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Competition in Matching Markets: Evidence from College 

Admissions in China’s Top Two Universities 

Abstract: In this paper, we introduce a model to study college competition in 

admissions quotas. Our simple model, by adapting matching model from Azevedo et al. 

(2014, 2016), delivers a few theoretical predictions: (1) When the quota of a college 

increases, the cutoffs of all colleges will (weakly) decrease. (2) Colleges tends to allocate 

their admission quotas across majors and regions so that their cutoffs are equalized. (3) 

Colleges will allocate more quotas to majors or regions more popular among students. 

We then provide empirical evidence by exploring data from the top two universities in 

China (i.e., Tsinghua and Peking University) to support our theoretical hypotheses.  

Key words: college admissions; imperfect competition; matching markets 

JEL classifications: C78; L13; I21 

 

I. Introduction 

Throughout the world colleges compete for high quality students. One important 

competitive strategy is by setting admission quotas not only for the whole college, but 

also among majors and student groups (e.g., by regions, tracks, ethnicities). How do 

changes of quotas affect student quality of each other? How do universities decide on 

their admission quotas? In this paper, we study strategic interactions between colleges 

in admitting students, adapting matching market models studied by Azevedo (2014) and 

Azevedo & Leshno (2016). 

Our simple model delivers a few theoretical predictions on college behaviors: First, 

when the quota of a college increases, the cutoffs of all colleges will (weakly) decrease. 
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Second, colleges allocate their admission quotas across majors and regions so that major 

and regional cutoffs tend to be equalized. Third, a college will allocate more quotas to 

majors or regions becoming more popular among students. We then provide empirical 

evidence from top two universities in China, i.e., Tsinghua University and Peking 

University, to test our theoretical hypotheses.  

I.1 From Traditional Markets to Matching Markets 

It is easy to find similarities between college competition and competition in a 

traditional market, as colleges serve as a provider of higher education and students are 

customers demanding it. Yet colleges compete for students in a very different market – 

a matching market. In the traditional market (e.g. commodity market), traded goods are 

homogenous, and the equilibrium allocation (and social optimum) is determined as long 

as the price equalizing the quantity demanded and supplied are determined, no matter 

who trades with whom. In a matching market, agents in each side can be heterogeneous, 

and agents may value “matched” partners not only by the “price”, i.e., money transfer, 

but also their other characteristics. For example, in college admissions, students not only 

care about the tuition fee paid, but also the quality or other characteristics (e.g., locations) 

of colleges; colleges also care about the student quality, not just (if any) the tuition 

revenue received. 

Given heterogeneous “goods” in the market, matching markets are more similar to 

imperfectly competitive markets with product differentiation (Hotelling, 1929). 

However, in an imperfectly competitive market, heterogeneity occurs only on one side 

of the market: Consumers care about what kind of product they buy, but firms don’t care 

about which consumers they serve. In a matching market, heterogeneity is usually two-

sided. Furthermore, in a matching market, money transfers are often prohibited, and 

price used to clear the market is absent.  
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Matching theory (Roth and Sotomayor, 1993, etc.) has been successful to prove that 

in such a highly heterogeneous market without money, social desirable outcomes (e.g., 

stable outcomes, or core) often exist and can be achieved by some 

mechanisms/algorithms (e.g., Gale-Shapley mechanism). However, in matching model 

until now, agents (or matching objectives) from both sides are essentially discrete, 

therefore the model is not as tractable as an IO model. 

A new literature has grown up to bridge the technical gap between matching theory 

and imperfect market (or IO) theory (Azevedo, 2014; Azevedo and Leshno, 2016). Their 

model (henceforth Azevedo-Leshno model) assumes a finite number of colleges, but a 

continuum mass of students. Priorities/preferences of colleges are based on some 

“indexes” of students, e.g., exam scores, and can be heterogeneous. Demand for a 

college is defined as, at any given cutoffs, i.e. minimum requirements of scores for 

admissions, the amount of students whose most preferred affordable college (i.e., 

college with a cutoff lower than their scores) is this college. Under quite general 

conditions, the stable matching is unique, under which a unique set of cutoffs equate the 

demand and supply (i.e., quotas) of every college. In other words, cutoffs play a role as 

market prices (Lemma 1 and Theorem 1, Azevedo and Leshno, 2016).  

This set-up brings us a new way to study the strategic behavior of colleges or other 

“firms” in a matching market. Some of those behaviors have been studied in the 

“traditional” matching theory, such as quota or capacity control (Sonmez,1997; Kojima, 

2007; Kesten, 2012), and quality improvement (Hatfield et al., 2016). Now they can be 

studied in a way that is very similar to study firm behavior in an imperfectly competitive 

market.  

Our paper is an example of how to use such a IO-type method in a matching market 

to study college admissions problem. One unique feature of our model is that colleges 

have homogeneous priorities over students, based on their college entrance examination 
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(or CEE) total scores. Although preference homogeneity is unnecessary for Azevedo-

Leshno model, it would simplify analysis and deliver unique theoretical results. Our 

model is also closely related to quantity competition in imperfectly competitive market, 

first studied by Cournot (1838). 

I.2 College Education as a Marketplace 

There are still controversies whether market or IO analysis can be used to study 

college education in general. Two pioneer works have explored the behavior of colleges 

and found the similarity with firms in the marketplace. Rothschild and White (1993) 

argue that: “We believe that the market context of higher education – whether 

universities compete, how they compete, and the consequences of that competition for 

university input, production, pricing, and output decision – is interesting in its own right 

and important for understanding the cost and allocation issues that have concerned most 

researchers. …… The analysis of university behavior in a market context has been an 

under-researched area in economics.” 

Rothschild and White (1995) developed their ideas into a formal model to analyze 

“the pricing of higher education and other services in which the customers are inputs”. 

Interestingly, they proved that prices that charge customers for what they get on net 

(output minus input) from the firm (or college) are competitive and support efficient 

allocations, and these price internalize the apparent external effects of customers on each 

other.  

Our paper is different from theirs in two important ways. First, in their model, the 

objective function of a college (best understood as a private college) is to maximize 

profit, i.e., tuition revenue minus input resources, while in our model the objective 

function is to maximize the total quality of admitted students (as a total revenue) minus 

costs of admitting students. Second, in their model, colleges compete in a perfect market 
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with given price parameters (i.e., tuitions), while in our model colleges competes in an 

imperfect market where there is no price. 

I.3 Preview of the Paper 

In Section 2, we build a simple model to study college competition in setting 

admission quotas. The model considers not only total quota a college may set, but also 

how to allocate total quota across different majors and regions. The model delivers three 

predictions on college behavior and its consequences, as we previously mentioned.  

In Section 3, we describe institutional background, data and variables for empirical 

study. We collect data on college admissions competition between Tsinghua University 

and Peking University, the commonly recognized top two universities in China. They 

form a “duopoly market” for the most talented student group in China. Two key 

variables are cutoffs and quotas of two universities for different majors and regions. We 

also provide some stylized facts regarding quotas and cutoffs of those two colleges, to 

give us a first impression on how they compete. 

In Section 4, we delineate our empirical method and report our empirical results. 

We explore time and regional variance of cutoffs and quotas to examine relationship 

between quotas and cutoffs and test our three theoretical hypotheses. All three 

theoretical hypotheses are supported by our empirical study. More concretely, when the 

quota of one university increases by 10%, the cutoff of the university and the rival 

university would decrease by 2.43 and 2.40% respectively. Second, two colleges set up 

their major and regional quotas so that all the majors and regions have roughly equalized 

cutoffs, measured by a small coefficient of variation (CV), compared to CV of quotas. 

Last, two colleges allocate more quotas to regions where the college becomes more 

popular among students. 

Section 5 concludes the paper. 
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II. A Simple Model of College Admissions 

Competition with Homogeneous College Priority 

    We begin our theory from the simplest model with only two colleges without major 

divisions. Then we consider two colleges with two majors each, with vertical or lateral 

student preference over college-major bundles. We then provide a generalization of the 

model, where we have multiple college with multiple majors. At the end of this section 

we state our testable hypotheses. Colleges are assumed to have homogenous priorities 

over students (e.g, by their CEE total scores) throughout all the models. 

II.1 Two-college model 

Two colleges, Tsinghua University (TU) and Peking University (PU), compete for 

a continuum of students, with the amount normalized to 1. The quality of students, 

measured by their normalized CEE total scores, is uniformly distributed between 0 and 

1. For any given quality, one half of the students prefer TU to PU, and the other half 

prefer PU to TU. All students prefer being matched to being unmatched. There are no 

tuition fees charged to students. 

We consider the following duopoly game played by TU and PU: 

1. Colleges simultaneously choose quotas 𝑞 , 𝑞 ∈ [0,1], where 𝑞 , 𝑞  denote the 

quota of TU and PU, respectively.  

2. After capacity choices, students are admitted according to the unique stable 

matching. Specifically, colleges will admit students by their CEE scores, from high to 

low, up to their committed quotas. 

The objective function of colleges, i.e., profit, is defined as (Azevedo, 2014; 

Azevedo and Leshno, 2016): 
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Profit= total quality (or scores) of admitted students - total cost paid. 

 

For each unit of students admitted, the college pays a cost of ,  > 0 but small 

enough. That is, the cost function is of the form: 𝐶 (𝑞 ) = 𝜆𝑞 . 1  

Let’s first distinguish two concepts of equilibrium. Matching Equilibrium (ME) is 

defined as the stable matching under any given quotas, i.e., the equilibrium in stage 2. It 

is also the matching market outcome where the cutoffs equate supply of and demand for 

two colleges. Cournot Equilibrium (CE) is defined as the Nash equilibrium for setting 

quotas: each college chooses a quota that is the optimal response for the quota chosen 

by the other college. The purpose of our analysis is to solve for CE, given that ME will 

always be achieved for any given quotas. 

Without loss of generality, let 𝑞 ≤ 𝑞  at the Cournot equilibrium (CE). It is 

obvious that we cannot have: 𝑞 + 𝑞 ≥ 1. Otherwise at least one college will admit 

students with quality (or marginal revenue) of 0, with a marginal cost of  > 0 . 

Therefore we have 𝑞 < 1/2. 

We first solve for ME, i.e., the equilibrium cutoffs given quotas. Let 𝑐 , 𝑐  be the 

cutoff scores of two colleges. Since 𝑞 ≤ 𝑞 , we must have 𝑐 ≥ 𝑐 . We call a college 

with a high (low) cutoff as high(low)-positioning. It is easy to derive the following 

relationship between the quotas and the cutoffs (see also Figure 1): 

 

𝑞 = (1 − 𝑐 )/2 

𝑞 =
1 − 𝑐

2
+ (𝑐 − 𝑐 ) 

                                                 
1 Quotas are defined as the maximal number of students a college can admit. In our model, the quota must be met 
because: first, students always prefer being admitted to non-admitted, second, colleges will not set quotas so that the 
quota exceeds the number of students, since the marginal benefit would be zero (the ability of the least able student), 
while the marginal cost would be  > 0.  
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Rearrangements lead to the equilibrium cutoffs as: 

 

𝑐 = 1 − 2𝑞  

𝑐 = 1 − 𝑞 − 𝑞  

 

 

Claim 1. Under two-college model, (1) when a college raises its quota, it will 

weakly lower the cutoffs of all colleges; (2) the marginal quota change of a low-position 

college will NOT affect the cutoff of the high-positioning college.  

Claim 1 part (1) replicates Lemma 2 in Azevedo (2014). It holds under a very 

general condition. Claim 1 part (2) is more restrictive, applying only for homogeneous 

college priorities. It says that there are only one-way business-stealing externalities 

from the low-positioning to the high-positioning. 

We can solve for CE after solving for ME. First, the total student quality (or total 

revenue) of a college, denoted by 𝑅  and 𝑅 , can be expressed as: 

 

𝑅 𝑞 , 𝑞 = ∗ 𝑞 = (1 − 𝑞 )𝑞 , 

𝑅 𝑞 , 𝑞 = ∗ 𝑞 + ∗ 𝑞 − 𝑞 = 𝑞 − 𝑞 𝑞 + 𝑞 − 𝑞 . 

 

It is easy to verify that the marginal revenues (MR): 

Student quality 

0 1 𝑐  𝑐  

Figure 1 Two-college model 

half to TU, half to PU all to TU 
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𝑀𝑅 ≡
𝜕𝑅 𝑞 , 𝑞

𝜕𝑞
= 1 − 2𝑞 = 𝑐 , 

𝑀𝑅 ≡
𝜕𝑅 𝑞 , 𝑞

𝜕𝑞
= 1 − 𝑞 − 𝑞 = 𝑐 . 

  

Claim 2. MR=cutoff. 

Claim 2 replicates Proposition 3 in Azevedo (2014). It applies for the same 

condition as Claim 1 part (2), i.e., if colleges have homogeneous priorities over students. 

The profit 𝜋 = 𝑅 − 𝜆𝑞 , 𝑖 = 𝑡, 𝑝 . The first order conditions (w.r.t 𝑞 ) for 

maximizing profit are: 

 

𝑀𝑅 = 𝜆  1 − 2𝑞 ∗ = 𝑐 ∗ = 𝜆 

𝑀𝑅 = 𝜆  1 − 𝑞 ∗ − 𝑞 ∗ = 𝑐 ∗ = 𝜆. 

 

This leads to our solution for Cournot equilibrium(CE):  

 

𝑞 ∗ = 𝑞 ∗ = (1 − λ)/2. 

 

Monopoly Solution 

It is interesting to look at the monopoly solution of this college admissions problem. 

That is, suppose two colleges jointly choose their quotas to maximize their total profit.  

The monopoly solution can be solved as:  

 

𝑀𝑖𝑛 𝑐 , 𝑐 = 1 − (𝑞 + 𝑞 ) = 𝜆 
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That is, total profit is maximized as long as the total quota of two colleges is set 

such that MR, also the minimum cutoff among two colleges, equal to MC, no matter 

how students are allocated between two colleges.  

We have the following conclusion: 

Claim 3. CE maximizes monopoly profit. 

The conclusion that CE implements monopoly outcome can be illustrated in Figure 

2. Note that the MR curve of college i given q-i, 𝑀𝑅 (𝑞 ), is kinked at 𝑐 = 𝑐  (or 

equivalently 𝑞 = 𝑞 ). In particular, given 𝑞 , when 𝑐 𝑐  (or 𝑞 𝑞 ), 𝑀𝑅 (𝑞 ) 

coincides with the MR curve for monopoly, 𝑀𝑅 (𝑞 ). Since MCs of both colleges 

are equal, then at Cournot equilibrium, their MRs, therefore cutoffs, are equal, i.e., 𝑐 =

𝑐 (= 𝜆). This implies 𝑀𝑅 (𝑞 ) = 𝑀𝑅 (𝑞 ) at the CE. Therefore, CE implements 

monopoly outcome. Intuitively, when both colleges are equally positioning, an extreme 

case of low positioning, there is no “business-stealing” externalities from one college to 

the other. Then CE is consistent with monopoly solution. 

 

Figure 2 Cournot Equilibrium and Monopoly Solution  

MRi (q-i) =1-2qi, when cic-i 
=1-q-i-qi, when cic-i. 

MC= 

ci 

qi qi=q-i=(1-)/2 

MRm
 (q-i) 
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Extension 1: Heterogeneity in Costs 

We consider two colleges have different marginal cost of admitting students, e.g., 

𝜆 > 𝜆 . We hypothesize the college with lower marginal cost (here TU) would admit 

more students, i.e.,  𝑞 ∗ > 𝑞 ∗ . Therefore, 𝑐 ∗ < 𝑐 ∗ . It is easy to find the Cournot 

equilibrium as:  

 

𝑐 ∗ = 𝜆 , 𝑐 ∗ = 𝜆  

𝑞 ∗ = , 𝑞 ∗ =  

 

The monopoly solution which maximizes total profit for both colleges would 

require: 

 

𝑞 = 1 − 𝜆 , 𝑞 = 0 

 

In this case, Cournot equilibrium cannot implement the monopoly profit. It turns out 

that equal MC is a critical condition for CE to implement monopoly solution. 

Extension 2: Unbalanced Preferences 

Suppose two colleges are not equally popular. For example, there are proportion  

of all students prefer PU to TU, and 1 −  prefer TU to PU, with 1/2.  

The CE is: 

 

𝑐 ∗ = 𝑐 ∗ = 𝜆 

𝑞 ∗ = 𝛼(1 − 𝜆)，𝑞 ∗ = (1 − 𝛼)(1 − 𝜆). 
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More popular college would attract more students. However, their cutoffs are still equal.  

It can be shown that the monopoly solution is still 𝑞 + 𝑞 = 1 − 𝜆. Cournot 

equilibrium (CE) implements the monopoly profit. Equal popularity is not critical for 

CE to implement monopoly solution. 

II.2 Two-college-two-major model 

     Suppose now each of two universities, TU and PU, has two majors: Science and 

Humanity. Student preferences are defined over 4 college-major bundles {TS, TH, PS, 

PH}. Here TS is Science major at TU, and so forth. Theoretically there are 4!=24 types 

of preference order for each student, and preference distribution (for any given student 

ability) should be defined over those types of preference order. To illustrate our basic 

idea, however, we simply consider two typical preference distribution: vertical or lateral 

student preference.  

Vertical Student Preference 

Suppose there are only two types of preference orders: 

Type 1: TS>PH>PS>TH, with probability 1/2; 

Type 2: PH>TS>TH>PS, with probability 1/2. 

Student preference is vertical in the sense that they all prefer TS, PH to TH, PS. In 

addition, students who prefer Science major at TU to Humanity major at PU (slightly) 

favor Science major against Humanity major, so that they also prefer Science major at 

PU to Humanity major at TU. We assume for any given student quality (or score), each 

type of preference order is half populated. 

Let 𝑞 , 𝑖 = 𝑡, 𝑝, 𝑎𝑛𝑑 𝑗 = 𝑠, ℎ be quotas for each major in each college. College-

majors will admit students in a descending order of their college entrance exam scores, 
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up to their committed quotas. The matching equilibrium (ME) is defined between 

college-majors and students on two sides. Let 𝑐 , 𝑖 = 𝑡, 𝑝, and 𝑗 = 𝑠, ℎ  be 

corresponding cutoffs. We first solve for ME, i.e., the equilibrium cutoffs. 

It is obvious that 𝑐 , 𝑐 ≥ 𝑐 , 𝑐 . And without loss of generality, we assume 

𝑐 ≥ 𝑐 , and 𝑐 ≥ 𝑐 .Therefore we have 𝑐 ≥ 𝑐 ≥ 𝑐 ≥ 𝑐 . 

It is easy to verify that (also referring to Figure 3): 

 

𝑞 =
1

2
(1 − 𝑐 ) 

𝑞 =
1 − 𝑐

2
+ (𝑐 − 𝑐 ) 

𝑞 =
1

2
(𝑐 − 𝑐 ) 

𝑞 =
𝑐 − 𝑐

2
+ (𝑐 − 𝑐 ) 

 

Rearrangements lead to equilibrium cutoffs:  

 

𝑐 = 1 − 2𝑞  
𝑐 = 1 − 𝑞 − 𝑞  

𝑐 = 1 − 𝑞 − 𝑞 − 2𝑞  
𝑐 = 1 − 𝑞 − 𝑞 − 𝑞 − 𝑞  

 

Student quality 

0 1 𝑐  𝑐  

Figure 3 Two-college-two-major model (Vertical Preference) 

half to TS,  

half to PH all to PH 

𝑐  𝑐  

half to TH, 

half to PS all to PS 
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We now solve for CE. We assume each college, NOT college-major, maximizes its 

total profit over two majors by choosing college-major quota, 𝑞 . 2  The Cournot 

equilibrium(CE) can be solved ass:  

 

𝑐 ∗ = 𝜆, 𝑓𝑜𝑟 𝑖 = 𝑡, 𝑝, 𝑎𝑛𝑑 𝑗 = 𝑠, ℎ. 

𝑞 ∗ = 𝑞 ∗ = ∗ (1 − λ), 

𝑞 ∗ = 𝑞 ∗ = 0. 

 

In the equilibrium, cutoffs are equalized among majors, which are also equal to MC. 

Therefore, colleges have no incentive to admit additional students into any major. The 

vertically less preferred major turns out to be shut down. 

Lateral Student Preference 

Suppose now student preference becomes more heterogeneous. In particular, 

except for Type-1 and 2, there are additional two types of students, Type-3 and 4: 

Type 1: TS>PH>PS>TH, with probability α/2, 

Type 2: PH>TS>TH>PS, with probability α/2, 

Type 3: TH>PS>PH>TS, with probability (1 − α)/2, 

Type 4: PS>TH>TS>PH, with probability (1 − α)/2. 

Type 3 and 4 preference orders are just the reserve order of Type 1 and 2. Under such a 

type set, all four college-major bundles can be students’ first choice. That is why we call 

it lateral preference. We assume α > 1/2, i.e., type-1/2 are still more popular. 

Let’s hypothesize that: 𝑐 ≥ 𝑐 ≥ 𝑐 ≥ 𝑐 . ME is easy to solve as (by also 

referring to Figure 4): 

                                                 
2 The result would be the same if each major in each college maximizes its own profit. A detailed discussion would 
be on Section II.4. 
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𝑞 =
1

2
α(1 − 𝑐 ) 

𝑞 =
1

2
α(1 − 𝑐 ) + α(𝑐 − 𝑐 ) 

𝑞 =
1 − α

2
1 − 𝑐 +

1

2
∗ (𝑐 − 𝑐 ) 

𝑞 =
1 − α

2
1 − 𝑐 +

1

2
∗ 𝑐 − 𝑐 + (𝑐 − 𝑐 ) 

 

 

Or equivalently:  

𝑐 = 1 −
2

α
𝑞  

𝑐 = 1 −
𝑞

α
−

𝑞

𝛼
 

𝑐 = 1 − 𝑞 − 𝑞 − 2𝑞  
𝑐 = 1 − 𝑞 − 𝑞 − 𝑞 − 𝑞  

 

Under CE, we still consider the problem in which each college maximizes its total 

profit over two majors, by choosing q.  

The Cournot equilibrium(CE) is: 

 

𝑐 ∗ = 𝜆, 𝑓𝑜𝑟 𝑖 = 𝑡, 𝑝, 𝑎𝑛𝑑 𝑗 = 𝑠, ℎ. 

𝑞 ∗ = 𝑞 ∗ =
α

2
(1 − λ) 

Student quality 

0 1 𝑐  𝑐  

Figure 4 Two-college-two-major model (Lateral Preference) 

0.5 to TS 

0.5 to PH 

0.5(1-) to TH 

0.5(1-) to PS 

 to PH 

0.5(1-) to TH 

0.5(1-) to PS 

 

𝑐  𝑐  

half to TH, 

half to PS all to PS 
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𝑞 ∗ = 𝑞 ∗ =
(1 − α)

2
(1 − λ) 

 

Under lateral student preference, all college-majors admit students, but more popular 

college-majors admit more students. Each major admit certain number of students such 

that their cutoffs are the same and equal to MC = λ.  

We summarize two-college-two-major model with either vertical and lateral 

student preference as the following: 

Claim 4. Colleges equalize their (existing) major cutoffs. 

Claim 5. Vertically less preferred majors will be eliminated by colleges; Laterally 

less popular majors will be allocated less quotas. 

II.3 Multi-college-multi-major model: A Generalization 

Let’s generalize the model of two-college-two-major to arbitrary number of 

colleges and majors. We will restrict the model to the lateral student preference. It is not 

so restrictive, because, as we illustrated in Section II.2, colleges tend to eliminate their 

vertically less preferred majors so that any existing majors must be laterally preferred. 

There are 𝑁 colleges indexed by i, i.e., 𝑁 = {𝑖 = 1, 2, … , 𝑁}. Each college has 

𝑀  majors, index 𝑗(𝑖) , i.e.  𝑀 = {𝑗(𝑖) = 1, 2 … , 𝑀 } . The set of all college-major 

bundles are indexed by k, and denoted as 𝐾 = {𝑘 = 1, … , 𝐾} = {(𝑖, 𝑗(𝑖))|𝑖 ∈ 𝑁, 𝑗(𝑖) ∈

𝑀 }.  

Student quality, denoted by 𝜃, 𝜃 ∈ [0, 1], has a non-atomic distribution with a CDF 

as 𝐹(𝜃) and PDF as 𝑓(𝜃). 𝐹 has a full support, i.e., the closure of {θ|𝑓(θ) > 0} is 

[0, 1]. 

Student preference is independent of student quality. At each student quality 𝜃, all 

the preference orders defined over the college-major bundle in set 𝐾 are possible, i.e., 
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with a positive probability. We further assume, at each student quality 𝜃, there are 

proportions of 𝛼 ( ) >0 who prefers college-major bundle (𝑖, 𝑗(𝑖) ) most, with 

∑ 𝛼 ( ), ( ) = 1.  

The marginal cost of admitting students is constant among different majors within 

a college, but can be different across colleges. In particular, let λ  be the MC for college 

𝑖. 𝜆 ≥ 𝜆 ≥ ⋯ ≥ 𝜆 .  

Lemma 1. Given 𝑞, there exists a unique market clearing cutoff 𝑐. 

Lemma 1 shows the existence and uniqueness of matching equilibrium. It is 

noteworthy that Azevedo and Leshno (2016, Theorem 1) does not apply here. In their 

settings, colleges could have heterogeneous preferences over students, so the space of 

student’s scores is 𝛩 = [0,1]  when there are 𝐾  college-major bundles. Their 

theorem guarantees the existence and uniqueness of matching equilibrium when the 

distribution of student 𝜂 has full support in 𝛩. But in our case, the CDF of student 

quality defined on 𝛩  is 𝜂(𝜃 , 𝜃 , … , 𝜃 ) = 𝐹 min 𝜃  and it support supp(𝜂) =

{(𝜃 , 𝜃 , … , 𝜃 )|𝜃 = 𝜃 = ⋯ = 𝜃 } (diagonal line only) is not 𝛩. 3   

Lemma 2. When a college-major raises its quota, it will weakly lower the cutoffs 

of all college-majors. 

Lemma 2 replicates Lemma 2 in Azevedo (2014) and serves as an extension of 

Claim 1 part (1). As we said before, Lemma 2 holds in a very general condition. 

Basically, it only requires the matching equilibrium is unique.  

We now strengthen Lemma 2 under the special case where colleges have 

homogeneous priorities over students. 

                                                 
3 Azevedo (2014) weakened the assumption in Azevedo and Leshno (2016). However, our settings do not satisfy the 
assumptions in Azevedo (2014) either. 
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Lemma 3. Under matching equilibrium, marginal change of quota of any college-

major 𝑘, i.e., 𝑞 , will not affect cutoff of any other college-major 𝑘 ≠ 𝑘, i.e., 𝑐 , if 

𝑐 < 𝑐 . 

The proof is in Appendix 1. Lemma 3 extends Claim 1 part (2). After stating our 

lemmas, we are ready to state our main conclusion. 

Proposition 1. The Cournot equilibrium is: 

 

𝑐 ( ) = 𝜆 , ∀𝑗(𝑖), 𝑖 ≠ 𝑁, 

𝑐 ( ) ≤ 𝜆 , 𝑀𝑖𝑛 ( ) 𝑐 ( ) = 𝜆 , ∀𝑗(𝑁) 

 

The proof is in Appendix 1. Proposition 1 only characterize cutoffs under CE. 

Equilibrium quotas are difficult to characterized, unless we assume equal MC among 

colleges, i.e.,  𝜆 = 𝜆.4   

Corollary 1. If 𝜆 = 𝜆, ∀𝑖, then:  

 

𝑐 ( ) = 𝜆, ∀𝑖, 𝑗(𝑖) 

𝑞 ( ) = 𝛼 ( ) 1 − 𝐹(𝜆) , ∀𝑖, 𝑗(𝑖). 

 

The proof is straightforward so we ignore. Proposition 1 and Corollary 1 extend 

Claim 4 and 5. In particular, major cutoffs are still equalized within colleges, except for 

the college with the solely lowest MC, and more popular majors are allocated to larger 

quota. 

                                                 
4 When λ  varies among different 𝑖, the equilibrium quotas would depend on a full characterization of student 
preference order over colleges. Define proportion α  over all of those orders, with 𝑘 = 1, … , 𝐾 = 𝑖!. Then students 
admitted by the college with the highest cutoff, say λ ,would be those with θ ≥ λ  whose first choice being a major 
in college 1. Students admitted by the college with the second highest cutoffs, say λ , would be those with θ ≥
λ whose first choice being a major in college 2, as well as those with λ > θ ≥ λ  whose highest choice(s) is(are) 
major(s) in college 1, but the highest choice except those in college 1 is a major in college 2. And so on. 
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Suppose each college-major, instead of a college as a whole, maximizes its own 

profit independently. Let’s call the solution major-Cournot equilibrium (Major-CE). It 

is easy to derive that:  

 

𝑀𝑅 ( ) = 𝑐 ( )
∗ = 𝜆 , ∀𝑖, 𝑗(𝑖) 

 

Equilibrium cutoffs are the same as under the Cournot equilibrium where colleges 

maximize their total profits for all its majors (i.e., college-CE), except for 𝑖 = 𝑁 . 

Equilibrium quotas under major-CE and college-CE for colleges other than N are also 

the same.  

The idea of the (almost) equivalence between major-CE and college-CE is very 

similar to that of the equivalence between CE and monopoly under college competition 

without majors (as in Section II.1): when marginal cost is equal among majors, major 

cutoffs are equalized when majors are independent profit maximizers. But at such an 

optimum, “stealing business” externalities disappear so that it also realizes the 

“monopoly” profit of the whole college.  

We state this conclusion as our second corollary.  

Corollary 2. The quotas and cutoffs under college-Cournot equilibrium are equal 

to those under major-Cournot equilibrium, except for college N. 

Regional quota allocation 

For empirical relevance, we now consider quota allocation among regions, which 

is a simpler case than quota allocation among majors. The problem (ignoring major 

divisions) is a bit different from major quota allocation. In the major quota allocation, 

student preferences are defined over college-major bundles, implying that they can 

freely choose any college and major if available. In a regional quota allocation, students 
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are often not allowed to move among regions. Therefore, their preferences are defined 

only over colleges, not regions. 

There are 𝑁  colleges indexed by i, i.e., 𝑁 = {𝑖 = 1, 2, … , 𝑁} , and J regions 

indexed as j. The total amount of students is normalized to unit, and 𝛽  is the proportion 

of student in region j. Student quality in region j is denoted by 𝜃 , 𝜃 ∈ [θ , θ ], has a 

non-atomic distribution with a CDF as 𝐹 (𝜃 ) and PDF as 𝑓 (𝜃 ). 𝐹  has a full support. 

Student preference is defined over colleges, which are independent of student 

quality. For any region, all student preference orders over colleges are possible. We 

further assume, within region j, there are proportions of 𝛼 >0 who prefers college 𝑖 

most, with ∑ 𝛼 = 1, ∀𝑗.  

The marginal cost of admitting students is constant among different regions within 

a college, but can be different across colleges. In particular, let λ  be the MC for college 

𝑖. We assume θ < λ < θ , ∀𝑖, 𝑗. 

Each college i, by setting quotas for each region, i.e., 𝑞 , maximize its total profit 

among all regions: 

 

Max{ ,…, } 𝑅 (𝑞 ) − λ 𝑞  

 

where 𝑅  is the total quality of students (or total revenue) for college i from region j. 

Note that total revenue depend on quotas of all colleges at region j, i.e., 𝑞 .  

Lemma 4 Under Cournot equilibrium, for any college i at any region j, marginal 

revenue is equal to cutoff, i.e., 𝑀𝑅 = 𝑐 , ∀𝑖, 𝑗. 

Lemma 4 extends Claim 2 and replicates Proposition 3 in Azevedo (2014). It 

applies when colleges have homogeneous priorities over students, obviously true here. 

Proposition 2. The Cournot equilibrium (for regional quota allocation) is: 
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𝑐 = 𝜆 , ∀𝑖, 𝑗 

If 𝜆 = 𝜆, ∀𝑖, then:  

𝑞 = 𝛽 𝛼 1 − 𝐹 (𝜆) , ∀𝑖, 𝑗. 

 

Proposition 2 is derived from Lemma 4. The proof is straightforward so we ignore. The 

conclusions are essentially the same as for major quota allocation. That is, cutoffs are 

equalized among regions, and a larger quota is allocated to a region becoming more 

popular among students.5 

II.4 Testable Hypotheses 

The theory we developed in Section II.1-II.3 highlights three testable hypotheses. 

 

Hypothesis 1: When the quota of a college (or college-major) increases, the cutoffs 

of all colleges (or college-majors) will (weakly) decrease. 

 

Hypothesis 1 is predicted by Claim 1 part (1) and Lemma 2. We do not form 

hypothesis for asymmetric effect of quotas on cutoffs due to unequal positioning, stated 

in Claim 1 part (2) and Lemma 3. We will let our data tell us whether there are 

asymmetric effects of quotas on cutoffs between colleges.  

 

Hypothesis 2: Colleges tends to allocate their quotas across their (existing) majors 

or regions so that cutoffs for each major or region are equalized. 

                                                 
5 In Appendix 2, we consider another extension where colleges face constraints on total quotas they can allocate 
among different majors (or regions), but zero MC within those constraints. Proposition 2 (and 3) still holds: for 
colleges except the one with the largest quota, their cutoffs are equalized and more quotas are allocated to more 
popular majors (or regions). 
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Hypothesis 3: A college will allocate more quotas to more popular majors or 

regions becoming more popular. 

 

Hypothesis 2 and 3 are predicted by Claim 4 and 5, Proposition 1 and Corollary 1, 

and Proposition 2. For Hypothesis 2, i.e., equalized cutoffs, equal MC for majors or 

regions are needed within colleges. For Hypothesis 3, to simplify our notations, in 

Corollary 1, we only give an expression for equilibrium quotas under equal college MCs. 

But Hypothesis 3 may not require equal MC among colleges. 

III. Background and Data 

III.1 Background 

Tsinghua University and Peking University feature duopoly in China’s college 

admissions. They are commonly recognized as the top two universities in China. In the 

QS World University Rankings of year 2015, the ending year of our sample, Tsinghua 

is placed at 47 and Peking at 57, representing the two highest-ranked universities in 

China (and their rankings are still rising!)6. In the “China Discipline Ranking” (2012), 

conducted by Ministry of Education, 16 disciplines offered at Peking University and 14 

at Tsinghua are top-ranked in China – both of which far outpace any other institutions7. 

Their campuses’ geographical proximity within Beijing only adds to the sense of 

similarity. News reports suggest that two universities indeed compete with each other 

for top-ranked students (zhuangyuan) in college admissions8.  

                                                 
6 The QS Rankings can be found at: https://www.topuniversities.com/ 
7 Sina Education：http://edu.sina.com.cn/kaoyan/2013-01-29/1815370477.shtm 
8 “Guangdong CEE cutoffs have just been announced! Tsinghua and Peking University come to Huizhou for high-
score students”, News-163, 2017, http://news.163.com/17/0625/12/CNPBCH5O000187VE.html.“Tsinghua and 
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Someone may suspect that the two public universities have autonomy to change 

their quotas under government regulation. Although in each year universities need to 

report their total, regional and major quotas to the Ministry of Education, and publicize 

them before CEE, they still have discretions to vary their quotas to compete for high-

quality students.  

For example, Article 32 in Higher Education Law of the People's Republic of China 

(1999) states that: “Higher education institutions shall draw up enrolment plans in light 

of social needs, the conditions of the institutions, and the size of the student body verified 

by the State, and readjust on their own the proportions of enrolment for different 

faculties and subjects.”  

Article 27 in Regulations for Enrollment in Regular Colleges and Universities in 

2017 states that: “Colleges and universities … may, within the scope of the national 

annual enrollment of regular higher education, draw up their own enrollment plan 

divided into provinces (regions, cities) and professionals, i.e., enrollment source plans, 

according to the relevant plan preparation work requirements and the principles and 

methods of enrollment planning defined in the enrollment regulations. The provincial 

education administrative departments, relevant departments (units), the Education 

Department (bureaus) and universities and colleges shall formulate, adjust, and execute 

the enrollment source plan within the scope of the annual national general authorized 

enrollment of higher education.” Article 28 says: “Universities should strengthen the 

analysis and forecast of talent demand in light of the needs of China’s economic and 

social development, and combine their own conditions for running schools, employment 

of graduates, and the conditions of student sources in each province (region, city), to 

make enrollment adjustment over professional structure, hierarchy, and regional 

                                                 
Peking University fight for top students overnight”, China Youth, 2016, 
http://d.youth.cn/sk/201606/t20160624_8183923.html “Tsinghua and Peking University enrollment chaos”, News-
163, 2015, http://news.163.com/15/0628/16/AT77IT810001124J.html. 
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structure, and arrange enrollment source plan independently, scientifically, and 

reasonably.” 

Our data also illustrate colleges can adjust admissions quotas quite flexibly: they 

can change their total admissions quota,9  adjust quota allocations among different 

provinces,10 and among different majors11.  

III.2 Data 

The key variables in our empirical models are score cutoffs and admission quotas 

for Tsinghua University and Peking University. Our data for those variables are gathered 

from websites and brochures published by both universities. Data sources are listed in 

Table 1. The data represent the total university enrollment (cutoffs and quotas) in 30 

provinces (excluding Tibet Autonomous Region and Hong Kong, Macao and Taiwan), 

as well as cutoffs and quotas for individual majors (mathematics, etc.), from 2011 to 

2015, for both universities. 

Table 1 Data source 

Data Source 

Cutoffs of Tsinghua University in each province 

(2011-2015) 

Tsinghua University Undergraduate 

Enrollment Website 

http://www.join-

tsinghua.edu.cn/publish/bzw/9500/i

ndex.html  

Cutoffs of majors in Tsinghua University in each 

province (2011-2015) 

                                                 
9 In 2011, Tsinghua planned to enroll 1200 students, and this number increased to 1400 in 2012, decreased to 1200 
in 2015. Meanwhile, Peking University’s quota is always around 1200. See also Figure 5. 
10 For instance, Tsinghua University enrolled 34 students through the science track in Anhui province in 2011, while 
in 2013, the number increased to 54 and in 2015 fell back to 40.  
11 For instance, the Environmental Engineering Major at Peking University enrolled 6 students through the science 
track in Beijing in 2012, while in 2014, the number decreased to 2 and in 2015 rose back to 4. 
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Cutoffs of Peking University in each province 

(2011-2015) 

Peking University Undergraduate 

Enrollment Website 

http://www.gotopku.cn/programa/ad

mitline/7.html  

Cutoffs of majors in Peking University in each 

province (2011-2015) 

Peking University 2012-2016 

student recruitment brochure 

Quota of Tsinghua University and its majors in 

each province (2011-2015) 

Tsinghua University Undergraduate 

Enrollment Website 

http://www.join-

tsinghua.edu.cn/publish/bzw/9501/i

ndex.html  

Quota of Peking University and its majors in each 

province (2011-2015) 

Peking University Undergraduate 

Enrollment Website 

http://www.gotopku.cn/programa/en

rolstu/6.html  

Major consolidation 
College major catalogue issued by 

Ministry of Education (2012) 

 

Table 2 provides a descriptive analysis of cutoffs and quotas. Table 3 details the 

consolidation of majors in these two universities, according to College Major Catalogue 

issued by Ministry of Education (2012). In total, there are 13 common or similar majors 

across the two universities. 

It should be noted that admission quotas are released before the CEE is administered. 

Although it is defined as the maximal number of students to be admitted by a college in 

a major and region, in reality quotas are often fully occupied. Because Tsinghua and 

Peking Universities are so popular among students, to leave some pre-committed slots 
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open can cause serious oppositions. Sometimes quotas are even broken, which lead to 

admission quotas be the minimum number of students that universities should admit. 

This is especially true for regional quotas. However, admission quotas are still very 

useful to consider the “supply” from colleges (and majors). When students fill in the 

application form, they have to refer to the admission quota, instead of the real admission 

number. Another reason for using admission quota is that the actual admission number 

is unavailable. 

Table 2 Descriptive Statistic  

（1）University Level 

Variable Obs. Mean Std. Dev.  Min  Max 

Cutoff 600 652.4 70.1 387 902 

Quota 600 20.4 24.0 1 205 

（2）Major Level 

Variable Obs. Mean Std. Dev.  Min  Max 

Cutoff 6,446 655.2 70.8 371 938 

Quota 7,744 1.5 1.4 1 28 

Table 3 Major category 

Peking University Tsinghua University Consolidated 

Major name 
Major 

code 

Class 

code 
Major name 

Major 

code 

Class 

code 
Major Name 

Major 

Code 

Law 030101K 0301 Law 030101K 0301 Law 301 

Japanese 050207 0502 Japanese 050207 0502 
Foreign Language 502 

English 050201 0502 English 050201 0502 

Journalism 0503 0503 Journalism 050301 0503 Journalism 503 
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Mathematics 0701 0701 Mathematics 070103T 0701 

Mathematics 701 
   

Applied 

mathematics 
070101 0701 

Physics 0702 0702 Physics 070201 0702 Physics 702 

Chemistry 0703 0703 Chemistry 070301 0703 

Chemistry 703 
   Biochemistry 070303T 0703 

Biology 0710 0710 Biology 0710 0710 Biology 710 

Electronic 

Information 
0807 0807 

Electronic 

Information   
0807 0807 

Electronic 

Information 
807 

Environmental 

Science and 

Engineering 

0825 0825 
Environmental 

Engineering 
082502 0825 

Environmental 

Science and 

Engineering 

825 

Urban-rural 

Planning 
082802 0828 Architecture 082801 0828 Architecture 828 

Information 

Management 

and 

Information 

System 

120102 1201 

Information 

Management 

and 

Information 

System 

120102 1201 

Information 

Science and 

Engineering 

1201 

Business 

Administration 
1202 1202 

Business 

Administration 

(Accounting) 

120203K 1202 Economics, 

Finance and 

Accounting 

1212 

Economics 0201 0201 
Economics and 

finance 

  

Note:  
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III.3 Stylized Facts 

Before we conduct formal regressions, we first look at some stylized facts of 

college admissions of these two universities. Figure 5 shows how the cutoffs 

(normalized to 100 points) of two universities vary across years. Cutoffs are grouped by 

CEE tracks, i.e., Humanity or Science, averaged across provinces. Cutoffs for first-batch 

colleges (including roughly 100 elite universities) are also shown. For either track, two 

universities have roughly the same cutoffs.  

① The following majors at Peking University cannot be consolidated: philosophy, international politics, 

sociology, China language literature, other languages (French, German, Spanish, Russian, Arabic, Korean, 

Thai, Filipino, Bahasa Indonesia, Urdu, and Sanskrit), archaeology, history, astronomy, geophysics, 

geology, psychology, public management, art theory, and experimental courses in engineering, science, and 

liberal arts. 

② The following majors at Tsinghua University cannot be consolidated: engineering mechanics, mechanical 

engineering, vehicle engineering, measurement and control technology and instrumentation, materials 

science and engineering, polymer materials and engineering, energy and power engineering, electrical 

engineering and automation, automation, computer science and technology, software engineering, civil 

engineering, building environment and energy engineering, water conservancy and hydropower 

engineering, aerospace engineering, nuclear engineering and technology, engineering physics, biomedical 

engineering, medical physics experimental class, clinical medicine, pharmacy, industrial engineering, social 

science and humanities experimental classes, chemical engineering, and industrial biological engineering. 
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Figure 6 shows the total quotas (summed across provinces and majors) of two 

universities across years and by tracks. Tsinghua university has a larger total quota than 

Peking University. As for tracks, Peking university has a larger quota for Humanity but 

smaller quota for Science. Quotas also vary across years, with a range of 1,100 to 1,450 

for Tsinghua university, and 1,100 to 1,200 for Peking university. 

 

Figure 7 and 8 show quotas and cutoffs for each overlapping (or consolidated) 

major of two universities, averaged across years. Admission quotas vary a lot across 

majors, yet cutoffs are surprisingly equalized. The pattern is consistent with our 

Hypothesis 2 that colleges allocate quotas among majors to equalize cutoffs. Even 

Figure 5 Cutoffs at University Level through Years (Provincial Average) 
Science(Left), Humanity(Right), Normalized to 100pts 

Figure 6 Quotas at University Level through Years 
Total (Left), Science(Middle), Humanity (Right)  
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among those non-overlapping majors, the same pattern stands out: quotas vary a lot 

while cutoffs tend to be equal. 

 

 

 

Figure 9 and 10 show the provincial quotas and cutoffs by track. They reveal the 

same pattern as major quotas and cutoffs: quotas vary much yet cutoffs are equalized. 

The equalization of cutoffs is even more surprising here, because CEE contents are 

often different among regions and their scores are in general not fully comparable. 

Figure 7 Major Quotas (Yearly Average) 
Science(Left), Humanity (Right) 

#: Others are the average number of quota of all the non-overlapping majors from two universities. 

Figure 8 Major Cutoffs (Yearly and Provincial Average) 
Science(Left), Humanity (Right) 

#: Others are the average cutoffs of all the non-overlapping majors from two universities. 
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IV. Empirical Tests 

We now provide our empirical tests for our three Hypothesis. The relationships 

between those three hypotheses can be shown in a conceptual framework in Figure 11. 

Colleges play a Cournot Competition at the first stage, while at the second stage, the 

matching market determines the equilibrium cutoffs. Hypothesis 1 is about how the 

cutoffs are determined, especially how they depend on quotas. Note that when quotas 

are determined (by Cournot competition), all the supply-side factors are fully captured 

Figure 9 Quotas at Provincial Level (Yearly Average) 

Science(Left), Humanity (Right) 

Figure 10 Cutoffs at Provincial Level (Yearly Average, Normalized) 

Science(Left), Humanity (Right) 
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by them. In other words, quotas are exogenous when testing Hypothesis 1 which 

concerns only the matching equilibrium. However, student characteristics are factors 

affecting both matching equilibrium and Cournot equilibrium. Therefore, we have to 

include them into our testing for Hypothesis 1, as well as Hypothesis 3 concerning 

Cournot equilibrium. We cannot observe college characteristics such as marginal cost, 

or even colleges’ objective function - we just assume them. Finally, Hypothesis 2 is just 

about statistical characteristics of cutoffs. 

 

IV.1 Testing Hypothesis 1: How Quotas Affect Cutoffs 

We explore time and regional variants of quotas to test its causal effects on cutoffs. 

The benchmark regression model is as followed: 

 

Cournot Competition Matching Market 
Competition 

College 
Primitives: 
Objective 
Function, MC 

Student 
Primitives: 
Scores, 
Preferences 

Student 
Primitives: 
Scores, 
Preferences 

College Quotas 

(supply) 

(demand) 

Cutoffs 

Hypothesis 2 

Figure 11 Conceptual Framework 
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𝐶𝑢𝑡𝑜𝑓𝑓(𝑖, 𝑗, 𝑘, 𝑡) = 𝛼 + 𝛽 ∗ 𝑄𝑢𝑜𝑡𝑎(𝑖, 𝑗, 𝑘, 𝑡) + 𝛽 ∗ 𝑄𝑢𝑜𝑡𝑎(−𝑖, 𝑗, 𝑘, 𝑡) 

+𝛽 ∗ 𝐶𝑢𝑡𝑜𝑓𝑓(𝑖, 𝑗, 𝑘, 𝑡 − 1) + 𝛽 ∗ 𝐶𝑢𝑡𝑜𝑓𝑓(−𝑖, 𝑗, 𝑘, 𝑡 − 1) 

+𝑃𝑟𝑜𝑣𝑖𝑛𝑐𝑒 + 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 + 𝑇𝑟𝑎𝑐𝑘  

+𝑌𝑒𝑎𝑟 + 𝑢(𝑖, 𝑗, 𝑘, 𝑡)                       (1) 

 

Here i represents a generic university (Tsinghua University or Peking University), –i 

represents the rival university, j represents province, k represents track (humanities or 

science), t represents year.  𝐶𝑢𝑡𝑜𝑓𝑓(𝑖, 𝑗, 𝑘, 𝑡) represents cutoffs of university i in 

province j through track k in year t. 𝑄𝑢𝑜𝑡𝑎(𝑖, 𝑗, 𝑘, 𝑡)  represents the corresponding 

admission quotas. 𝑄𝑢𝑜𝑡𝑎(−𝑖, 𝑗, 𝑘, 𝑡)  represents the quota of the rival university. 

Cutoffs and quotas are expressed in logarithmic form. 𝑢(𝑖, 𝑗, 𝑘, 𝑡) is the residual term.  

We include year, province, track, and university dummies to control for the 

corresponding demand/student-side fixed effects. Year dummies control the overall 

trend of CEE scores due to factors like national policy changes or cohort effects of 

student quality. Track dummies control the time independent student difference between 

the humanities and science tracks in CEE. Province dummies control the time persistent 

difference in student quality, CEE difficulty, and full score (scale) among different 

provinces. Universities dummies control time-fixed student preferences for Tsinghua 

and Peking University. In alternative specifications, we also consider the interaction of 

some of these dummy variables, to incorporate more complex fix effects. 

We include cutoffs of previous year to control for non-fixed demand changes. The 

cutoffs of the previous year are usually used by students as a reference when applying 

for universities. A rise in cutoffs of last year will signal to applicants that the university’s 

popularity has improved. Note that universities may also adjust their admissions quotas 
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according to historical cutoffs. So if those cutoffs are not controlled, it may cause an 

endogenous problem of omitted variables.12 

One concern of the model is that the dependent variable (cutoffs) and the main 

independent variable (quotas) are first order integrated i.e., I(1), processes. Although 

first-order differencing the model may well eliminate the concern, it also has the 

problem of “eliminating” cross-sectional variations important for our identifications, 

noting that our sample has 120 panels but only 5 years. To check whether those two 

variables are indeed I(1) process, we use the Harris-Tzavalis unit-root test for panel data, 

and find that, for both variables, the null hypothesis that panels contain unit roots are 

strongly rejected. We also included first difference outcome in our regression tables.13 

 The above model is to test causality between quotas and cutoffs at university level. 

The regression model at major-level is almost the same as the one for university-level, 

except that major dummies are added to control for student preferences toward different 

majors. We focus on the same or similar majors of two universities (defined in Table 3), 

because they are presumably close substitutes to each other. 

Empirical Results 

The results for testing effects of quotas on cutoffs at university-level are shown in 

Table 4. Column 1 sticks to the benchmark model (eq.1). Other regressions add more 

controls. Column 2 controls interactions between provinces and tracks, or equivalently, 

the matching system dummies. Column 3 further controls the interactions between the 

matching systems and universities, which can reflect the time-invariant student 

preferences for each university varying among different provinces and tracks. Column 

4, based on Column 2, further controls the interaction between the matching systems 

and years, to capture the possible time-variant differences among different matching 

                                                 
12 Using lagged dependent variables as proxies for unobserved explanatory variable is a common practice in cross-
sectional regression analysis; see for example Wooldridge (2003), Section 9.2, pp. 300-302. 
13 A few tests for unit root under panel data are available. Harris and Tzavalis (1999)’s test is suitable when the 
number of periods are relatively small while the number of panels are large. 
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systems. Column 5, based on Column 4, further adds last year’s quotas of both 

universities. It is possible that students take into account not only last year’s cutoffs but 

also admissions quotas when they apply for universities. In each specification, we cluster 

residuals by tracks and provinces, but allow residuals to be correlated among years and 

universities.14Column 6 uses first-order difference. The result is insignificant while the 

sign of the coefficients is still consistent with other specifications. 

Table 4 How Quotas Affect Cutoffs: University-level 

Explanatory variables 
Explained variable：Log_Cutoff(i,j,k,t)  

Explained variable：

Log_Cutoff(i,j,k,t) 

(1) (2) (3) (4) (5)   (6) 

Log_Quota(i, j,k,t) 
-0.009** -0.017*** -0.017*** -0.243*** -0.366***  

Log_Quota(i, j,k,t) 
-0.002 

(0.004) (0.005) (0.005) 0.000  (0.001)  (0.005) 

Log_Quota(-i,j,k,t) 
-0.006 -0.014** -0.014** -0.240*** -0.363***  

Log_Quota(-i,j,k,t) 
0.003 

(0.004) (0.005) (0.006) 0.000  (0.001)  (0.005) 

Other control variables     
   

Log_Cutoff (i,j,k,t-1) 
0.245*** 0.103** -0.085* 2.319*** 2.702***    

(0.049) (0.043) (0.043) (0.058) (0.058)    

Log_Cutoff(-i,j,k,t-1) 
0.028 -0.114* 0.0752 2.102*** 2.488***    

(0.055) (0.066) (0.068) (0.058) (0.058)    

Log_Quota(i,j,k, t-1) 
 

   0.021***    

 
   -0.001    

Log_Quota (-i,j,k,t-1) 
 

   0.021***    

    -0.001    

Province Y N N N N   N 

Track Y N N N N   N 

University Y Y N Y Y   N 

Year Y Y Y N N   Y 

Track*Province N Y N N N   N 

Track*Province* University N N Y N N   N 

Track*Province*Year N N N Y Y   N 

Observations  480 480 480 480 480    480 

                                                 
14 As different provinces, tracks and years belong to different CEE systems, CEE scores are less likely to be related 
across provinces, tracks and years. However, as we have introduced time lagged variable, CEE scores within the same 
province and track could be related over time. In addition, we are considering the competitive relationship between 
Tsinghua University and Peking University, so residuals could be related across universities. 
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R2  0.978 0.984 0.985 0.999 0.999    0.1 

Notice: The clustered robust standard deviation of track and province are in the brackets. *** p<0.01, ** p<0.05, * p<0.1. 

 

The results from all specifications (Column 1-5 in Table 4) are consistent with 

Hypothesis 1. In fact, any increase in admissions quotas in one university will 

significantly reduce its own cutoffs, as well as the other university’s cutoffs. Using 

Column 4, which we believe represent the best specification, if a university’s quota 

increases 10%, the other university’s cutoff will decrease by 2.40%, while its own cutoff 

will also fall by 2.43%.  

It is also interesting to see whether quotas have asymmetric cross-effects on cutoffs, 

as illustrated by Lemma 3. The results are shown in Table 5. The quota changes in 

Peking University have significantly negative effects on Tsinghua University’s cutoffs, 

while those effects do not show up in the opposite direction. According to Lemma 3, it 

seems that Peking University is a bit higher positioning than Tsinghua University. Note 

that Tsinghua University has a larger total quota than Peking University (Figure 2), 

consistent with their relative positioning. 

 

Table 5 How Quotas affect Cutoffs: University Level (University Subsample) 

Explanatory variables 

Explained variable：Log_Cutoff(i,j,k,t) 

TU Subsample  PU Subsample 

(1) (2) (3)  (4) (5) (6) 

Log_Quota(i, j,k,t) 
-0.00803 -0.0140* -0.00681  -0.0190*** -0.0280** -0.0263*** 

(0.00538) (0.00751) (0.00593)  (0.00655) (0.0120) (0.00937) 

Log_Quota(-i,j,k,t) 
-0.0157** -0.0231* -0.0218**  -0.000472 -0.00801 -0.00186 

(0.00702) (0.0128) (0.0103)  (0.00500) (0.00804) (0.00589) 

Other control variables        

Log_Cutoff (i,j,k,t-1) 
0.0247 -0.188 0.00555  0.241 0.0265 0.225 

(0.196) (0.170) (0.207)  (0.164) (0.175) (0.176) 

Log_Cutoff(-i,j,k,t-1) 0.249 0.187 0.268  0.0267 -0.0379 0.0383 
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(0.177) (0.192) (0.189)  (0.179) (0.145) (0.187) 

Log_Quota(i,j,k, t-1) 
  -0.00217  

  0.00963 
  (0.00502)  

  (0.00808) 

Log_Quota (-i,j,k,t-1) 
  0.00913  

  0.00246 
  (0.00875)  

  (0.00539) 

Province Y N Y  Y N Y 

Track Y N Y  Y N Y 

Year Y Y Y  Y Y Y 

Track*Province N Y N  N Y N 

Observations  240 240 240  240 240 240 

R2  0.978 0.984 0.978  0.979 0.986 0.979 

Notice: The clustered robust standard deviation of track and province are in the brackets. *** p<0.01, ** 

p<0.05, * p<0.1. 

The result for testing the effects of quotas on cutoffs at major level is shown in Table A1 

in appendix. In general, we do not find strong evidence supporting negative effects of quotas 

on cutoffs between the same or similar major within or across two universities. We can think 

of two reasons for insignificant results.  

First, the effects of major quotas to major cutoffs may be diffused because of the large 

number of majors, esp. when students don’t have strong major preferences. Students regard 

two universities as substitutes, but not any specific major between them. As we assume in 

Section II.2 and II.3, students may regard a Science major at Tsinghua University as a close 

substitute to a Humanity major (instead of a Science major) at Peking University. 

Second, major quota setting is in general very flexible: colleges sometimes negotiate with 

top students on major provisions during the admission procedure, which may lead to major 

quota reallocation among regions. Due to those unobservable changes, major quotas may not 

be exogenous.  
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IV.2 Testing Hypothesis 2: Equalization of Major and 

Regional Cutoffs 

The way we test the equalization of major (or regional) cutoffs is to compare the 

coefficient of variation (CV) of major cutoffs to the CV of major quotas. According to 

Hypothesis 2, because colleges vary their quotas among majors to equalized cutoffs, the 

CV of major quotas should be higher than that of major cutoffs.  

For equalization of major cutoffs, since CEE scores are in general not comparable 

across years, provinces and tracks, and our theory does not require major cutoffs to be 

equalized across colleges, we compare CV of cutoffs to quotas within each university, 

original provinces, track, and year. The results are shown in Table 6. No matter we 

consider all majors or overlapping majors, the CV for major cutoffs is only 0.014-0.015, 

while the CV for quotas is 0.44-0.50, roughly 30 times larger than CV of major cutoffs; 

the difference is very significant.   

 

Table 6 Equalization of Major/Provincial Cutoffs 
 

CV of 

cutoffs 

CV of 

quotas 

Diff.  

(=q-c) 

T 

Statistics 

p-

value 

# of 

obs. 

All Majors 0.0146 0.4452 -0.4306 -45.1934 0.0000 353 

Overlapping 

Majors 

0.0139 0.4923 -0.4784 -42.7620 0.0000 309 

Provinces 0.1067 0.8354 -0.7287 -14.8825 0.0000 20 

 

    Someone may suspect that CV of cutoffs are underestimated. Although CEE scores 

can go from zero to full scores, for those elite students, their possible scores cannot be 

too low. We then conduct a robust check by adjust CEE scores by subtracting first-batch 



 39

cutoffs from the original CEE scores. The adjustment increases the CV of cutoffs a lot, 

but the test still delivers the same results: CV of cutoffs are still significantly lower than 

CV of quotas (Table A2). 

     For equalization of provincial cutoffs, since different provinces may use different 

CEE test contents, the scores are often incomparable across provinces. Yet we still 

calculate CV of provincial cutoffs, because those incomparability seems more likely to 

cause upward bias of the CV. The results are shown in the third line of Table 7. Under 

the very limited sample size (20), the CV of provincial cutoffs are proved to be 

significantly lower than that of provincial quotas. As a whole, Hypothesis 2 is justified 

by our data.  

IV.3 Testing Hypothesis 3: How Popularity Affect Quotas 

We now examine how the two universities compete with each other through setting 

their admission quotas. We consider quota setting at two levels. The first is total quota 

(including all majors) allocation among regions; the second is major quota allocation 

among regions. Unfortunately, our empirical method does not allow us to identify the 

determinants of total quota including all regions and majors. 

Out major interest is how popularity of the university or its majors would affect its 

quota setting. We use the cutoffs in previous year in each region or major as the proxy 

of popularity in current year. An increases in last year’s cutoffs indicates an increase in 

popularity. Assuming there are time-continuous changes in popularity, the rise of cutoffs 

for a certain province or major in previous year suggests that its popularity in this 

province/major will still increase this year. Therefore, the university will allocate more 

quotas to this province/major to compete for high-quality student, according to 

Hypothesis 3. 

The empirical model is as follows: 
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𝑄𝑢𝑜𝑡𝑎(𝑖, 𝑗, 𝑘, 𝑡) = 𝛼 + 𝛽 ∗ 𝐶𝑢𝑡𝑜𝑓𝑓(𝑖, 𝑗, 𝑘, 𝑡 − 1) + 𝛽 ∗ 𝐶𝑢𝑡𝑜𝑓𝑓(−𝑖, 𝑗, 𝑘, 𝑡 − 1) 

+𝛽 ∗ 𝑄𝑢𝑜𝑡𝑎(𝑖, 𝑗, 𝑘, 𝑡 − 1) + 𝛽 ∗ 𝑄𝑢𝑜𝑡𝑎(−𝑖, 𝑗, 𝑘, 𝑡 − 1) 

+𝑃𝑟𝑜𝑣𝑖𝑛𝑐𝑒 + 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 + 𝑇𝑟𝑎𝑐𝑘  

+𝑌𝑒𝑎𝑟 + 𝑢(𝑖, 𝑗, 𝑘, 𝑡)                           (2) 

 

𝐶𝑢𝑡𝑜𝑓𝑓(𝑖, 𝑗, 𝑘, 𝑡 − 1)  and 𝐶𝑢𝑡𝑜𝑓𝑓(−𝑖, 𝑗, 𝑘, 𝑡 − 1) are our main regressors. All the 

control variables have been described in eq. (1), except 𝑄𝑢𝑜𝑡𝑎(𝑖, 𝑗, 𝑘, 𝑡 − 1)  and 

𝑄𝑢𝑜𝑡𝑎(−𝑖, 𝑗, 𝑘, 𝑡 − 1), which represent previous year’s quota for two universities. We 

add them as control variables because quota adjustment is usually based on quotas of 

previous year. We also consider the first difference model as in Table 4. 

The regression results are shown in Tables 7 and 8. All the dummy variables are 

the same as in Column 1-4, Table 4 for testing Hypothesis 1. Table 7 illustrates the 

regression results for quota setting at regional level. Last year’s cutoffs have a positive 

effect on the admissions quotas for the current year, significant at the 5% level at 

Column 4. Furthermore, last year’s cutoff of the competitor has a negative effect on the 

admissions quotas for the current year, significant at 10% level in Column 1-2 and at 5% 

level in Column 5. This is also consistent with Hypothesis 3, since given the relatively 

stable student group demanding either Tsinghua or Peking University, the popularity 

increase of the competitor implies the popularity decrease of your own. Column 6 shows 

the fist-order difference results, which is insignificant but consistent with other 

specifications. 

Table 7 How Popularity Affects Quotas: Region-level 

Explanatory variables 
Explained variable: Log_Quota (i,j,k,t)  

Explained variable：

Log_Cutoff(i,j,k,t) 

(1) (2) (3) (4) (5)   (6) 
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Log_Cutoff (i,j,k,t-1) 
1.285 1.197 0.414 3.251** 1.212  

Log_Quota(i, j,k,t) 
0.796 

(1.161) (1.218) (1.641) (1.569) (0.971)  (0.934) 

Log_Cutoff (-i,j,k,t-1) 
-2.102* -2.190* -1.408 -0.136 -2.205**  

Log_Quota(-i,j,k,t) 
-0.983 

(1.183) (1.219) (1.735) (1.569) (1.023)  (0.934) 

Other control variables         

Log_Quota (i,j,k,t-1) 
0.712*** 0.594*** 0.158** 0.582*** 0.597***    

(0.030) (0.041) (0.067) (0.008) (0.049)    

Log_Quota (-i,j,k,t-1) 
-0.285*** -0.403*** 0.0326 -0.415*** 

-

0.406*** 
   

(0.027) (0.039) (0.050) (0.008) (0.049)    

Province Y N N N N   N 

Track Y N N N N   N 

University  Y Y N Y N   N 

Year Y Y Y N N   Y 

Track*Province N Y N N Y   N 

Track*Province*University N N Y N N   N 

Track*Province*Year N N N Y N   N 

University*Year N N N N Y   N 

Observations 480 480 480 480 480    360 

R2 0.966 0.969 0.979 0.978 0.974    0.089 

Notice: The clustered robust standard deviation of track and province are in the brackets. *** p<0.01, ** p<0.05, * p<0.1。 

Notice: The clustered robust standard deviation of track and province are in the brackets. *** 

p<0.01, ** p<0.05, * p<0.1 

 

Table 8 explains how major quotas are determined. Unfortunately, we find no 

significant effect of previous year’s cutoffs (from one’s own university or the rival 

university) on this year’s quotas. One possible reason is that major quotas for any given 

year are so flexible that colleges need not to fix their quotas by considering cutoffs of 

one year ago. Universities sometimes negotiate with students (often the top-guys) for 

their major choice and change major quotas according to negotiation results.  
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Table 8 How Popularity Affects Quotas: Major-level 

Explanatory variable 
Explained variable：Log_Quota (i,j,k,l,t)   

(1) (2) (3) (4) (5) 

Log_Cutoff (i,j,k,l,t-1) 
-0.116 -0.0727 0.00196 -0.539 -0.0323 

(0.404) (0.421) (0.658) (0.760) (0.450) 

Log_Cutoff (-i,j,k,l,t-1) 
0.0969 0.131 -0.539 -0.299 0.144 

(0.439) (0.466) (0.678) (0.811) (0.448) 

Other control variables      

Log_Quota (i,j,k,l,t-1) 
0.609*** 0.601*** 0.0649 0.622*** 0.638*** 

(0.0348) (0.0360) (0.0638) (0.0375) (0.0354) 

Log_Quota (-i,j,k,l,t-1) 
0.0594** 0.0521* 0.0322 0.0724** 0.0566* 

(0.0284) (0.0280) (0.0460) (0.0294) (0.0294) 

Province Y N N N N 

Track Y N N N N 

University*Major Y Y N Y N 

Year Y Y Y N N 

Track*Province N Y N N Y 

Track*Province*University*Major N N Y N N 

Track*Province*Year N N N Y N 

University*Major*Year N N N N Y 

Observations 1,088 1,088 1,088 1,088 1,088 

R2 0.783 0.787 0.903 0.816 0.823 

Notice: The clustered robust standard deviation of track and province are in the brackets. *** p<0.01, 

** p<0.05, * p<0.1, l represents major. 

 

As a whole, the results are consistent with Hypothesis 3 that universities try to 

expand admission quotas where its popularity increases. 

V. Model Extensions 

In this section we consider some further extensions of our theoretical model. 
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V.1 2-Dimensional Abilities 

Until now our theoretical model assumes colleges have homogeneous preferences 

(or priorities) over students; it solely depends on their quality, e.g., total scores in CEE. 

In other words, student ability is one-dimensional. In reality, universities may develop 

their own admissions rules, at least deviate from the single index widely-accepted.  

Assume student i’s ability (𝜃 , 𝛾 )~𝑈[0,1] × [−�̅�, �̅�]. 𝜃 is vertical ability and 𝛾 

is horizontal ability, both being observable. There are two colleges (without major 

division). College 1 prefers student with higher 𝑒 = 𝜃 + 𝛾, while college 2 prefers 

student with higher 𝑒  =  𝜃 − 𝛾.  

We can have the following results:  

Proposition 3. Under matching equilibrium: 

(1) 𝑞(𝑐) and 𝑐(𝑞) are bijections. 

(2) When |𝑐 − 𝑐 | < 2�̅� , 𝑞 = (1 − 𝑐 ) +
( )

 (Otherwise the 

expression is as in Section II.1). 

(3) = 𝐶
3 1
1 3

, where 𝐶 < 0 is a constant. 

Proof is in Appendix 1. Figure 12 illustrates the matching equilibrium. Panel (a) 

and (b) show 2-dimensional student ability distributions, corresponding to students who 

prefer college 1 to 2 and college 2 to 1 respectively. For given cutoffs 𝑐 , 𝑐  

(corresponding to some level of 𝑒 , 𝑒 ), students eligible for college 1 and 2 are shown 

by areas above the 45 degree lines crossing 𝑐 , 𝑐  in both panels. In panel (a), students 

eligible for college 1 would be admitted by college 1, while students eligible only for 

college 2 would be admitted by college 2. And vice versa in panel (b).  

Note that when college 1 lowers its cutoff, it decreases the amount of students 

admitted by college 2 (in panel (a)). The same thing happens when college 2 lowers its 
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cutoff (as in panel(b)). The business-stealing negative externality is always there, 

regardless of relative positioning of two colleges. 

Proposition 4. (1) The Cournot equilibrium is characterized as below: Cutoffs are 

𝑐 ∗ = 𝜆 + , profits are 𝛱 ∗ = �̅� + + + − 𝜆 + 𝜆 .(2) The monopoly 

solution is: cutoff 𝑐 = 𝜆 + , profit 𝛱 = �̅� + + + − 𝜆 + 𝜆 . 

Proof is in Appendix 1. Note that Cournot equilibrium is not equal to monopoly 

solution, because of the business-stealing externality. It sets a lower cutoffs and admit 

more students than monopoly. Proposition 4 also explain colleges often develop 

diverged admission criteria if they value different student abilities: Cournot equilibrium 

profit would be lower when “horizontal ability” () is NOT taken into consideration (Let 

�̅� = 0 in the profit equation). 
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(a) Students who prefer college 1 to 2 (prop. =1/2) 

(b) Students who prefer college 2 to 1(prop. =1/2) 
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Figure 12 2-Dimensional Abilities 
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V.2 Cutoff-dependent Student Preference 

Students may prefer colleges/majors with higher cutoffs. This can happen in several 

cases. First, students may have insufficient information to form an “independent” 

preferences over colleges, but interpret a high cutoff as a “signal” of high-quality of a 

college. Second, students may prefer a college with high-quality peers, inducing a 

preference order favoring high cutoffs. In either case students have some form of “social” 

preferences. 

We introduce a cutoff-dependent student preference in this way: Assume that there 

are students of mass  prefer college 1 to 2, and students of mass  prefer 2 to 

1. That is, a higher cutoff of a college makes it more popular. 

In all our previous models, cutoff and quota are one-to-one mappings (i.e., bijections) 

under matching equilibrium. Under a cutoff-dependent student preference, it is no longer 

the case. 

Proposition 5. Under matching equilibrium (or market clearing conditions), q is a 

function of c, but c is not a function of q.  

A formal proof is omitted. We use an example to illustrate the second part (the first 

part is obvious): when 𝑞  = 𝑞 = , 𝑐 = ( , 0)  and (0, )  are two matching 

equilibria. In the former equilibrium, all students prefer 1 to 2, and those with 𝜃 ∈

( , 1] go to college 1 and those with 𝜃 ∈ (0, ] go to college 2. The latter one is 

similarly derived.  

Proposition 6. (1) Under monopolistic setting, cutoff 𝑐 = (𝜆, 𝜆).  (2) Under 

Cournot equilibrium, there are 3 equilibria 𝑐∗ ,  𝑐∗ ,  𝑐∗ . 𝑐∗ = (𝜆, 𝜆) is symmetric, 

while 𝑐∗ = (𝑎,  𝑏)  and 𝑐∗ = (𝑏,  𝑎)  are asymmetric, where 𝜆 <  𝑎 <  𝑏 . In 

addition, 𝛱 (𝑐∗ ) > 𝑀𝑎𝑥{𝛱 (𝑐∗ ), 𝛱 (𝑐∗ )}, ∀𝑖.  
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Proof is in Appendix 1. Note that in this case Cournot competition can lead to cutoff 

non-equalization, as well as profit loss. 

VI. Conclusions 

The paper investigates college competition in admission quotas. Our simple theory 

generated three hypotheses: First, when the quota of one college increases, the cutoffs 

of all colleges will (weakly) decrease. Second, colleges tend to allocate their admission 

quotas across majors or regions so that cutoffs across majors or regions are equalized. 

Third, a college will allocate more quotas to more popular majors, or regions where it 

becomes more popular. Empirical evidence from the admission competition between 

Tsinghua University and Peking University, the two best-known universities in China, 

supports our theoretical hypotheses.  

Although quantity (or Cournot) competition is a well-studied issue in the IO theory, 

such an issue has almost never been studied in a “higher education marketplace”. The 

paper is the first (to our knowledge) to bring this issue into theoretical and empirical 

investigation. Our research is also connected to matching theory, in particular college 

admissions/school choice literature concerning strategic behaviors of colleges/schools. 

The key connecting point between IO and matching theory is admission cutoffs, which 

play a similar role of market price, in the matching market without monetary transfers. 

One future research direction is to apply the framework to study empirically 

competition among multiple universities. For this purpose, a more advanced 

econometric model should be developed to examine interactive effects among multiple 

pairs of universities. Another research direction is to explore exogenous events to study 

strategic behavior of universities and their consequences. For example, starting from the 

end of last century, China experienced a large expansion in college education mainly 
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driven by government initiates. How universities responded to this policy change and 

how those responses affect higher education marketplace remain an open question. 
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Appendix 

Appendix 1: Proofs 

Proof of Lemma 1 

Proof. We give a constructive proof using mathematical induction.  

When there are 𝐾 = 1 college-major pair, we have 𝑐 = max{1 − 𝑞 , 0}. If the 

lemma holds for 𝐾 ≤ 𝑚 − 1, we now prove that the lemma holds for 𝐾 = 𝑚. The set 

of colleges is also denoted as 𝐾. 

If min
∈

≥ 1, i.e., for each college-major bundle 𝑘, the mass of the students who 

prefer 𝑘 most is no less than 𝑘’s quota, then 𝑐 = 0 is the only stable matching. Now 

we turn to the case when min
∈

< 1. 

The remaining proof has 2 steps: we first solve for the highest cutoff, and then 

define a sub-problem based on this cutoff. 

Step 1: Let 𝑟 = min
∈

 and set 𝑆 = arg min
∈

. Then if stable matching exists, 𝑐 

is the cutoff in any one of these matchings, and set 𝑇 = arg max
∈

𝑐 , then we have 𝑆 =

𝑇 and max
∈

𝑐 = 𝐹 (1 − 𝑟). 

Suppose 𝑆 ≠ 𝑇. There are two possibilities.  

(𝑖)  𝑇\𝑆 ≠ ∅ . Then for any 𝑘 ∈ 𝑆 ∩ 𝑇  and 𝑘 ∈ 𝑇\𝑆 , 𝑐 = 𝑐  and the 

students matched to college-major 𝑘 are those who prefer 𝑘 most and 𝜃 ≥ 𝑐 , and it 

is similar for college-major 𝑘 . Then 𝑞 = 𝛼 1 − 𝐹(𝑐 ) , 𝑞 = 𝛼 1 −

𝐹(𝑐 ) , = , so 𝑘 ∈ 𝑆. Contradiction.  

(ii) 𝑇\𝑆 = ∅. Then 𝑇 ⊆ 𝑆 and 𝑇 ≠ 𝑆. For any 𝑘 ∈ 𝑆\𝑇 and 𝑘 ∈ 𝑇, we have 
𝑐 < 𝑐 . The students matched to college-major 𝑘  are those who prefer 𝑘  most 
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and 𝜃 ≥ 𝑐  and 𝑞 = 𝛼 1 − 𝐹(𝑐 ) . For college-major 𝑘, the students matched 
to it include those who prefer 𝑘 most and 𝜃 ≥ 𝑐 , and a part of those whose 𝑐 ≤

𝜃 < 𝑐 , so 𝑞 ≥ 𝛼 1 − 𝐹(𝑐 ) . Then ≥ 1 − 𝐹(𝑐 ) > 1 − 𝐹(𝑐 ) = . 

Contradiction. 

Note that 𝑟 = min
∈

∈ (0,1). In stable matching max
∈

𝑐 = 𝐹 (1 − 𝑟) directly 

follows 𝑆 = 𝑇. The existence of 𝐹  is guaranteed by that 𝐹 has full support. 

Step 2: The lemma holds when 𝐾 = 𝑚. 

Let 𝐶 = max 𝑐 > 0 . Those students whose 𝜃 ≥ 𝐶  will be matched to the 

college-major bundle they prefer most. If set 𝐾 = 𝑆, all students are matched, and the 

existence and uniqueness are proved. Otherwise, for the student whose 𝜃 < 𝐶, we can 

ignore colleges in set 𝑆, and define a sub-problem of the original matching problem as 

below.  

In this sub-problem, there are 𝐾 − |𝑆| college-major bundles, the set of which is 

𝐾\𝑆. Student quality 𝜙 = ∈ [0,1], where 𝜃 is the quality in the original matching 

problem, and its distribution function 𝐺(𝜙) =
( )

( )
 has full support. At each student 

quality 𝜙 , there are proportions of 𝛾  who prefers college-major bundle 𝑘  most, 

∑ 𝛾∈ \ = 1. The quotas for college-major bundle 𝑘 is 𝑞 =
( )

( )
> 0.  

Since the lemma holds for 𝐾 ≤ 𝑚 − 1, there exists a unique cutoff 𝑐  in this sub-

economy. Then there exists a unique cutoff in the original economy:  

𝑐 =
𝐶, 𝑘 ∈ 𝑆

𝐶 ⋅ 𝑐 , 𝑘 ∈ 𝐾\𝑆
 . 

Proof of Lemma 3 

Proof. Consider the construction of the unique cutoff in the proof of Lemma 1. We 

first find the set of college-major bundles 𝑆 = arg min . Their cutoffs are 𝐶 =
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𝐹 1 − min . After all those students whose 𝜃 ≥ 𝐶  are matched to the college-

major bundle they prefer most, we ignore the college-major bundles in 𝑆  and 

determine the cutoffs for the remaining college-major bundles. Note that college-major 

bundles in 𝑆  are in higher position than the remaining ones. If 𝑐 < 𝑐  and 𝑘 ∈ 𝑆, 

then with marginal changes in 𝑞 , min  will not change, neither will 𝑆, so 𝑐  is 

not affected.  

The same logic applies in any sub-problems: Suppose the recursive process of 

determining cutoffs ends in the 𝑡-th recursion. We have 𝑡 ≤ 𝐾. Let 𝑆  be the set of 

college-major bundles whose cutoffs are determined in the 𝑖-th recursion, 1 ≤ 𝑖 ≤ 𝑡. 

The cutoffs of college-major bundles in 𝑆  is the same, denoted as 𝐶 . From the 

construction process, 𝐶 > 𝐶 > ⋯ > 𝐶  . Then if 𝑐 < 𝑐 , we have 𝑘 ∈ 𝑆  and 

𝑘 ∈ 𝑆  where 𝑖 > 𝑗. For marginal changes in 𝑞 , 𝑆 = min
{ ,…, }\( ⋃ ⋃…⋃ )

 will 

not be affected. 

Proof of Proposition 1 

Proof. We first prove for all 𝑖,  𝑗(𝑖), 𝑀𝑖𝑛 ( )𝑐 ( ) = 𝜆 . Suppose not. That is, for 

some 𝑖, 𝑀𝑖𝑛 ( )𝑐 ( ) = 𝑐 > 𝜆 . Then if college i increases the quota of college-major 

(𝑖, 𝑗′)  at the margin, it can admit into college-major (𝑖, 𝑗′)  a positive amount of 

students with ability higher than 𝜆 =MC, at least those who prefer (𝑖, 𝑗 ) most but with 

abilities slightly lower than 𝑐 , without affecting any other college-major cutoffs 

within this college (by Lemma 3). This contradicts that college i maximizes its profit. 

Now consider 𝑖 = 𝑁 − 1 . We prove 𝑐 , ( ) = 𝜆 , ∀𝑗(𝑁 − 1) ∈ 𝑀 . 

Suppose not. That is, there exists some major 𝑗 ∈ 𝑀  such that 𝑐 , ≡

𝑀𝑖𝑛 ( ){𝑐 , ( )|𝑐 , ( ) ≠ 𝜆 } > 𝜆 . That is, 𝑐 ,  is the second 

lowest cutoff in college 𝑁 − 1.  
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Suppose we increase 𝑞 ,  by an arbitrarily small amount δ. This δ amount of 

quota can be fulfilled by “stealing business” only from any college-majors with lower 

original cutoffs (by Lemma 3, and our assumption that all preference orders are possible 

given student ability). Part of it is from outside college 𝑁 − 1, at least from major 𝑗(𝑁) 

in college 𝑁  such that 𝑐 , ( ) = 𝜆 𝜆 <𝑐 , . Part of it is also fulfilled by 

“stealing business” from within college 𝑁 − 1, in particular, college-major (𝑁 − 1, 𝑗’) 

such that 𝑐 , = 𝜆 , which then admits students to fully compensate its quantity 

loss. Suppose among newly admitted students in college-major (𝑁 − 1, 𝑗), the amount 

of δ > 0 comes from outside the college 𝑁 − 1, while δ = δ − δ  comes from 

college-major (𝑁 − 1, 𝑗’). Then the total quality change of college 𝑁 − 1 at the margin 

would be δ 𝑐 , + δ 𝜆 >δ𝜆 . Therefore, marginal increase in 𝑞 ,  would 

increase college  𝑁 − 1 ’s profit, contradicting its profit maximization. So 

𝑐 , ( ) = 𝜆  for all 𝑗(𝑁 − 1) ∈ 𝑀 . 

The reasoning for 𝑖 = 𝑁 − 1 goes back to 𝑖 = 𝑁 − 2,  … 1. 

Finally, we prove for 𝑖 = 𝑁 , 𝑐 ( ) ≤ 𝜆 . If not, i.e., 𝑐 , >

𝜆 ,  for some 𝑗 ∈ 𝑀 , then college N can profitably steal business from any major 

in college 𝑁 − 1, contradicting college N’s profit maximization.  

Proof of Proposition 3 

Proof.  

Part 1: According to the definition of demand, q is a function of c. Notice that q  

is strictly decreasing with c , and weakly increasing with c , j ≠ i. If c and c′ satisfy 

q(c) = q(c′), c ≠ c′, there is a contradiction. 

    Part 2: The proportion of students admitted by college 1 is composed of light 

shaded areas in panel (a) and (b), Figure 12, normalized by total (or rectangular) area. 
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Therefore, q = ∗
( )

+ ∗ = (1 − c ) +
( )

 , where the 

term 2γ  is used to normalize the area. The formula for q  can also be derived 

similarly. 

    Part 3: From part 2, = Q
3 + −1 +

−1 + 3 +
 and thus =

Q
3 −1

−1 3
, where Q < 0 is a constant. Implicit function theorem implies part 3. 

Proof of Proposition 4 

If |𝑐 ∗ − 𝑐 ∗| < 2�̅�, according to the proof of Proposition 3 we have =

Q
3 + −1 +

−1 + 3 +
 and thus = 𝐶

3 + 1 +

1 + 3 +
, where 

Q , 𝐶 < 0 are constants.  

Suppose college 1 increases its quota 𝑞  by one unit at the margin. Then the cutoff 

of college 1, 𝑐 , would decrease by 3 +  units (by a scale of 𝐶 ), while the cutoff 

of college 2, 𝑐  , would decrease by 1 +  units. In other words, as in Figure A1, 

the line 𝐵 𝐸 , 𝐵 𝐸  would shift left by 3 +  units, while the line 𝐶 𝐷 , 𝐶 𝐷  

would shift left by 1 +  units. Then the total quality change of college 1 (i.e., 𝑀𝑅 ) 

is composed of three parts: (1) the left shift of line 𝐵 𝐸  by 3 +  units; (2) the 

left shift of line 𝐵 𝐴  by 3 +  units; (3) the left shift of 𝐴 𝐷  by 1 +  

units. The first two changes are positive, while the third is negative. To calculate the 

area of these parallelograms, note that the heights of 𝐵 𝐸 , 𝐵 𝐴  and 𝐴 𝐷  are 2�̅�, 

�̅� +  and �̅� +  respectively. In addition, the average student quality for 
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college 1 at the margin along the line 𝐵 𝐸  and 𝐵 𝐴  is 𝑐 , while the average quality 

along the line 𝐴 𝐷  is c + �̅� + . 

Let h(𝑥) be the height of 𝑥, then the total quality change is: 

 

3 +
c − c

2γ
∗ h(𝐵1𝐸1) + h(𝐵2𝐴2) ∗ 𝑐 − 1 +

c − c

2γ
∗ h(𝐴2𝐷2) ∗ 𝑐 + �̅� +

c − c

2
 

= 8 ∗ �̅� ∗ 𝑐 −
(2𝛾 + c2 − c1) (2𝛾 + c1 − c2)

64�̅�
 

 

and the corresponding total cost change is 3 + ∗ h(𝐵 𝐸 ) + h(𝐵 𝐴 ) −

1 + ∗ h(𝐴 𝐷 ) ∗ 𝜆 = 8 ∗ �̅� ∗ 𝜆. Then MR=MC leads to 

 

𝜆 = 𝑐 −
(2𝛾 + c2 − c1) (2𝛾 + c1 − c2)

64�̅�
. 

 

Similarly,  

 

𝜆 = 𝑐 −
(2𝛾 + c1 − c2) (2𝛾 + c2 − c1)

64�̅�
. 

 

Subtracting the two equation above we have  

 

(𝑐 − 𝑐 ) 1 +
(2𝛾 + c2 − c1)(2𝛾 + c1 − c2)

32�̅�
= 0. 

 

Since |𝑐 ∗ − 𝑐 ∗| < 2�̅� and 
( 𝛾+c2

∗ −c1
∗ )( 𝛾+c1

∗−c2
∗)

> 0, we have 𝑐 ∗ = 𝑐 ∗, i.e. the 

Cournot equilibrium must be symmetric. Then 
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𝑐 ∗ = 𝑐 ∗ = 𝜆 +
�̅�

8
. 

 

If |𝑐 ∗ − 𝑐 ∗| ≥ 2�̅�, the expression of 𝑐 , 𝑐  is as in Section II.1, and 𝑐 ∗ = 𝑐 ∗ = 𝜆 

in equilibrium, which contradicts |𝑐 ∗ − 𝑐 ∗| ≥ 2�̅�. 

 

The Cournot equilibrium profit can be calculated according to the cutoffs. 

 

Consider monopoly solution when |𝑐 − 𝑐 | < 2�̅�. When changing 𝑞 , the total 

quality change for college 2 is: 

 

1 +
c − c

2γ
∗ h(𝐴1𝐶1) + h(𝐶2𝐷2) ∗ 𝑐2 − 3 +

c − c

2γ
∗ h(𝐴1𝐸1) ∗ (𝑐2 + 𝛾 +

c − c

2
) 

= − 3 +
c1 − c2

2γ
∗ γ +

c1 − c2

2
∗ γ +

c1 − c2

2
 

 

The total quality change for both colleges a whole is:  

 

8 ∗ �̅� ∗ 𝑐 −
(2𝛾 + c2 − c1) (2𝛾 + c1 − c2)

64�̅�
− 3 +

c1 − c2

2γ
∗ γ +

c1 − c2

2
 

= 8 ∗ �̅� ∗ 𝑐 −
( 𝛾+c1−c2) (c1−c2) (c1−c2)

. 

 

The total cost change is 8 ∗ �̅� ∗ 𝜆. And the monopoly solution is by equalizing total 

quality change and total cost change: 

 

𝜆 = 𝑐 −
(2𝛾 + c1 − c2)(8�̅� + 2�̅�(c1 − c2) + (c1 − c2) )

32�̅�
 

 

Similarly,  
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𝜆 = 𝑐 −
(2𝛾 + c2 − c1)(8�̅� + 2�̅�(c2 − c1) + (c2 − c1) )

32�̅�
 

 

Subtracting the two equation above we have  

 

(𝑐 − 𝑐 )
(2𝛾 + c2 − c1)(2𝛾 + c1 − c2)

16�̅�
= 0. 

 

Since |𝑐 − 𝑐 | < 2�̅� and 
( 𝛾+c2

m−𝑐1
𝑚)( 𝛾+c1

m−c2
m)

> 0, we have 𝑐 = 𝑐 , i.e. the 

monopoly equilibrium must be symmetric. Then  

 

𝑐 = 𝑐 = 𝜆 + . 

 

The sum of profits is 𝛱 = 𝛱 + 𝛱 = �̅� + + 𝜆�̅� + − 𝜆 + 𝜆 .  

 

If |𝑐 − 𝑐 | ≥ 2�̅�, without loss of generality, assume 𝑐 ≥ 𝑐 . Then the total 

quality is 
( )

− 𝜆 ⋅
( )

+
( ) ( )

− 𝜆 ⋅ +
( )

− 𝜆 ⋅

(𝑐 − 𝑐 − 2�̅�) +
( ) ( )

− 𝜆 ⋅ (2�̅�) +
( ) ( )

− 𝜆 ⋅ (�̅�) +

( ) ( )
− 𝜆 ⋅

( ) ( )
+

( ) ( )
− 𝜆 ⋅ = − + + −

𝜆(1 − 𝑐 ). When 𝑐 = 𝜆, total quality reaches its maximum, �̅� + − 𝜆 + 𝜆 <

𝛱 .  

Therefore, the monopolist will set 𝑐 = 𝑐 = 𝜆 +  and the solution is unique. 
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Proof of Proposition 6 

Under Cournot equilibrium, without loss of generality, suppose c ≥ c . Then: 

 

Π = (1 − c ) − λ

Π = (1 − c ) − λ + (c − c ) − λ
 , 

 

numerically solving the first order conditions yields the results. 

Under monopoly, two colleges jointly maximize: 

 

Π + Π = (1 − c )( − λ) + (c − c )( − λ), 

 

 

�̅� 

-�̅� 

 

 c
1
=c

2
 

 

�̅� 

-�̅� 

 
(b)Students who prefer college 1 to 2 (prop.=1/2) 

(b) Students who prefer college 2 to 1(prop.=1/2) 

Admitted by 1 Admitted by 2 

Figure A1 Symmetric Solution for 2-Dimensional Abilities 

1 0 

0 1 
c

1
=c

2
 

A1 

B1 D1 

C1 E1 

B2 D2 

C2 E2 

A2 
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and the unique maximum is reached when c = c = λ. 

 

Appendix 2: Alternative Model: Total Quota Constraints 

We propose an alternative modelling where we suppose each college faces a total 

quota constraint, but without any cost of recruiting students (or only fixed cost irrelevant 

to student number). We restrict our discussion within two-college-two-major model. 

A1.1 Vertical Student Preference 

Student preferences are the same as in Part 1, Section II.2 

The problem for TU is:  

 

𝑀𝑎𝑥 ,  𝑅 + 𝑅  

s. t 𝑞 + 𝑞 ≤ 𝑞  

The problem for PU is:  

𝑀𝑎𝑥 ,  𝑅 + 𝑅  

s. t 𝑞 + 𝑞 ≤ 𝑞  

 

where 𝑞 , 𝑖 = 𝑝, 𝑡 are total quota of college 𝑖, which is exogenously given. We assume 

𝑞 ≤ 𝑞 . And we also assume 𝑞 + 𝑞 ≤ 1. 

The solution would satisfy: 

 

1 − 2𝑞 ∗ − 𝑞 ∗ = 𝑙  

1 − 𝑞 ∗ − 𝑞 ∗ − 2𝑞 ∗ = 𝑙  

1 − 𝑞 ∗ − 𝑞 ∗ − 𝑞 ∗ = 𝑙  
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1 − 𝑞 ∗ − 𝑞 ∗ − 𝑞 ∗ − 𝑞 ∗ = 𝑙  

 

together with the two total quota constraints with equality, where 𝑙 , 𝑙 ≥ 0  are 

Lagrange multipliers. 

Solving it leads to: 

 

𝑞 ∗ = 𝑞 ∗ = 𝑞  

𝑞 ∗ = 0 

𝑞 ∗ = 𝑞 − 𝑞  

𝑙 = 1 − 2𝑞  

𝑙 = 1 − 𝑞 − 𝑞  

 

For equilibrium cutoffs, we have: 

 

𝑐 ∗ = 𝑐 ∗ = 𝑐 ∗ = 1 − 2𝑞  

𝑐 ∗ = 1 − 𝑞 − 𝑞  

 

The cutoff of TH (the less favorable major of the smaller college) is set so that the 

quota being zero. The smaller college uses all its capacity for its more favorable majors. 

The larger college will match the quota of the smaller one for its favorable majors. 

Therefore, cutoffs for both majors are equal. This conclusion is the same as the main 

model with positive MC. The larger college can then use its excess capacity to admit 

students into its less favorable majors, up to its total quota.  

However, the larger college can also use its extra quota to admit students into its 

favorable major (because its rival has reach its capacity), or even split arbitrarily those 

excess quotas between two majors.  
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A1.2 Lateral Student Preference 

Now student preference is lateral (as in part 2. Section II.2). The solution would 

satisfy: 

 

1 −
3 + 𝛼

2𝛼
𝑞 ∗ − 𝑞 ∗ +

1 − 𝛼

2𝛼
𝑞 ∗ = 𝑙  

1 − 𝑞 ∗ − 𝑞 ∗ − 2𝑞 ∗ = 𝑙  

1 −
𝛼 + 1

2𝛼
𝑞 ∗ −

𝛼 + 1

2𝛼
𝑞 ∗ − 𝑞 ∗ = 𝑙  

1 − 𝑞 ∗ − 𝑞 ∗ − 𝑞 ∗ − 𝑞 ∗ = 𝑙  

 

and the two total quota constraints with equality, where 𝑙 , 𝑙 ≥ 0  are Lagrange 

multipliers. Solving it leads to: 

 

𝑞 ∗ = 𝑞 ∗ = α𝑞  

𝑞 ∗ = (1 − 𝛼)𝑞  

𝑞 ∗ = 𝑞 − α𝑞  

𝑙 = 1 − 2𝑞  

𝑙 = 1 − 𝑞 − 𝑞  

 

For equilibrium cutoffs, we have: 

 

𝑐 ∗ = 𝑐 ∗ = 𝑐 ∗ = 1 − 2𝑞  

𝑐 ∗ = 1 − 𝑞 − 𝑞  

 

The quotas of TU (the smaller college) is set so that cutoffs are equalized among two 

majors (just as in the main model). The larger college will match quota of the smaller 



 61

college for its favorable major. Therefore, cutoffs for both majors in smaller college and 

for favorable major in large college is equal. Yet the larger college will set a lower cutoff 

for its less favorable major to exhaust its quota.  

However, the solution is not the only one. It is easy to see that the larger college 

call still arbitrarily divide its excess capacity among two majors, leading to lower cutoffs 

of both majors.  

The general lesson is that when one college has a larger total quota than the other, 

it can allocate its excess quota in an arbitrary way, without considering competition from 

its rival college. Note that our model only includes two colleges. When there are many 

colleges, only the college with the largest quota can use its excess quota in an arbitrary 

way, without fearing competitions from other colleges. Therefore, this “excess capacity 

effect” can be ignored for almost all colleges. 
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Table and Figure Appendix 

Table A1 How Quotas Affect Cutoffs: Major-level 

Explanatory variables 
Explained variable：Log_Cutoff (i,j,k,l,t) 

（1） （2） （3） （4） （5） 

Log_Quota (i,j,k,l,t) -0.002 -0.008** -0.012* -0.008 -0.006 

(0.002) (0.004) (0.006) (0.005) (0.004) 

Log_Quota(-i,j,k.l,t) -0.007 -0.005 0.007 -0.005 -0.001 

(0.006) (0.003) (0.017) (0.005) (0.003) 

Other control variables 
     

Log_Cutoff (i,j,k,l,t-1) 0.218*** 0.020 -0.240** 0.085 0.086 

(0.047) (0.061) (0.103) (0.090) (0.100) 

Log_Cutoff (-i,j,k,l,t-1) -0.135 -0.135** 0.094 -0.058 -0.082 

(0.086) (0.053) (0.065) (0.087) (0.104) 

Log_Quota (i,j,k,l,t-1)  
   

-0.002     
(0.004) 

Log_Quota (-i,j,k,l,t-1)   
  

-0.009     
(0.010) 

Province Y N N N N 

Track Y N N N N 

University*Major Y Y N Y Y 

Year Y Y Y N N 

Track*Province N Y N N N 

Track*Province 

*University*Major 

N N Y N N 

Track*Province*Year N N N Y Y 

Observations 1,059 1,059 1,059 1,059 930 

R2  0.716 0.722 0.785 0.757 0.727 

Notice: The clustered robust standard deviation of track and province are in the brackets.  

*** p<0.01, ** p<0.05, * p<0.1。l represents major. 
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Table A2 Equalization of Major Cutoffs  
((Major cutoffs adjusted by subtracting provincial first-batch cutoffs) 

 
CV of 

cutoffs 

CV of 

quotas 

Diff.  

(=q-c) 

T 

Statistics 

p-

value 

# of 

obs. 

All Majors 0.0776 0.4452 -0.3676 -36.8544 0 350 

Overlapping 

Majors 

0.0677 0.4315 -0.3638 -35.0535 0 277 

Provinces 0.2670 0.7375 -0.4705 -6.2416 0 20 

 


