For every parameter set θ, we compute the time-series of the predicted state {X̃t} and the
log-likelihood function

L(θ) =

N∑
i=1

[
log det(S) +

(
Ôt+∆,i −Ot+∆,i(X̃t+∆, θ)

)′
S−1
t

(
Ôt+∆,i −Ot+∆,i(X̃t+∆, θ)

)]
(A-16)

The estimated parameter θ̂ is the maximizer of L(θ). The maximization itself is performed

using differential evolution of Storn and Price (1997).

B. Model Identification

Our model allows for several parameter combinations that are observationally equivalent.

Parameter identification requires that the option pricing model be unique under invariant

transformations. We borrow from Dai and Singleton (2000) and study invariant transforma-

tions that change the state and parameter matrices without changing the joint distribution

of option prices and thus the spot variance Vt := Tr[Xt] + E(k2) (Tr[ΛXt] + λ0).

In the first step of our estimation process, we jointly estimate the state, all risk-neutral

parameters, and the physical parameters of the state dynamics θ = (Xt; M,Q,R, β, λ0,Λ; M∗,

β∗). To identify these parameters, we first focus on the risk-neutral, diffusive part.

The diffusive spot volatility is Tr[Xt], therefore the only class of transformations that

needs to be considered are trace invariant transformations. These are first the similarity

transformation TS = DXtD−1 and second the permutation TP that reorders the rows (or

columns) of Xt.

Applying TS to (6) results in a transformed model with state and parameter matrices

TSθ = (DXtD−1; DMD−1,DQD−1,DRD−1; β ).

In order to identify our model, we apply parameter restrictions that only admit D = I2.
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Without loss of generality, we can assume |det(D)| = 1.1 Next we observe that the state

matrix Xt is symmetric by construction, thus DXtD−1 also needs to be symmetric. This

requires D to be orthogonal (D′ = D−1), thus D must be a rotation or mirror matrix.

We choose the following restrictions: M is lower triangular and the sign of M21 is positive.

Choosing M to be lower triangular requires D to be lower triangular, in order to ensure

DMD−1 lower triangular. If D is both orthogonal and lower triangular, it must be a diagonal

matrix
(
d1 0

0 d2

)
with elements di = ±1. We now haveDMD−1 =

(
M11 0

d2/d1 M21 M22

)
. By choosing

the sign of M21 we exclude the case d1 6= d2.

Our choices for M implicitly identify the state and select the order of the mean reversion

speeds of the eigenvalues and thus of the components of Xt. Thus we also achieve identifica-

tion with respect to TP . A direct consequence of our identification choices is the result that

X22,t is the leading volatility factor and the identification of the sign of X12,t.

We now discuss the identification of Q and R. To do so, we inspect the infinitesimal

generator of the joint process for stock returns Yt := dSt/St and state Xt (see Leippold and

Trojani (2008)):

LY,X =

(
r − q − 1

2
Tr[X]

)
∂

∂Y
+

1

2
Tr[X]

∂2

∂Y 2
+ 2Tr[XR′QD]

∂

∂Y
+

+Tr [(βQ′Q+MX +XM ′)D + 2XDQ′QD] (A-17)

where (D)ij = ∂
∂Xij

is the matrix differential operator.

The matrices Q and R only appear in the expressions Q′Q and R′Q, i.e. only seven of

their eight elements are identified. We choose Q to be the unique Choleski decomposition

of Q′Q, i.e. Q upper triangular and positive definite. In order to reduce the number of

parameters, we add the ad-hoc restriction for R to be also upper triangular.

Next, we focus on the spot jump variance EQ(k2) (Tr[ΛXt] + λ0) with Tr[ΛXt] =

Λ11X11,t + (Λ12 + Λ21)X12,t + Λ22X22,t. Only the sum of the out-of diagonal elements of Λ

are identified and we choose Λ upper triangular.

The physical parameter M∗ enters our estimation via the transition equation of the

Kalman filter (A-13) in the two expressions µ̄ and ΨX̂tΨ
′. By construction, both expressions

are symmetric and therefore only three elements are identified. We choose M∗ to be lower

triangular, to allow for an easy comparison to M . With this step, we indirectly identify the

the price of risk Γ in (15).

1We can always construct a D̃ = 1√
|det(D)|

D with |det(D̃)| = 1 such that DXtD−1 = D̃XtD̃−1.
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The remaining parameter β∗Λ in (28), which is estimated via OLS in the second estimation

step, is fully identified.

C. Admissible Parameter Set

In order to ensure the existence and non-explosivity of our latent process (14), we have to

apply the following additional restrictions to the feasible parameter set. First, M∗′M∗ must

be negative definite to ensure the non-explosivity. Second, R must satisfy RR′ < I2 in order

to ensure the existence of Zt = BtR + Wt

√
I2 −RR′ in (8). Third, to ensure the existence

of processes (6, 14) and of the change of measure (13), we require either β > 1, β∗ > 1 and

β = β∗ or β > 3 and β∗ > 3 . Finally, we require Λ′Λ to be positive semi-definite and λ0 ≥ 0

in order to satisfy the positivity condition of the jump intensity λt = λ0 + Tr[ΛXt]. See

Gruber (2015) for the details of the implementation of the constraints.

D. Definition of Level Lt, Skew St and Term Structure Mt Proxies

To analyze our results in terms of observable properties of the implied volatility surface, such

as in Figure 4, we define the following proxies2

level Lt := IV (τ = 1
12
,∆ = 0.5)

short term skew St := 1
0.6−0.4

[
IV (τ = 1

12
,∆ = 0.6)− IV (τ = 1

12
,∆ = 0.4)

]
long term skew S longt := 1

0.6−0.4

[
IV (τ = 3

12
,∆ = 0.6)− IV (τ = 3

12
,∆ = 0.4)

]
term structure Mt := 1

3
12
− 1

12

[
IV (τ = 3

12
,∆ = 0.5)− IV (τ = 1

12
,∆ = 0.5)

]
skew term structure Mskew

t := 1
3
12
− 1

12

[
S longt − St

]

where IV and ∆ stand for the Black-Scholes implied volatility and delta. The time to

maturity τ is measured in years. In the data, we obtain the required implied volatilities

through two-dimensional interpolation of the volatility surface. In the model, we calculate

these quantities exactly.

2We have evaluated the regression IV (τ,K)t = Lt+St ·K+Mt ·τ as an alternative specification. We have
found similar, but more noisy results. We have also performed robustness checks with respect to our defi-
nition. The alternative term structure measure M6

t := 1
6
12−

1
12

[
IV (τ = 6

12 ,∆ = 0.5)− IV (τ = 1
12 ,∆ = 0.5)

]
is, for example, 92% correlated with our term structure measure.
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III. Unspanned Risks as Risk Premium Factors

Intuitively, the information encoded by the unspanned risks traded in option markets might

help to predict future unspanned risks and the excess returns for trading these risks using

option portfolios. Moreover, since risks X11, X12 and X22 are computed virtually in real

time, using the fix set of in-sample estimated model parameters, these predictions can be

computed virtually in real time. In this section, we study the predictive power of unspanned

risks for future realized variance, for the payoffs of variance swaps and for S&P 500 index

excess returns. As a robustness check, we compare the model-implied predictive power to the

one implied by nonparametric proxies of the smile for (i) the level of the one-month implied

volatility, (ii) the slope of the term structure of at-the-money implied volatilities and (iii)

the one-month implied skew.

A. Predictability of Realized Variance

Figure 5 of this Appendix collects the predictive regression results for realized variance

RVt+τ (τ), over forecasting horizons between 1 and 12 months. As expected, realized variance

is highly predictable over short horizons, with predictive regression R2s up to 55% using

model-implied unspanned risks X11, X22 and X12. At longer horizons, i.e., between 9 and 12

months, the predictive R2s drop to about 15%. The predictive power using nonparametric

option-implied proxies is virtually identical and the degree of predictability is very similar

in- and out-of-sample. The largest contribution to the predictive power derives from high-

frequency risk X22, which accounts for about 80% (66%) to the predictive R2 at horizons

of 1 month (12 months), while the residual contribution to the predictive R2s is virtually

exhausted by unspanned risk X12. Given the high speed of mean reversion of these two risks,

the term structure of predictive R2s for future realized variance is downward sloping.

B. Predictability of Variance Swap Payoffs

We now address the predictability of variance swap payoffs RVt+τ (τ)−EQ
t [RVt+τ (τ)]. As the

expected value of such payoffs is the variance risk premium, this is equivalent to studying the

existence of a particular set of affine risk premium factors for variance risk premia. Figure

6 of this Appendix summarizes the predictive regression results. We obtain significant in-

sample R2s for all predictive regressions, where the largest predictive power is generated by

the unconstrained predictive regression with model-implied risks X11, X12 and X22. The

R2s of the unconstrained predictive regression range between 25% and 60%, with a peak at

the 12 month horizon. Those generated by the model-implied variance risk premium range

between 22% and 45%, with a peak at the 6 month horizon. We find that the predictive
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power of the unconstrained regression is almost exclusively generated by unspanned risks

X11 and X12, suggesting these two risks as natural variance risk premium factors. The larger

predictive power of the unconstrained regression relative to the model-implied variance risk

premium is completely explained by a larger estimated loading for low-frequency risk X11.

The out-of-sample predictive regression analysis confirms the information content of

unspanned risks as variance risk premium factors. We obtain the largest predictive R2s,

increasing monotonically with the horizon from 12% to 24%, for the model-implied variance

risk premium predictions. The predictive R2s of unconstrained regressions are clearly lower,

while the degree of predictability implied by nonparametric proxies of the smile is negligible.

Based on these findings, we conclude that the arbitrage-free constraints embedded into the

model-implied variance risk premia are supported by the in-sample and the out-of-sample

evidence. Compared to unconstrained predictive regressions, the model-implied arbitrage-

free constraints allow us to isolate the high-frequency variance risk premium factor X22,

which otherwise would be very difficult to identify. As shown in the main text, identifying

such high-frequency unspanned risk is important to understand the dynamics of the term

structure of variance risk premia.

C. Predictability of S&P 500 index Excess Returns

We finally address the predictability of S&P 500 index excess returns ret+τ . As we did not

assume any particular specification the equity premium for our identification of unspanned

risks, we study exclusively unconstrained predictive regressions with unspanned risks X11,

X12 and X22. In order to account parsimoniously for a possible nonlinearity of the predictive

relation with respect to the frequency composition of the volatility, we estimate the following

threshold-linear regression with endogenous threshold T ∈ (0, 1):

ret+τ = [αl + tr(βlXt)]I{[X11t/tr(Xt)]<T} + [αh + tr(βhXt)]I{[X11t/tr(Xt)]≥T} + εt+τ . (A-18)

In this equation, I{·} is an indicator function, while αu and symmetric 2 × 2 matrix βu are

regime-dependent regression intercepts and slope parameters in states u = l and u = h of

less and more persistent volatility, respectively. States of less (more) persistent volatility are

defined as states in which condition [X11t/tr(Xt)] < T (condition [X11t/tr(Xt)] ≥ T ) holds,

for a threshold T ∈ (0, 1) estimated jointly with the (regime-dependent) predictive regression

parameters. By making the equity compensation for low-frequency volatility risk possibly

dependent on the frequency composition of the volatility, we incorporate an economically

plausible long-run risk channel for index equity premia, suggested by our identification of

unspanned risks. At the same time, we allow for a more flexible specification of the predictive
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system, in which we can directly test the specification of an affine relation between S&P 500

index equity premia and unspanned risks. The predictive regression results are summarized

in Figure 7 of this Appendix.

We estimate a significant threshold T = 0.15 (T = 0.18) for the in-sample (the full)

sample period, which is quite stable across horizons. This finding is direct evidence of a

nonlinearity of the predictive relation in the frequency composition of the volatility. All

(regime-dependent) parameters in the predictive system are significant and the resulting

degree of predictability is not negligible, with full-sample predictive R2s ranging between

5% and 16% and peaking at an horizon of 5 months. We also find that this predictive

power is almost entirely generated by the more persistent unspanned risks X11 and X12,

suggesting short-term implied skewness and long-term at-the-money implied volatility as

useful risk premium factors for modeling time-varying S&P 500 index equity premia. In a

different perspective, given the interpretation of X11 as the low frequency component of the

volatility and −X12 as the negative skewness of index returns in our model, these findings

are suggestive of an extended risk-return tradeoff consistent with an intertemporal CAPM

in which stochastic skewness is priced.

IV. Additional Figures

p
Vt

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

S

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

p
Vt

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

S

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Figure 1: Relation between implied volatility level and implied volatility skew in Bates-
type models. In each panel, we scatter plot two proxies of option-implied skewness (S)
and volatility (

√
Vt). Every dot in each panel corresponds to the implied-volatility smile

observed on a single trading day. Grey dots: data-implied values. Black dots – left panel:
model-implied values for a one factor Bates model (SV J10). Black dots – right panel: model-
implied values for a two-factor Bates model (SV J20). The exact calculation method for the
option-implied skewness S is explained in Section II.D. of this Appendix.
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Figure 2: The term structure of the price of the smile. We plot the sample average of the
model-implied expectations 1

τ
EP
t [
∫ t+τ
t

Xsds] and 1
τ
EQ
t [
∫ t+τ
t

Xsds], component-wise, for hori-
zons τ from 1 to 12 months. Full lines report expectations under P, dashed lines expectations
under Q. Circles: X11; squares: X12; triangles: X22.
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Figure 3: Time series of mean absolute implied volatility errors (MAIV E) for our model
(SV J31). For every day t in our sample, we plot the MAIV E on that day, defined by

MAIV Et := 1
Nt

∑Nt
i=1 |IVi − ÎVi|, where Nt is the number of available options on that day.

Grey areas highlight NBER recessions; vertical lines indicate important crisis events as listed
in the caption of Figure 2 of the main paper.
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Figure 4: Unconditional decomposition of the variance risk premium for horizons 1 to 12
months. We plot from the bottom to the top the fractions of variance risk premium due to
pure jump risk, jump intenstiy risk and diffusive volatility risk.
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Figure 5: Predictive regression for realized variance RVt+τ (τ). We regress the future realized
variance for horizons between 1 month and 12 months (reported on the-axis) on (i) the
three unspanned risks X11,t, X12,t, X22,t (triangles) and (ii) three standard nonparametric
measures of option-implied volatility level, skew and term structure (squares). Full lines
correspond to in-sample (1996/01-2002/12) R2s; dashed lines correspond to out-of-sample
(2003/01-2013/01) R2s. For both R2 computations, model-implied and predictive regression
parameters are fixed to the in-sample point estimates. The exact calculation method for the
option-implied skewness and term structure is explained in Section II.D. of this Appendix.
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Figure 6: Predictive regression for synthetic variance swap positions. We regress future vari-
ance swap payoffs for horizons between 1 and 12 months (reported on the x-axis) on (i) the
model-implied variance risk premium (circles), (ii) the three unspanned risksX11,t, X22,t, X12,t

(triangles) and (iii) three standard nonparametric measures of option-implied volatility level,
skew and term structure (squares). Full lines correspond to in-sample (1996/01-2002/12)
R2s; dashed lines correspond to out-of-sample (2003/01-2013/01) R2s. For both R2 compu-
tations, model-implied and predictive regression parameters are fixed to the in-sample point
estimates. The exact calculation method for the option-implied skewness and term structure
is explained in Section II.D. of this Appendix.
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Panel A1: R2 full sample (1996/01-2013/01)
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Panel B1: R2 in-sample period (1996/01-2002/12)

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Panel B2: threshold in-sample period

1 2 3 4 5 6 7 8 9
0

0.05
0.1

0.15
0.2

0.25
0.3

Figure 7: Predictive regression for future index excess returns. We perform a threshold
predictive regression for future S&P 500 index excess returns, as defined in equation (A-18).
We perform a threshold regression of future realized excess returns for horizons between 1
month and 9 months (reported on the x-axis) on (i) the individual unspanned risks X11

(diamonds), X12 (circles), X22 (squares); (ii) our preferred model using the risk factors X̃11

and X̃12, where X̃ij is the orthogonal projection of risk Xij on X22 (black line) and (iii)
jointly all unspanned risks (dashed line). In all regressions, we use the fraction of long-run
risk in the diffusive variance X11t/Tr[Xt] as threshold variable. We report the R2 of the
predictive regressions in panels A1, B1, as well as estimates and 95% confidence intervals for
the threshold in panels A2, B2.
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Figure 8: Conditional equity risk premium ERP at the optimal prediction horizon of five
months. We perform a predictive regression of index excess returns rt,t+τ = α + β′xt + εt,
where xt is a set of model-implied risk factors. We then calculate the annualized conditional
ERP as ERPt = 1

τ
E[rt,t+τ ]. Grey line: ERP implied by a predictive regression using the

Ũ factor of Andersen, Fusari, Todorov (2013), where Ũ is an orthogoal projection of their
U−factor on their factors V1 and V2. Grey dashed line: ERP implied by their full model.
Black line: ERP implied by our model’s X̃11 and X̃12 factors, where X̃ij is the orthogonal
projection of risk Xij on X22. Black dashed line: ERP implied by our full model. Grey
areas highlight NBER recessions; vertical lines indicate important crisis events as listed in
the caption of Figure 2 of the main paper.
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Panel A: full sample (1996/01-2013/01)
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Panel B: in-sample period (1996/01-2002/12)
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Figure 9: R2 of the predictive regressions of future index excess returns on the unspanned
risks traded in option markets, as a function of the horizon in months. We regress excess
returns rt,t+τ of the S&P 500 index for horizons τ = 1 to 9 months on a set of option risks
xt. Left panels: Our model SV J31; grey: univariate regressions with individual risks X11

(diamonds), X12 (circles), X22 (squares); black: preferred model using the risk factors X̃11

and X̃12, where X̃ij is the orthogonal projection of risk Xij on X22; black dashed: all three
unspanned risks X11, X12 and X22. Right panels: model of Andersen, Fusari, Todorov (2013);
grey: univariate regressions with individual factors U (diamonds), V1 (circles), V2 (squares);
black: preferred model using the risk factor Ũ , where Ũ is an orthogoal projection of their
U−factor on their factors V1 and V2; black dashed line: all risk factors V1, V2 and U .
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Figure 10: Distribution of out-of sample returns of the S&P 500 index (black bars) and a
simple trading strategy that goes long (short) the index when the predicted equity premium
is positive (negative), depicted in grey bars, over a forecasting horizon of 5 months.

V. Additional Tables

r q Pure diffusion models Jump-diffusion models
1 0 SV10 (N = 6) Heston (1993) SV J10 (N = 8) Bates (1996)

2 0 SV20 (N = 12) Christoffersen et al. (2009) SV J20 (N = 18) Bates (2000)

3 0 SV30 (N = 18) (this paper) SV J30 (N = 25) (this paper)

3 1 SV31 (N = 14) da Fonseca et al. (2008) SV J31 (N = 21) Leippold and Trojani (2008)

Table 1: Models related to Assumption 2. r is the number of model state variables and q
the number of skewness components disconnected from volatility. N is the number of model
parameters.
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Panel A: Summary statistics of the data

In-sample Out-of sample Total
Time frame 1996-2002 2003-01/2013 1996-01/2013
Sampling frequency weekly
Trading days T 359 524 883
Number of observations 37’499 85’237 122’736
Average time to maturity (days) 141.5 124.9 130.0
Average moneyness (S/K) 0.99 0.98 0.99

Panel B: Number of observations by duration and delta

τ < 30 30 < τ < 75 75 < τ < 180 180 < τ all
|∆| < 0.2 1’761 4’647 3’679 3’858 13’945

0.2 < |∆| < 0.4 2’576 7’460 6’369 6’769 2’3174
0.4 < |∆| < 0.6 2’575 8’258 7’303 7’586 25’722
0.6 < |∆| < 0.8 3’479 10’808 9’399 10’446 34’132
0.8 < |∆| 2’981 8’651 6’947 7’184 25’763
all 13’372 39’824 33’697 35’843 122’736

Table 2: Main characteristics of our S&P500 option panel. We use out-of the money calls
and puts.

SV20 SV30 SV31 SV J20 SV J30 SV J31

RMSIVE
in-sample 1.323 1.237 0.941 0.858 0.718 0.678
out-of sample 1.672 1.552 1.203 1.093 0.826 0.769
MAIVE
in-sample 1.023 0.957 0.731 0.680 0.565 0.549
out-of sample 1.325 1.226 0.948 0.854 0.640 0.610
Average log-likelihood
in-sample 7.288 7.359 8.001 8.100 8.315 8.491
out-of sample 6.667 6.878 7.298 7.265 7.955 8.005

Table 3: Indicators of pricing performance and statistical fit. We report indicators of in-
and out-of-sample pricing performance and fit for our model (SV J31) and for the benchmark
models in Table 1. The in-sample period for estimation is January 1996 to December 2002.
The out-of-sample period is from January 2003 to January 2013. For each model, we report
the daily root-mean-squared implied volatility error (RMSIVE) and the daily mean absolute
implied volatility error (MAIV E). These quantities are computed using the filtered states
implied by the in-sample weekly parameter estimates for each day of our in- and out-of-
sample periods. As a measure of statistical model fit and predictive ability, we also report
the in- and the out-of-sample average value of the weekly likelihood function, evaluated at
the in-sample parameter estimates.
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Panel A1: MAIVE for SV J20 model, in-sample
τ < 30 30 ≤ τ < 75 75 ≤ τ < 180 τ ≥ 180 all

|∆| < 0.2 0.938 0.607 0.655 0.593 0.664
0.2 ≤ |∆| < 0.4 0.786 0.480 0.637 0.634 0.610
0.4 ≤ |∆| < 0.6 0.699 0.510 0.537 0.517 0.539
0.6 ≤ |∆| < 0.8 0.818 0.654 0.482 0.548 0.589
0.8 ≤ |∆| 1.284 1.049 0.809 1.023 1.002
all 0.894 0.662 0.606 0.652 0.670

Panel A2: MAIVE for SV J31 model, in-sample
τ < 30 30 ≤ τ < 75 75 ≤ τ < 180 τ ≥ 180 all

|∆| < 0.2 0.897 0.552 0.496 0.506 0.576
0.2 ≤ |∆| < 0.4 0.842 0.419 0.480 0.468 0.502
0.4 ≤ |∆| < 0.6 0.714 0.465 0.554 0.387 0.486
0.6 ≤ |∆| < 0.8 0.735 0.497 0.486 0.378 0.476
0.8 ≤ |∆| 0.887 0.567 0.628 0.871 0.721
all 0.804 0.495 0.531 0.503 0.542

Panel B1: MAIVE for SV J20 model, out of sample
τ < 30 30 ≤ τ < 75 75 ≤ τ < 180 τ ≥ 180 all

|∆| < 0.2 0.804 0.976 1.067 1.393 1.089
0.2 ≤ |∆| < 0.4 0.675 0.531 0.719 1.018 0.730
0.4 ≤ |∆| < 0.6 0.955 0.501 0.469 0.759 0.605
0.6 ≤ |∆| < 0.8 1.228 0.780 0.471 0.846 0.757
0.8 ≤ |∆| 1.403 1.207 0.753 1.026 1.062
all 1.061 0.797 0.645 0.961 0.826

Panel B2: MAIVE for SV J31 model, out of sample
τ < 30 30 ≤ τ < 75 75 ≤ τ < 180 τ ≥ 180 all

|∆| < 0.2 0.819 0.690 0.655 0.957 0.765
0.2 ≤ |∆| < 0.4 0.753 0.430 0.506 0.566 0.522
0.4 ≤ |∆| < 0.6 0.871 0.483 0.549 0.414 0.523
0.6 ≤ |∆| < 0.8 0.954 0.519 0.503 0.544 0.566
0.8 ≤ |∆| 0.964 0.653 0.487 0.881 0.704
all 0.886 0.546 0.528 0.639 0.602

Table 4: MAIV E stratified by maturity and moneyness. We report the mean absolute
implied volatility error across maturity and moneyness bins for our model ( SV J31) and for
the benchmark Bates (2000) model (SV J20), for the in-sample period (1996/01-2002/12)
and the out of sample period (2003/01-2013/01).
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Panel A1: Fraction of prices within bid/ask spread SV J20 model, in-sample
τ < 30 30 ≤ τ < 75 75 ≤ τ < 180 τ ≥ 180 all

|∆| < 0.2 0.363 0.405 0.322 0.371 0.368
0.2 ≤ |∆| < 0.4 0.439 0.535 0.348 0.316 0.400
0.4 ≤ |∆| < 0.6 0.602 0.574 0.413 0.318 0.445
0.6 ≤ |∆| < 0.8 0.722 0.607 0.554 0.360 0.516
0.8 ≤ |∆| 0.709 0.555 0.492 0.222 0.443
all 0.588 0.555 0.449 0.317 0.449

Panel A2: Fraction of prices within bid/ask spread SV J31 model, in-sample
τ < 30 30 ≤ τ < 75 75 ≤ τ < 180 τ ≥ 180 all

|∆| < 0.2 0.372 0.441 0.453 0.409 0.423
0.2 ≤ |∆| < 0.4 0.379 0.617 0.451 0.404 0.472
0.4 ≤ |∆| < 0.6 0.604 0.596 0.315 0.396 0.453
0.6 ≤ |∆| < 0.8 0.766 0.713 0.489 0.488 0.580
0.8 ≤ |∆| 0.844 0.852 0.598 0.276 0.589
all 0.616 0.668 0.461 0.403 0.517

Panel B1: Fraction of prices within bid/ask spread SV J20 model, out of sample
τ < 30 30 ≤ τ < 75 75 ≤ τ < 180 τ ≥ 180 all

|∆| < 0.2 0.471 0.351 0.273 0.176 0.298
0.2 ≤ |∆| < 0.4 0.574 0.615 0.395 0.302 0.464
0.4 ≤ |∆| < 0.6 0.590 0.727 0.607 0.383 0.586
0.6 ≤ |∆| < 0.8 0.684 0.717 0.742 0.374 0.624
0.8 ≤ |∆| 0.815 0.693 0.742 0.474 0.665
all 0.649 0.650 0.593 0.360 0.556

Panel B2: Fraction of prices within bid/ask spread SV J31 model, out of sample
τ < 30 30 ≤ τ < 75 75 ≤ τ < 180 τ ≥ 180 all

|∆| < 0.2 0.452 0.498 0.512 0.253 0.433
0.2 ≤ |∆| < 0.4 0.521 0.757 0.595 0.487 0.613
0.4 ≤ |∆| < 0.6 0.625 0.683 0.503 0.557 0.590
0.6 ≤ |∆| < 0.8 0.803 0.819 0.668 0.518 0.690
0.8 ≤ |∆| 0.905 0.915 0.875 0.489 0.794
all 0.696 0.763 0.643 0.483 0.647

Table 5: Fraction of model-implied option prices within bid-ask spread for the benchmark
SV J20 model and our model (SV J31), across maturity and moneyness bins for the in-sample
period (1996/01-2002/12) and the out of sample period (2003/01-2013/01).
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X11 X12 X22

Min 0.0000 -0.0096 0.0001
Max 0.0516 0.0893 0.2610
Mean 0.0102 0.0044 0.0233
Median 0.0091 0.0014 0.0171
Positive 1.0000 0.6659 1.0000
Stdv 0.0091 0.0104 0.0259
Skewness 1.3460 3.6063 4.6427
Kurtosis 5.6376 20.9171 35.1886
AR(1) 0.9896 0.9529 0.8842
Half life 1.2753 0.2766 0.1083

Table 6: Summary statistics of weekly filtered unspanned risks X11, X12 and X22 for our
model for the whole sample (1996/01-2013/01). “Positive” denotes the fraction of positive
realizations. Half lives are given in years.

Price of (EP − EQ
t ) 1

τ

[∫ t+τ
t X11sds

]
(EP − EQ

t ) 1
τ

[∫ t+τ
t X12sds

]
(EP − EQ

t ) 1
τ

[∫ t+τ
t X22sds

]
Loading X11 X12 X22 X11 X12 X22 X11 X12 X22

1 -0.043 0.000 0.000 -0.025 -0.037 0.000 -0.002 -0.043 -0.000
2 -0.083 0.000 0.000 -0.048 -0.064 0.000 -0.006 -0.071 -0.000
3 -0.120 0.000 0.000 -0.069 -0.082 0.000 -0.012 -0.087 -0.000
4 -0.156 0.000 0.000 -0.088 -0.094 0.000 -0.018 -0.096 -0.000
5 -0.189 0.000 0.000 -0.106 -0.101 0.000 -0.025 -0.101 -0.000
6 -0.221 0.000 0.000 -0.121 -0.105 0.000 -0.032 -0.102 -0.000
7 -0.251 0.000 0.000 -0.136 -0.107 0.000 -0.038 -0.101 -0.000
8 -0.279 0.000 0.000 -0.149 -0.106 0.000 -0.044 -0.098 -0.000
9 -0.306 0.000 0.000 -0.161 -0.105 0.000 -0.050 -0.095 -0.000
10 -0.331 0.000 0.000 -0.172 -0.103 0.000 -0.055 -0.091 -0.000
11 -0.355 0.000 0.000 -0.182 -0.100 0.000 -0.060 -0.087 -0.000
12 -0.377 0.000 0.000 -0.191 -0.096 0.000 -0.065 -0.083 -0.000

12-1 -0.335 0.000 0.000 -0.166 -0.059 0.000 -0.063 -0.040 -0.000
12-3 -0.257 0.000 0.000 -0.122 -0.015 0.000 -0.053 0.004 0.000
3-1 -0.078 0.000 0.000 -0.044 -0.044 0.000 -0.010 -0.044 -0.000

Table 7: Market price of the smile. Loadings of risk factors X11, X12, X22 on the market

price of the smile of integrated risk factor 1
τ

∫ t+τ
t

Xijsds, i.e., (EP − EQ
t )
[

1
τ

∫ t+τ
t

Xijsds
]

(1 ≤ i ≤ j ≤ 2), for horizons τ from 1 to 12 months. The last three rows compute the
contributions to the term structure of the market price of the smile, measured price of the
smile at a longer horizon minus price of the smile at a shorter horizon.
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τ V RP ct (τ) V RP dct (τ) V RP djt (τ) V RPt(τ)
months X11 X12 X22 X11 X12 X22 X11 X12 X22 X11 X12 X22

1 -0.044 -0.043 -0.000 -0.068 -0.045 -0.000 -0.537 -0.762 -0.272 -0.649 -0.851 -0.272
2 -0.089 -0.071 -0.000 -0.131 -0.076 -0.000 -0.525 -0.679 -0.223 -0.745 -0.825 -0.223
3 -0.132 -0.087 -0.000 -0.191 -0.095 -0.000 -0.511 -0.607 -0.186 -0.835 -0.790 -0.186
4 -0.174 -0.096 -0.000 -0.248 -0.108 -0.000 -0.497 -0.546 -0.158 -0.919 -0.750 -0.158
5 -0.214 -0.101 -0.000 -0.300 -0.114 -0.000 -0.483 -0.492 -0.135 -0.998 -0.708 -0.135
6 -0.253 -0.102 -0.000 -0.349 -0.117 -0.000 -0.469 -0.446 -0.118 -1.071 -0.665 -0.118
7 -0.289 -0.101 -0.000 -0.395 -0.118 -0.000 -0.455 -0.406 -0.103 -1.139 -0.625 -0.103
8 -0.323 -0.098 -0.000 -0.437 -0.117 -0.000 -0.441 -0.371 -0.092 -1.202 -0.586 -0.092
9 -0.356 -0.095 -0.000 -0.477 -0.114 -0.000 -0.427 -0.341 -0.083 -1.260 -0.550 -0.083
10 -0.386 -0.091 -0.000 -0.514 -0.111 -0.000 -0.414 -0.315 -0.075 -1.314 -0.517 -0.075
11 -0.415 -0.087 -0.000 -0.548 -0.107 -0.000 -0.401 -0.291 -0.068 -1.364 -0.486 -0.068
12 -0.442 -0.083 -0.000 -0.581 -0.103 -0.000 -0.388 -0.271 -0.063 -1.411 -0.457 -0.063

12-1 -0.398 -0.040 -0.000 -0.513 -0.058 -0.000 0.149 0.492 0.210 -0.762 0.394 0.210
12-3 -0.310 0.004 0.000 -0.389 -0.007 0.000 0.123 0.337 0.123 -0.576 0.333 0.123
3-1 -0.088 -0.044 -0.000 -0.124 -0.050 -0.000 0.026 0.155 0.086 -0.186 0.061 0.086

Table 8: Loadings of option-implied components X11, X12, X22 on diffusive, intensity and
pure jump variance risk premia V RP c

t (τ), V RP dc
t (τ) and V RP dj

t (τ), respectively. For hori-
zons τ from 1 to 12 months, we compute the model implied loading of state variables X11,
X12 and X22 in diffusive, intensity and pure-jump variance risk premia (columns 2 to 4).
The last column reports the state variables loadings in the total model-implied variance risk
premium V RPt(τ). The last three rows compute the contribution of each option-implied
component to three proxies for the slope of the term structures of variance risk premia,
measured as V RP u

t (12)− V RP u
t (τ), for u = c, dc, dj and τ = 1, 3 months, respectively.

1mo 2mo 3mo 4mo 5mo 6mo 7mo 8mo 9mo
Out of sample 0.53 0.54 0.52 0.52 0.58 0.57 0.55 0.57 0.57
Conundrum 0.52 0.50 0.51 0.46 0.47 0.49 0.48 0.51 0.53
Crisis 0.63 0.60 0.50 0.63 0.85 0.85 0.86 0.87 0.88
Post crisis 0.49 0.57 0.56 0.55 0.58 0.54 0.47 0.47 0.42

Table 9: Out of sample sign correlations between realized excess returns of the S&P 500
index over horizons from 1 to 9 months and predicted returns from our threshold regression.
We perform a predictive threshold regression as defined in equation (A-18) for the in-sample
period 1996/01-2002/12 and evaluate the signs of the predicted returns for the out of sample
period 2003-2013/01 and three sub-periods: Conundrum (2003/01-2007/12), Financial Crisis
(2008/01-2009/12) and Post-Crisis (2010/01-2013/01).
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Panel A: 1 month horizon
Index Strategy

mean SR skewness mean SR skewness
Out of sample 0.031 0.184 -1.597 0.046 0.229 -1.064
Conundrum 0.056 0.511 -0.669 0.022 0.133 -0.398
Crisis -0.117 -0.438 -1.167 -0.042 -0.134 -1.067
Post crisis 0.088 0.584 -1.040 0.145 0.960 0.022

Panel B: 2 month horizon
Index Strategy

mean SR skewness mean SR skewness
Out of sample 0.033 0.190 -1.807 0.064 0.323 -1.828
Conundrum 0.060 0.556 -0.197 0.061 0.388 0.116
Crisis -0.118 -0.401 -1.187 -0.108 -0.333 -1.570
Post crisis 0.091 0.654 -0.704 0.189 1.533 -0.481

Panel C: 3 month horizon
Index Strategy

mean SR skewness mean SR skewness
Out of sample 0.032 0.181 -1.593 0.069 0.357 -0.343
Conundrum 0.058 0.542 -0.124 0.015 0.099 0.037
Crisis -0.104 -0.347 -0.892 0.170 0.549 -0.775
Post crisis 0.083 0.609 -0.555 0.092 0.672 -0.141

Panel D: 4 month horizon
Index Strategy

mean SR skewness mean SR skewness
Out of sample 0.031 0.173 -1.531 0.046 0.230 0.081
Conundrum 0.056 0.535 -0.157 0.003 0.022 0.162
Crisis -0.098 -0.313 -0.760 0.167 0.512 -0.450
Post crisis 0.079 0.589 -0.314 0.034 0.237 -0.137

Table 10: Out-of sample statistics of a simple trading strategy that goes long (short) the
index when the predicted equity premium is positive (negative). We compare mean re-
turn, Sharpe ratio (SR) and skewness of the returns of the S&P 500 index to our trading
strategy over horizons from 1 to 4 months. Returns and Sharpe ratios are annualized. We
break down the out of sample period (2003/01-2013/01) into three sub periods: the Conun-
drum (2003/01-2007/12), the Financial Crisis (2008/01-2009/12) and the Post-Crisis period
(2010/01-2013/12).
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