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Abstract. We analyze the formation of partnerships in social networks. Players need
favors at random times and ask their neighbors in the network to form exclusive long-term
partnerships that guarantee reciprocal favor exchange. Refusing to provide a favor results
in the automatic removal of the underlying link. Players agree to provide the first favor
in a partnership only if they otherwise face the risk of eventual isolation. In equilibrium,
players essential for realizing every maximum matching can avoid this risk and enjoy higher
payoffs than inessential players. Although the search for partners is decentralized and reflects
local partnership opportunities, the strength of essential players drives efficient partnership
formation in every network. Equilibrium behavior is determined by the classification of
nodes in the Gallai-Edmonds decomposition of the underlying network.
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1. Introduction

The idea that the power of an individual depends on his or her position in a certain social
or economic network is well-established in a variety of contexts cutting across disciplines.
For instance, social network analysis suggests that an individual’s power cannot be explained
by the individual’s characteristics alone but must be combined with the structure of his or
her relationships with others. Power arises from occupying advantageous positions in the
relevant network and leveraging outside options. In particular, network exchange theory
focuses on studying the relative bargaining power of individuals in bilateral exchanges with
neighbors in social networks (see Willer (1999) for an overview). More recent research in
economics develops game theoretical models aimed at understanding how an individual’s
position determines his or her bargaining power and selection of trading partners in markets
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with a network structure (Jackson (2008; Ch. 10), Easley and Kleinberg (2010; Ch. 11),
and Manea (2016) survey this literature).

In this paper, we study the impact of the social and economic network structure on the
relative strength of different positions in the network, the pattern of bilateral partnerships
that emerge, and market efficiency. In our model, players form exclusive partnerships to
exchange favors with one another. Favors could be small—e.g., advice on a particular issue,
a small loan, and help on a school project—or large—e.g., sharing one’s life with another
person and forming a long-term business relationship. Every player needs favors at random
points in time and can receive them from neighbors in the network. All players benefit equally
from receiving favors and incur the same cost for providing them. The benefit exceeds the
cost, so it is socially desirable to exchange favors. If a player agrees to provide a favor to
another, the two players form an exclusive partnership which requires that they leave the
network together and do each other favors whenever needs arise in the future. A player who
needs a favor and has not yet formed a partnership approaches his remaining neighbors in
the network in random order to request the favor. Each neighbor asked for the favor decides
whether to provide it and enter the partnership or refuse to do so and irreversibly lose his
link with the player requesting it.

Our modeling of the search for partners is admittedly specific but captures important
features of applications such as marriage and joint business ventures. We implicitly assume
that the payoffs received by the favor seeker and favor giver are asymmetric. In the context
of courtship for example, the intensity of preferences of the two partners is often asymmetric,
and one partner is more eager than the other to form the partnership. In our model, players
are symmetric, but the favor seeker is always more eager to form the partnership than the
favor giver. This introduces an incentive for one of the two parties to delay the formation
of the partnership. However, this incentive is modulated by the evolution of the network
and the decline in partnership opportunities over time. Turning down favor requests results
in the loss of potential future partners both because links leading to rejections are deleted
from the network and because other neighbors form exclusive partnerships and leave the
network. Hence, players face a trade-off between the cost of accepting a partner and the risk
of not finding one in the future. Returning to the example of dating, players prefer not to
commit to a relationship until they start worrying that they will grow old alone. We find
that precisely this feature of the search process leads to efficient matching outcomes.

Since all partnerships create the same value in our game, efficiency for high discount factors
requires that a maximum number of partnerships be forged in the network. In the language
of graph theory, the emerging partnerships should form a maximum matching, i.e., a subset
of disjoint links that has the greatest cardinality. Some links are inefficient because they
are not part of any maximum matching; efficiency dictates that favor requests are declined
when such links are activated. Other links are indispensable for efficiency since they belong
to every maximum matching; to achieve an efficient market outcome, such links should
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result in partnerships when activated. Keeping track of which partnerships are efficient
in our dynamic game is challenging because the structure of maximum matchings and the
efficiency of links evolves as partnerships form and favor requests are turned down.

Given the global considerations involved in identifying maximum matchings in a general
network and the local decentralized nature of the search for partners as favor needs arise in
our game, one might not expect a strong link between equilibrium outcomes and efficiency
in the game. Nevertheless, our main result proves that when players are sufficiently patient,
the game admits a unique subgame perfect equilibrium and that the equilibrium pattern of
partnerships is efficient for every network structure. This result is surprising in the context
of existing research on matching and trade in networks. Indeed, in a survey of the literature
on bilateral trade in networks, Manea (2016) argues that the disconnect between global
efficiency and local incentives explains why decentralized trade often generates inefficient
market outcomes. Abreu and Manea (2012a, b) and Elliott and Nava (2016) reach this
conclusion for Markov perfect equilibria in two natural models of bargaining in networks.1

By contrast, the seminal work in this area of Kranton and Minehart (2001), Corominas-
Bosch (2004), and Polanski (2007) showed that centralized matching is conducive to efficient
trade.

Somewhat paradoxically, the absence of prices or direct transfers in our model drives the
efficiency result and the divergence from the conclusions of Abreu and Manea (2012a, b)
and Elliott and Nava (2016). Players can experience only three types of outcomes in our
model: remain single; commit to a partnership by granting a favor; and enter a partner-
ship by way of receiving a favor. A player has an incentive to provide the first favor in a
partnership only if refusing to do so puts him at risk of eventually becoming single. We
find that a key structural property of nodes determines whether a player ever faces the risk
of becoming single in equilibrium. Specifically, a node is said to be essential if it belongs
to all maximum matchings of the network and under-demanded otherwise. A further parti-
tion of essential nodes into over-demanded nodes—neighbors of under-demanded nodes—and
perfectly matched nodes—the remaining ones—is central to the Gallai-Edmonds decomposi-
tion, which characterizes the structure of maximum matchings.2 These concepts also play a
prominent role in the equilibrium analyses of Corominas-Bosch (2004), Polanski (2007), and
Abreu and Manea (2012a). We prove that in the equilibrium of our game, essential players
always find partners, while under-demanded players remain single with positive probability.
Hence, essential players obtain higher payoffs than under-demanded players.

1However, Abreu and Manea (2012b) construct a complex system of punishments and rewards with a non-
Markovian structure that implements an efficient subgame perfect equilibrium.
2The intuitive economic terminology for the Gallai-Edmonds partition of nodes has been introduced by
Bogomolnaia and Moulin (2004) and Roth et al. (2005).
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The conclusion that under-demanded players are relatively weaker than essential ones is
common across the bargaining models discussed above.3 However, our model highlights a
new channel leading to this conclusion. In previous models, the weakness of under-demanded
players is caused by their vulnerability to isolation following some sequences of efficient
trades. Thus, the fact that under-demanded nodes are left out by some maximum matchings,
which is their defining property, is directly involved in the argument. In the present model,
the analysis relies on a latent property of under-demanded nodes: if an under-demanded node
is removed from the network, all its neighbors become essential in the remaining network.
Backward induction then implies that when an under-demanded player needs a favor, his
neighbors have incentives to turn him down in sequence and ultimately reach desirable
essential positions. Hence, every under-demanded player who requests a favor remains single.

Our characterization of the subgame perfect equilibrium relies on the intuition that under-
demanded players are weak, and players commit to partnerships via doing favors in order
to avoid occupying under-demanded positions in the network formed by surviving links. We
prove that when an over-demanded player needs a favor, the first under-demanded neighbor
he approaches has to provide it. When a perfectly matched player requests a favor, the
last neighbor in the order with whom he shares an efficient link—another perfectly matched
player—agrees to provide the favor. Refusing to enter this last possible efficient partnership
and removing the corresponding link would result in both players switching from essential
to under-demanded positions, with the player who requested the favor ending up single and
the other player preserving his under-demanded status in the ensuing network.

Our proof additionally shows that a player does not have an incentive to grant a favor
to a neighbor if refusing to do so and losing the link with the neighbor leaves him in an
essential position. However, under-demanded players turn down favor requests from other
under-demanded neighbors and remain temporarily under-demanded anticipating that no
player will agree to provide the favor and they will become essential after the chain of
rejections and link removals. Therefore, our favor exchange game reveals a deep connection
between decentralized incentives for efficient partnership formation and the Gallai-Edmonds
structure.

We investigate the robustness of our theoretical conclusions with respect to several mod-
eling assumptions. One important ingredient for our analysis is the assumption that links
generating rejections are permanently severed.4 We show that this assumption is crucial

3Polanski (2016) emphasizes this point in a range of bargaining environments, including the cooperative
game of Kleinberg and Tardos (2008) and the stationary market of Manea (2011) in addition to the models
already mentioned.
4This assumption appears in other models of favor exchange. For instance, Jackson et al. (2012) motivate
the removal of links following rejections on “behavioral (e.g., emotional) or pro-social grounds.” Gere and
MacDonald (2010) discuss psychological evidence indicating that rejected or ostracized individuals often
reciprocate with antisocial behavior. In our setting, players may also passively lose links and effectively
disappear from the network if they do not find a partner when needed.
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for our conclusions—in a version of the model in which links are never removed from the
network, multiple equilibria may exist and equilibria are not necessarily efficient. However,
our equilibrium characterization continues to apply if the game is perturbed so that links
generating rejections are maintained with small probability.

We find that our results are not sensitive to other modeling assumptions. In particular,
the efficiency result does not change if we assume that the order in which a player asks neigh-
bors for favors is selected strategically or specified exogenously instead of being generated
randomly as in the benchmark model. We extend our results to a setting with reduced-form
payoffs in which, in the spirit of standard matching and bargaining models, all gains from a
partnership are realized at its creation (or equivalently each player requires a single favor at
a random time), and the player initiating a partnership enjoys a first-mover advantage. We
also discuss extensions of the model with payoff heterogeneity and continuous time.

Bloch et al. (2018) test the predictions of the model in a laboratory experiment. They
find that a large fraction of subjects play according to the subgame perfect equilibrium, but
a subject’s ability to select the equilibrium action depends on the complexity of the network
as well as on his or her position in the network. Deviations from equilibrium behavior
primarily involve subjects agreeing to grant favors when equilibrium play prescribes declining
the request.

Besides the literature on bilateral trade in networks discussed above, our model contributes
to research on favor exchange. Möbius and Rozenblat (2016) survey existing research in the
latter area. Many models in this literature—in particular, Bramoullé and Kranton (2007),
Bloch et al. (2008), Karlan et al. (2009), Jackson et al. (2012), and Ambrus et al. (2014)—
share the basic structure of our model: players request favors or transfers at different points
in time and cooperation is enforced through reciprocation in the future. The model of
Jackson et al. (2012) is closest to ours. However, in that model favor needs are link-specific
and pairs of players meet too infrequently to sustain bilateral exchange in isolation. Jackson
et al. show that clustered social quilts support cooperation via the social threat of losing
links with multiple neighbors following deviations from cooperative behavior.

The rest of the paper is organized as follows. Section 2 introduces the partnership for-
mation game, and Section 3 illustrates its equilibria for two networks. In Section 4, we for-
malize the relationship between efficient partnerships and maximum matchings and review
the Gallai-Edmonds decomposition. Section 5 presents the main result, which establishes
the uniqueness and the efficiency of the equilibrium and shows that equilibrium decisions
are closely tied to the Gallai-Edmonds decomposition. In Section 6, we analyze alternative
versions of the model. Section 7 provides concluding remarks.
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2. Model

We study a partnership formation game played by a finite set N = {1, 2, . . . , n} of players
who constitute the nodes in an undirected network G. Since the network of potential part-
nerships evolves over time and the collection of existing partnerships forms a matching, it is
useful to provide general definitions for networks and matchings. An undirected network G

linking the set of nodes N is a subset of N⇥N such that (i, i) /2 G and (i, j) 2 G , (j, i) 2 G

for all i, j 2 N . The condition (i, j) 2 G is interpreted as the existence of a link between
nodes i and j in the network G; in this case, we say that i is linked to j, or that i is a
neighbor of j in G. We use the shorthand ij for the pair (i, j) and identify the links ij and
ji. A node is isolated in G if it has no neighbors in G. For any network G, let G \ ij, kh, . . .
denote the network obtained by removing links ij, kh, . . . from G, and G \ i, j, . . . denote
the network in which all links of nodes i, j, . . . in G are removed (but nodes i, j, . . . remain,
isolated, in the network). A matching is a network in which every node has at most one link.
A matching of the network G is a matching that is a subset of G. We say that a matching
covers a node if the node has one link in the matching (and that a matching covers a set of
nodes if it covers every node in that set).

The partnership formation game proceeds in discrete time at dates t = 0, 1, . . .. At every
date t, there is a set of partnerships that have already formed represented by a matching
Mt and a prevailing network of potential future partnerships Gt. At date t, one player i

randomly selected—each with probability 1/n—from the set N needs a favor. Partnerships
are assumed to be permanent and guarantee reciprocal favor exchange, so if player i has
a partner j under Mt, then j automatically provides the favor to i. Otherwise, player i

randomly chooses one of his neighbors j0 in the network Gt0 := Gt and asks him for the
favor. Player j0 decides whether to provide the favor or not. If player j0 declines to do the
favor for i, then the link ij0 is permanently removed from the network, and player i continues
searching for a partner in the network Gt1 := Gt0 \ ij0. In general, after k rejections, player
i randomly chooses one of his neighbors jk in the remaining network Gtk := Gt(k�1) \ ijk�1

to ask for the favor. If player jk agrees to provide the favor to player i at date t, player i

receives a payoff v > 0 and player jk incurs a cost c 2 (0, v). In this case, i and jk form a
long-term partnership, so that the set of ongoing partnerships becomes Mt+1 = Mt[ ijk, and
the game proceeds to date t+ 1 on the network Gt+1 = Gt \ i, jk. If none of i’s neighbors in
Gt agrees to provide the favor to i, then i remains isolated and the game continues to period
t + 1 on the network Gt+1 = Gt \ i. All players discount future payoffs by a factor of � per
period.

We assume that the game has perfect information and use the solution concept of subgame
perfect equilibrium. We allow for mixed strategies but will show that as players become
patient, the subgame perfect equilibrium is unique and involves only pure strategies.
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Figure 1. The line and complete networks with four nodes

Let V denote the expected discounted payoff obtained by a player who is matched with a
partner with whom he reciprocates favors,

V =
v � c

n(1� �)
.

Since providing the first favor in a partnership costs c and leads to a continuation payoff
of �V , a necessary condition for a player to rationally agree to provide the first favor in
equilibrium is that �V � c, which is equivalent to

� � � :=
n

r + n

where
r :=

v � c

c
represents the return to favors. Hence, if � < �, then all favor requests are turned down and
every player receives zero payoff in equilibrium.

As customary, the normalized payoff of a player is defined by his expected payoff in the
game multiplied by 1� �. Thus, the normalized payoff accruing to a player who is matched
with a partner with whom he reciprocates favors is (v � c)/n.

Two types of networks that will be useful for illustrations. The line network with n players
consists of the links (1, 2), . . . , (n�1, n). A network is complete if it links every pair of nodes.

3. Examples

In this section, we analyze the partnership formation game in the two examples shown in
Figure 1: the line and the complete networks with four players. Assume that � � �, so that
at least one partnership forms in any equilibrium in either network.

Consider first the four-player line network. Suppose that player 1 needs a favor in the
first period of the game. In this case, only player 2 can provide the favor to 1. If 2 agrees
to provide the favor, he obtains an expected payoff of �c+ �V . If 2 turns 1 down, then the
link (1, 2) is removed from the network. In the remaining network, if player 2 or 4 requests
the next favor, then player 3 has no incentive to provide it. Indeed, declining such a request
leaves player 3 in a network with a single link, which generates an expected continuation
payoff of �V for player 3, while accepting such a request results in the lower expected payoff
of �c + �V . If instead player 3 requires the first favor in the remaining network, then he
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approaches each of players 2 and 4 with probability 1/2, and under the assumption that
� � �, either player accepts the request because he would otherwise remain isolated.

It follows that the expected continuation payoff of player 2 following the rejection of 1’s
favor request is �WL, where WL solves the equation

WL =
1

4

✓
�WL +

1

2
(�c+ �V ) + �V

◆
.

In this equation, the term �WL represents the continuation payoff of player 2 in the event
that player 1 requires the second-period favor as well. Player 2 receives payoff 0 if he needs
the second-period favor (as player 3 refuses to provide it) and payoff �V if 4 needs the favor
(and 3 turns him down). The expected payoff of player 2 in the event that player 3 needs a
favor in the second period is (�c+ �V )/2, reflecting the fact that 3 asks 2 for the favor with
probability 1/2. The solution to the equation is

WL =
3�V � c

2(4� �)
.

Player 2 then has an incentive to grant the favor in the first period to player 1 only if
�c+ �V � �WL, which is equivalent to

�V (8� 5�) � c(8� 3�).

Using the formula V = (v � c)/(4(1� �)), the inequality above can be rewritten as

r =
v � c

c
� 4(1� �)(8� 3�)

�(8� 5�)
.

For � 2 [0, 1), this inequality is equivalent to

� � �⇤L :=
2(11 + 2r �

p
25 + 4r + 4r2)

12 + 5r
.

For instance, for r = 1, which means that v = 2c, we have that �⇤L ⇡ 0.854.
When player 2 needs the first favor, player 3 does not have an incentive to provide it

because he can count on always receiving favors from 4. However, for � � �, player 1 has an
incentive to do the favor to 2 because refusing to do so would leave him isolated. Symmetric
arguments apply to the situations in which players 3 and 4 require the first favor.

Therefore, the structure of equilibria in this network is as follows:

• For � < �, no favors are ever granted in equilibrium.
• For � 2 (�, �⇤L), if player 1 (or 4) needs the first favor, then player 2 (3) turns him

down; in the remaining network, if player 2 or 4 (1 or 3) needs the next favor, player
3 (2) turns him down, while if player 3 (2) needs the next favor, the first neighbor
he approaches agrees to provide it. If player 2 (3) needs the first favor instead, then
player 1 (4) provides it.
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• For � 2 (�⇤L, 1), every player who needs a favor receives it and the partnerships (1, 2)
and (3, 4) form (players 2 and 3 reject each other’s favor requests on the equilibrium
path).

For any �, welfare maximization requires that the partnerships (1, 2) and (3, 4) form, so the
equilibrium is efficient only for � > �⇤L.

Consider next the complete network with four players. If player 1 needs the first favor and
is rejected by all his neighbors, then the other three players are left in a complete network.
In this case, an argument similar to the one above shows that when one of the remaining
three players requires a favor, the other two turn him down. Thus, if all players refuse to do
player 1 the favor, each player i 2 {2, 3, 4} enjoys a continuation payoff �WC , where

WC =
1

4
(�WC + 2�V ).

This payoff equation is analogous to the one defining WL. In particular, the term 2�V

captures the events in which one of two players different from 1 and i needs the next favor
and remains single, effectively leaving i in a bilateral partnership with the fourth player
starting in the third period. Solving the equation, we obtain

WC =
2�V

4� �
.

The last neighbor approached by player 1 has an incentive to provide the first-period favor
to 1 only if �c+ �V � �WC , which is equivalent to

r � 4(1� �)(4� �)

�(4� 3�)
.

The last inequality reduces to

� � �⇤C :=
2(5 + r �

p
9� 2r + r2)

4 + 3r
.

For r = 1, we obtain �⇤C ⇡ 0.906.
To summarize, the structure of equilibria in the complete network is as follows:

• For � < �, no favors are granted in equilibrium.
• For � 2 (�, �⇤C), the player who needs the first favor is refused by all other players.

The next player requiring a favor is also turned down by his remaining neighbors.
The third player who needs a favor receives it from his only remaining neighbor, and
a single partnership forms.

• For � 2 (�⇤C , 1), the first player who needs a favor receives it from the last player he
approaches, and two partnerships form.

As in the line network, for any �, welfare maximization requires that every player who needs
a favor receives it, so the equilibrium is efficient only for � > �⇤C .
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Figure 2. Thresholds �, �⇤L, and �⇤C as a function of r

Figure 2 depicts the thresholds �, �⇤L, and �⇤C as a function of the return to favors r.
Note that � < �⇤L < �⇤C for all values of r > 0. The inequality �⇤L < �⇤C reflects the fact
that player 2’s continuation payoff in the event that player 1 requires the first favor and
his neighbors turn him down is smaller in the line network than in the complete network,
WL < WC . Hence, it is easier to provide an incentive for player 2 to form an efficient
partnership with player 1 in the line than in the complete network. The two examples
demonstrate that adding links to a network does not always facilitate the efficient formation
of partnerships. Enlarging the set of links increases the number of potential matchings but
may also increase the continuation values of players after links are severed, making it more
difficult to sustain efficient partnerships.

We will prove that the conclusions regarding the uniqueness and efficiency of equilibria
for high � in the examples of this section extend to all networks. We will also show that
the equilibrium decisions to form partnerships for high � are directly determined by the
classification of the corresponding pairs of nodes in the Gallai-Edmonds decomposition, which
we introduce next.

4. Efficient Partnerships and Maximum Matchings

The previous section reveals a close relationship between efficient partnership formation
and maximum matchings. We say that a matching M is a maximum matching of G if there
exists no matching of G that contains a greater number of links than M . For any network
G, let µ(G) denote the size of the maximum matching of G, i.e., the number of links in a
maximum matching of G.
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Figure 3. The line with five nodes and the complete network with three nodes

Any strategy profile � along with the random moves by nature—the list of players needing
favors and the sequence of neighbors they approach at every date—induce a probability
distribution over outcomes at every date. We view (Mt)t�0 and (Gt)t�0 as random variables
in this space. Clearly, we have Mt ✓ Mt+1 and Gt+1 ✓ Gt for all t � 0. Let M̄ and Ḡ

denote the limits as t ! 1 of the variables (Mt)t�0 and (Gt)t�0 defined by M̄ = [t�0Mt

and Ḡ = \t�0Gt. We call the random variable M̄ the long-run matching induced by �. This
motivates the following definition.

Definition 1. A strategy profile is long-run efficient if the long-run matching it induces is
a maximum matching of G with probability 1.

In the Appendix, we confirm the intuition that a strategy profile maximizes the limit of
the sum of normalized expected payoffs of all players as � ! 1 only if it is long-run efficient.

The welfare analysis of equilibria in our partnership formation game thus naturally leads
us to examine the structure of maximum matchings. Gallai (1964) and Edmonds (1965)
developed a characterization of maximum matchings that not only proves useful in analyzing
welfare properties of equilibria but captures the structure of incentives in our game in a
precise way. Gallai and Edmonds’ result relies on the following partition of the set of nodes
in a network G. A node is under-demanded in G if it is not covered by some maximum
matching of G. A node is over-demanded in G if it is not under-demanded but has an
under-demanded neighbor in G. A node is perfectly matched in G if it is neither under- nor
over-demanded in G. For example, in both the line and the complete networks with four
players from Figure 1, all nodes are perfectly matched. In the line with five nodes shown in
the left panel of Figure 3, nodes 1, 3, and 5 are under-demanded, while nodes 2 and 4 are
over-demanded. In the complete network with three nodes from the right panel of Figure 3,
all nodes are under-demanded.

Theorem GE (Gallai-Edmonds Decomposition [19]). Every maximum matching of a net-
work links each perfectly matched node to another perfectly matched node and each over-
demanded node to an under-demanded node.5

5The original theorem provides a comprehensive description of the structure of maximum matchings. We
only state the part of the result needed for our analysis here.
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The following result, whose proof appears in the Appendix, describes the evolution of the
Gallai-Edmonds partition as partnerships form or as links are removed following declined
favor requests. We say that i is an efficient partner of j in G or that ij is an efficient link
if the link ij belongs to a maximum matching of G and that a node is essential in G if it is
either over-demanded or perfectly matched in G.

Lemma 1. For every network G and any link ij 2 G, the following statements hold:
(1) If i is under-demanded in G, then i is under-demanded in the network G \ ij, and j

is essential in the network G \ i.
(2) Suppose that i is perfectly matched in G and that j is not the only efficient partner

of i in G. Then, the sets of perfectly matched, over-demanded, and under-demanded
nodes coincide in G and G \ ij. Moreover, the set of efficient partners of i in G \ ij
consists of all efficient partners of i in G except for j (in case ij is an efficient link).

(3) If i is perfectly matched in G, and j is i’s only efficient partner in G, then both i and
j are under-demanded in the network G \ ij, and j is under-demanded in G \ i.

(4) If i is over-demanded and j is under-demanded in G, then ij is an efficient link in
G, and i is an essential node in G \ ij.

(5) If both i and j are perfectly matched, and ij is an efficient link in G, then the sets of
under-demanded nodes different from i and j in G \ i, j and G coincide.

5. Equilibrium Partnerships and Efficiency

We provide a complete characterization of subgame perfect equilibria in the partnership
formation game for high � that relies on the classification of nodes in the Gallai-Edmonds
decomposition in the prevailing network. From this characterization, we infer that equilibria
are long-run efficient and that all essential players find partners when players are patient.
The characterization also implies that for � ! 1, all essential players receive limit normalized
payoffs of (v�c)/n, while under-demanded players obtain limit normalized payoffs of at most
(n � 1)/n ⇥ (v � c)/n. Therefore, as players become patient, essential players fare better
than under-demanded players.

Theorem 1. Fix a network G with n players. The following statements hold for sufficiently
high �.

• Equilibrium Uniqueness: The partnership formation game played on the network
G has a unique subgame perfect equilibrium, which is in pure strategies.

• Outcomes: In the equilibrium, each essential player in G receives favors any time
he needs them and enjoys a limit normalized expected payoff of (v � c)/n, while each
under-demanded player in G remains single with probability at least 1/n and obtains
a limit normalized expected payoff of at most (n� 1)/n⇥ (v � c)/n.

• Behavior and Partnerships: When player i requests a favor in the initial network
G,
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– if i is under-demanded in G, all neighbors deny i’s request and i remains single;
– if i is perfectly matched in G, all neighbors turn i down until there is only one

remaining neighbor among i’s efficient partners in G; this neighbor agrees to
provide the favor to i;

– if i is over-demanded in G, all neighbors turn i down until i approaches his first
under-demanded neighbor in G, who grants the favor.

• Efficiency: In equilibrium, µ(G) partnerships form with probability 1. The equilib-
rium is long-run efficient.

As discussed in the introduction, existing research (e.g., Abreu and Manea (2012a, b)
and Elliott and Nava (2016)) reveals a tension between decentralized trade in networks and
efficient market outcomes. A combination of new modeling assumptions delivers efficiency
in our decentralized setting: direct transfers are not possible within partnerships, so every
player can experience only a discrete set of outcomes; a player who needs a favor gets the
opportunity to propose partnerships sequentially to all his neighbors; and links leading to
rejections are irreversibly removed from the network. Corominas-Bosch (2004), Polanski
(2007), and Abreu and Manea (2012a) also reach the conclusion that under-demanded play-
ers are weaker than essential ones. Their results rely on the vulnerability of under-demanded
players to isolation as neighbors form partnerships and exit the network. This vulnerability
stems from the fact that, by definition, under-demanded players are excluded by some max-
imum matchings. Our analysis points to a conceptually distinct quality of under-demanded
players in the structure of maximum matchings: removing an under-demanded player from
the network makes all his neighbors essential. For this reason, when an under-demanded
player requests a favor, his neighbors anticipate that his other potential partners will refuse
the request in order to reach attractive essential positions. Hence, under-demanded players
are marginalized in the original network via immediate link deletions triggered by rejections
rather than being exposed to the standard gradual decline in partnership opportunities.

We present the proof of Theorem 1 in the Appendix. To develop some intuition for this
result, note that every player i can experience three types of outcomes in the partnership
formation game in the network G: (1) remaining single; (2) entering a partnership by way of
providing a favor to a neighbor who requires one; (3) initiating a partnership via having the
first favor he needs granted. The expected payoffs of player i when these situations arise are
given by 0,�c+�V , and v+�V , respectively. For � > �, we have that 0 < �c+�V < v+�V .
In scenarios (2) and (3), player i always receives the benefit v when he needs a favor and has
to pay the cost c any time his partner requires a favor. However, scenario (3) saves player i

some early costs c of providing favors before he needs one, so i does not have an incentive
to accept a partnership of type (2) unless there is some risk that refusing to enter such a
partnership exposes him to some risk of facing scenario (1). Therefore, every player prefers
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scenario (3) most and would like to delay accepting a partnership of type (2) for as long as
this does not make him vulnerable to remaining single as in scenario (1).

The proof shows by induction on the number of links in network G that in equilibrium,
essential players always form partnerships and end up in scenario (2) or (3), while under-
demanded players reach scenario (1) with probability at least 1/n for � close to 1. It is then
optimal for a player to provide a favor when asked only if he becomes under-demanded in the
network in which his link with the player needing the favor is severed. Lemma 1.1 implies
that if an under-demanded player i needs a favor and all his neighbors turn him down,
then i’s neighbors become essential in the remaining network. The induction hypothesis and
backward induction then imply that every neighbor of i is guaranteed an outcome classified
as scenario (2) or (3) above and thus does not have an incentive to do i the favor. Hence, in
any subgame, every player who is under-demanded in the remaining network faces scenario
(1) in the event he needs the next favor, which happens with probability 1/n.

When a perfectly matched player i requires a favor, we argue that his last efficient partner
j whom he asks should provide the favor to i. Otherwise, the link ij is removed from the
network, and the first part of Lemma 1.3 shows that both i and j are under-demanded in
the resulting network G \ ij. The induction hypothesis for G \ ij implies that no neighbor
whom i approaches after j grants him the favor. Then, the second part of Lemma 1.3 shows
that j becomes under-demanded in the ensuing network G \ i. By Lemma 1.2, every player
whom i asks for the favor before reaching his last efficient partner is essential and maintains
his role in the Gallai-Edmonds decomposition following his refusal to do i the favor. Hence,
these players do not have incentives to partner with i.

When an over-demanded player i requires a favor, Theorem GE implies that no essential
neighbor changes status in the Gallai-Edmonds decomposition by refusing to provide the
favor and losing the link with i. Then, no such neighbor has an incentive to do i the favor.
However, if the over-demanded player i asks an under-demanded neighbor j for the favor,
player j has an incentive to do it. This requires a more delicate analysis of the evolution of
the positions of i and j in the Gallai-Edmonds decomposition in the subgame in which the
link ij is removed and i approaches other neighbors with the request. Lemma 1.4 shows that
i remains essential in G\ ij, and the induction hypothesis implies that i will eventually reach
a neighbor k who is willing to partner with him. However, it is possible that the partnership
between i and his specific neighbor k improves j’s position from being under-demanded in
G (as well as G \ ij according to Lemma 1.1) to becoming essential in G \ i, k.

This situation is illustrated in the network from Figure 4. Suppose that in this network,
the over-demanded player i asks his under-demanded neighbor j for a favor, and j turns him
down. If i requests the favor from h next, then h accepts to provide the favor anticipating
that he would otherwise remain under-demanded. Following the formation of the partnership
(i, h), player j becomes perfectly matched in the remaining network and eventually partners
with g. Player j’s continuation payoff in this event is �V , which is greater than the expected



15

g i

j h k

Figure 4. A key step in the proof of Theorem 1

payoff �V � c derived from providing the favor to i. However, if i asks player k instead
of h for the favor after j’s rejection, k agrees to provide the favor, in which case j is left
under-demanded and exposed to a probability 1/2 of remaining single, which for high � is
significantly less desirable than the expected payoff �V � c guaranteed by the partnership
with i. This is where the assumption that player i asks his neighbors for the favor in random
order is crucial for the argument—after being rejected by j, player i is equally likely to ask
the favor from h and k; while j is slightly better off not providing the favor to i in case i

partners with h, he is considerably worse off in case i partners with k. Then, for high �,
player j prefers to provide the favor to i if asked first. The proof shows that a player acting
like k—willing to form a partnership with i in equilibrium that leaves j under-demanded—
always exists in a general network in which i is over-demanded and j is under-demanded.
Lemma 1.4 is used to conclude that the set of partnerships that emerge in equilibrium form
a maximum matching.

In Section 6.1, we discuss how the conclusions of Theorem 1 adjust if we alternatively
assume that the order in which a player asks neighbors for favors is selected strategically or
specified exogenously. Only the prediction of exactly which under-demanded player provides
the favor to an over-demanded player change in these alternative specifications of the model.

6. Alternative Models

In this section, we test the robustness of our predictions with respect to several modeling
variations. We show that the assumption that players who need favors ask neighbors in
random order is not essential for our main findings. We also develop a version of the model
with reduced-form payoffs in which all benefits from a partnership accrue at the time of its
creation and there is some advantage for the player initiating the partnership. The results
extend to such settings. We then discuss extensions of the model with payoff asymmetries
and continuous time. Finally, we show that inefficient equilibria emerge if we assume that
links leading to rejections are not removed from the network, but efficiency is preserved in
a perturbation of the game whereby links generating rejections are maintained with small
probability.

6.1. Requesting Favors in Strategic or Exogenous Order. We first comment on the
implications of alternative modeling assumptions regarding the order in which players ask
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neighbors for favors. The example from Figure 4 shows that the fact that the player who
needs a favor approaches neighbors in random order without revealing the order at the begin-
ning of the period and instead picking neighbors sequentially is essential for the partnership
outcomes described by Theorem 1. Indeed, if player i in the network from Figure 4 chose the
order in which he approaches neighbors for the favor randomly and announced that it would
be (j, h, k), then player j would anticipate that i will form a partnership with h and would
optimally decide to turn down i’s request knowing that he will always have the option to
partner with g at a later stage. The same conclusion would carry over to a specification of the
model in which players who need favors approach neighbors in an exogenous deterministic
order.

Furthermore, the equilibrium uniqueness established by Theorem 1 does not extend to a
version of the model in which unmatched players who need favors choose the order in which
they ask neighbors strategically. To fix ideas, assume that the player who needs a favor does
not broadcast the order at the beginning of the period but rather decides whom to approach
next following every rejection. Consider, for instance, the line network with three players. In
the model with endogenous orders, for every p 2 [0, 1], there exists an equilibrium in which
when player 2 needs the first favor, he approaches player 1 first with probability p. The limit
normalized payoffs of player 1 range from (v� c)/9 to 2(v� c)/9 between the extreme cases
p = 0 and p = 1.

While the characterization of partnerships formed by over-demanded players from Theo-
rem 1 does not extend to models with alternative assumptions regarding the order in which
players needing favors approach neighbors, we show that in any of these model specifica-
tions, every over-demanded player who needs a favor receives it from some under-demanded
neighbor. All remaining properties of the structure of equilibria uncovered by Theorem 1
extend to the alternative model specifications. The proof is provided in the Appendix.

Theorem 2. Subgame perfect equilibria of the version of the partnership formation game
with strategic or exogenous orderings for sufficiently high � satisfy all the properties outlined
in Theorem 1 with the following exceptions. The equilibrium is not unique in the case with en-
dogenous orderings. When an over-demanded player requests a favor, some under-demanded
neighbor provides the favor (possibly after rejections by other under-demanded neighbors).

Given the binary nature of possible equilibrium outcomes for a player requiring a favor—
either finding a long-term partner or becoming isolated with probability 1—in any subgame
and every equilibrium for all game specifications, Theorems 1 and 2 imply that players who
need favors are indifferent among all orderings in which they can ask neighbors. In particular,
the equilibrium of the game with random orderings and the equilibrium of the game with
any exogenous orderings constitute equilibria for the game with strategic choice of orderings.

6.2. Reduced-Form One-Time Payoffs. Our model assumes that players who agree to
form partnerships exchange favors and collect payoffs at arbitrarily many dates. Nevertheless,
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Theorems 1 and 2 extend to a setting in which, similarly to the models of bargaining in
networks [1, 2, 8, 11, 17, 18, 20, 23, 24], each player consumes all benefits of a partnership
immediately and receives a payoff only at the time the partnership is created. An alternative
interpretation of this modeling assumption is that each player requires a single favor at a
random time. If the player is unable to find a partner willing to provide the favor at that
time, he vanishes from the network along with all his links. This interpretation of the model
opens the door to applications with a “ticking clock” such as fertility in mating, deadlines
for collaborative projects, and emergencies that require immediate support from a friend.

In this specification of the model, the need for a favor represents an opportunity for a player
to propose a partnership. When player i proposes a partnership to neighbor j, and j accepts
the proposal, players i and j receive one-time payoffs v1 and v2, respectively, and exit the
game permanently. To match the premise of the benchmark model that each player prefers
receiving the first favor in a partnership, we assume that the proposer enjoys a first-mover
advantage, i.e., v1 > v2 > 0. Similarly, to capture the idea that entering any partnership is
more desirable than running the risk of remaining single, we require that v2 > (n� 1)/n v1.
We maintain the assumptions of a common discount factor � and of a constant arrival rate
of 1/n per period of opportunities for proposing partnerships for players who have not yet
entered partnerships.

The statements regarding equilibrium uniqueness or existence, the structure of equilib-
rium partnerships, and efficiency of equilibrium outcomes from Theorems 1 and 2 carry
over to this setting. For Theorem 1, we need to impose the stronger hypothesis that
v2 > (1 � 1/((n � 1)n))v1. This condition is needed for the more detailed characterization
of equilibrium partnerships from Theorem 1 establishing that an over-demanded proposer
reaches an agreement with the first under-demanded player he encounters and is involved in
checking incentives for the step of the proof illustrated in Figure 4. Intuitively, the conditions
v1 > v2 > (n�1)/n v1 and v1 > v2 > (1�1/((n�1)n))v1 require that the risk of not finding
a partner outweighs the first-mover advantage in a partnership, so the first-mover advantage
should not be too large.

The proofs of the results for this setting rely on exactly the same structural properties of
nodes invoked by the analogous steps in the proofs of Theorems 1 and 2 and minor modifi-
cations in payoff bound computations. In particular, the optimality of accepting a proposal
whose rejection would leave a player vulnerable to isolation is driven by the assumptions
that v2 > (1� 1/((n� 1)n))v1 and v2 > (n� 1)/n v1, respectively. Similarly, the inequality
(v1 + (n� 1)v2)/n > v2 implies that a player has an incentive to reject a proposal and forgo
the second-mover payoff v2 if doing so does not put him at risk of not finding a partner
and makes him eligible for the first-mover payoff v1 in the event he has the opportunity to
propose a partnership in the remaining network in the next period.
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6.3. Player Heterogeneity and Continuous Time. The conclusions of Theorems 1 and
2 extend to a setting in which time is continuous and players require favors at random times
that have independent and identical Poisson distributions. The structure of equilibria does
not change and maximum matchings always emerge in equilibrium if the benefit of receiving
favors and the cost of providing favors are player specific.6 It should be noted that the
connection between efficiency and maximum matchings breaks down for this generalization.
Indeed, if the benefit from receiving favors and the cost of providing favors for player i are
vi and ci (with vi > ci), respectively, then long-run efficiency requires that the long-run
matching M̄ describing the structure of partnerships satisfies

M̄ 2 arg max
matchings M of G

X

i covered by M

(vi � ci).

There is no general relationship between maximizers of the expression above and maximum
matchings. Nevertheless, for small levels of variation in vi�ci over i 2 N , the value achieved
by maximum matchings is close to the optimal solution, so we can conclude that equilibria
of our partnership formation game are approximately efficient.

6.4. No Link Removal. Our results rely critically on the assumption that refusing to
provide a favor over a link results in its removal from the network. Let us now consider
a version of the model in which if a player refuses to provide a favor to a neighbor, the
underlying link is not removed from the network and can be used for exchanging favors in
the future (but cannot be reactivated to request the same favor in the current period). As
in the benchmark model, the player who needs a favor asks neighbors in random order and
partnerships are permanent once formed. The main conclusions of Theorem 1—uniqueness of
the subgame perfect equilibrium and its asymptotic efficiency—do not extend to this model.

To illustrate equilibrium multiplicity, consider a network with two players, 1 and 2, linked
with each other. For high discount factors �, we can identify the following subgame perfect
equilibria. In one equilibrium, player 1 always refuses to provide the first favor, while player
2 always agrees to provide the first favor. Under these strategies, it is optimal for player 1 to
refuse to provide favors as long as a partnership is not in place because player 2 will grant
favors to player 1 whenever player 1 requires them. The optimality of player 2’s strategy
can be checked using the single-deviation principle. The described strategies require that if
player 1 needs the first favor at date t, player 2 should provide it. This behavior generates
an expected payoff of �c + �V > 0 for player 2. If player 2 deviates from the date t action
by turning player 1 down and then play confirms to the prescribed strategies, player 2 will
enter a partnership the next time player 1 requires a favor. If this happens t0 > 0 periods
later, player 2’s conditional expected payoff is �t

0
(�c+ �V ), which is smaller than �c+ �V

6However, the analysis becomes intractable if benefits and costs are link specific. The homogeneity assump-
tions embedded in our model allow us to neatly separate network effects from other player asymmetries.
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Figure 5. Long-run inefficient equilibria without link removals

for all t0. This clearly constitutes the best equilibrium outcome for player 1 and the worst
equilibrium outcome for player 2.

To obtain another stationary equilibrium, we can simply switch the behavior of players 1
and 2 in the strategies constructed above. Non-stationary equilibria can be built relying on
these two equilibria. For instance, another equilibrium prescribes that the player who asks
for the first favor receives it, and a partnership forms in the first period. This equilibrium
relies on the threat that if a player turns down the first favor request, then play reverts to the
equilibrium in which the opponent never provides the first favor. Note that this equilibrium
generates expected payoffs of V for each player and is welfare optimal.7

Every subgame perfect equilibrium in the two-player network is long-run efficient. To see
this, note that for � close to 1, if an equilibrium involves only a small probability of agreement
after a certain date, then either player would have an incentive to deviate and provide the
favor at that date.

We next present an example in which long-run inefficient subgame perfect equilibria exist.
Consider the 4-player network from Figure 5, which is also used to illustrate inefficient
equilibria in Abreu and Manea (2012a). In the Appendix, we verify that the following
strategies constitute a subgame prefect equilibrium for high �. Before any partnership forms,
players 1, 3, and 4 always provide favors to any neighbor who asks for one regardless of the
set of players who previously refused to do the same favor, while player 2 never agrees to
provide a favor. In a subgame in which partnership (1, 2) or (3, 4) formed, play between the
remaining pair of (linked) players proceeds according to certain equilibrium strategies for the
two-player setting discussed above.8 In subgames in which the partnership (3, 4) formed, the
7In another equilibrium, the first-period favor request is turned down, and then play proceeds according
to the welfare optimal equilibrium. These strategies constitute an equilibrium because providing the first
favor generates an expected payoff of �c + �V , while refusing to do so results in a continuation payoff of
�V > �c+�V . There exists also a symmetric stationary equilibrium in mixed strategies, in which conditional
on not having entered the partnership, both players agree to provide the next favor with equal probability.
8Note that the payoffs induced by these strategies are not the same as in the two-player setting because
in these subgames each player requires favors with probability 1/4 rather than 1/2, but the verification of
equilibrium incentives for high � is analogous.
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strategies specify that the best equilibrium for player 2 is played in the relationship between
players 1 and 2. In subgames in which player 2 requires a favor and is first refused by both
players 3 and 4 (in either order) and then ends up partnering with player 1, the strategies
prescribe that the worst equilibrium for the second player who turned 2 down is played in the
relationship between players 3 and 4. In other subgames with two linked players remaining,
equilibrium play can be specified arbitrarily.

Under these strategies, each of the inefficient partnerships (2, 3) and (2, 4) forms with
probability 1/4 ⇥ 1/3 = 1/12 in the first period of any subgame in which no partnership
has formed (in the event player 2 requests a favor from player 3 or 4, respectively), with
probability 1/4⇥ 1/12 in the second period (in the event player 1 requested the first-period
favor and got turned down, then 2 requested the second-period favor), and so on.

Long-run efficient equilibria also exist in this example. Such an equilibrium can be con-
structed as follows. Player 2 never agrees to provide the first favor to a neighbor in any
subgame. Player 1 provides a favor when asked by player 2 in every subgame. As long as no
partnership has formed, there are two regimes depending on whether 3 and 4 ever refused
a favor request from each other. Play starts in the “cooperative” regime, in which players 3
and 4 agree to provide favors to each other whenever one asks the other. If the pair (3, 4)

ever deviates from this norm, play switches to a “non-cooperative” regime, in which players
follow the inefficient equilibrium strategies constructed above. In subgames in which the
partnership (1, 2) has formed, players 3 and 4 play according to the welfare optimal equi-
librium strategies for the two-player game whereby they exchange favors on the equilibrium
path in every period.

Given these strategies, it is not optimal for players 3 and 4 to ever provide favors to 2 as
long as they have not deviated from the norm of the cooperative regime because they know
that they can always count on each other to exchange favors when needed. By refusing to
partner with 2, each of the players 3 and 4 receive the benefit v of favors when needed, but
postpone paying the cost c. Players 3 and 4 have incentives to provide favors to each other
in the cooperative regime because failing to do so results in player 2 also refusing the favor
request (if asked second in the order by either 3 or 4), and the ensuing inefficient continuation
play in the non-cooperative regime leaves each of them isolated with probability greater than
1/12. Incentives in other interactions involving players 1 and 2 can be checked as in the case
of the inefficient equilibrium.9

9There also exists a mixed-strategy efficient equilibrium that generates identical payoffs for all players similar
to the symmetric stationary equilibrium for the two-player setting described in footnote 7. In this equilibrium,
only the efficient partnerships (1, 2) and (3, 4) form and each of the four players mixes with the same
probability between providing and not providing the first favor across these two links. Every player is
indifferent between doing a favor when asked and waiting for the game to proceed to the next period with
the same structure of partnerships in place.



21

6.5. Small Probability of Link Preservation. The weakness of each under-demanded
player i driving our main result stems from the incentives of i’s neighbors to decline his
favor request in order to achieve essential positions following the removal of all of i’s links.
When rejections do not always trigger link removals, i’s neighbors are not guaranteed to
land essential positions following their rejections of i. If links are preserved with significant
probability following rejections, then some of i’s neighbors would prefer to grant the favor
and enter a partnership with i instead of running the risk of remaining under-demanded
and eventually being left single. Hence, equilibrium dynamics and bargaining power depend
crucially on the probability with which rejection-generating links are preserved. However, we
will argue that our main result is robust with respect to small probabilities of link preservation
following rejections.

Consider a perturbation of the partnership formation game in which rejections do not
necessarily lead to link removals. Instead, assume that a player whose favor request has
been declined by all his neighbors maintains each of his links independently with some small
probability ✏ � 0.10 We refer to this version of the partnership formation game as the
✏-perturbed game.

The proof of Theorem 1 shows that incentives in the subgame perfect equilibrium of the
unperturbed game are strict in every subgame for sufficiently high discount factors. A stan-
dard continuity argument implies that the subgame perfect equilibrium of the unperturbed
game (described by ✏ = 0) also constitutes a subgame perfect equilibrium of the ✏-perturbed
game for ✏ close to 0. The proof of Theorem 1 can be straighforwardly adjusted to establish
that this is the only equilibrium of the ✏-perturbed game.

The conclusion that a maximum matching emerges in equilibrium in the long-run extends
to a version of the perturbed game in which links leading to rejections are immediately re-
moved with high probability and players subsequently asked for favors observe which prior
rejections generated link removals. However, short-run dynamics are sensitive to the real-
izations of perturbed paths under this model specification. It is no longer the case that
perfectly matched players find a partner as soon as they need a favor. Indeed, when a per-
fectly matched player i who has multiple efficient partners needs a favor and some of these
partners turn him down without losing their links with i, then all neighbors subsequently
approached by i must turn him down since i is not their unique efficient partner in the
remaining network. Nevertheless, with probability 1, repeated rejections eventually leave i

with a single efficient partner, who should agree to form a partnership with i in equilibrium.
The prospects of under-demanded players who require favors are also affected by perturba-
tions. When an under-demanded player i is rejected by a neighbor but maintains the link
with that neighbor, another neighbor may risk remaining under-demanded if he turns i down

10The argument holds for any specification whereby non-empty subsets of rejection-generating links are
maintained with small (history-dependent) probabilities.
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and loses his link with i. This neighbor should then partner with i in equilibrium, and the
ensuing partnership is efficient (since all links of under-demanded players are efficient).

7. Conclusion

This paper studies the formation of bilateral partnerships that guarantee reciprocal ex-
change of favors in social and economic networks. We find that the structure of equilibrium
partnerships, the strengths of players, and market efficiency are driven by the configuration
of nodes that are essential for achieving all maximum matchings. In particular, essential
players always find partners, while inessential players remain single with positive probability
in equilibrium. This implies that essential players obtain higher equilibrium payoffs than
inessential players. Even though the search for partners is decentralized and incentives for
entering partnerships depend on local network conditions, we prove that the possibility that
each inessential player might be unable to find a partner implies that partnerships form
efficiently in every network. This result is striking in the context of existing research, which
has found that local incentives for forming partnerships are not usually aligned with global
welfare maximization in markets with decentralized matching.

More generally, we show exactly how each player’s equilibrium decisions are determined
by his (evolving) position in the Gallai-Edmonds decomposition. Prior research on trade in
networks has established similar but less detailed connections between equilibrium outcomes
and the Gallai-Edmonds decomposition (mainly in markets with centralized matching). How-
ever, there is a conceptual novelty in the mechanism underlying our result. In our setting,
the weakness of inessential players is inflicted by neighbors actively marginalizing them via
severing links with them when they request favors in the original network, while in previous
models, it is indirectly precipitated by the possibility of remaining isolated in the network
as neighbors forge agreements with other players.

The contribution of this research lies at the intersection of game theory and graph theory.
Our analysis delivers a precise relationship between the classic Gallai-Edmonds structure
of maximum matchings and incentives driving the efficient formation of partnerships in a
natural favor exchange game with decentralized matching.

Appendix: Proofs

Long-run efficiency and total welfare. To understand the connection between long-run effi-
ciency and total welfare in our model, fix a strategy profile �. Let P denote the probability
measure over outcomes induced by �. Let T denote the lowest t such that Mt = M̄ and
Gt = Ḡ. For t � T , we have that Mt = M̄ and only players who are matched under M̄

are granted favors at date t. Hence, players collectively receive the net benefit of v � c from
favor exchange at date t � T with probability 2µ(M̄)/n. Starting at any date t < T , there
is a sequence of n or fewer draws by nature of unmatched players asking for favors for the
first time and either entering partnerships or becoming isolated, which leads to Mt+n = M̄
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and Gt+n = Ḡ. The probability of such a sequence being drawn by nature conditional on
(Gt,Mt) is at least 1/nn. Therefore, P(T > t+ n|T > t)  1� 1/nn, so

P(T > t+ n) = P(T > t)P(T > t+ n|T > t)  P(T > t)(1� 1/nn).

It follows that P(T > kn)  (1� 1/nn)k for all k � 0. Given this exponential bound on the
tail of the distribution of T and the fact that the total expected payoffs of all players under �
average to 2µ(M̄)/n(v� c) at dates t � T , the limit of the total normalized expected payoffs
of all players under � as � ! 1 does not exceed 2µ(G)/n(v � c) and achieves the maximum
of 2µ(G)/n(v � c) only if M̄ is a maximum matching of G with probability 1. We conclude
that � maximizes the limit of the sum of normalized expected payoffs of all players as � ! 1

only if it is long-run efficient. ⇤

Proof of Lemma 1. Fix the network G and the link ij 2 G.
(1) Suppose that i is under-demanded in G, and let M be a maximum matching of G that

does not cover i. Since µ(G \ ij)  µ(G) and M is a matching of G \ ij, it must be that
µ(G \ ij) = µ(G) and M is also a maximum matching of G \ ij. As M does not cover i, it
follows that i is under-demanded in G\ ij. Similarly, µ(G\ i)  µ(G) combined with the fact
that M constitutes a matching for G \ i implies that µ(G \ i) = µ(G). If j is not essential in
G \ i, then there exists a maximum matching M 0 of G \ i that does not cover j. Adding the
link ij to M 0 generates a matching of G with µ(G \ i) + 1 = µ(G) + 1 links, contradicting
the definition of µ(G).

(2) Suppose that i is perfectly matched in G and that j is not the only efficient partner
of i. If j is over-demanded in G, then Theorem GE implies that ij is not an efficient link in
G, so G and G \ ij have the same set of maximum matchings and the same Gallai-Edmonds
decomposition. Moreover, the set of efficient partners of i in G does not contain j and is
identical to the set of efficient partners of i in G \ ij.

Suppose next that j is perfectly matched in G. Since j is not the only efficient partner of i,
we have that µ(G\ij) = µ(G) and every maximum matching of G\ij is a maximum matching
of G. In particular, every player who is under-demanded in G\ ij is also under-demanded in
G, and all efficient partners of i in G\ ij are his efficient partners in G as well. Consider now
a player k who is under-demanded in G. Then, there exists a maximum matching M of G
that does not cover k. Since j is not the only efficient partner of i, there exists a maximum
matching M 0 of G that does not contain the link ij. By Theorem GE, both M and M 0 link
perfectly matched players with one another. Construct a third matching M 00 that consists
of the links of M among under- and over-demanded players in G and the links of M 0 among
perfectly matched players in G. Then, M 00 is a maximum matching of G \ ij which does not
cover k. Thus, k is under-demanded in G \ ij. The arguments above show that the sets of
under-demanded players in G and G\ ij coincide. Since neither i nor j is under-demanded in
G, the sets of neighbors in the two networks of the common set of under-demanded players
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in G and G \ ij are also identical. This implies that the sets of over-demanded players in G

and G \ ij are the same. It follows that the sets of perfectly matched players in G and G \ ij
also coincide. To prove that every efficient partner k 6= j of i in G is also an efficient partner
of i in G \ ij, it is sufficient to note that every maximum matching of G that contains the
link ik continues to be a maximum matching of G \ ij.

(3) Suppose that i is perfectly matched in G and that j is i’s only efficient partner in
G. We know that µ(G) � 1  µ(G \ ij)  µ(G). If µ(G \ ij) = µ(G), then there exists a
maximum matching of G that does not contain the link ij, contradicting the assumption that
i is perfectly matched in G and j is i’s only efficient partner in G. Hence, µ(G\ij) = µ(G)�1.
Let M be a maximum matching of G. As i is perfectly matched in G and j is i’s only efficient
partner in G, the link ij is necessarily contained in M . Removing ij from M produces a
matching in G \ ij with µ(G)� 1 = µ(G \ ij) links. This constitutes a maximum matching
for G \ ij, which does not cover i or j. It follows that both i and j are under-demanded in
the network G \ ij.

Since i is perfectly matched in G, we have that µ(G \ i) = µ(G)� 1. Then, removing the
link ij from any maximum matching of G generates a maximum matching for G\ i that does
not cover j. It follows that j is under-demanded in G \ i.

(4) Suppose that i is over-demanded and j is under-demanded in G. Then, there exists a
maximum matching M of G that does not cover node j and hence excludes the link ij. As
i is over-demanded in G, M must cover i. If we replace i’s link under M with ij, we obtain
another maximum matching of G that contains the link ij. Therefore, ij is an efficient link
in G. Since µ(G\ij)  µ(G) and M is a matching of G\ij, it must be that µ(G\ij) = µ(G),
so any maximum matching of G \ ij is also a maximum matching of G. As any maximum
matching of G covers i, it must be that every maximum matching of G \ ij also covers i, so
i is essential in G \ ij.

(5) Suppose that both i and j are perfectly matched and ij is an efficient link in G. Then,
we have that µ(G\i, j) = µ(G)�1 and every maximum matching of G\i, j can be completed
to a maximum matching of G by adding the link ij. Hence, every under-demanded player
in G \ i, j different from i and j is under-demanded in G. Conversely, reasoning similar to
the proof of part (2) shows that any maximum matching of G that does not cover a given
node can be transformed into a maximum matching of G \ i, j with the same property by
rewiring the links among perfectly matched players in G using a maximum matching of G
that contains the link ij. It follows that every under-demanded node in G is under-demanded
in G \ i, j. ⇤

Proof of Theorem 1. Fix a set of n nodes and consider a network G linking them. The
result follows from claims (I1)-(I7) below concerning subgame perfect equilibrium behavior
and outcomes in the network G for sufficiently high �.
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(I1) When player i asks player j for a favor in G, player j refuses to provide the favor if
j is essential in G \ ij.

(I2) When a player i who is under-demanded in G first asks a neighbor for a favor, the
neighbor turns him down. In equilibrium, no neighbor of i grants the favor and i

remains single.
(I3) When a player i who is perfectly matched in G first asks a neighbor j for a favor,

j does the favor for i if and only if j is the only efficient partner of i in G.11 In
equilibrium, the last efficient partner of i in G whom i approaches grants the favor
to i.

(I4) When an over-demanded player i in G asks his first neighbor for a favor, the neighbor
agrees to provide the favor if and only if he is under-demanded in G. In equilibrium,
the first under-demanded player j in G whom i approaches provides the favor to i;
the resulting partnership between i and j is efficient in G.

(I5) In a subgame in which an essential player in G happens to need a favor at the
beginning of a period (before asking any neighbor), each under-demanded player in
G remains single with probability at least 1/((n�1)n) and receives a limit normalized
expected payoff of at most (1� 1/((n� 1)n))⇥ (v � c)/n.

(I6) In every subgame perfect equilibrium for the network G, each essential player in G

receives favors any time he needs them and enjoys a limit normalized expected payoff
of (v � c)/n, while each under-demanded player in G is left single with probability
at least 1/n and obtains a limit normalized expected payoff of at most (n � 1)/n ⇥
(v � c)/n.

(I7) There exists a unique subgame perfect equilibrium for the network G. In equilibrium,
exactly µ(G) partnerships form with probability 1. The equilibrium is long-run effi-
cient.

We prove claims (I1)-(I7) simultaneously and in this sequence by induction on the number
of links in G. The induction base case for a network G with a single link can be verified
without difficulty. We need to establish the claims for a network G assuming they are true
for any network with fewer links. The proof of the inductive step relies on the existence and
uniqueness of the subgame perfect equilibrium for subnetworks of G different from G, which
follows from the induction hypothesis (I7). For brevity, we do not explicitly state this fact
at every instance it is needed.

Let V = v/((1 � �)n) denote the expected value of favors provided to a player in a
partnership and C̄ = (1 + �/((1 � �)n)c the maximum expected cost a player pays upon
committing to a partnership via providing a favor in the current period.

To prove the inductive step for claim (I1), suppose that player i first asks player j for a
favor in G and that j is essential in G \ ij. If j decides to grant the favor, then his expected
11If i is perfectly matched in G, the condition that j is the only efficient partner of i in G is equivalent to
the condition that i is the only efficient partner of j in G.
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payoff is �V � C̄. If j refuses to provide the favor, then i continues to ask for favors in
G \ ij. By the induction hypothesis (I6) applied to network G \ ij, player j is guaranteed to
receive favors whenever he needs them in the future. Hence, j enjoys the same favor benefits,
with an expected discounted value of �V , regardless of whether he agrees to partner with
i. However, the cost C̄ of partnering with i is greater than the expected cost of entering
another partnership at any later date, which is at most �C̄, so j has a strict incentive to
refuse i’s request in any subgame perfect equilibrium for G.

To establish claim (I2), suppose that an under-demanded player i in G first asks his
neighbor j for a favor. Player j obtains an expected payoff of �V � C̄ if he grants the favor
to i. If j refuses to provide the favor, then Lemma 1.1 implies that player i continues to
be under-demanded in the resulting network G \ ij. By the induction hypothesis for the
second part of (I2) applied to the network G \ ij, all of i’s other neighbors refuse to partner
with him after j turns him down. Then, player j is left in G \ i following his rejection of i’s
request. Since j is linked to the under-demanded player i in G, Lemma 1.1 implies that j

is essential in G \ i. By the induction hypothesis (I6) for the network G \ i, player j always
finds a partner when he needs a favor. Player j’s payoff following his rejection of i’s request
is thus at least �V � �C̄, which is greater than �V � C̄. Hence, j has a strict incentive to
turn i down as asserted. In a subgame perfect equilibrium, player j must turn i down, and
then as argued above, all other neighbors of i in G should also turn him down in sequence
leaving him ultimately isolated.

To prove the first part of claim (I3), suppose that a player i who is perfectly matched in G

first asks his neighbor j for a favor. Since there are no links between under-demanded and
perfectly matched nodes in G, is must be that j is an essential player in G. If j is not the
only efficient partner of i in G, then Lemma 1.2 implies that j continues to be essential in
G\ij. Then, (I1) implies that j should refuse i’s request in any subgame perfect equilibrium.

Suppose instead that j is the only efficient partner of i in G. Then, by Lemma 1.3, both
i and j are under-demanded in G \ ij. Assume that j refuses i’s request. Since i is under-
demanded in G\ ij, the induction hypothesis (I2) for network G\ ij implies that no neighbor
whom i approaches after j grants the favor to i. Hence, player j ends up in the network G\ i
following his refusal to partner with i. By Lemma 1.3, player j is under-demanded in G \ i.
Then, the induction hypothesis (I6) for network G\ i implies that player j’s limit normalized
expected payoff following the rejection of i’s request does not exceed (n� 1)/n⇥ (v � c)/n.
Since j can attain a limit normalized expected payoff of (v�c)/n by partnering with i, player
j has a strict incentive to accept i’s request for high �.

To prove the inductive step for the second part of claim (I3), note that repeated use of
Lemma 1.2 implies that the sets of perfectly matched, over-demanded, and under-demanded
nodes do not change as we remove i’s links following rejections from neighbors until we reach
his last efficient partner in G, while his set of efficient partners in the remaining network
consists of his efficient partners in G except for those neighbors who have already rejected
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him. When i approaches his last efficient partner j in G, it is the case that j is also his only
efficient partner in the remaining network. Then, the induction hypothesis (I3) applied for
the subnetworks of G resulting from the sequence of rejections (along with the arguments
for the first part of claim (I3) above) implies that j must grant the favor to i in any subgame
perfect equilibrium.

To demonstrate the first part of claim (I4), suppose that an over-demanded player i in G

asks his first neighbor j for a favor. If j is essential in G, then Theorem GE implies that no
maximum matching of G contains the link ij, and thus j is essential in G \ ij. Then, (I1)
implies that j should refuse i’s request in any subgame perfect equilibrium.

Suppose instead that j is under-demanded in G. Then, Lemma 1.1 shows that j continues
to be under-demanded in G \ ij, while Lemma 1.4 implies that i remains essential in G \ ij.
If j refuses to grant the favor to i, then he finds himself under-demanded in the network
G \ ij in a subgame where the essential player i needs a favor. By the induction hypothesis
(I5) for the network G \ ij, player j obtains a limit normalized expected payoff of at most
(1 � 1/((n � 1)n)) ⇥ (v � c)/n in this subgame, which is smaller than the limit normalized
expected payoff of (v � c)/n guaranteed to him upon committing to a partnership with i.
Hence, player j has a strict incentive to grant the favor to i for sufficiently high �.

The second part of claim (I4) follows from observing that the removal of any set of links
between i and essential players in G does not affect the set of maximum matchings or
the Gallai-Edmonds partition because none of these links belongs to a maximum matching
in G according to Theorem GE. We can then apply the induction hypothesis (I4) to all
subnetworks of G resulting from i’s request being denied by his essential neighbors in G. By
Lemma 1.4, the eventual partnership that i forms with the first under-demanded neighbor
in G whom he asks for a favor is efficient in the remaining network as well as in G.

To prove the inductive step for claim (I5), suppose that an essential player i in G needs
a favor at the beginning of a period and fix an under-demanded player j. Consider first the
case in which i is perfectly matched in G. In this case, (I3) implies that one of i’s efficient
partners k in G agrees to grant the favor and forms a partnership with i. By Lemma 1.5,
player j remains under-demanded in G\ i, k. With probability 1/n, player j needs a favor in
the network G \ i, k in the next period. Since j is under-demanded in G \ i, k, the induction
hypothesis (I2) for network G \ i, k implies that in this event all neighbors turn j down and
j remains single.

Consider next the case in which i is over-demanded in G. Since j is under-demanded in
G, there exists a maximum matching M of G that does not cover j. Player i has to be
matched under M because he is over-demanded in G. Let k be player i’s partner under M .
By Theorem GE, player k is under-demanded in G. With probability at least 1/(n � 1),
player k is the first neighbor whom i asks for the favor. In this event, (I4) implies that k

grants the favor to i. Note that the matching M without the link ik constitutes a maximum
matching of G \ i, k that does not cover j. Hence, player j is under-demanded in G \ i, k.
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By the same argument as the one used in the first case, j remains single with a conditional
probability of at least 1/n following the agreement between i and k.

In either case, we have shown that conditional on player i needing a favor in network G,
player j remains single with probability at least 1/((n � 1)n). Since the payoff from being
single is 0 and the limit normalized expected payoff from forming a partnership is (v� c)/n,
player j’s limit normalized expected payoff in the subgame cannot exceed (1�1/((n�1)n))⇥
(v � c)/n.

We now establish claim (I6). Consider an essential player i in G. If i needs a favor in
the first period of the game, then claims (I3) and (I4) imply that one of i’s neighbors will
agree to provide the favor to him. If another player asks i for a favor in the first period,
then i forms a partnership with that player in the situation described by (I3) and receives
favors as needed thereafter. Otherwise, (I2), (I3), and (I4) imply that in the first period,
either an under-demanded player in G (different from the essential player i) needs a favor
and is left single or a pair of players different from i form an efficient partnership. Since
every maximum matching for the remaining network is a maximum matching of G in the
former case and can be completed to form a maximum matching of G by adding the link
connecting the partners in the latter case, i continues to be an essential player in the second
period network. Then, the induction hypothesis (I6) for the remaining network implies that
i always receives favors when he needs them in the subgame starting in the second period.
We have shown that i receives favors at any instance he needs them.

If i is an under-demanded player in G, then (I2) implies that i remains single in the event
that he needs a favor in the first period of the game. This event has probability 1/n.

The statements of claim (I6) regarding payoffs follow from the fact every player receives
0 payoff when left single and a limit normalized expected payoff of (v � c)/n upon entering
a partnership.

We finally prove claim (I7). Suppose that player i needs a favor and first asks neighbor
j in the network G. By the induction hypothesis (I7), there is a unique subgame perfect
equilibrium for the network G \ ij arising in the event that j turns i’s request down. By
(I2), (I3), and (I4), the optimal response of player j to i’s request is uniquely determined
given the equilibrium play in G\ ij. It follows that there exists at most one subgame perfect
equilibrium in G. Using the single-deviation principle, one can easily prove that the strategies
described by (I2), (I3), and (I4) indeed constitute a subgame perfect equilibrium for G.

Claims (I2), (I3), and (I4) also show that the partnerships formed along any equilibrium
path constitute a maximum matching with probability 1. Indeed, (I2) proves that when an
under-demanded player i in G requires the first favor, no neighbor does i the favor and i

remains single in the network G\ i. Since i is under-demanded in G, there exists a maximum
matching M of G that does not cover i. Then, M is also a maximum matching of G \ i, so
µ(G \ i) = µ(G). The inductive hypothesis (I7) implies that µ(G \ i) = µ(G) partnerships
emerge in the subgame played on the resulting network G \ i. Similarly, (I3) shows that
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when a perfectly matched player i in G requires the first favor, the last efficient partner j

of i in G approached by i grants the favor to i. As the link ij is efficient in G, we have
that µ(G \ i, j) = µ(G) � 1. The inductive hypothesis (I7) applied to G \ i, j implies that
µ(G \ i, j) = µ(G)� 1 partnerships form in the subgame played in the network G \ i, j after
i partners with j in G. Hence, a total of µ(G) partnerships emerge in this case as well.
An analogous argument deals with the case in which an over-demanded player in G needs
the first favor and, according to (I4), forms an efficient partnership with the first under-
demanded player in G he approaches. Since every player needs favors at some points in time
with probability 1, we conclude that exactly µ(G) partnerships form with probability 1, and
hence the equilibrium is long-run efficient. ⇤

Proof of Theorem 2. Fix a set of n nodes and consider a network G linking them. The
result follows from claims (J1)-(J7) below—which reflect appropriate modifications of claims
(I1)-(I7) from the proof of Theorem 1—concerning subgame perfect equilibrium behavior and
outcomes in either specification of the game on the network G for sufficiently high �.

(J1) When player i asks player j for a favor in G, if j is essential in G \ ij, then j refuses
to provide the favor to i.

(J2) When a player i who is under-demanded in G first asks a neighbor j for a favor, j
turns him down. In equilibrium, no neighbor of i grants the favor, and i remains
single.

(J3) If player i needs a favor in network G and neighbor j agrees to provide it after some
sequence of rejections by other neighbors, then the link ij is efficient in G.

(J4) When a player i who is perfectly matched in G first asks a neighbor j for a favor,
j does the favor for i if and only if j is the only efficient partner of i in G. In
equilibrium, the last efficient partner of i in G whom i approaches grants the favor
to i.

(J5) When an essential player needs a favor in G, he forms a partnership with probability
1 in equilibrium.

(J6) In every subgame perfect equilibrium for the network G, each essential player in G

receives favors any time he needs them and enjoys a limit normalized expected payoff
of (v � c)/n, while each under-demanded player in G is left single with probability
at least 1/n and obtains a limit normalized expected payoff of at most (n � 1)/n ⇥
(v � c)/n.

(J7) In equilibrium, exactly µ(G) partnerships form. The equilibrium is long-run efficient.

As for Theorem 1, we prove claims (J1)-(J7) by induction on the number of links in G. The
main departure from the approach of Theorem 1 is that in the alternative specifications of the
game, the identity of the neighbor who agrees to provide the favor to an over-demanded player
depends on the order in which the over-demanded player plans to request the favor from
neighbors subsequently. The conclusion (I4) that an over-demanded player receives favors
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from the first under-demanded player he asks is not true in this setting, as the discussion from
Section 6.1 demonstrates. That conclusion is replaced by the weaker claims (J3) and (J5),
which in light of Theorem GE jointly imply that any over-demanded player who requests a
favor receives it from some under-demanded neighbor.

The induction base case for a network G with a single link can be verified immedaitely.
We set out to prove the claims for a network G assuming they hold for any network with
fewer links.

The proof of the inductive step for claim (J1) relies on hypothesis (J6) applied to network
G \ ij and parallels the arguments establishing that (I1) is a consequence of the induction
hypothesis (I6) in the proof of Theorem 1. Similarly, the inductive step for claim (J2)
follows from applying the induction hypotheses (J2) and (J6) and arguments analogous to
those proving that (I2) follows from (I2) and (I6) for networks with fewer links.

We prove (J3) by contradiction. Suppose that player i receives a favor from player j

possibly after a sequence of rejections in network G and that the link ij is not efficient in G.
Then, both players i and j must be essential in G. For instance, if i is under-demanded in G,
then there exists a maximum matching M of G that does not cover i. If M does not cover
j either, then the matching M [ ij of G has greater cardinality than M , a contradiction. If
M does cover j, then replacing j’s link in M with ij creates another maximum matching of
G. This matching contains the link ij, which contradicts the assumption that ij is not an
efficient link in G.

Suppose that i’s favor request is turned down by neighbors in the order j0, j1, . . . , jk before
j agrees to provide the favor. Note that µ(G)� 1  µ(G \ ij0, . . . , ijk)  µ(G).

If {j0, j1, . . . , jk} includes all efficient partners of i in G, then it cannot be that µ(G \
ij0, . . . , ijk) = µ(G). Indeed, if that was the case, then any maximum matching of G \
ij0, . . . , ijk should be a maximum matching of G. Since i is essential in G, it must also be
essential in G \ ij0, . . . , ijk. Then, there exists a maximum matching of both G \ ij0, . . . , ijk
and G that contains a link ih with h /2 {j0, j1, . . . , jk}, which means that h is an efficient
partner of i in G, a contradiction. This proves that if {j0, j1, . . . , jk} contains all efficient
partners of i in G, then µ(G \ ij0, . . . , ijk) = µ(G) � 1. We can then derive a maximum
matching of G \ ij0, . . . , ijk by removing i’s link in any maximum matching of G. Therefore,
i is under-demanded in the network G \ ij0, . . . , ijk. Claim (J2) for network G \ ij0, . . . , ijk
then shows that player j should not agree to provide the favor to j, contradicting our original
assumption.

We are left to consider the case in which {j0, j1, . . . , jk} does not contain all efficient
partners of i in G. Since j is assumed to not be an efficient partner of i in G, node i has a
neighbor h /2 {j0, j1, . . . , jk, j} such that ih is an efficient link in G. Hence, ih belongs to a
maximum matching M of G. Since M is also a matching in the network G \ ij0, . . . , ijk, ij,
it must be that µ(G \ ij0, . . . , ijk, ij) = µ(G). This implies that every maximum matching
of G \ ij0, . . . , ijk, ij is a maximum matching of G. Since j is essential in G, it is covered
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by every maximum matching of G and consequently also by every maximum matching of
G \ ij0, . . . , ijk, ij. Therefore, j is also essential in G \ ij0, . . . , ijk, ij. Claim (J1) applied to
network G \ ij0, . . . , ijk then proves that it is not optimal for j to provide the favor to i,
again contradicting the original assumption.

The proof of the inductive step (J4) relies on the induction hypotheses (J2) for network
G\ij and (J6) for network G\i in the same fashion (I3) follows from the induction hypotheses
(I2) for G \ ij and (I6) for G \ i.

To demonstrate claim (J5), we proceed by contradiction. Suppose that in a subgame
perfect equilibrium, the essential player i is rejected by all neighbors with positive probability
when he needs a favor in G and asks them in the order j0, j1, . . . , jk̄. Let jk be the last
node in this sequence with the property that ijk is an efficient link in G. Then, there
exists a maximum matching of G that contains the link ijk. This matching also constitutes
a maximum matching for the network G \ ij0, . . . , ijk�1. It follows that µ(G) = µ(G \
ij0, . . . , ijk�1) and every maximum matching of G \ ij0, . . . , ijk�1 is a maximum matching of
G. In particular, i should be an essential node in G \ ij0, . . . , ijk�1 as it is essential in G.
Moreover, if i had an efficient partner in G\ij0, . . . , ijk�1 other than jk, then that node would
also be an efficient partner of i in G. Since jk is the last node in the sequence j0, j1, . . . , jk̄
that is an efficient partner of i in G, it must be that that jk is the only efficient partner of i in
G\ ij0, . . . , ijk�1. As i is essential and jk is the only efficient partner of i in G\ ij0, . . . , ijk�1,
the link ijk must belong to all maximum matchings of G\ ij0, . . . , ijk�1. It follows that node
jk is also essential in G \ ij0, . . . , ijk�1. As both i and jk are essential and the link ijk is
efficient in G \ ij0, . . . , ijk�1, Theorem GE implies that i and jk are perfectly matched in
G \ ij0, . . . , ijk�1. Therefore, i is perfectly matched and jk is his only efficient partner in
G \ ij0, . . . , ijk�1. Claim (J4) applied to G \ ij0, . . . , ijk�1 implies that if i requests the favor
from jk after being turned down by j1, . . . , jk�1, then jk should provide the favor to i with
probability 1, a contradiction with our initial assumption.

The proofs of claims (J6) and (J7) use similar arguments to those establishing (I6) and
(I7) in the proof of Theorem 1. Steps that rely on the detailed identification of who partners
with over-demanded players in those arguments are replaced by claims (J2), (J3) and (J5),
which show that no partnerships form when under-demanded players need favors and that
efficient partnerships form whenever essential players request favors at the beginning of a
period in network G.

The existence of a subgame perfect equilibrium can be established constructively based
on the characterization of equilibrium behavior and outcomes revealed by claims (J1)-(J7).
Equilibrium uniqueness for the game with exogenous orderings follows from a backward
induction argument proving uniqueness of optimal responses in subgames in which over-
demanded players require favors. ⇤
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Proof for Section 6.4. We first check that under the constructed strategies, there are no
profitable one-shot deviations for players 1, 3, and 4 when player 2 asks for a favor. After
2 has been rejected by two of his three neighbors, the last player i 2 {1, 3, 4} whom player
2 asks for the favor has an incentive to do it. Player i anticipates that refusing to do so
leads with probability greater than 1/12 to the formation of each of the partnerships (2, 3)

and (2, 4), at least one of which leaves i isolated. For high �, player i is better off providing
the requested favor and partnering with player 2. Similarly, the first player i approached
by player 2 has an incentive to provide the favor because refusing to do so leads player 2 to
request the favor with probability at least 1/2 from either player 3 or 4 next, which results
in the formation of the partnership (2, 3) or (2, 4) and the isolation of player i.

The second player i whom player 2 asks for the favor has an incentive to provide it if the
last player left to ask is either 3 or 4 since under the prescribed strategies the last player
would agree to do the favor and inefficiently partner with player 2, leaving player i isolated.
If player 1 is last in the order player 2 approaches neighbors for the favor, then player 2 must
have asked neighbors in either order (3, 4, 1) or (4, 3, 1). In the former case, following player
3’s refusal to do the favor to player 2, player 4 is asked next, and if he also refuses, then player
1 provides the favor to 2. Under the prescribed strategies, players 3 and 4 play the worst
equilibrium for player 4 in the subgame ensuing after the formation of partnership (1, 2).
In this continuation game, player 3 never provides the first favor to player 4, and player 4
starts receiving favors only after entering a partnership with player 3 via providing a favor.
Then, player 4 is better off agreeing to do the favor and forming a partnership with player
2 when asked. Indeed, from the perspective of player 4, players 2 and 3 are interchangeable
partners, and joining the partnership with 2 earlier is preferred to waiting for 3 to require a
favor in the subgame in which 1 partners with 2 (we have shown that early agreements are
optimal for a player if the opponent never provides the first favor). An analogous argument
applies for the ordering (4, 3, 1).

Finally, we check incentives for subgames in which players other than 2 require a favor in
the original network. If player 1 asks player 2 for a favor, it is optimal for player 2 to decline
because he is guaranteed to find a partner whenever he needs a favor (even if the partnership
(3, 4) forms in the meanwhile). We next show that player 2 does not have an incentive to
provide the first favor to either 3 or 4. If asked first in the order by either player 3 or 4, player
2 anticipates that the partnership (3, 4) will form and then play between 1 and 2 proceeds
according to the best equilibrium for 2, under which player 2 always receives favors when
needed. If asked second in the order by either player 3 or 4, it is optimal for player 2 to
refuse because under the prescribed strategies player 2 receives favors in any circumstance
he needs them in the future. Player 3 has an incentive to provide the first favor to 4 and
vice versa because refusing to do so leads to no one providing the favor (player 2 declines
regardless of his position in the order), in which case the game proceeds to the next period
and each of players 3 and 4 remains isolated with probability greater than 1/12. ⇤
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