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Abstract

This paper develops an unbiased Monte Carlo estimator of the transition density

of a multivariate jump-diffusion process. The drift, volatility, jump intensity, and

jump magnitude are allowed to be state-dependent and non-affine. It is not necessary

that the volatility matrix can be diagonalized using a change of variable or change

of time. Our density estimator facilitates the parametric estimation of multivariate

jump-diffusion models based on discretely observed data. Under conditions that can

be verified with our density estimator, the parameter estimators we propose have

the same asymptotic behavior as maximum likelihood estimators as the number of

data points grows, but the observation frequency of the data is kept fixed. In a

numerical case study of practical relevance, our density and parameter estimators

are found to be highly accurate and computationally efficient.
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1 Introduction

Multivariate jump-diffusions are popular stochastic models often used in economic and

financial applications. They are used to describe the time series behavior of asset prices,

volatilities, and interest rates, as well as the correlation structure of the cross section of

assets. They also allow for potential discontinuities in the time series of financial and eco-

nomic data. Despite their popularity, parameter inference for multivariate jump-diffusions

is challenging because the underlying probability distribution is often times intractable.

In this paper, we derive an unbiased Monte Carlo estimator of the transition density of a

general class of multivariate jump-diffusion processes over arbitrary sample frequencies.

Our density estimator can be used to perform maximum likelihood inference based on dis-

cretely observed data. Under conditions that can be verified using our density estimator,

the parameter estimators we propose inherit the consistency and asymptotic normality

properties of maximum likelihood estimators as the number of data points grows large.1

Thus, the results of this paper provide a methodology to carry out statistically efficient es-

timation of the parameters driving the dynamics of a multivariate jump-diffusion process

based on discretely observed data.

We consider a general class of Markovian multivariate jump-diffusions. The drift,

volatility, jump intensity, and jump magnitude are allowed to be arbitrary parametric

functions of the state. The only binding assumption is that the jump-diffusion process is

well-defined in the sense that it admits a strong solution as well as a transition density.

By taking advantage of Bayes’ rule and a well-chosen change of measure, we rewrite

the transition density of a multivariate jump-diffusion in terms of a mixture of transition

densities of purely diffusive processes without jumps. Our density representation is similar

to the one of Giesecke & Schwenkler (2014), who characterize the transition density of a

jump-diffusion as a mixture of Gaussian densities. In contrast to Giesecke & Schwenkler

(2014), though, our density representation also applies to multivariate jump-diffusion

processes which are not reducible in the sense of Aı̈t-Sahalia (2008). A process is reducible

if it can be transformed to a unit volatility process, and this restrictive assumption is

1A maximum likelihood estimator is an almost-sure maximizer of the likelihood function.
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often violated by popular multivariate jump-diffusion models. Our density representation

also provides a significant generalization of the well-known representations of Dacunha-

Castelle & Florens-Zmirou (1986) and Rogers (1985), which apply only to univariate

diffusive processes without jumps.

A key benefit of our density representation is that it can be easily estimated via

Monte Carlo simulation. This is because it is given by an unconditional expectation of a

path functional of the jump-diffusion process. We exploit a novel randomization technique

introduced by Glynn & Rhee (2015) to construct an unbiased estimator of the transition

density. Our density estimator can be understood as a randomized multilevel Monte Carlo

estimator.2 It is constructed from samples derived from Euler’s discretization method with

different time steps, which are mixed and weighted adequately to ensure unbiasedness of

the density estimator.3 The accuracy of the resulting transition density estimator depends

only on the number of Monte Carlo replications used.

We use the density estimator to carry out parameter inference based on discretely ob-

served data. We construct a simulated likelihood function by replacing the uncomputable

true density with our density estimator. Because the latter is unbiased, standard results

ensure that the estimators that maximize the simulated likelihood inherit the asymptotic

properties of true maximum likelihood estimators as the number of data points grows large

while keeping the observation frequency of the data fixed.4 Under conditions that can be

verified using our density estimator, the simulated maximum likelihood estimator con-

verges to a true maximum likelihood estimator as the number of Monte Carlo replications

grows large while keeping the data sample fixed. When the number of Monte Carlo repli-

cations grows and the number of data points grows, standard conditions ensure that the

simulated likelihood estimator is consistent. Furthermore, if the number of Monte Carlo

replications grows at the same rate as the data grows, then a simulated maximum like-

lihood estimator is asymptotically normal with the same asymptotic variance-covariance

matrix as a true maximum likelihood estimator. As a result, our simulated likelihood

2We refer to Giles (2008) for an introduction to multilevel Monte Carlo simulation.
3See Kloeden & Platten (1999) for an overview of Euler’s method.
4We do not consider infill asymptotic regimes, in which the time between consecutive observations of

the data shrinks as more data becomes available.
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estimators are asymptotically efficient in the sense that they have the same asymptotic

standard errors as true maximum likelihood estimators.

An important property of the simulated likelihood estimators we propose is that,

even though they are derived from Monte Carlo simulation, their asymptotic variance-

covariance matrix is the same as that of true maximum likelihood estimators. This means

that the Monte Carlo methodology we use to estimate the transition density does not affect

the asymptotic distribution of the resulting parameter estimators. The reason why this

key property holds is that our density estimator is unbiased. Were it not unbiased, then its

bias would be transferred to the parameter estimators either by making them inconsistent

or asymptotically inefficient. Detemple, Garcia & Rindisbacher (2006) establish this result

in the diffusion case, and we conjecture that the same holds in the jump-diffusion case.

Overall, the fact that our density estimator is unbiased is the main property that enables

efficient parameter estimation in this paper.

Our density estimator has important computational features. It can be evaluated at

any value of the parameter and arguments of the density function without re-simulation.

A single set of Monte Carlo replications suffices to evaluate the density estimator at dif-

ferent arguments. This property entails significant computational benefits when carrying

out parameter inference, especially for large data sets. It reduces the simulated likeli-

hood maximization problem to a deterministic problem that can be solved using standard

methods. Furthermore, our density estimator can be fine-tuned to minimize its variance

for a given number of Monte Carlo replications. This feature makes our density estimator

highly accurate in practical applications. Because it is derived from Euler’s discretization

method with different time steps, several Brownian increments can be re-used when car-

rying out Euler discretization. This property simplifies the computational work. Finally,

given that our density estimator is constructed from independent Monte Carlo replica-

tions, its computation can be easily parallelized, yielding further computation benefits.

A numerical case study showcases the benefits of our density estimator and simulated

likelihood estimators. We consider a stochastic volatility model with jumps in returns and

volatility. The distribution of returns is non-Gaussian, and the distribution of volatility is

asymmetric and skewed. This bivariate affine model has the advantage that its transition
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density is known in closed-form. It can be recovered by Fourier inversion of the charac-

teristic function as in Duffie, Pan & Singleton (2000). Because of these properties, the

stochastic volatility model provides an appropriate case study to assess the performance

of our estimation methodology. The numerical results show that our density estimator

is highly accurate. It is able to capture the non-Gaussian distribution of returns, as well

as the asymmetric distribution of volatility, both in the centers and the tails of the dis-

tributions. The density estimator becomes more accurate as the number of Monte Carlo

replications grows large. It beats a naive biased density estimator derived from Euler’s

method in terms of accuracy achieved using up small to medium computational budgets.

Our simulated likelihood estimators are also found to be highly accurate. They are able

to closely recover the data-generating parameters.

1.1 Related methods

The methodology of this paper offers several advantages for parameter inference. The

density estimator we propose is easy to compute and highly accurate, yielding precise

parameter estimators. Our methodology enables consistent and asymptotically efficient

parameter inference. The results hold for a general class of multivariate jump-diffusions

processes, and they can be applied to any times series with any frequency of observations.

Alternative methodologies generally do not satisfy all of these properties.

The method closest to ours is the one of Giesecke & Schwenkler (2014), who estimate

the transition density of reducible jump-diffusions using exact simulation techniques. The

density estimator of Giesecke & Schwenkler (2014) is computationally efficient for large

computational budgets, and unbiased. Therefore, the parameter estimators of Giesecke

& Schwenkler (2014) also inherit the asymptotic properties of maximum likelihood esti-

mators. The method of Giesecke & Schwenkler (2014) is targeted primarily towards uni-

variate jump-diffusions, which are reducible under mild conditions. However, even some

of the most basic multivariate jump-diffusions are irreducible. For example, the standard

stochastic volatility model of Heston (1993) is not reducible. Unlike the estimators of

Giesecke & Schwenkler (2014), ours are applicable to the class of irreducible multivari-

ate jump-diffusions. Nevertheless, our estimators may not be computationally efficient
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for large computational budgets because the costs to evaluate our density estimator may

become very large with very small probability.

If the model is affine as in Duffie et al. (2000), the transition density can be recovered

via Fourier inversion of the characteristic function, which satisfies a system of ordinary

differential equations. However, solving these ordinary differential equations and carrying

out Fourier inversion numerically is computationally challenging in the multivariate case.

Lo (1988) recovers the transition density of a jump-diffusion process with constant jump

intensity and state-independent jump magnitudes by solving the Fokker-Planck equations

governing it. This method is computationally burdensome for large data sets because

the corresponding partial differential equations need to be solved recursively across data

points. In addition, the numerical solution of the Fokker-Planck equations suffers from

the curse of dimensionality, making it unsuitable for multivariate applications. In contrast

to the methods of Duffie et al. (2000) and Lo (1988), our density estimator also applies

for non-affine models with state-dependent jumps.

Inspired by the pioneering work of Aı̈t-Sahalia (2002, 2008), Yu (2007) derives a small-

time expansion approximation of the transition density of a multivariate jump-diffusion

process with state-independent jump sizes. The coefficients of his expansion satisfy a set of

interdependent partial differential equations. Solving these partial differential equations is

computationally burdensome when the number of expansion terms is large, and when the

jump-diffusion process is not reducible. The parameter estimators derived from the density

estimator of Yu (2007) inherit the asymptotic properties of maximum likelihood estimator

only when the time between consecutive observations shrinks to zero as more data points

become available. In contrast, our simulated likelihood estimators inherit the asymptotic

properties of maximum likelihood estimators under standard conditions as the number of

data points grows while keeping the observation frequency of the data fixed. This type

of asymptotic regime is common in many econometric applications.5 Furthermore, the

computational effort necessary to evaluate our density estimator does not depend on the

reducibility of the process.

5Bibby & Sørensen (1995), Florens-Zmirou (1989), Giesecke & Schwenkler (2014), and Gobet, Hoff-

mann & Reiß (2004) consider similar asymptotic regimes.
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Kristensen & Shin (2012) derive nonparametric estimators of the transition density

of a jump-diffusion process with state-independent coefficient functions.6 These authors

apply a kernel estimator to samples of the jump-diffusion process derived from Euler dis-

cretization. If the bandwidth of the kernel estimator shrinks to zero as the number of data

points grows large, then the parameter estimators derived from their density estimator

inherit the asymptotic properties of maximum likelihood estimators. Their density esti-

mator and ours are similarly inexpensive from a computational point of view. However, in

contrast to Kristensen & Shin (2012), our density estimator also applies to jump-diffusions

with state-dependent coefficient functions.

Moment-based methods can also be used for parameter inference. Jiang & Knight

(2002), Chacko & Viceira (2003), Duffie & Glynn (2004), and Duffie & Singleton (1993)

propose generalized method of moments estimators for continuous-time Markov processes.

Should an infinite number of moments be used to perform estimation, then the moment-

based parameter estimators inherit the asymptotic properties of maximum likelihood es-

timators as the number of data points grows large. However, the use of an infinite number

of moments is infeasible in practical applications.7

Gourieroux, Monfort & Renault (1993) and Smith (1993) propose methods of indi-

rect inference that are also applicable for multivariate jump-diffusions. Indirect inference

requires that one is able to simulate from the jump-diffusion model. In addition, it re-

quires that one specifies an auxiliary model. If the latter is correctly specified, then the

parameter estimators derived from indirect inference inherit the asymptotic properties

of maximum likelihood estimators. Unlike indirect inference, our estimation methodology

does not require the specification of auxiliary models, and our simulated likelihood estima-

tors inherit the asymptotic properties of maximum likelihood estimators under conditions

that can be verified using our density estimator. Furthermore, our methodology is appli-

cable for a general class of multivariate jump-diffusions. This is not the case for indirect

inference because the exact simulation of multivariate jump-diffusions is infeasible unless

6The assumption that the distribution of εt is independent of t and θ in equation (1) of Kristensen &

Shin (2012) effectively restricts their model to state-independent jump-diffusions.
7There are few cases in which maximum likelihood efficiency can be achieved with a finite number of

moments. See, e.g., Carrasco, Chernov, Florens & Ghysels (2007) and Jiang & Knight (2010).
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the process is reducible.8

1.2 Structure of the paper

The rest of this paper is organized as follows. Section 2 formulates the model and the

estimation problem. In Section 3, we derive our density representation. We introduce

the density estimator in Section 4, and discuss its computational properties in Section

5. Section 6 proposes simulated likelihood estimators and summarizes their asymptotic

properties. A numerical case study is carried out in Section 7.

2 Problem formulation

Fix a complete probability space (Ω,F ,P) and a right-continuous, complete information

filtration (Ft)t≥0. Let X be a jump-diffusion process valued in S ⊂ Rd that is governed

by the stochastic differential equation

dXt = µ(Xt; θ)dt+ Σ(Xt; θ)dBt + dLt, (1)

where X0 ∈ S is fixed and known, µ : S ×Θ→ Rd is the drift function, Σ : S ×Θ→ Rd×d

is the positive definite volatility matrix function, B is a standard d-dimensional Brownian

motion, and L is a jump process of the type

Lt =
Nt∑
n=1

Γ(XTn−, Dn; θ) (2)

with event stopping times (Tn)n≥1 and jump intensity λt = Λ(Xt; θ) for a function Λ : S×

Θ→ R+. Here, Xt− = lims↗tXs. The jump magnitudes of the process X are determined

by the function Γ : S ×D×Θ→ Rd. The mark variables (Dn)n≥1, which characterize the

jumps of X, are independent and identically distributed in D ⊂ R with probability density

π. The drift, volatility, jump intensity, and jump size functions are specified by a parameter

θ ∈ Θ to be estimated, where the parameter space Θ is a subset of Euclidean space.

8We refer to Giesecke & Smelov (2013) for the exact simulation of reducible jump-diffusions. Henry-

Labordère, Tan & Touzi (2015) develop exact simulation tools for multivariate diffusions.
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Overall, X is a Markov process with infinitesimal generator for functions f : Rd → R

with bounded and continuous first and second order derivatives given by:

Aθf(x) =
d∑
i=1

µi(x; θ)
∂f(x)

∂xi
+

1

2

∑
1≤i,j≤d

(
Σ(x; θ)Σ(x; θ)T

)
i,j

∂2f(x)

∂xixj

+ Λ(x; θ)

∫
D

(f(x+ Γ(x, u; θ))− f(x))π(u)du.

We impose the following assumptions. First, the boundary of S is either unattainable

or absorbing if attainable. Second, the parameter space Θ is a compact subset of Rr

with non-empty interior. Third, there exist a unique strong solution (X, J) of the above

system; sufficient conditions are given in Protter (2004). We focus on the case of constant

observation frequencies, i.e., ti − ti−1 = ∆ for all i, although all results hold for mixed

observation frequencies as long as supi≥1 |ti − ti−1| < ∞. We also assume for simplicity

that the process N and the mark variables (Dn)n≥1 are one-dimensional, and that the

jump mark density π is parameter independent. Generalizations and extensions of these

assumptions are straightforward. Finally, we assume that X admits a transition density.

Cass (2009), Filipović, Mayerhofer & Schneider (2013), Komatsu & Takeuchi (2001), and

Takeuchi (2002) provide sufficient conditions.

We use the following notation throughout the paper. A subscript in Pθ or Eθ indicates

that the parameter determining the law of the stochastic process X in (1) is θ. The

gradient and the Hessian matrix operators are denoted by ∇ and ∇2, respectively. For any

1 ≤ ν, ι, κ ≤ r, write ∂ν , ∂
2
ν,ι, and ∂3

ν,ι,κ for the first, second, and third partial derivatives

with respect to θν , θι, and θκ.

2.1 Inference problem

Suppose that there exists a parameter θ∗ ∈ int Θ such that the paths of X satisfy the

SDE (1) for θ = θ∗. We say that θ∗ is the true parameter. Our goal is to estimate

θ∗ given a sequence of observations of X sampled at the fixed and deterministic times

0 = t0 < . . . < tm <∞. We will use the method of maximum likelihood.

The data Xm = {Xt0 , . . . , Xtm} is a random variable valued in Sm and measurable

with respect to Bm, where B is the Borel σ-algebra on S. The likelihood of the data
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is the Radon-Nikodym density of the law of Xm with respect to the Lebesgue measure

on (Sm,Bm). Letting pt(x, .; θ) be the Radon-Nikodym density of the law of Xt given

X0 = x with respect to the Lebesgue measure on (S,B) (the transition density of X), the

likelihood of θ at the data Xm takes the form

Lm(θ) =
m∏
i=1

p∆(Xti−1
, Xti ; θ) (3)

due to the Markovian structure of (1). The maximum likelihood estimator (MLE) satisfies

θ̂m ∈ arg max
θ∈Θ

Lm(θ) (4)

almost surely. We only consider interior MLEs that satisfy the first order condition

∇Lm(θ̂m) = 0. (5)

Maximum likelihood inference requires that one is able to evaluate the density p∆.

This is generally not possible for the broad class of jump-diffusion models we consider.

We will therefore proceed to construct an unbiased estimator of the density p∆, and use

this density estimator to compute maximum likelihood estimators based on (3).

3 Density representation

Consider the random variable

Z∆(θ) = exp

(∫ ∆

0

(Λ(Xs; θ)− `) ds

) N∆∏
n=1

`

Λ(XTn−; θ)
(6)

for θ ∈ Θ and ` > 0. If Eθ[Z∆(θ)] = 1, then Z∆(θ) defines an equivalent probability

measure Qθ on (Ω,F∆) given by Qθ[A] = Eθ[Z∆(θ)1A] for any A ∈ F∆. The theorems of

Lévy and Watanabe imply that, under Qθ and on [0,∆], N is a Poisson process with rate `;

see Brémaud (1980). Consequently, jumps of the process X arrive at a constant rate under

Qθ. Between jump times, X follows a diffusive process without jumps. These insights yield

a novel representation of the density p∆, summarized in the following theorem.
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Theorem 3.1. Fix ` > 0. Suppose the following assumptions hold.

(A1) For any θ ∈ Θ, the variable Z∆(θ) has unit expectation, Eθ[Z∆(θ)] = 1.

(A2) For any θ ∈ Θ, the process (Xt : t ∈ [0,∆]) is a strong Markov process under Qθ.

Let X̃ be the solution to the SDE

dX̃t = µ(X̃t; θ)dt+ Σ(X̃t; θ)dB̃t, X̃0 ∈ S, (7)

for a standard Brownian motion B̃ independent of B. Let p̃t(v, ·; θ) denote the Pθ-transition

density of X̃t given X̃0 = v. Then,

p∆(v, w; θ) = EQ
θ

[
p̃∆−TN∆

(XTN∆
, w; θ)

Z∆(θ)

∣∣∣∣ X0 = v

]
(8)

for any 0 ≤ t ≤ ∆, v, w ∈ S, and θ ∈ Θ.

The density representation of Theorem 3.1 consists of a mixture of transition densi-

ties of diffusion processes of the type (7). It is an implication of Bayes’ formula. Under

Assumption (A2) and conditional on (N∆, (Tn)n≤N∆
, (XTn)n≤N∆

), that is, conditional on

the number of jumps of X before time ∆, the realizations of all jump times before ∆, and

the values of X at all jump times before ∆, the transition of X from time 0 to time ∆ is

governed only by the law of X from the last jump time TN∆
until time ∆. Given that no

jumps occur in the time interval (TN∆
,∆], the law of X during this time interval is the

same as the law of the diffusive process (7). As a result, under Assumption (A2) and con-

ditional on (N∆, (Tn)n≤N∆
, (XTn)n≤N∆

), the density of X for a transition from v at time

0 to w at time ∆ is equal to the density p̃∆−TN∆
(XTN∆

, w; θ) with X0 = v. Bayes’ formula

tells us that we can recover the unconditional density p∆ by integrating out according to

the law of (N∆, (Tn)n≤N∆
, (XTn)n≤N∆

). This is done by taking the expectation in (8). The

term 1/Z∆(θ) in expression (8) accounts for the change of measure, which significantly

simplifies the estimation of the density in Section 4. Assumption (A1) guarantees that

the change of measure is well-defined. It is a standard regularity assumption; Blanchet &

Ruf (2013) give sufficient conditions. Assumption (A2) is also standard; see Protter (2004,

Theorem 32). The diffusion density p̃t exists if the jump-diffusion density pt exists.
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The density representation (8) complements the recently developed density represen-

tation of Giesecke & Schwenkler (2014), who characterize the transition density of the

process as a mixture of Gaussian densities. This is possible because Giesecke & Schwen-

kler (2014) consider a transformation of the jump-diffusion process known as the Lamperti

transform, which has unit volatility. When the underlying process is univariate, the Lam-

perti transform exists under mild conditions. In the multivariate case, on the other hand,

the Lamperti transform exists only when the process is reducible in the sense of Aı̈t-

Sahalia (2008). As a result, the density representation of Giesecke & Schwenkler (2014)

is restricted to the class of reducible multivariate jump-diffusions. In contrast, we are not

restricted to the class of models for which the Lamperti transform exists. Consequently,

the density representation (8) also applies to irreducible processes. Many models of prac-

tical relevance are not reducible. For example, the stochastic volatility model of Heston

(1993) is not reducible, but it is extensively used in the options pricing literature.9

Theorem 3.1 significantly extends the well-known density representations of Dacunha-

Castelle & Florens-Zmirou (1986) and Rogers (1985). These representations apply only

in the univariate diffusion case; i.e., when Γ ≡ 0 and d = 1. In contrast, our density

representation also applies in the multivariate jump-diffusion case.

The representation (8) also facilitates the derivation of conditions under which the

transition density is smooth with respect to the parameter θ. Smoothness is necessary for

consistency and asymptotic normality of maximum likelihood estimators. For smoothness

of the density, we only require smoothness of the coefficient functions and an integrability

condition, which can be verified using the density estimator we introduce in Section 4.

Our conditions for smoothness are easier to verify in practical settings and less restrictive

than alternative conditions, which often times require that the coefficient functions have

bounded derivatives of all orders (see, e.g., Cass (2009), Komatsu & Takeuchi (2001), and

Takeuchi (2002)).

9See, e.g., Andersen, Benzoni & Lund (2002), Eraker, Johannes & Polson (2003), and Eraker (2004),

among many others.
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Proposition 3.2. Suppose that the conditions of Theorem 3.1 hold. Suppose also that the

following conditions hold:

(A3) The partial derivatives up to n-th order of Φ∆(x, y; θ) = p̃∆−TN∆
(x, y; θ) 1

Z∆(θ)
are

uniformly bounded in expectation in the following sense: For all 1 ≤ k ≤ n and

q1, . . . , qk ∈ {θ1, . . . , θr, v, w},

EQ
θ

[
sup
θ∈Θ

sup
v,w∈S

∂k

∂q1 . . . ∂qk
p̃∆−TN∆

(v, w; θ)
1

Z∆(θ)

]
<∞.

(A4) The drift function µ, volatility matrix function Σ, jump intensity function Λ, jump

magnitude function Γ, and diffusive density p̃ are n-times continuously differentiable

with respect to all of their arguments.

Then θ 7→ p∆(v, w; θ) is n-times continuously differentiable for any v, w ∈ S.

4 Density estimator

Evaluating the transition density of the jump-diffusion X is challenging given that the law

of X is intractable in many applications. A key advantage of the density representation

(8) is that it can be efficiently approximated by exploiting a randomization technique

introduced by Glynn & Rhee (2015). This yields an unbiased density estimator. In this

section, we introduce our density estimator, and analyze its convergence properties.

4.1 Towards an unbiased estimator

Under Qθ, jumps of X arrive with constant intensity `. As a result, samples of N∆ can

be simulated without bias using a standard inverse method. Conditional on N∆, the

distribution of the jump times (Tn)n≤N∆
is the same as that of the order statistics of N∆

uniform random variables on [0,∆]. Samples of the jump times (Tn)n≤N∆
conditional on

N∆ can therefore also be simulated without bias. If the diffusive density p̃ is known in

closed form, and samples of (XTN∆
, 1/Z∆(θ)) can be simulated without bias. Then,

p̃∆−TN∆
(XTN∆

, w; θ)

Z∆(θ)
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given X0 = v is an unbiased estimator of (8) that can be sampled exactly via Monte Carlo

simulation. In most applications, however, the diffusive density p̃ is not known in closed

form, and one cannot sample exactly from the distribution of 1/Z∆(θ). We circumvent

these issues by taking several steps, which we summarize below.

4.1.1 Euler discretization

Note that Z−1
∆ (θ) is an exponential martingale that satisfies the following SDE under Qθ:

dZ−1
t (θ) = −Z−1

t− (θ)

(
Λ(Xt−; θ)

`
− 1

)
(`dt− dNt) , Z−1

0 (θ) = 1. (9)

We can generate an approximation of (XTN∆
, Z−1

∆ (θ)) using Euler discretization. To do

this, we first generate exact samples of N∆ and also samples of (Tn)n≤N∆
conditional on

N∆. Between sampled jump times, we approximate the dynamics of X and Z−1 via Euler

discretization with J steps. Letting (XJ , Z−J) denote the Euler discretization of (X,Z−1),

we initialize XJ
0,0 = X0 and Z−J0,0 = 1, and set

XJ
n,j =

 XJ
n,j−1 + µ

(
XJ
n,j−1; θ

)
hn + Σ

(
XJ
n,j−1; θ

) (
Bjhn −B(j−1)hn

)
, 1 ≤ j ≤ J,

XJ
n−1,J + Γ

(
XJ
n−1,J , Dn; θ

)
, n > 0, j = 0,

Z−Jn,j =

 Z−Jn,j−1 − Z−Jn,j−1

(
Λ
(
XJ
n,j−1; θ

)
− `
)
hn, 1 ≤ j ≤ J,

Λ(XJ
n−1,J ;θ)
`

Z−Jn−1,J , n > 0, j = 0,

for 0 ≤ n ≤ N∆ and hn = Tn−Tn−1

J
, where we have used the notation T0 = 0 and TN∆+1 =

∆ for simplicity. This construction ensures that the two Euler discretizations between

consecutive jump times are correctly pasted together by accounting for the jumps of X

and Z−1. The nature of the Euler discretization implies that (X J ,ZJ) = (XJ
N∆,0

, Z−JN∆,J
)

is a biased estimator of (XTN∆
, Z−1

∆ (θ)). Consequently,

p̃∆−TN∆

(
X J , w; θ

)
ZJ

is a biased estimator of the density p∆(v, w; θ) in (8).

4.1.2 Diffusion density

Next, we approximate the diffusion density p̃. This can also be done via Euler discretiza-

tion. For a given sample of (N∆, TN∆
), we discretize the diffusive process X̃ between time
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0 and time ∆ − TN∆
in an analogous way as for XJ , but using I Euler steps instead of

J . Let (X̃I
i )0≤i≤I denote the Euler discretization of X̃ with Euler step size h̃ =

∆−TN∆

I

obtained this way. Conditional on TN∆
and X̃I

0 , the law of X̃I
I is mixed Gaussian because

each increment in the Euler discretization is normally distributed. More precisely, the

conditional density of X̃I
I given TN∆

and X̃I
0 = v is

P̃I(v, w; θ) =

∫ I∏
i=1

φ
(
xi;xi−1, h̃

)
dx1 . . . dxI−1 (10)

where x0 = v, xI = w, and φ(·;x, h) is the density of the d-dimensional normal distribu-

tion with mean x+µ(x; θ)h and variance-covariance matrix hΣ(x; θ)Σ>(x; θ). The mixed

normal density (10) can be computed using standard numerical routines; see Section 5.

We know from Bally & Talay (1996) that the difference between the Euler density P̃I and

the true density p̃ is of order O(I−1). Thus, P̃I serves as a first-order approximation of p̃.

We can now compute an estimator of the density representation (8), namely

p̂I,J∆ (v, w; θ) = P̃I
(
X J , w; θ

)
ZJ . (11)

The estimator (11) can be computed for a general class of jump-diffusion models char-

acterized by SDE’s of the type (1) given that is solely based on Euler discretization. In

addition, the estimator (11) is asymptotically unbiased as I →∞ and J →∞. That is,

lim
I,J→∞

EQ
θ

[
p̂I,J∆ (v, w; θ)

∣∣∣ X0 = v
]

= p∆(v, w; θ).

4.1.3 Randomization

One drawback of the density estimator (11) is that it is biased by construction for any

finite I and J . If one were to carry out maximum likelihood estimation based on this

biased density estimator, then the resulting parameter estimators may have a distorted

asymptotic distribution even if I →∞ and J →∞ as the data sample grows. This may

result in asymptotically inefficient or asymptotically biased parameter estimators.10 To

avoid these issues, we exploit a randomization technique introduced by Glynn & Rhee

(2015) to construct an unbiased density estimator.

10See Detemple et al. (2006) and Giesecke & Schwenkler (2014).
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Suppose Ξ is a random variable valued in N0 and measurable with respect to F0.

Assume that the distribution of Ξ is independent of the parameter θ and the initial value

X0, and write qn = Qθ[Ξ = n]. Consider subsequences Iξ and Jξ so that Iξ, Jξ → ∞ as

ξ → ∞. The asymptotic unbiasedness of the estimator (11) implies that, under certain

regularity conditions, we can rewrite the density representation (8) as follows:

p∆(v, w; θ) = lim
ξ→∞

EQ
θ

[
p̂
Iξ,Jξ
∆ (v, w; θ)

∣∣∣ X0 = v
]

=
∑
ξ≥0

EQ
θ

[
p̂
Iξ,Jξ
∆ (v, w; θ)− p̂Iξ−1,Jξ−1

∆ (v, w; θ)
∣∣∣ X0 = v

]

=
∑
ξ≥0

EQ
θ

[
p̂
Iξ,Jξ
∆ (v, w; θ)− p̂Iξ−1,Jξ−1

∆ (v, w; θ)

qξ

∣∣∣∣∣ X0 = v

]
qξ

= EQ
θ

[
p̂IΞ,JΞ

∆ (v, w; θ)− p̂IΞ−1,JΞ−1

∆ (v, w; θ)

qΞ

∣∣∣∣∣ X0 = v

]
(12)

where we have set I−1 = J−1 = 0. The last equality follows because Ξ is F0-measurable

and independent of θ and X0. The calculations in (12) imply that

p̂IΞ,JΞ

∆ (v, w; θ)− p̂IΞ−1,JΞ−1

∆ (v, w; θ)

qΞ

is an unbiased estimator of the transition density p∆(v, w; θ).

4.2 Estimator

The steps in the previous section yield an unbiased density estimator that is applicable

for a general class of jump-diffusion models. We summarize in the theorem below. For

simplicity, write

Dξ∆(v, w; θ) = p̂
Iξ,Jξ
∆ (v, w; θ)− p̂Iξ−1,Jξ−1

∆ (v, w; θ).

Theorem 4.1. Fix ∆ > 0 and sequences (Jξ : ξ ∈ N0) and (Iξ : ξ ∈ N0). Let Ξ be an

F0-measurable random variable valued in N0, with distribution given by qξ = Qθ[Ξ = ξ]

that is independent of the parameter θ and the initial value X0. Let (X J ,ZJ) be samples

of (XTN∆
, Z−1

∆ (θ)) constructed via Euler discretization with J steps between consecutive

jump times. In addition, let P̃I be a mixed Gaussian density as in (10) derived from Euler
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discretization of X̃ with I steps. Assume that the conditions of Theorem 3.1 are valid. In

addition, suppose that the following condition also holds.

(B1) For any θ ∈ Θ, and v, w ∈ S,

∑
ξ≥0

∥∥∥p̃Iξ,Jξ∆ (v, w; θ)− p∆(v, w; θ)
∥∥∥2

2

qξ
<∞.

Then, for any v, w ∈ S and θ ∈ Θ,

p̂∆(v, w; θ) =
DΞ

∆(v, w; θ)

qΞ

(13)

is an unbiased estimator of p∆(v, w; θ).

The main advantage of the estimator (13) is that it is unbiased for any v, w ∈ S,

θ ∈ Θ, and ∆ > 0. This property generates key benefits when performing maximum

likelihood estimation of the jump-diffusion model (1) based on the density estimator p̂∆.

In particular, the unbiasedness property ensures that one can always implement a version

of the density estimator p̂∆ which, when used for maximum likelihood inference, results in

asymptotically efficient and asymptotically unbiased parameter estimators; see Giesecke

& Schwenkler (2014). This is generally not possible if one were to use the biased density

estimator p̂I,J∆ in (11), as proved by Detemple et al. (2006). We will discuss in detail the

implementation of the density estimator p̂∆ and the asymptotic properties of parameter

estimators derived from this density estimator in the following sections.

We conclude this section by emphasizing that p̂∆(v, w; θ) can be differentiated under

certain conditions to obtain unbiased estimators of the partial derivatives of the transition

density. Partial derivatives of the density are necessary in many econometric applications.

Proposition 4.2. Suppose that the conditions of Proposition 3.2 and Theorem 4.1 are

satisfied. Furthermore, suppose:

(B2) The partial derivatives up to n-th order of p̂∆ with respect to θ are uniformly bounded

in expectation in the following sense: For all 1 ≤ k ≤ n and i1, . . . , ik ∈ {1, . . . , r},

EQ
θ

[
sup
θ∈Θ

sup
v,w∈S

∂ki1,...,ik p̂∆(v, w; θ)

]
<∞.
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Then, θ 7→ p̂∆(v, w; θ) is almost-surely n-times continuously differentiable for any v, w ∈

S. In addition, any n-th partial derivative of p̂∆(v, w; θ) with respect to θ is an unbiased

estimator of the corresponding derivative of p∆(v, w; θ). That is,

EQ
θ

[
∂ni1,...,in p̂∆(v, w; θ)

]
= ∂ni1,...,inp∆(v, w; θ) for all i1, . . . , in ∈ {1, . . . , r}.

5 Computation of the density estimator

Computing the density estimator p̂∆ requires that one specifies choices for the sequences

(Iξ)ξ≥0 and (Jξ)ξ≥0, the distribution (qξ)ξ≥0 of the random variable Ξ, the Poisson rate

` > 0, and the numerical methodology to compute the mixed normal density P̃I . In this

section, we propose an implementation of our density estimator that ensures that the

density estimator has finite variance while minimizing the computational need.

5.1 Finite variance

We begin by implementing an estimator of P̃I . A simple unbiased estimator of P̃I can be

constructed via Monte Carlo simulation. For given I and TN∆
, compute H i.i.d. samples

of the Euler discretization (X̃I
i )0≤i≤I of X̃ on [0,∆−TN∆

]. Following Pedersen (1995), we

estimate P̃I via its Monte Carlo counterpart

P̃H,I(v, w; θ) =
1

H

H∑
ν=1

φ
(
w; X̃I,ν

I−1, h̃
)
, (14)

where h̃ =
∆−TN∆

I
, X̃I,ν

I−1 is the ν-th sample of X̃I
I−1, and X̃I,ν

0 = v for all 1 ≤ ν ≤ H.

This yields an unbiased estimator of P̃I(v, w; θ). We can therefore replace P̃I with P̃H,I

in (11), and the density estimator p̂∆ remains unbiased. In other words, if we set

p̂H,I,J∆ (v, w; θ) = P̃H,I
(
X J , w; θ

)
ZJ ,

Dξ∆(v, w; θ) = p̂
Hξ,Iξ,Jξ
∆ (v, w; θ)− p̂Hξ−1,Iξ−1,Jξ−1

∆ (v, w; θ),

then the result of Theorem 4.1 remains unchanged.

It is well-known that Euler discretization has strong rate of convergence of order 1/2

(see, e.g., Jacod & Protter (1998)). In our case, because we carry out Euler discretization
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between consecutive jump times of X under Qθ, we have∥∥ZJ − Z−1
∆ (θ)

∥∥
2

= O
(
`∆J−1/2

)
. (15)

A key result by Gobet & Labart (2008) implies that∥∥∥P̃H,I(v, w; θ)− p̃∆−TN∆
(v, w; θ)

∥∥∥2

2
= O

(
I−2 +H−1VarQθ

(
P̃1,I(v, w; θ)

))
. (16)

Setting VI,θ = Σ(X̃I
I−1; θ)Σ(X̃I

I−1; θ)> and X̃I,θ = X̃I
I−1 + µ(X̃I

I−1; θ)h̃, we can show that

VarQθ

(
P̃1,I(v, w; θ)

)
≤ EQ

θ

e− 1
h̃
(w−X̃I,θ)

>
V −1
I,θ (w−X̃I,θ)

h̃d(2π)d detVI,θ

 = O
(
Id/2

)
for all θ ∈ Θ, ` > 0, and v, w ∈ S. In light of these results, we set Hξ = O(I

2+d/2
ξ ) and

fix Iξ as to equalize the rates of convergence of (15) and (16) for any given ξ. This can

be achieved by selecting Iξ = O(
√
Jξ). Under sufficient regularity conditions, this choice

guarantees that ∥∥∥p̂Hξ,Iξ,Jξ∆ (v, w; θ)− p∆(v, w; θ)
∥∥∥

2
= O

(
J−0.5
ξ

)
.

In other words, the mean-squared error of the biased density estimator p̂H,I,J∆ converges

to zero at the canonical rate of 1/2. We can now construct an unbiased density estimator

with finite variance.

Proposition 5.1. Fix Iξ = O(J
1/2
ξ ) and Hξ = O(J

1+d/4
ξ ) for ξ ≥ 0. Suppose that the

conditions of Theorem 4.1 are satisfied. Assume that the following conditions are also

valid.

(C1) In the limit J →∞, the following asymptotic behavior holds for any θ ∈ Θ:∥∥∥∥ZJ − 1

Z∆(θ)

∥∥∥∥
2

= O
(
J−0.5

)
.

(C2) The following asymptotic behavior holds for v, w ∈ S and θ ∈ Θ in the limit I →∞:∥∥∥P̃I(v, w; θ)− p̃∆−TN∆
(v, w; θ)

∥∥∥
2

= O
(
I−1
)
.

(C3) The determinant of ΣΣ> is bounded away from zero. That is,

inf
θ∈Θ

inf
x∈S

det
(
Σ(x; θ)Σ(x; θ)>

)
> 0.
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Define

p̂H,I,J∆ (v, w; θ) = P̃H,I
(
X J , w; θ

)
ZJ ,

Dξ∆(v, w; θ) = p̂
Hξ,Iξ,Jξ
∆ (v, w; θ)− p̂Hξ−1,Iξ−1,Jξ−1

∆ (v, w; θ).

Then,

p̂∆(v, w; θ) =
DΞ

∆(v, w; θ)

qΞ

is an unbiased estimator of p∆(v, w; θ) for any v, w ∈ S and θ ∈ Θ, and the variance of

p̂∆ is finite: ∥∥p̂∆(v, w; θ)− p∆(v, w; θ)
∥∥

2
<∞.

We remark that sufficient conditions for Condition (C1) are given by Higham, Mao

& Stuart (2003), Jacod & Protter (1998), and Yan (2002), among many others. Sufficient

conditions for Condition (C2) are given by Bally & Talay (1996), Gobet & Labart (2008),

Guyon (2006), and Konakov & Mammen (2002).

5.2 Computational properties

The density estimator p̂∆ has error. That is, p̂∆(v, w; θ) 6= p∆(v, w; θ) almost surely even

though EQ
θ [p̂∆(v, w; θ)] = p∆(v, w; θ). A natural question to ask is: How much compu-

tational work is necessary to estimate the density so that a certain error bound is not

violated with high probability? The answer to this question gives a sense of the compu-

tational complexity of a density estimator.

Given that the variance of p̂∆ is bounded, a starting point to evaluate the computa-

tional complexity of our density estimator is Monte Carlo simulation. Define p̂K∆(v, w; θ)

as the Monte Carlo estimator given by the average of K independent samples of the un-

biased estimator p̂(v, w; θ). It is well understood that the variance of the Monte Carlo

estimator p̂K∆ converges to zero as we let the number K of Monte Carlo samples grow

infinitely large. Therefore, if we want to achieve

Qθ

[ ∥∥p̂K∆(v, w; θ)− p∆(v, w; θ)
∥∥

2
≤ ε
]
≥ 1− δ

for some ε, δ > 0, we need to choose K sufficiently large.
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Evaluating the Monte Carlo estimator p̂K∆ for large K is computationally expensive.

Given that IΞ = O(J
1/2
Ξ ) and HΞ = O(J

1+d/4
Ξ ), the computational costs are driven by

the realizations of JΞ. The value of JΞ may be large whenever Ξ is large, increasing the

computational effort required to evaluate p̂K∆ . These observations suggest that we can

control for the computational complexity of our density estimator by optimally choosing

the sequence (Jξ)ξ≥0 of Euler steps and the distribution (qξ)ξ≥0 of Ξ. We follow Glynn &

Rhee (2015) and set

Jξ = O(2ξ) and qξ = O
(
2−ξξ log2

2(1 + ξ)
)
.

These choices ensures that the computational complexity of our density estimator is min-

imal, as indicated in the Proposition below.

Proposition 5.2. Suppose that Assumptions (C1)-(C3) of Proposition 5.1 are satisfied.

Fix Jξ = O(2ξ), Iξ = O(J
1/2
ξ ), and Hξ = O(J

1+d/4
ξ ) for ξ ∈ N0 and some ρ > 1. In addi-

tion, set qξ = O(2−ξξ log2
2(1 + ξ)) for ξ ∈ N0. Then, p̂K∆(v, w; θ) is an unbiased estimator

of p∆(v, w; θ) for any v, w ∈ S and θ ∈ Θ, and the root-mean squared error of the density

estimator p̂K∆ decays at rate 1/2; i.e.,

∥∥p̂K∆(v, w; θ)− p∆(v, w; θ)
∥∥

2
= O

(
K−0.5

)
.

Furthermore, for any ε, δ > 0, the computational effort necessary to evaluate the density

estimator p̂K∆ so that the error bound ε is not violated with probability 1− δ is at least of

order O
(
ε−(3+d/2) log2(1/ε)

)
. That is,

Qθ

[ ∥∥p̂K∆(v, w; θ)− p∆(v, w; θ)
∥∥

2
≤ ε
]
≥ 1− δ ⇒ ε−(3+d/2) log2(1/ε)

Effort (p̂K∆(v, w; θ))
= O(1).

This is the slowest rate of divergence of Effort(p̂K∆(v, w; θ)), the computational effort nec-

essary to evaluate the Monte Carlo estimator p̂K∆ , as K →∞.

Proposition 5.2 states that the computational effort necessary to evaluate the density

estimator p̂K∆ with a maximum error of ε increases faster than cubicly in ε. In other words,

the effort necessary to evaluate our density estimator grows faster than we would expect

from the standard Monte Carlo theory. Furthermore, the rate at which the computational
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complexity of p̂K∆ grows increases with the dimensionality of the process X. These proper-

ties arise because JΞ = O(2Ξ) may become excessively large when Ξ is large, which occurs

with high probability when the number of Monte Carlo samples K is large. In addition,

a large number HΞ of Monte Carlo samples are necessary when the dimension d is large

in order to control for the variance of the diffusion density estimator P̃HΞ,IΞ .

In spite of the computational costs when K is large, the Monte Carlo estimator p̂K∆

has several features that make it appealing from a computational perspective. We describe

these features below.

5.2.1 Maximum accuracy

We can control for the accuracy of the Monte Carlo estimator p̂K∆ by controlling for the

variance of p̂∆. We have one degree of freedom to control for the variance of p̂∆, namely, the

choice of the Poisson rate ` > 0. Small values of ` increase the variance of the Monte Carlo

estimator p̂∆(v, w; θ) in its tails because the jump-diffusion density p∆ is approximated

by a Gaussian density when ` ≈ 0. On the other hand, large values of ` increase the bias

in (15), therefore increasing the overall variance of our density estimator.

We fix ` > 0 as to minimize the variance of the density estimator p̂∆ across the

parameter and state spaces. That is, we fix

`∗ = arg min
`>0

max
θ∈Θ

max
v,w∈S

VarQθ
(
p̂∆(v, w; θ)

)
. (17)

Such a choice for ` ensures that our density estimator has the smallest possible variance

globally across the parameter and state spaces. This yields the most accurate Monte Carlo

estimator p̂K∆ , uniformly across the parameter and state spaces.

The optimization problem (17) can be solved using a standard numerical optimization

routine, such as the Nelder-Mead algorithm. It needs to be solved only once for a given

jump-diffusion of the type (1) and a given ∆ > 0. The optimal Poisson rate `∗ can be

reused to compute the Monte Carlo estimator p̂K∆(v, w; θ) for any v, w ∈ S and θ ∈ Θ.

An unbiased estimator of the variance VarQθ (p̂∆(v, w; θ)) can be easily constructed using

independent samples of the density estimator p̂∆.
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5.2.2 Multilevel Monte Carlo

In order to construct a sample of p̂∆ for a given sample of Ξ, we need to generate the Euler

samples (X j,Zj) based on j = O(2Ξ) and j = O(2Ξ−1) steps. In other words, we need to

run two Euler discretizations, one of which uses a fraction of the Euler steps of the other.

To accomplish this task, it suffices if we sample Brownian increments for the fine Euler

discretization with O(2Ξ) Euler steps, and then add up consecutive Brownian increments

to obtain the increments for the coarser discretization with a fraction of Euler steps. As

a result, we only need to sample once to obtain Euler discretizations with two different

numbers of Euler steps. The idea of reusing Brownian increments for Euler discretizations

with different numbers of Euler steps is inspired by the Multi-Level Monte Carlo method

of Giles (2008). It yields important computational advantages, which we highlight in a

numerical case study in Section 7.

5.3 Implementation

The evaluation of the Monte Carlo estimator p̂K∆(v, w; θ) requires that we generate K

independent samples of the random element R = (Ξ,P,T,D,W,U,V), which contains:

• Ξ ∼ (qξ)ξ≥0, where (qξ)ξ≥0 is fixed as in Proposition 5.2,

• P ∼ Poisson(`∆), which is a sample of the jump count N∆ under Qθ,

• T = (Tn)n=1,...,P, which is a sample of the jump times (Tn)n≤N∆
under Qθ conditional

on N∆ = P,

• Independent jump mark samples D = (Dn)n=1,...,P from the density π,

• Independent samples W = (Wn,j)n=0,...,P, j=1,...,JΞ
from the d-dimensional standard

normal distribution with JΞ = O(2Ξ), and

• Independent samples U = (Un,i,ν)n=0,...,P, i=1,...,I,ν=1,...,H from the d-dimensional stan-

dard normal distribution with I = O(J
1/2
Ξ−1) and H = O(J

1+d/4
Ξ−1 ).

• Independent samples V = (Vn,i,ν)n=0,...,P, i=1,...,I,ν=1,...,H from the d-dimensional stan-

dard normal distribution with I = O(J
1/2
Ξ ) and H = O(J

1+d/4
Ξ ).
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The sampling of these random variables is standard; see, e.g., Glasserman (2003). The

following Algorithm describes the computation of the Monte Carlo estimator p̂K∆ .

Algorithm 5.3 (Sampling of p̂∆(v, w; θ)). Let v, w ∈ S, θ ∈ Θ, the Poisson rate ` > 0,

the exponent ρ > 1, and i.i.d. samples Rk = (Ξk,Pk,Tk,Dk,Wk,Uk,Vk) for k = 1, . . . , K

be given. Initialize p̂K = 0. For k = 1, . . . , K, do:

(1) Construct samples of (X j,Zj) with j = O(JΞk) and j = O(JΞk−1) Euler steps

between consecutive jumps. Use the Euler increments Wk, the jump times Tk, and

the jump marks Dk, and assume X0 = v.

(2) Set H = O(J
1+d/4
Ξ ) and I = O(J

1/2

Ξk
). For ν = 1, . . . , H, set X̃I,ν

0 = X j for j =

O(JΞk), and construct the Euler discretization (X̃I,ν
i )i=1,...,I of X̃ with I Euler steps

in [0,∆ − TkPk ] by using the Euler increments Vk. Evaluate the density estimator

P̃H,I(X j, w; θ) in (14).

(3) Set p̂(1) = P̃H,I (X j, w; θ)Zj for j = O(JΞk).

(4) Set H = O(J
1+d/4
Ξ−1 ) and I = O(J

1/2

Ξk−1
). For ν = 1, . . . , H, set X̃I,ν

0 = X j for

j = O(JΞk−1), and construct the Euler discretization (X̃I,ν
i )i=1,...,I of X̃ with I Euler

steps in [0,∆ − TkPk ] by using the Euler increments Uk. Evaluate P̃H,I(X j, w; θ) as

in (14).

(5) Set p̂(2) = P̃H,I (X j, w; θ)Zj for j = JΞk−1.

(6) Update p̂K as

p̂K +
1

K

p̂(1) − p̂(2)

qΞk
.

Return p̂K, which is an unbiased sample of p̂K∆(v, w; θ).

The evaluation of our density estimator via Algorithm 5.3 is very simple. Steps (1),

(2), and (3) require straightforward Euler discretization; Algorithms A.1 and A.2 in Ap-

pendix A provide guidance. Steps (2), (5) and (6) involve basic algebraic operations. We

have implemented Algorithm 5.3 in R. The codes are available upon request.
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Algorithm 5.3 highlights an important feature of the Monte Carlo estimator p̂K∆ :

It can be computed as an analytical function of samples of the random element R =

(Ξ,P,T,D,W,U,V). Samples of R are independent of the parameter θ and and the pair

(v, w) at which the density estimator is evaluated. Because of this, it suffices that we

generate all samples of R once, and re-use these samples to evaluate p̂K∆(v, w; θ) at any

θ ∈ Θ and v, w ∈ S. This feature generates important computational advantages when

using the Monte Carlo estimator p̂K∆ for the statistical estimation of model (1).

6 Parameter inference

We derive parameter estimators based on our density estimator p̂∆, and analyze their

asymptotic properties. Let θ∗ ∈ int Θ be the true data-generating parameter. Define the

simulated counterpart of the likelihood (3) as

L̂Km(θ) =
m∏
i=1

p̂K∆(X(i−1)∆, Xi∆; θ). (18)

A simulated maximum likelihood estimator (SMLE) θ̂Km is an almost sure maximizer of

the simulated likelihood (18). That is,

θ̂Km ∈ arg max
θ∈Θ

L̂Km(θ). (19)

Because the density estimator p̂K∆(θ) is unbiased with finite variance, the asymptotic

properties of the SMLE θ̂Km are well understood. Giesecke & Schwenkler (2014) provide

sufficient conditions that ensure that:

• A SMLE is asymptotically unbiased. That is,

θ̂Km → θ̂m

almost surely as K →∞.

• A SMLE is consistent, and

θ̂Km → θ∗

in Pθ∗-probability as m→∞ and K →∞.
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• A SMLE is asymptotically normal and asymptotically efficient. More precisely,

√
m(θ̂Km − θ∗)→ N

(
0,Σ−1

θ∗

)
if m

K
→ c ∈ [0,∞) as m→∞ and K →∞, where

Σθ∗ = − lim
m→∞

∇2 logLm(θ∗).

is the Fisher information matrix.

The conditions of Giesecke & Schwenkler (2014) can be easily verified using our density

estimator p̂∆.

As discussed in Section 5.3, we can separate the simulation steps from the estimation

steps when evaluating the Monte Carlo density estimator p̂K∆(v, w; θ). This fact generates

significant computational advantages when carrying out parameter inference based on our

density estimator. This is because the simulated likelihood L̂Km(θ) becomes a deterministic

function of the parameter θ and the data Xm once the samples of the random element R

needed to evaluate p̂K∆ have been generated. We can therefore employ standard numerical

routines, such as the Nelder-Mead method, to solve the optimization problem (19).

7 Numerical results

This section illustrates the behavior of our density estimator and of simulated maximum

likelihood estimators in a numerical case study. We consider a bivariate model from the

affine class defined in Duffie et al. (2000). We specify the jump-diffusion X by choosing the

following functions for θ = (a, b, k, X̄, c, v, `0,m, s, e) ∈ R2×R2
+× [−1, 1]×R2

+×R×R2
+,

X = (X1, X2) ∈ S = R2, and D = (D1, D2) ∈ D = R× R+:

µ(X; θ) =

 a− bX2

k(X̄ −X2)

 , Σ(X; θ) =
√
X2

 1 0

cv
√

(1− c2)v


Γ(X,D; θ) =

 m+ sD1

−e log(D2)

 , Λ(X; θ) = `0.
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The SDE (1) in this case can be rewritten as

d

 X1,t

X2,t

 =

 a− bX2,t−

k(X̄ −X2,t−)

 dt+
√
X2,t−

 1 0

cv
√

(1− c2)v

 dWt + dLt, (20)

where Lt =
∑Nt

n=1 Γ(XTn−, Dn; θ) and N is a counting process with intensity `0. The

marks (D1,n)n≥1 are i.i.d. samples of standard normal random variable, and (D2,n)n≥1 are

i.i.d. samples of a standard uniform random variable. We fix the parameter space Θ =

[−0.3, 0.3]× [−0.5, 0.5]× [0.0001, 0.5]× [0.0001, 0.5]× [−1, 1]× [0.0001, 0.5]× [0.0001, 20]×

[−0.3, 0.3]× [0.0001, 0.4]× [0.0001, 0.3]. The true data-generating parameter is θ∗ = (0.1,

0, 0.1, 0.2, −0.5, 0.2, 6, −0.07, 0.1, 0.07), and X0 = (0, 0.1).

Because model (20) is affine as in Duffie et al. (2000), the characteristic function of

X can be evaluated in terms of solutions of ordinary differential equations. The solutions

to these ordinary differential equations are known in closed form given that the jump

intensity of N is constant. As a result, the characteristic function of X is known in closed

form. We can thus evaluate the true density p∆ semi-analytically via Fourier inversion

of the characteristic function. The density p∆ derived via Fourier inversion serves as a

benchmark against which we will evaluate our density estimator p̂K∆ , as well as other

competing estimators. We implement Fourier inversion via numerical quadrature with

500 discretization points per dimension in [−2000, 2000]2. The numerical results reported

in this section are implemented in R, running on an 2 × 8-core 2.6 GHz Intel Xeon E5-

2670, 128 GB server at Boston University with a Linus Centos 6.6 operating system. All

codes used to generate the results of this section are available upon request.

The SDE (20) describes a stochastic volatility model with jumps that is commonly

used in the options pricing literature; see, e.g., Andersen et al. (2002), Eraker et al. (2003),

Eraker (2004). Jumps in returns are normally distributed, and jumps in volatility are

exponentially distributed. Jumps in returns and volatility occur simultaneously. Brownian

innovations in returns and volatility are correlated with correlation coefficient c. Because

volatility is random and there are jumps, the distribution of returns is non-Gaussian.

Furthermore, the distribution of volatility is asymmetric and skewed. Because of these

special features, and because the true density p∆ is known in semi-analytical form, Model

(20) provides a good test case for evaluating the performance of our estimators.
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7.1 Density estimator

We study the accuracy of our density estimator p̂K∆ . We fix ∆ = 1/12, which corresponds

to a monthly time horizon. Figure 1 shows surface plots of the Monte Carlo estimator

p̂K∆(v, w; θ) computed for K = 1000 and K = 5000. When K is small and only few Monte

Carlo replications are used to evaluate our density estimator, the density estimator assigns

probability mass to areas in which the true density has no mass. These spikes vanish as

the number of Monte Carlo replications grows. Figure 2 shows a contour plot of the Monte

Carlo estimator p̂K∆(v, w; θ) for K = 5000. Confirming the unbiasedness result of Theorem

4.1, the Monte Carlo estimator is centered around the same location as the true density.

Figures 3 and 4 plot the marginal densities of returns and volatility for K ∈ {1000,

2000, 5000}, together with 90% confidence bands computed from bootstrap with 1000

bootstrap samples. The marginal densities are computed via rectangular quadrature of

the true density and the Monte Carlo density estimator using an equidistant grid on

[−0.5, 0.3]×[0, 0.3] with 4779 grid points. It can be seen that the marginal densities derived

from our estimator are close to the true marginal densities in the centers and in the tails

of the distributions. Given that our density estimator has positive and finite variance, the

marginal densities derived from p̂K∆ fluctuate around the true marginal densities. However,

the bandwidth of these fluctuations decreases as the number K of Monte Carlo samples

grows. This confirms Proposition 5.1, which states that the mean squared error of the

Monte Carlo estimator converges to zero as K grows large.

We also plot conditional densities of returns and volatility in Figures 5 and 6. Con-

sistent with Proposition 5.1, these figures reveal that the accuracy of the Monte Carlo

estimator increases as the number K of Monte Carlo samples rises. Further, these figures

show that our density estimator is able to capture the asymmetric and non-Gaussian

distribution of returns and volatility.

7.2 Computational complexity

We evaluate the computational complexity of our density estimator. For this, we ran-

domly pick 500 points in v, w ∈ [−0.5, 0.3] × [0, 0.3], and evaluate the unbiased Monte
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Carlo estimator p̂K∆ at these 500 randomly selected points and the true parameter θ∗. We

compute the root mean squared error (RMSE) of the unbiased Monte Carlo estimator

across the 500 pairs (v, w), and track the time it takes to compute the density estimator

for all 500 pairs (v, w). We carry out the same analysis for the Monte Carlo counterpart

of the biased density estimator p̂H,I,J∆ (v, w; θ) in (11) based on K Monte Carlo samples.

We adopt the square-root rule of Duffie & Glynn (1995) for the biased density estimator

(11) and set J =
√
K. As for the unbiased density estimator, we fix I =

√
J and H = 1

when computing the biased density estimator (11).

Figure 7 shows that our unbiased Monte Carlo estimator p̂K∆ can achieve high ac-

curacy even with small computational budgets. Because the Monte Carlo estimator p̂K∆

is unbiased, it achieves smaller RMSE than the biased density estimator (11) for the

computational budgets we consider. As a result, the Monte Carlo estimator p̂K∆ is compu-

tationally efficient for the small to medium-sized computational budgets considered here.

Nonetheless, Figure 7 also shows that the rate of convergence of our density estimator is

not linear in the log-log scale plot. This holds because the computational effort necessary

to achieve a certain error bound grows nonlinearly and faster than quadratic as the error

bound shrinks to zero, as highlighted by Proposition 5.2. Consequently, we expect that our

density estimator will be less computationally efficient for large computational budgets.

7.3 Simulated likelihood estimators

We carry out a simulation analysis to evaluate our simulated likelihood estimators. We

simulate 100 independent samples of the data Xm = {Xt0 , Xt1 , . . . , Xtm} from its true law

Pθ∗ with ti−ti−1 = ∆ = 1/12 for all 1 ≤ i ≤ m and m = 720. This corresponds to 60 years

of monthly data. We use Broadie & Kaya (2006) to generate exact samples of Xm. For

each data sample, we compute SMLE θ̂Km by maximizing the simulated likelihood LKm(θ)

for K = 20000. We use a Nelder-Mead method to calculate maximizers of the simulated

log-likelihood.

Table 1 shows the average of the computed SMLE across all 100 data samples, as

well as their empirical standard deviation. Our SMLE are able to precisely identify the

true parameters. Almost all data-generating parameters are contained in a two empirical
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standard deviation band around the average SMLE.

Next, we analyze the asymptotic distribution of our SMLE. For this, we compute the

first four centered moments of the scaled error
√
m(θ̂Km − θ∗) of our SMLE empirically

across the 100 samples of the data Xm. We compare the first four empirical moments to the

theoretical moments implied by the asymptotic distribution of true maximum likelihood

estimators; see Theorem 6.2 of Giesecke & Schwenkler (2014). Table 2 indicates that the

moments of the scaled error of our SMLE are similar to the theoretical moments implied

by the asymptotic distribution of maximum likelihood estimators for most parameters.

As a result, θ̂Km has a similar distribution as true maximum likelihood estimators. In

accordance with the discussion in Section 6, these numerical results suggest that the

simulated likelihood estimator θ̂Km that we propose in this paper indeed behaves similarly

to true maximum likelihood estimators, and that it inherits their consistency, asymptotic

normality, and asymptotic efficiency properties.

A Algorithms

Algorithm A.1 (Simultaneous sampling of (X j,Zj) via Euler discretization with j = O(JΞ)

and j = O(JΞ−1) Euler steps between consecutive jumps for given P, T, and W). Set

X1
0,0 = X2

0,0 = v, Z1
0,0 = Z2

0,0 = 1, T0 = 0, TP+1 = ∆, and J = O(2Ξ−1). For n = 0, . . . ,P,

do:

(1) Set hn = Tn+1−Tn
J

.

(2) For j = 1, . . . , J , set:

X1
n,j = X1

n,j−1 + hnµ
(
X1
n,j−1; θ

)
+
√
hnΣ

(
X1
n,j−1; θ

)
(Wn,2j−1 + Wn,2j)

X2
n,2j−1 = X2

n,2(j−1) +
hn
2
µ
(
X2
n,2(j−1); θ

)
+

√
hn
2

Σ
(
X2
n,2(j−1); θ

)
Wn,2j−1

X2
n,2j = X2

n,2j−1 +
hn
2
µ
(
X2
n,2j−1; θ

)
+

√
hn
2

Σ
(
X2
n,2j−1; θ

)
Wn,2j

Z1
n,j = Z1

n,j−1 − hnZ1
n,j−1

(
Λ
(
X1
n,j−1; θ

)
− `
)
,

Z2
n,2j−1 = Z2

n,2(j−1) −
hn
2
Z2
n,2(j−1)

(
Λ
(
X2
n,2(j−1); θ

)
− `
)
,
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Z2
n,2j = Z2

n,2j−1 −
hn
2
Z2
n,2j−1

(
Λ
(
X2
n,2j−1; θ

)
− `
)
.

(3) If n < P, set

X1
n+1,0 = X1

n,J + Γ
(
X1
n,J ,Dn; θ

)
,

X2
n+1,0 = X2

n,2J + Γ
(
X2
n,2J ,Dn; θ

)
,

Z1
n+1,0 =

Λ
(
X1
n,J ; θ

)
`

Z1
n,J ,

Z2
n+1,0 =

Λ
(
X2
n,2J ; θ

)
`

Z2
n,2J .

Return (X1
P,0, Z

1
P,J), which is a sample of (X j,Zj) with j = O(JΞ−1), and (X2

P,0, Z
2
P,2J),

which is a sample of (X j,Zj) with j = O(JΞ).

Algorithm A.2 (Sampling of the density P̃1,I(v, w; θ) via Euler discretization for I = O(J
1/2
Ξ )

and given ∆, P, T, and V). Initialize X̃0 = v.

(1) Fix h = ∆−TP

I
.

(2) For i = 1, . . . , I − 1, set

X̃i = X̃i−1 + hµ
(
X̃i−1; θ

)
+
√
hΣ
(
X̃i−1; θ

)
Vi.

(3) Return

P̃1,I(v, w; θ) = φ

(
1√
h

Σ−1
(
X̃I−1; θ

)> (
w − X̃I−1 − µ

(
X̃I−1; θ

)
h
))

.
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True parameter θ∗ SMLE θ̂Km
M SD

a 0.1 0.1295 0.0674
b 0 0.0008 0.0723
k 0.1 0.1058 0.0220
X̄ 0.2 0.1928 0.0860
c −0.5 −0.5651 0.0390
v 0.2 0.1771 0.0096
`0 6 6.2828 0.4304
m −0.07 −0.0570 0.0261
s 0.1 0.0869 0.0352
e 0.07 0.0688 0.0097

Table 1: Simulated likelihood estimators. This table shows the average SMLE θ̂Km estimated
from 100 independent samples of the data Xm with m = 720 (Column “M”). It also
displays the standard deviation of θ̂Km across all 100 data samples (Column “SD”). We
use K = 20000 Monte Carlo replications to evaluate the density estimator.
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√
m(θ̂Km − θ∗) Theoretical asymptotic distribution

M V S K M V S K

a 0.7916 3.2708 0.2658 2.9229 0.0000 134.3693 0.0000 3.0000
b 0.0215 3.7636 −0.5064 3.9332 0.0000 10.0593 0.0000 3.0000
k 0.1556 0.3485 −0.0014 3.5392 0.0000 0.3548 0.0000 3.0000
X̄ −0.1932 5.3251 −0.4290 3.3417 0.0000 272.3220 0.0000 3.0000
c −1.7468 1.0951 0.2311 2.0267 0.0000 0.4393 0.0000 3.0000
v −0.6145 0.0664 −0.0844 2.4919 0.0000 0.0173 0.0000 3.0000
`0 7.5883 133.3758 −1.1395 3.9449 0.0000 588.3955 0.0000 3.0000
m 0.3488 0.4905 −0.4843 2.5459 0.0000 0.6830 0.0000 3.0000
s −0.3515 0.8921 0.0226 2.3683 0.0000 0.7190 0.0000 3.0000
e −0.0322 0.0677 0.0424 1.5549 0.0000 0.0069 0.0000 3.0000

Table 2: Asymptotic distribution. This table shows the empirical mean (“M”), vari-
ance (“V”), skewness (“S”), and kurtosis (“K”) of

√
m(θ̂Km − θ∗) estimated from 100

independent samples of the data Xm with m = 720 and K = 20000. It also shows
the theoretical moments of the asymptotic distribution of maximum likelihood estima-
tors. This distribution is normal with mean zero and variance-covariance matrix Σ−1

θ∗

for Σθ∗ = − limm→∞
1
m
∇2 logL(θ∗) according to Theorem 6.2 of Giesecke & Schwenkler

(2014).
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Figure 1: Surface plots. These figures show the surface plots of the true density p∆(v, w; θ)
and the unbiased Monte Carlo estimator p̂K∆(v, w; θ) for v = (0, 0.1), w ∈ [−0.5, 0.3] ×
[0, 0.3], and K ∈ {1000, 5000}.
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Figure 2: Contour plots. These figures show the contour plots of the true density p∆(v, w; θ)
and the unbiased Monte Carlo estimator p̂K∆(v, w; θ) for v = (0, 0.1), w ∈ [−0.5, 0.3] ×
[0, 0.3], and K = 5000.
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Figure 3: Marginal density of returns. These figures show the marginal density of returns
computed via numerical quadrature along the X2-axis given X0 = (0, 0.1). We take K ∈
{1000, 2000, 5000} for the Monte Carlo estimator. Confidence bands are computed via
bootstrap with 1000 bootstrap samples. The plots on the right-hand side are in log-scale.
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Figure 4: Marginal density of volatility. These figures show the marginal density of volatil-
ity computed via numerical quadrature along the X1-axis given X0 = (0, 0.1). We take
K ∈ {1000, 2000, 5000} for the Monte Carlo estimator. Confidence bands are computed
via bootstrap with 1000 bootstrap samples. The plots on the right side are in log-scale.
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Figure 5: Conditional density of returns. These figures show the unnormalized conditional
density of return p̂∆(v, w; θ) for v = (0, 0.1) and w ∈ [−0.5, 0.3] × {0.075, 0.1, 0.125}.
We also plot samples of the corresponding Monte Carlo estimator p̂∆(v, w; θ) for K ∈
{1000, 2000, 5000}.
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Figure 6: Conditional density of volatility. These figures show the unnormalized condi-
tional density of volatility p̂∆(v, w; θ) for v = (0, 0.1) and w ∈ {−0.1, 0, 0.1} × [0, 0.3].
We also plot samples of the corresponding Monte Carlo estimator p̂∆(v, w; θ) for K ∈
{1000, 2000, 5000}.
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Figure 7: Computational efficiency. This figure plots the root mean squared error
(RMSE) of the unbiased density estimator p̂K∆(v, w; θ) and of the biased density esti-
mator p̂H,I,J∆ (v, w; θ) in (11) against the time it takes to compute these estimators for 500
randomly chosen points v, w ∈ [−0.5, 0.3]× [0, 0.3]. The density estimators are evaluated
at the true parameter θ∗.
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