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1 Introduction

Recently, several papers have documented the presence of a common factor in idiosyncratic

volatilities from a linear return factor model, arguing that this factor is priced which would be

at odds with standard theory. This line of research started with Ang, Hodrick, Xing, and Zhang

(2006) who coined their result the “idiosyncratic volatility puzzle”. Recent contributions are

Duarte, Kamara, Siegel, and Sun (2014) and Herskovic, Kelly, Lustig, and Van Nieuwerburgh

(Forthcoming). In the present paper, we revisit this puzzle within the Ross (1976) Arbitrage

Pricing Theory (APT) framework. Specifically, we propose a different formulation of the classic,

single-period, APT in terms of (cumulative) portfolios of assets in the economy. Intuitively,

our formulation can be viewed as a transposed version of standard continuous-time finance

theory, where the index of the stochastic process refers to an asset index rather than time.

The advantage of our approach is that it easily extends the APT for linear returns to squared

returns. In contrast to Ang, Hodrick, Xing, and Zhang (2006), Duarte, Kamara, Siegel, and

Sun (2014) and Herskovic, Kelly, Lustig, and Van Nieuwerburgh (Forthcoming), we do not

study idiosyncratic volatility as a possible missing factor in linear returns, but instead consider

the factor structure of squared returns directly. Our model predicts the presence of a set of

risk prices related to the squared linear factors as well as to any additional factors driving

the idiosyncratic variances. This allows us to study the effect of possibly omitted factors at

the linear return level and to obtain more precise estimates of the price of common volatility

factors. We thereby shed new light on the mixed evidence on the presence and price of common

volatility factors.

We focus on excess squared excess returns, i.e., squared excess returns minus their price.

Thereby, these squared excess returns have zero price as well and, thus, can be interpreted as

excess returns themselves. In order to construct these excess squared excess returns, we compute

the price of squared excess returns using the spanning results of Bakshi and Madan (2000). They

show that the price of any payoff that is a twice-differentiable function of the underlying security

is given by a combination of a position in a risk-free asset, a forward contract and a suitable

portfolio of put and call options.

In our empirical analysis of S&P500 index firms over the period 1996-2013, we document

the presence of a common factor in idiosyncratic variances in addition to (the squares of) the

factors in the linear excess returns. We extract up to ten factors of the linear return model using
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principal components and analyse the factor structure of the squared residual (idiosyncratic)

returns. We then include both the linear factors and the squared return factor in a Fama and

MacBeth (1973) analysis. The squared return factor has some incremental explanatory power in

the linear return model even with ten principal components included. However, the loadings on

the squared return factor are insignificantly different from zero when ten principal components

are included. In addition, irrespective of the number of principal components that are included,

the price of risk of the squared return factor is insignificantly different from zero. This is in

contrast to the same analysis that uses the five Fama and French (2015) factors, where both the

average loading and the price of risk of the squared return factor are significantly different from

zero. The squared return factor also has a substantially higher explanatory power for linear

returns in the Fama and French (2015) case than when using principal components.

In order to understand our results, it is useful to distinguish the concepts of statistical and

financial factor models. In a statistical factor model one extracts (e.g., using principal compo-

nents) factors such that the residuals become cross-sectionally uncorrelated, i.e., diversifiable.

In a financial factor model, one extracts factors (e.g., the Fama-French factors) such that the

residuals become idiosyncratic in the sense that they do not command a risk premium, i.e.,

have zero price. The Arbitrage Pricing Theory states that, under an additional no-arbitrage

assumption, a statistical factor model implies a financial factor model. The converse, however,

does not hold. That is, there may exist non-diversifiable risks that do not command a risk

premium, i.e., have zero price. Thus, using Fama-French factors at the linear return level, may

leave a common (non-diversifiable) factor in the “idiosyncratic” residuals. The square of this

factor will show as a common factor in the “idiosyncratic” variances and it may or may not be

priced. The contribution of the present paper is to show that, in line with the intuition that

diversifiable risk cannot command any risk premium, the use of a statistical factor model at the

linear return level, still leads to a common factor in idiosyncratic variances, but we empirically

find this common factor to be idiosyncratic in the sense that it has zero price.

Our paper is also related to the literature on skewness in asset pricing, which started with

Kraus and Litzenberger (1976) showing that investors exhibiting non-increasing absolute risk

aversion is equivalent with an extension of the CAPM that incorporates skewness as the co-

variance between the asset return and the squared market return. Harvey and Siddique (2000)

focus on the cross-section of expected returns and use conditional rather than unconditional

skewness. They write down a model in which the pricing kernel is linear in the market return
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and market return squared. Chabi-Yo, Leisen, and Renault (2014) study the aggregation of

preferences in the presence of skewness risk and show how the risk premium for skewness risk is

linked to the portfolio that optimally hedges the squared market return. Since volatility is an

important determinant of option prices, our paper is also related to the literature on the factor

structure in option prices, e.g., Christoffersen, Fournier, and Jacobs (2015). Instead of studying

factor structures in option prices, we use these prices to obtain a of squared excess returns. As

follows from our theory, this price of a quadratic transformation is much more easily studied

in an Arbitrage Pricing Theory framework than the more complicated non-linearities in option

prices.

The remainder of the paper is structured as follows. In Section 2, we propose a new formu-

lation of the APT model for linear returns. We use this new formulation, in Section 3, to study

an approximate factor structure in excess squared excess returns (i.e., idiosyncratic variances)

and derive testable implications. In Section 4 we describe the sample and the variables we

construct. Section 5 contains the empirical results and Section 6 concludes.

2 The APT revisited

We start our theoretical analysis by providing a new proof of the classical Arbitrage Pricing

Theory (APT). Instead of, e.g., Al-Najjar (1998) and Gagliardini, Ossola, and Scaillet (2014),

we consider cumulative portfolios of assets to obtain the APT. A precise link with existing APT

results is provided in Remark 1 below. The advantage of our approach is that it readily extends

to squared returns, the subject of Section 3; at the level of the linear returns there is not much

new.

Consider n traded assets with (arithmetically compounded) excess returns R
(n)
i , i = 1, . . . , n.

Recall that excess returns have price zero, i.e., they refer to zero-investment opportunities. In

this paper we call any investment with zero price an excess return.

In order to formalize our formulation of the assumption of an approximate factor structure,

we construct portfolios, for given u ∈ [0, 1], consisting of 1/n exposures in the first u fraction

of the assets. Such a portfolio thus has excess return

R(n)(u) =
1

n

bunc∑
i=1

R
(n)
i . (1)

4



Note that R(n)(u) is an alternative representation of the available assets R
(n)
i in the market1.

We have R(n)(0) = 0 and R(n)(1) represents an equally weighted portfolio in all available assets

in the economy.

The rewrite from original assets with excess returns R
(n)
i to portfolios indexed by u ∈ [0, 1]

facilitates a formal analysis of factor models. Observe that in the definition below, no moment

restrictions are imposed on the excess returns, factors, or idiosyncratic errors.

Definition 1 The (sequence of) excess return process(es) R(n) is said to satisfy an approximate

factor structure if there exists a K-dimensional (random) factor F and deterministic finite-

variation functions α and β such that we may write

R(n)(u) =

∫ u

0
α(v)dv +

∫ u

0
βᵀ(v)dvF + Z(n)(u), (2)

where Z(n) converges to zero.

Definition 1 formalizes our assumption of a factor structure. In order to illustrate the more

abstract we results, we introduce an example that will also form the basis of our empirical

analysis later.

Example For simplicity we consider the case of a single factor only, i.e., K = 1. Let the

excess returns be given by

R
(n)
i = αi + βiF + (ϕ0i + ϕ1iG)1/2 νi, (3)

for constants αi, βi, ϕ0i, and ϕ1i and where G is a common positive volatility factor. We

assume that the νi’s are i.i.d. zero-mean random variables, independent of both F and G,

whose variances are normalized to unity. Moreover, we will assume the ϕ0i and ϕ1i to be

bounded away from zero and infinity. Consequently,

R(n)(u) =
1

n

bunc∑
i=1

αi +

 1

n

bunc∑
i=1

βi

F +
1

n

bunc∑
i=1

(ϕ0i + ϕ1iG)1/2 νi. (4)

In order to satisfy Definition 1 we assume the existence of finite-variation functions α and β

1Formally, R(n) is considered a stochastic process in D[0, 1], the set of cadlag functions on [0, 1], equipped
with the supremum norm ‖·‖. All convergences of stochastic processes in this paper are weak convergence in
(D[0, 1], ‖·‖).
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such that2

1

n

bunc∑
i=1

αi −
∫ u

0
α(v)dv = o

(
1√
n

)
, (5)

1

n

bunc∑
i=1

βi −
∫ u

0
β(v)dv = o

(
1√
n

)
. (6)

These conditions impose some stability on the intercepts and the factor loadings. Intuitively,

the functions α and β are approximately given by α(u) ≈ αbunc and β(u) ≈ βbunc, 0 ≤ u ≤ 1.

Concerning the process Z(n), we now may write

Z(n)(u) =
1

n

bunc∑
i=1

(ϕ0i + ϕ1iG)1/2 νi + o

(
1√
n

)
. (7)

The functional law of large numbers now gives convergence of Z(n) to zero. We will not provide

details here as this result is an immediate consequence of the functional central limit theorem

we apply to verify the conditions of Definition 2 below. �

Remark 1 Several other formalization of the classical APT result exist in the literature, e.g.,

Gagliardini, Ossola, and Scaillet (2014) and Al-Najjar (1998). Those papers often start from

excess returns written as R
(n)
i = αi + βᵀi F + u

(n)
i , so that

R(n)(u) =
1

n

bunc∑
i=1

(
αi + βᵀi F + u

(n)
i

)
(8)

=
1

n

bunc∑
i=1

αi +

 1

n

bunc∑
i=1

βi

ᵀ F +
1

n

bunc∑
i=1

u
(n)
i .

Assuming that the partial sums of αi and βi converge as in (5) and (6), we have Z(n)(u) =

1
n

∑bunc
i=1 u

(n)
i + o(1). Gagliardini, Ossola, and Scaillet (2014) impose ρ

(
Var

{
u(n)

})
/n → 0

where u(n) =
(
u
(n)
i

)n
i=1

and ρ denotes the maximum eigenvalue. Let ιn(u) be an n-vector whose

2The o-term here again is in terms of uniform convergence in D[0, 1]. Moreover, for the results in this section
it would be enough to require o(1) convergence, but o(n−1/2) will be needed when revisiting this example in
Section 3.
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first bunc elements are one and the others are zero. Then we have

Var
{
Z(n)(u)

}
= Var

 1

n

bunc∑
i=1

u
(n)
i


=

1

n2
ιn(u)ᵀVar

{
u(n)

}
ιn(u)

≤ 1

n2
ρ
(

Var
{
u(n)

})
ιn(u)ᵀιn(u)

=
bunc
n2

ρ
(

Var
{
u(n)

})
. (9)

Assumption 4 in Gagliardini, Ossola, and Scaillet (2014) implies that the latter term converges

to zero and, in particular, thus implies our Definition 1.

In order to derive the APT pricing implications, we consider portfolios of the base assets

R
(n)
i , i = 1, . . . , n. Formally, we identify such a portfolio by a finite-variation function h. This

portfolio’s excess return is then, by definition,

∫ 1

u=0
h(u)dR(n)(u). (10)

Taking h(u) = 1, we would find the excess return of an equally weighted portfolio with exposures

1/n to all assets. A value-weighted portfolio can be obtained by choosing h(u) proportional to

the relative market share of the u-th asset in the economy. As we work with excess returns,

note in particular that increments in R(n) are also excess returns of portfolios consisting of a

subset of the entire asset universe.

We can now state our version of the APT.

Proposition 1 Assume that the excess return process R(n) satisfies an approximate factor

structure. Furthermore, assume that there are no arbitrage opportunities in the sense that

it is not possible to construct a portfolio h whose excess return converges, as n → ∞, to a

non-zero constant. Then there exists a K-dimensional vector with prices of risk λ such that

α(u) = −β(u)ᵀλ. (11)

Proof: The proof is classical, but we provide a version that is convenient for our setup. Let

h denote any portfolio without exposure to the factors, i.e., with
∫ 1
u=0 h(u)β(u)du = 0. Then,
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from (2), the induced portfolio returns are

∫ 1

u=0
h(u)dR(n)(u) =

∫ 1

u=0
h(u)α(u)du+

∫ 1

u=0
h(u)dZ(n)(u). (12)

As both h and Z(n) are of finite variation, we find by partial integration

∫ 1

u=0
h(u)dZ(n)(u) = Z(n)(1)h(1)−

∫ 1

u=0
Z(n)(u)dh(u)−

∑
0≤u≤1

∆Z(n)(u)∆h(u),

which converges to zero since Z(n) does. Consequently,

∫ 1

u=0
h(u)dR(n)(u)→

∫ 1

u=0
h(u)α(u)du. (13)

In the absence of arbitrage, we must have
∫ 1
u=0 h(u)α(u)du = 0. As this must hold for any

finite-variation function h orthogonal to all components of β, we have α(u) = −β(u)ᵀλ for some

vector λ. �

Remark 2 - Repackaging An important point in theoretical foundations of the APT is that

its assumptions should be invariant under so-called “repackaging”, see, e.g., Al-Najjar (1999).

Loosely speaking this means that the assumptions should be invariant with respect to reordering

the assets and forming portfolios. It’s easy to see that our Definition 1 indeed obeys to this

invariance.

Consider first a reordering of the assets. First observe that, from (2), we have, for given

w ∈ [0, 1],

R(n)(u)−R(n)(w) =

∫ u

w
α(v)dv +

∫ u

w
βᵀ(v)dv + Z(n)(u)− Z(n)(w). (14)

Now consider p + 1 fixed constants 0 = u0 < u1 < . . . < up = 1. A reordering of assets can

now be obtained by permuting the p intervals [uj−1, uj ], j = 1, . . . , p. It’s clear that reordering

the assets by pasting together the increments of the excess return processes R(n) over each of

the permuted intervals satisfies the conditions of Definition 1 in case the original excess return

processes R(n) do.

Secondly, consider forming portfolios of the available assets. This is formalized by a fixed

finite-variation function h∗ and by considering the excess return process
∫ u
0 h
∗(v)dR(n)(v). Such
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process obviously satisfies Definition 1 as soon as R(n) does. Indeed, we have, in view of (2),

∫ u

0
h∗(v)dR(n)(v) =

∫ u

0
h∗(v)α(v)dv +

∫ u

0
h∗(v)βᵀ(v)dv +

∫ u

0
h∗(v)dZ(n)(v),

using the same arguments as in the proof of Proposition 1, we find that the last term converges to

zero. Moreover, h∗α and h∗β are of finite variation (as the product of finite variation functions).

As a result,
∫ u
0 h
∗(v)dR(n)(v) satisfies an approximate factor structure as well.

Remark 3 - Factor-mimicking portfolios If the excess return processes R(n) satisfy an

approximate factor structure, Proposition 1 implies that we may write

R(n)(u) =

∫ u

0
βᵀ(v)dv (F − λ) + Z(n)(u). (15)

This allows us to use the idea of factor mimicking portfolios. Choose a K-dimensional function

H of finite variation on [0, 1] such that

∫ 1

u=0
H(u)βᵀ(u)du = IK , (16)

the K ×K identity matrix. This is possible as long as the components of β are linearly inde-

pendent.

Then the K portfolios induced by H satisfy

∫ 1

u=0
H(u)dR(n)(u) = (F − λ) +

∫ 1

u=0
H(u)dZ(n)(u). (17)

This implies in turn that these K portfolios could be used as factors, i.e., we have

R(n)(u) =

∫ u

0
βᵀ(v)dv

∫ 1

u=0
H(u)dR(n)(u) +

[
Z(n)(u)−

∫ u

0
βᵀ(v)dv

∫ 1

u=0
H(u)dZ(n)(u)

]
. (18)

Remark 4 - Omitted factors It is useful to consider the situation of possibly omitted factors.

So suppose that the excess return process satisfies an approximate factor structure with factors

(F, Fo), i.e.,

R(n)(u) =

∫ u

0
α(v)dv +

∫ u

0
βᵀ(v)dvF +

∫ u

0
βᵀo (v)dvFo + Z(n)(u), (19)

where Z(n) converges to zero. Assume now that the researcher omits the factors Fo from the
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analysis. This researcher effectively considers the “idiosyncratic” errors
∫ u
0 β

ᵀ
o (v)dvFo+Z

(n)(u).

This will only converge to zero if βo = 0. Consequently, Definition 1 precisely identifies the

correct number of factors and formalizes the necessary (asymptotic) orthogonality of F and

Z(n).

Some papers have documented within-industry correlation patterns that point to industry-

specific factors, compare, e.g., Ait-Sahalia and Xiu (2015). From a statistical point of view,

such industry factors present themselves in the form of a block-diagonal covariance structure

(in case assets are sorted by industry). The question whether such industry factors should be

included as market-wide factors is essentially an empirical one. From a theoretical point of

view, they should be included in case the size of the industry relative to the total market does

not vanish asymptotically. Indeed, in that case the industry risk cannot be diversified.

3 The APT for squared returns

The main theoretical contribution of the present paper is to provide Arbitrage Pricing Theory

implications for squared excess returns. We will, therefore, in this section provide an additional

assumption on the factor structure in Definition 1, such that we can deduce a factor structure

for the squared excess returns, and, thus, consider their pricing.

We reinforce Definition 1 to the following, stronger, condition.

Definition 2 The excess return process R(n) is said to satisfy a second-order approximate

factor structure if, additionally to the conditions in Definition 1, we have

√
nZ(n)(u)

L→ Z(u), (20)[√
nZ(n),

√
nZ(n)

]
(u)

L→ [Z,Z] (u), (21)

for some stochastic process Z whose quadratic variation satisfies the factor structure

[Z,Z] (u) =

∫ u

0
ϕ0(v)dv +

∫ u

0
ϕᵀ1(v)dvG, (22)

for deterministic finite-variation functions ϕ0 and ϕ1 and a KS-dimensional factor G.

The above definition imposes directly weak convergence on both the idiosyncratic errors Z(n) as

well as its quadratic variation. A sufficient condition for (20) to imply (21) is the so-called P-UT
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condition which is sometimes more easily checked, see Jacod and Shiryaev (2003) Section VI.6a

for more details.

Example continued In order to verify the conditions in Definition 2 for our example, we

need to study weak convergence of
√
nZ(n)(u) from (7), i.e., the convergence of

1√
n

bunc∑
i=1

(ϕ0i + ϕ1iG)1/2 νi, (23)

and its limiting quadratic variation. Note that conditionally on the value of G, we can apply

the functional central limit theorem for independent, but not necessarily identically distributed,

random variables. Under the additional conditions

1

n

bunc∑
i=1

ϕ0i →
∫ u

0
ϕ0(v)dv, (24)

1

n

bunc∑
i=1

ϕ1i →
∫ u

0
ϕ1(v)dv, (25)

for finite-variation functions ϕ0 and ϕ1, we find

[Z,Z](u) =

∫ u

0
ϕ0(v)dv +G

∫ u

0
ϕ1(v)dv, (26)

As a result, the conditions in Definition 2 are satisfied. �

Now consider the situation where squared excess returns are traded assets as well. In

Section 5 we will use plain vanilla options traded on individual assets to reconstruct these asset

payoffs using a well-known technique going back to Breeden and Litzenberger (1978) and Bakshi

and Madan (2000). We denote the market prices of these squared excess return by p
(n)
i . Then,

we can define the excess squared excess returns3 as

S
(n)
i =

(
R

(n)
i

)2
− p(n)i , (27)

In line with the notations above, we assume that we may write, for a deterministic finite-

3Recall that we use the term excess return for any asset that has zero price.
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variation function p,

1

n

bunc∑
i=1

p
(n)
i →

∫ u

0
p(v)dv, (28)

again uniformly in u ∈ [0, 1]. Subsequently, we define the squared return process4 S(n) in a

conformable way as

S(n)(u) =
1

n

bunc∑
i=1

S
(n)
i . (29)

The main theoretical result of our paper is now the following.

Proposition 2 If the excess return process R(n) satisfies a second-order approximate factor

structure and (28) holds, then the squared return process S(n) satisfies an approximate factor

structure with α given by

αS(u) = ϕ0(u)− p(u), (30)

factors5 vech ([F − λ] [F − λ]ᵀ), with loadings

βSF (u) = vech (β(u)βᵀ(u)) , (31)

and additional factors G with loadings

βSG(u) = ϕ1(u). (32)

Proof: As the return process R(n) satisfies the conditions of Proposition 1, we may rewrite (1)

as

R
(n)
i = n

[
R(n)

(
i

n

)
−R(n)

(
i− 1

n

)]
(33)

= n

∫ i/n

(i−1)/n
βᵀ(v)dv (F − λ) + n

[
Z(n)

(
i

n

)
− Z(n)

(
i− 1

n

)]
.

4A more precise name would be the excess squared excess return process, but we use the term squared return
process for convenience.

5For a symmetric K ×K matrix A, vech(A) equals the K(K + 1)/2 column vector obtained by vectorizing
the lower triangular part of A.
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This implies

S(n)(u) =
1

n

bunc∑
i=1

(
R

(n)
i

)2
− p(n)i

= n

bunc∑
i=1

[∫ i/n

(i−1)/n
βᵀ(v)dv (F − λ)

]2
− 1

n

bunc∑
i=1

p
(n)
i (34)

+ n

bunc∑
i=1

[
Z(n)

(
i

n

)
− Z(n)

(
i− 1

n

)]2

+ 2n

bunc∑
i=1

∫ i/n

(i−1)/n
βᵀ(v)dv [F − λ]

[
Z(n)

(
i

n

)
− Z(n)

(
i− 1

n

)]
.

We consider the convergence of the above four terms separately. For simplicity, we only give

the proof for K = 1. With respect to the first term, we know that β is bounded, say by M . We

establish that this first term essentially is a Riemann sum. Indeed, we have

∣∣∣∣∣∣n
bunc∑
i=1

(∫ i/n

(i−1)/n
β(v)dv

)2

−
bunc∑
i=1

β2
(
i− 1

n

)
1

n

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
bunc∑
i=1

(n ∫ i/n

(i−1)/n
β(v)dv

)2

− β2
(
i− 1

n

)∣∣∣∣∣∣
≤ 2M

n

bunc∑
i=1

∣∣∣∣∣n
∫ i/n

(i−1)/n
β(v)dv − β

(
i− 1

n

)∣∣∣∣∣
≤ 2M

bunc∑
i=1

∫ i/n

(i−1)/n

∣∣∣∣β(v)− β
(
i− 1

n

)∣∣∣∣ dv
As β is of bounded variation, we may write β = β+− β− where both β+ and β− are increasing.

We thus find∣∣∣∣∣∣n
bunc∑
i=1

(∫ i/n

(i−1)/n
β(v)dv

)2

−
bunc∑
i=1

β2
(
i− 1

n

)
1

n

∣∣∣∣∣∣
≤ 2M

bunc∑
i=1

∫ i/n

(i−1)/n

∣∣∣∣β+(v)− β+
(
i− 1

n

)
−
{
β−(v)− β−

(
i− 1

n

)}∣∣∣∣ dv
≤ 2M

bunc∑
i=1

∫ i/n

(i−1)/n

∣∣∣∣β+( in
)
− β+

(
i− 1

n

)∣∣∣∣ dv +

bunc∑
i=1

∫ i/n

(i−1)/n

∣∣∣∣β−( in
)
− β−

(
i− 1

n

)∣∣∣∣ dv


≤ 2M

n
[β+(1)− β+(0) + β−(1)− β−(0)] ,

which converges to zero. Consequently, the first term in (34) converges to the limit of the
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Riemann sums
∑bunc

i=1

(
β
(
i−1
n

)
(F − λ)

)2 1
n , i.e., to

∫ u
v=0 (β(v) (F − λ))2 dv.

The second term in (34) converges given (28) and the third one in view of (21).

Finally, consider the last term in (34). By Cauchy-Schwarz and the previous results, we find

n

bunc∑
i=1

∫ i/n

(i−1)/n

[
β(v)− β

(
i− 1

n

)
dv

] [
Z(n)

(
i

n

)
− Z(n)

(
i− 1

n

)]

≤

√√√√n

bunc∑
i=1

(∫ i/n

(i−1)/n
β(v)− β

(
i− 1

n

)
dv

)2

×

√√√√n

bunc∑
i=1

[
Z(n)

(
i

n

)
− Z(n)

(
i− 1

n

)]2

For increasing β, we may bound the first square-root further by

√√√√n

bunc∑
i=1

(∫ i/n

(i−1)/n
β

(
i

n

)
− β

(
i− 1

n

)
dv

)2

≤

√√√√ 1

n

bunc∑
i=1

(
β

(
i

n

)
− β

(
i− 1

n

))2

,

which converges to zero. For general finite-variation β the same result again follows from writing

it as the difference of two increasing functions. Consequently, the limit of the fourth term in (34)

equals that of

[F − λ]

bunc∑
i=1

β

(
i− 1

n

)[
Z(n)

(
i

n

)
− Z(n)

(
i− 1

n

)]
(35)

As
√
nZ(n) converges in law, the above expression converges to zero.

Taking these claims together, we find that

S(n)(u)−
∫ u

v=0
(β(v) (F − λ))2 dv +

∫ u

0
p(v)dv − [Z,Z] (u), (36)

converges to zero. In view of (22), this concludes the proof. �

As the squared return process S(n) satisfies an approximate factor structure, Proposition 1

immediately gives the following corollary.

Corollary 1 If the excess return process R(n) satisfies a second-order approximate factor struc-

ture and (28) holds, then there exists a K(K + 1)/2-dimensional vector of prices of risk δ and

14



a KS-dimensional vector of prices of risk η such that

ϕ0(u)− p(u) = vech (β(u)βᵀ(u))ᵀ δ + ϕᵀ1(u)η. (37)

Corollary 1 precisely identifies the consequence of the no-arbitrage condition for the prices

of squared returns and, thereby, for the prices of common factors in (idiosyncratic) variances.

The first term in (37) gives the effect of the linear return factors F on prices of squared returns.

It’s intuitively clear that this effect exists, but the present paper seems to be the first to make

this precise. Alternatively stated, the first term in (37) also gives the consequences for pricing

“idiosyncratic” variances in case some factors have been omitted in the linear return factor

model. Clearly, in such case of omitted linear return factors, the term “idiosyncratic” is a

misnomer. This means that existing results in the literature on common volatility factors must

always be discussed relative to the linear return factors they take into account (be it PCA or

Fama-French type factors). Also observe that the price of risk for squared (excess) returns to

the squared factor loadings vech (β(u)βᵀ(u)) are given by a parameter δ that is unrelated to

the prices of risk at the linear return factor model λ. An empirical advantage of this finding

is that inference about the price of squared returns/idiosyncratic variances is not hampered by

possibly weak identification of the price of risk λ.

The second term in (37), ϕᵀ1(u)η, gives the pricing effect of common factors in truly id-

iosyncratic variances. Quadratic returns command a linear risk premium from exposure to the

common idiosyncratic variance factor G. This risk premium is, as in the standard APT, linear

in the exposure of the individual squared return to the common idiosyncratic variance factor,

i.e., linear in ϕ1. Notice that the idiosyncratic variance factor G may be correlated with the

linear return factors F or their squares. The no-arbitrage condition does neither impose nor

exclude this.

In Section 5 we use standard Fama and MacBeth (1973) regressions to identify, in particular,

the prices of risk η for the idiosyncratic variance factors using S&P500 stocks as described in

Section 4.
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4 Data

4.1 Sample construction

Each last trading day of the month for the period between January 1996 and December 2013, we

extract the index constituents of the S&P500 index from Compustat (using ticker “I0003”). We

merge the stock indentifying information with daily stock returns from CRSP using the WRDS

linking table and compute cumulative 30-calendar day returns from month end to match the

maturity of the OptionMetrics implied volatility surface detailed below. We merge the stock

data from CRSP with the OptionMetrics standardized implied volatility surface for a maturity

of 30 calendar days. The implied volatility surface contains smoothed implied volatilities for

a standardized set of deltas ranging from -0.8 to -0.2 for puts and 0.2 to 0.8 for calls, as well

as an implied option premium and implied strike price for each standardized option contract.

We retain only those observations for which the implied option premium and the implied strike

price are larger than zero, and the smoothed implied volatility is finite. We compute the stock’s

forward price using realised dividends over the life of the option from the OptionMetrics dividend

file, discounted using the interpolated risk-free rates in the OptionMetrics zero-coupon yield file.

Call and put implied volatility smiles are not always identical, and the standardized call and

put deltas yield slightly different implied strike prices, i.e., moneyness defined as the strike price

over the forward price. We obtain one implied volatility smile per stock-date as follows. First,

we interpolate the smoothed call implied volatilities at the put option implied strike prices and

vice versa to obtain call and put smoothed implied volatilities for all observed implied strike

prices. Then we average the put and call implied volatility for each strike price. We use the

vector of average smoothed implied volatilities to compute implied volatilities for non-observed

moneyness levels using linear interpolation. Outside the observed range of moneyness levels, we

assume the implied volatility is constant at the endpoints in the observed data. We compute

Black-Scholes option prices from the interpolated implied volatility curve for each stock-date

combination.

Following Bakshi and Madan (2000), any twice differentiable payoff function of the stock,

H(S), can be spanned as a static portfolio of plain vanilla European put (P (K)) and call (C(K))
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options6, a bond and a forward contract,

H(S) = H(K0) + (S −K0)HS(K0) + erτ
∫ K0

0
HSS(K)P (K)dK

+ erτ
∫ ∞
K0

HSS(K)C(K)dK, (38)

with K0 a predetermined cut-off level separating the strike space into put and call options, r

the continuously-compounded risk-free rate and τ the relevant maturity. We seek to compute

the price of the discretely compounded squared excess return,

pit = EQ
{
R2
iT

}
= EQ {H(S)} ,

with

H(S) =

(
S

S0
− erτ

)2

, (39)

so that

HS(S) =
2

S0

(
S

S0
− erτ

)
, (40)

HSS(S) =
2

S2
0

. (41)

Plugging (39)-(41) into (38), setting K0 = S0 and taking risk-neutral expectations, we obtain

pit = (1− erτ )2 +
2

S0
(1− erτ ) +

2

S2
0

∫ S0

0
P (K)dK +

2

S2
0

∫ ∞
S0

C(K)dK, (42)

which shows that for the squared excess return, each of the options in the replicating portfolio

will be given the same weight. The put price is integrable as a function of the strike price over

any interval of the form [a, b) for a ≥ 0, b < ∞ and in particular up to the current spot price

that we use as a cut-off. The call price is integrable as a function of the strike price over any

interval on the positive real axis, which ensures that the integral is defined properly. Figure 1

plots the time series of the equal-weighted cross-sectional average price of squared excess returns

6Individual equity options are American rather than European. Since we use only out-of-the-money options,
the early exercise premium will be small. Ofek, Richardson, and Whitelaw (2004) report a median early exercise
premium equal to 70 bps for at-the-money put options. The bid-ask spread of those options is an order of
magnitude larger than that.
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of S&P500 stocks. Our final sample contains 894 different firms over the 216 months between

January 1996 and December 2013.
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Figure 1: Time series of cross-sectional average price of squared excess return of S&P500
stocks

This figure plots the time series of the equal-weighted cross-sectional average price of the squared excess return
of S&P500 stocks. The price is constructed each last trading day of the month using (42) for a standardized
maturity of 30 calendar days. The sample period covers January 1996 to December 2013.

5 Squared return factors in S&P500 stocks

We extract statistical factors (F ) using principal components on the panel of 30-calendar day

excess returns on the 121 firms with a complete time series, and estimate the loadings (β) of each

firm to each factor in a firm-level time series regression, assuming the factor loadings remain

constant over the sample period. Figure 2 plots the cumulative fraction of the total variance

of monthly linear excess returns explained as a function of the number of included principal

components. A second principal components analysis on the squared residuals (ε2) of the time-

series regressions of all firms with a complete return time series identifies any additional squared

return factors (G). A firm-level time-series regression of ε2 on the factors G yields the factor

loadings ϕ.

We fit an AR(1) model to the G time series, and retain the innovations. In the remainder,

G refers to these innovations. We examine the correlation between G and F , as well as the

coefficient estimate on G in a time-series regression of linear returns on F and G. If our model

is correctly specified, the coefficient estimate on G should be zero for linear returns. However,

18



as observed in Section 3, F and G may be correlated so the R2 of a regression of linear returns

on G does not have to be zero.
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Figure 2: Cumulative Fraction of Excess Return Variance Explained by Principal Compo-
nents

Cumulative fraction of variance explained by principal components of the stock-level excess returns Rit. Returns
are measured over a 30-day horizon starting at the close of the last trading day of each month. Data is from
CRSP, covering the period January 1996 to December 2013 (216 months) for the firms in the S&P500 index, 894
firms in total. The principal components are extracted from the time series of the 121 firms with a complete
history over the sample period.

Recalling Section 3, the main prediction of our theoretical model is

ϕ0(u)− p(u) = vec (β(u)βᵀ(u))ᵀ δ + ϕᵀ1(u)η. (43)

We estimate this cross-sectional regression for each of the 216 months in our sample and repeat

the above analyses for a different number (two, five or ten) F factors and a single G factor.

To relate to the existing literature, we also run the same regressions using the five Fama and

French (2015) factors in the linear returns model. Table 1 contains the results. The first line

shows that there is a common factor in squared residual returns; the first principal component

of the squared residual returns explains between 10 and 15% of the total variation, confirming

the large body of literature on common factors in idiosyncratic volatility, e.g., Ang, Hodrick,

Xing, and Zhang (2006) and Chen and Petkova (2012). The next part of the table examines

Fama and MacBeth (1973) regressions. We report statistics on the R2 of the cross-sectional

regressions of the second-stage. The results confirm that the squared return factor G has some

explanatory power for the linear returns, but that the additional explanatory power on top of

the linear return factors F is small. Notably, the explanatory power of the squared return factor
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for linear returns is substantially higher when using residual returns from the Fama and French

(2015) model to extract G. If only a small number of principal components are included, then

the average loading of linear returns on G is significantly negative (the principal components are

standardised to have zero mean and unit variance). This suggests the presence of an omitted

factor in F . Including 10 principal components leaves the average loading of linear returns on

G insignificantly different from zero.

Regardless of the number of principal components included in the first step, the last two

rows of Table 1 show that the hypothesis that the risk premium on G equals zero cannot be

rejected. The exception again is the model that uses the Fama and French (2015) factors rather

than principal components. In this case, both the loadings of linear returns on G as well as the

risk premium η are significantly different from zero, confirming the results in Herskovic, Kelly,

Lustig, and Van Nieuwerburgh (Forthcoming).

Table 1: Factor Models estimated on S&P500 Firm Returns

This table reports model estimates from the analysis of monthly S&P500 firm returns over the period January
1996-December 2013 (216 months). Firstly, a varying number of principal components (F ) is extracted from the
121 complete time series of linear returns. The column headers in the table refer to the number of principal
components used. The last column uses the Fama and French (2015) factors rather than principal components.
Secondly, the first principal component of the residual squared returns is extracted. The first row in the table
shows the fraction of the total variance of the squared residual returns explained by this principal component.
An AR(1)-model is then fitted to the principal component and the innovations retained as the factor (G). A
Fama and MacBeth (1973) regression using the components (F ) and/or (G) is then fitted to the return series
of all 894 firms in the sample assuming a constant loading. Rows 2-6 in the table contain the average R2 and
its standard error of the second-stage cross-sectional regressions. Rows 7-8 contain the average loading to (G)
across the 894 firms and its standard error. Finally, rows 10-11 contain the estimate of the price-of-risk η from
(43). The statistical significance is represented by asterisks, where ***, **, and * represent significance at the
1%, 5%, and 10% levels, respectively. Standard errors are reported in parenthesis.

2-PC 5-PC 10-PC 5-FF

Fraction explained by first PCA 0.151 0.124 0.095 0.112
Average R2 with both F & G 0.208∗∗∗ 0.328∗∗∗ 0.504∗∗∗ 0.413∗∗∗

(s.e.) (0.010) (0.011) (0.010) (0.013)
Average R2 with only G 0.062∗∗∗ 0.038∗∗∗ 0.045∗∗∗ 0.174∗∗∗

(s.e.) (0.004) (0.003) (0.003) (0.015)
Average R2 with only F 0.173∗∗∗ 0.315∗∗∗ 0.485∗∗∗ 0.362∗∗∗

(s.e.) (0.011) (0.011) (0.010) (0.013)
Average loading on G −0.009∗∗∗ −0.008∗∗∗ 0.001 0.009∗∗

(s.e.) (0.001) (0.001) (0.002) (0.004)
η −0.085 −0.030 −0.007 0.116∗∗∗

(s.e.) (0.054) (0.048) (0.034) (0.009)

6 Summary and conclusions

We propose a new formulation of the classic Ross (1976) Arbitrage Pricing Theory which allows

an extension to squared excess returns. For the set of S&P500 stocks over the period 1999-
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2013, we document the presence of a common factor in residual volatilities of a linear factor

model. However, while this factor appears to be priced when using the Fama and French

(2015) factors in the linear return model, it is not priced when using principal components as

factors. In a future version of the paper, we plan to include several extensions to the current

analysis. Firstly, the one-period formulation presented in this paper can be easily extended to

a multi-period setting. Unlike multi-period equilibrium-based asset pricing models, in which

agents’ demand for assets will generally be a combination of a speculative demand and a hedge

demand, the multi-period APT only requires a period-by-period no-arbitrage condition as long

as all our assets trade each period.

Secondly, the pricing kernel in our model for squared returns will be quadratic in the linear

factors F and linear in the quadratic factors G. One of the criticisms of standard (linear) factor

models is that the linear version of the pricing kernel can take on negative values. A linear-

quadratic formulation opens up the possibility that the pricing kernel will always be positive,

but it is an empirical question whether that indeed is true.
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