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Abstract

We propose a new test for structural changes in large dimensional factor models via a discrete Fourier

transform (DFT) approach. If structural changes exist, the conventional principal component analysis

(PCA) will fail to estimate common factors and factor loadings consistently. The estimated residuals

will contain information about structural changes. Therefore, we can compare the DFT of the residuals

with the zero spectrum implied by no structural change. By construction, the proposed test is powerful

against both smooth structural changes and abrupt structural breaks with possibly unknown number of

breaks and unknown break dates in factor loadings. It can detect a class of local alternatives at the rate

T−1/2N−1/2, and so is asymptotically more efficient than the existing tests in the literature. Moreover,

it is easy to implement and tuning parameter-free. And our test is robust to serial correlation and

cross-sectional dependence of unknown form. Monte Carlo studies demonstrate its reasonable size and

excellent power in detecting structural changes of unknown types in factor loadings. In an application to

Stock and Watson’s (2012) U.S. macroeconomic data, we find significant evidence against time-invariant

factor loadings.
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1 Introduction

Factor models are useful for analyzing large dimensional macroeconomic and financial datasets. The Princi-

pal Component Analysis (PCA) has been extensively used to deal with latent factor models. Most existing

works (e.g., Stock and Watson, 2002; Bai and Ng, 2002; Bai, 2003) assume the factor loadings, which cap-

ture the relationship between economic variables and the unobserved common factors, are time invariant.

However, it is likely that the underlying structure of the dataset changes over time when the time span is

long. Even though Stock and Watson (2002, 2009) point out that the estimated factors by the PCA are

still consistent when the factor loadings undergo small instabilities, it is difficult to believe that the factor

loadings are time-invariant or only have small changes during a long sampling period for macroeconomic

and financial data. The changing economic environment such as policy shifts, economic transition, prefer-

ence changes and technological progress, may influence the relationship between economic variables and the

unobserved common factors, which is expected to induce the time varying behavior of factor loadings. If the

assumption of time-invariant factor loadings fails, the estimated common factors can be inconsistent and the

inference and forecasting based on such an assumption may lead to misleading conclusions. Furthermore, if

the factor loadings suffer from structural changes, most of the existing methods such as Bai and Ng (2002),

Onatski (2009), Ahn and Horenstein (2013) tend to deliver a wrong number of common factors.

Testing for structural changes in time series models is pioneered by Chow (1960). In the past decade,

along with the broad applications of factor models, a growing literature starts to focus on modeling and

testing structural changes in factor models. Stock and Watson (2009) investigate the forecasting reliability

when there exist abrupt structural breaks in factor loadings. Breitung and Eickmeier (2011) propose LR,

LM and Wald tests to detect the existence of a single structural break in factor loadings. Chen et al.

(2014) propose a two-stage procedure to detect a large break in factor loadings in which they first obtain

the estimated common factors via PCA and then test parameter stability in a regression of one estimated

factor on the remaining factors. Corradi and Swanson (2014) propose a test for structural stability in both

factor loadings and factor-augmented forecasting regression coefficients. Han and Inoue (2015) propose a

joint test for structural break of factor loadings by comparing the pre- and post-break subsample second

moments of estimated factors. Yamamoto and Tanaka (2015) propose a modified version of Breitung and

Eickmeier’s (2011) test that avoids the non-monotonic power problem. Cheng et al. (2016) consider the

case in which both factor loadings and the number of factors may change simultaneously. Although the

aforementioned works provide useful econometric tools on detecting the possible structural breaks in factor

loadings, they only focus on testing for abrupt structural breaks, especially a single structural break. The

source of structural changes as preference changes, technological progress and institutional transformation

usually take effect gradually over time. Even though some policy switches occur immediately, it may take

some time for an economic agent to react. Due to price stickiness, for instance, a company may not be able

to adjust the price of its product when facing a corporate tax increase. Thus, it is more realistic to assume

smooth changes rather than abrupt breaks in many economic scenarios. In fact, several papers study time

varying factor models, e.g., Stock and Watson (2002); Banerjee et al. (2008), Bates et al. (2013) and

Eickmeier et al. (2015). All these papers model the time varying factor loadings as a random walk process
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or a vector autoregressive process and discuss the estimation problem. However, they do not consider the

testing problem of structural change. Recently, Su and Wang (2017) propose an L2-distance-based test

statistic to check the stability of factor loadings. They estimate the time-varying factor loadings and the

latent common factors by a local version of PCA, and construct statistic to check the null hypothesis of no

structural change by comparing the fitted values of the common components with those estimated by the

conventional PCA.

In this paper, we propose a new test for structural changes in large dimensional factor models via a

discrete Fourier transform (DFT) approach that is first proposed in Fu, Hong and Wang (FHW, hereafter)

(2018) under the framework of time series models. Unlike the related existing tests that are based on

time domain analysis, FHW propose a novel method that investigate the structural changes in frequency

domain. Our test is constructed using the similar idea but works for a different scenario. FHW’s tests

are proposed under the framework of linear time series regressions with observed regressors. While for

the large dimensional factor models, both the factor loadings and common factors are unobservable. The

intuition behind our test is quite straightforward. If factor loadings change over time, then the conventional

PCA will fail to capture the time-varying feature of the true factor loadings. As a result, the estimated

residuals based on the conventional PCA will contain the time-varying component. By the discrete Fourier

transform, we can project the residuals onto the frequency domain and infer the existence of structural

changes. Compared with the existing tests in the literature, the proposed test has the following appealing

features.

First, our test is consistent against a wide range of alternatives of structural changes. the test is powerful

against various kinds of smooth structural changes as well as abrupt structural breaks in factor loadings. For

abrupt structural breaks, we require that neither the number of breaks nor the break dates to be known.

This is contrast to the existing parametric tests for stability of factor loadings, most of which focus on

abrupt structural breaks, especially the case with a single break point.

Second, the test can detect a class of local alternatives that converges to the null hypothesis at a faster

rate than the existing tests for structural changes in factor models. Let N and T denote the numbers of

cross-sectional units and time series periods. Then the rate of local alternatives that our test can detect is

N−1/2T−1/2, which is faster than the rate of local alternatives for such parametric tests as Breitung and

Eickmeier (2011), Chen et al. (2014), Han and Inoue (2015) and the nonparametric test by Su and Wang

(2017). This is an advantage of using the discrete Fourier transform. In comparison, Su and Wang (2017)

can only detect a class of local alternatives at a rate of T−1/2N−1/4h−1/4, where h is a bandwidth, while the

parametric tests can only capture single structural break with a rate of T−1/2. More importantly, as proved

by Chen et al. (2014), the order N−1/2T−1/2 is the upper bound of structural changes in factor loadings

that guarantees the consistency of estimated common factors and the number of factor loadings. That is,

if the order of magnitude of structural changes in factor loadings is larger than N−1/2T−1/2, the estimated

number of common factors and the estimated common factors would be inconsistent. As a result, we could

detect any structural changes in factor loadings that may lead to inconsistent estimation of the number of

factors and the common factors. Simulation studies also demonstrate the significant power improvement of
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our test over the existing tests in the literature.

Third, our test is tuning parameter-free. It avoids the delicate business of choosing a bandwidth and

the arbitrariness of specifying trimming parameters. More importantly, the power of the smoothed non-

parametric test by Su and Wang (2017) depends on the choice of the bandwidth h. While they propose

a bootstrap version test statistic to relieve this problem, the power of their test is still sensitive to the

choice of bandwidth in finite samples. Furthermore, different choices of a bandwidth may lead to conflicting

conclusions. The supremum-type tests of Breitung and Eickmeier (2011), Chen et al. (2014), Han and

Inoue (2015) and Cheng et al. (2016) all rely on the pre-specified trimming parameter and hence would

miss possible structural changes in the boundary regions.

Finally, our test allows for both cross-sectional dependence and temporal dependence of unknown forms

in the error term. Su and Wang (2017) allows for cross-sectional dependence, but require the error term

to be a martingale difference sequence. Hence, it assumes that all time series dependence in the observed

data is due to the small dimensional common factors. This is rather restrictive for factor analysis with

macroeconomic time series, or multi-country or multi-sector factor models. We relax this assumption to

allow for time series dependence, and hence broaden the applicability of the proposed test.

The rest of this paper is organized as follows. We introduce our test in Section 2 and establish its

asymptotic theory in Section 3. We then demonstrate its finite sample performance in Section 4 and

provide an empirical application to U.S. Macroeconomic data in Section 5. We conclude in Section 6.

Throughout this paper, we denote i =
√
−1 to be an imaginary number. For an m × n real matrix A,

we denote its transpose as A′, its Euclidean norm as ‖A‖(≡ [
∑m
i=1

∑n
j=1 |Aij |2]1/2), where “≡”means “is

defined as”. The operator
p→ denotes convergence in probability,

d→ convergence in distribution, and plim

the probability limit. We use (N,T )→∞ to denote that N and T pass to infinity jointly. Let C ∈ (0,∞)

denote a generic positive constant that may vary from case to case.

2 Hypotheses and Test Statistic

In this section, we introduce the hypotheses of interest and show how to detect structural changes in factor

models via a DFT approach.

2.1 Hypotheses

Let {Xit, i = 1, 2, . . . , N ; t = 1, 2, . . . , T} be an N -dimensional time series with T observations. The index

i represents the ith cross-sectional unit in panel data set or the ith random variable in a multivariate time

series data set. We assume that Xit is generated via the following factor model

Xit = λ′itFt + εit, (2.1)

where Ft is an R × 1 vector of unobserved common factors, λit is an R × 1 vector of factor loadings that

can admit abrupt and/or smooth structural changes over time, and εit is the idiosyncratic error term.
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The null hypothesis of no structural change in the above factor model is:

H0 : λit = λi0 for i = 1, 2, . . . , N and t = 1, 2, . . . , T. (2.2)

The alternative hypothesis is

H1 : λit 6= λi0 for some non-negligible values of (i, t). (2.3)

Obviously, under H0, λit is time-invariant and model (2.1) degenerates to the conventional factor model

with time-invariant factor loadings. This model has been elaboratively studied in the literature (e.g., Stock

and Watson, 2002; Bai and Ng, 2002; Bai, 2003). However, since a data may span a long time period,

factor loadings may change over time during the sampling period. In this regard, testing for structural

changes in factor models has drawn more and more attention. See, e.g., Breitung and Eickmeier (2011),

Chen et al. (2014), Cheng et al. (2016), and Han and Inoue (2015). Most existing works focus on testing

for a single structural break in factor loadings by using some supremum-type test statistics. However, it

is rather restrictive to assume only a single abrupt structural break in factor loadings, since usually no

prior information about possible structural changes is available in practice. Recently, Su and Wang (2017)

model λit = λi(t/T ), where λi(·) is a deterministic function of scaled time ratio t/T . By assuming λit to

be a piece-wise smooth function, Su and Wang (2017) allow for both smooth structural changes and abrupt

structural breaks in factor loadings. In this paper, we do not assume that λit is a smooth deterministic

function of scaled time ratio t/T . Thus, the alternative (2.3) allows various kinds of structural changes in

factor loadings, including smooth structural changes, a single structural break as well as multiple structural

breaks, with possibly unknown break dates or unknown number of breaks. The setting of our test is rather

general.

2.2 Test Statistic

Under the null hypothesis of no structural change in factor loadings, we can follow Bai and Ng (2002) and

Bai (2003) and apply the PCA method to estimate the following model

Xit = λ′i0Ft + ε†it, (2.4)

where ε†it = εit under H0 and they are distinct under H1.

Let Xt ≡ (X1t, . . . , XNt)
′
, εt ≡ (ε1t, . . . , εNt)

′
, ε†t ≡ (ε†1t, ..., ε

†
Nt)
′, F ≡ (F1, . . . , FT )

′
, and Λ0 ≡

(λ10, ..., λN0)
′
. Put X = (X1, ..., XT )

′
, ε ≡ (ε1, . . . , εT )

′
, ε† ≡ (ε†1, ..., ε

†
T )′. Then we can rewrite (2.4) in

vector form

X = FΛ′0 + ε†.
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The PCA method solves the following minimization problem:

min
F,Λ

tr (X − FΛ′0) (X − FΛ′0)
′

=

N∑
i=1

T∑
t=1

(Xit − λ′i0Ft)
2

under certain identification restrictions. In this paper, we follow Bai (2003) and consider the following

identification restrictions:

T−1F ′F = IR and Λ′0Λ0 is a diagonal matrix.

Let F̂t and λ̂i0 be the principal component estimators of Ft and λi0, respectively under the above identifica-

tion restrictions. Let F̂ = (F̂1, ..., F̂T )′ and Λ̂0 = (λ̂10, ..., λ̂N0)′. It is well known that F̂ is
√
T times eigenvec-

tors corresponding to the R largest eigenvalues of the T×T matrix XX ′, and Λ̂′0 = (F̂ ′F̂ )−1F̂ ′X = T−1F̂ ′X.

After obtaining the restricted estimators F̂t and λ̂i0 of Ft and λi0, we now consider the following complex-

valued empirical process:

Â(u) =
1

NT

N∑
i=1

T∑
t=1

F̂tε̂ite
iu2πt/T

=
1

T

T∑
t=1

F̂t

(
1

N

N∑
i=1

ε̂it

)
eiu2πt/T ,

where ε̂it = Xit − λ̂′i0F̂t is the residuals from PCA. To construct Â(u), we first perform a discrete Fourier

transform of F̂tε̂it for each i, and then take the average over cross-sectional units. The individual DFT can

detect structural change at each i. Taking a cross-sectional average can combine individual DFTs together.

Such a treatment is quite common in the literature. For instance, when testing for cross section dependence

in panel data model, Pesaran (2004) first estimates pairwise serial correlations and then construct a test

via their cross-sectional average; Levin et al. (2002) consider testing for unit root in panel data and their

test statistics is constructed via double summation in both cross-sectional and time series indices; Chen and

Huang (2018) test for smooth structural change in panel data models by comparing the difference between

the consistent estimate under structural change and conventional least squares estimate; In factor models,

Breitung and Eickmeier construct (2011) LR, LM, and Wald statistics at each cross-sectional unit i and

then combine the individual statistics to obtain a pooled test for a single structural break, etc.

Â(u) is equivalent to an average of discrete Fourier transforms at each cross-sectional unit i. If structural

change exits, a test based on Â(u) is consistent as long as the DFTs does not cancel with each other. The

intuition behind our test is quite straightforward: if the factor loadings have structural changes, then the

PCA fails to capture the time-varying behavior of λit, and such information will be hidden in the residuals

ε̂it. By DFT, we can reveal such information in the frequency domain, because the possible time-varying

behavior of the factor loadings can be completely captured by the DFT of ε̂it. By examining the pattern of

the DFT at each frequency, we can detect structural change of unknown types. Compared to the existing

tests that are based on time domain analysis, the DFT-based approach does not need prior information
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about the types of structural change. For instance, to apply the tests by Breitung and Eickmeier (2011),

Chen et al. (2014), and Han and Inoue (2015), one needs to specify an abrupt type of structural change.

On the other hand, while the consistent test by Su and Wang (2017) does not require to specify the change

to be abrupt or smooth, it requires nonparametric local smoothing over the time domain. In contrast, our

DFT-based test is free of the aforementioned issues.

To gain further insight into Â(u), we decompose it as the following:

Â(u) =
1

NT

N∑
i=1

T∑
t=1

F̂tε̂ite
iu2πt/T

=
1

NT

N∑
i=1

T∑
t=1

[
F̂t

(
Xit − F̂ ′t λ̂i0

)
eiu2πt/T

]
=

1

NT

N∑
i=1

T∑
t=1

[
F̂te

iu2πt/T

(
Xit − F̂ ′t

[
1

T

T∑
t=1

F̂tXit

])]

=
1

NT

N∑
i=1

T∑
t=1

{[
F̂te

iu2πt/T −

(
1

T

T∑
t=1

F̂tF̂
′
te

iu2πt/T

)
F̂t

]
Xit

}

=
1

NT

N∑
i=1

T∑
t=1

Gt(u)F ′tλit +
1

NT

N∑
i=1

T∑
t=1

Gt(u)εit

≡ Â1(u) + Â2(u),

where we define

Â1(u) =
1

NT

N∑
i=1

T∑
t=1

Gt(u)F ′tλit,

Â2(u) =
1

NT

N∑
i=1

T∑
t=1

Gt(u)εit

and Gt(u) = F̂te
iu2πt/T −

(
1
T

∑T
t=1 F̂tF̂

′
te

iu2πt/T
)
F̂t. Under certain regularity conditions, e.g., F̂t is weakly

stationary, we can show that Gt(u) is asymptotically equivalent to

F̂t

(
eiu2πt/T −

∫ 1

0

eiu2πτdτ

)
,

which is a product of the estimated factor F̂t and a demeaned Fourier series. The component Â1(u) captures

the structural changes in factor loadings since it is asymptotically equivalent to pseudo-covariance of λit and

Fourier basis function of time. The component Â2(u) is a pure noise term and it determines the asymptotic

distribution given the orthogonality conditions between Ft and εit. Intuitively, the DFT Â(u) is equivalent

to a linear projection of Xit onto the frequency domain. The projection vector Gt(u) can be viewed as

a filter in the space spanned by F̂t and time t/T . It is asymptotically orthogonal to Xit when the factor
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loadings are constant over time. By Euler’s formula, eiu2πt/T = cos(u2πt/T )+isin(u2πt/T ). If the unknown

factor loading has structural change, i.e., λit is an unknown function of time, then it can be represented as

an infinite sum of Fourier series. Since λit is contained by Xit, the linear projection Xit cannot pass the

filter Gt(u) and will converge to a non-constant spectrum. On the other hand, when there is no structural

change, i.e., λit is a constant function over time, the linear projection of Xit converges to a zero spectrum.

The test is based on Fourier series approximation of unknown λit. To ensure our DFT approach can

detect structural change of unknown form, we need to examine the deviation of Â(u) from a zero spectrum

at each frequency u. Thus, we consider the following test statistic

D̂ = NT

∫
R
‖Â(u)‖2W (u)du, (2.5)

where W : R → R+ is a nonnegative symmetric weighting function of u. The use of W (u) allows us to

examine Â(u) at all frequencies via different weights. If we choose a discrete probability mass function, then

(2.5) degenerates to a weighted sum over various points of u. However, a discontinuous weighting function

may adversely affect the power of the test. In practice, one may like to avoid numerical integration in (2.5)

by choosing some suitable weighting functions. For example, if we follow Hong et al. (2017) to use the

standard normal weighting function, then the test statistic could be written as:

D̂W =
1

NT

N∑
i,j=1

T∑
t,s=1

F̂tF̂
′
sε̂itε̂js exp{−2π2[(t− s)/T ]2}

3 Asymptotic Properties of the Test Statistic

In this section, we derive the asymptotic null distribution of our test and investigate its asymptotic local

power property. We also propose a block bootstrap procedure to improve the finite sample performance of

the test.

3.1 Assumptions

Let γN (s, t) = N−1E (ε′sεt), ξst = N−1[ε′sεt − E (ε′sεt)], γN,FF (s, t) = N−1E (Fsε
′
sεtF

′
t ) and τij,st =

E (εitεjsF
′
tFs). We use maxi,maxt,maxi,t and maxs,t to denote max1≤i≤N ,max1≤t≤T ,max1≤i≤N max1≤t≤T

and max1≤s,t≤T , respectively. Throughout, we make the following assumptions.

Assumption A.1 [Factors] (i) E (FtF
′
t ) = ΣF for someR×R positive definite matrix ΣF ; (ii) maxtE‖Ft‖8+δ <

∞ for some δ > 0; (iii) E‖F̂t‖8+δ <∞ for some δ > 0; (iv) E(F̂tF
′
t ) is finite and nonsingular.

Assumption A.2 [Factor Loadings] (i) λi0 are nonrandom such that maxi ‖λi0‖ ≤ C; (ii) N−1Λ′0Λ0 =

N−1
∑N
i=1 λi0λ

′
i0 → ΣΛ0

for some R × R positive definite matrix ΣΛ0
; (iii) The eigenvalues of the R × R

matrix ΣFΣΛ0
are distinct.

Assumption A.3 [Error term] (i) E(εit) = 0, maxi,tE|εit|8+δ ≤ C and maxi,tE‖Ftεit‖8+4δ ≤ C for some

δ > 0; (ii) For each i = 1, 2, . . . , N , the process {(εit, Ft), t = 1, 2, . . .} is strong mixing with mixing coeffi-
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cients αi(·). α(·) ≡ maxi αi(·) satisfies
∑∞
s=1 α(s)δ/(2+δ) ≤ C for some δ > 0; (iii) maxt

∑T
s=1 |γN (s, t)| ≤ C,

maxs,tE
∣∣N1/2ξst

∣∣4 ≤ C, maxtE|N−1/2
∑N
i=1[ε2

it − E
(
ε2
it

)
]|4 ≤ C; (iv) maxt

∑T
s=1 |γN,FF (s, t)| ≤ C,

maxt6=r E‖N−1/2Ftε
′
tεrF

′
r||4 ≤ C, and N−1T−1

∑N
i,j=1

∑T
s,t=1 |τij,st| ≤ C; (v) ‖ε‖sp = OP (N1/2 + T 1/2).

Assumption A.4 [Weighting function] (i) W (·) : R → R+ is nonnegative, symmetric, continuous and

integrable weighting function; (ii)
∫
R |u|

4W (u)du <∞.

Assumption A.1 imposes conditions on the latent common factors. We follow Stock and Watson (2002),

Breitung and Eickmeier (2011), Chen et al. (2014), Han and Inoue (2015) and Su and Wang (2017) and

assume that E (FtF
′
t ) = ΣF is homogeneous over t. This assumption assumes that there is no structural

change on the second moment of Ft. It greatly facilitates the derivation of the asymptotic results and can

be regarded as an identification condition. As is well known, the latent common factors and the factor

loadings are not separately identifiable. A factor model with structural changes in common factors and

time-invariant factor loadings is equivalent to a model with stationary common factors and time-varying

factor loadings. In fact, even if there is no structural change in factor loadings and the second moment of

common factors, we can always write that λ′iFt = λ′iQ(t/T )−1Q(t/T )Ft = λ∗
′

itF
∗
t for any nonsingular matrix

Q(t/T ) with λ∗it = Q(t/T )−1λi and F ∗t = Q(t/T )Ft being time varying factor loadings and common factors

with time varying second moment. Assumption A.1(i) rules out this problem. Assumption A.2 ensures that

each factor has a nontrivial contribution to the variance of Xt. Following Bai (2003) and Breitung and

Eickmeier (2011), we assume that factor loadings are nonrandom for simplicity.

Assumption A.3 imposes moment conditions on the errors and their interactions with the factors and

factor loadings. Assumptions A.3(i) and (iii) correspond to Assumptions C.1 and C.5 in Bai (2003). Com-

pared to Su and Wang (2017), we allow for both serial correlation and cross-sectional dependence in the error

terms. A.3(ii) requires the process {(εit, Ft) , t = 1, 2, ...} to be strong mixing with some algebraic mixing

rate. With a more complicated notation, one could allow different individual time series to have various

mixing rates and relax the summability mixing condition to lim supN
1
N

∑N
i=1

∑∞
s=1 αi (s)

δ/(1+δ) ≤ C <∞.
If the processes are strong mixing with a geometric rate (e.g., α (s) = ρs for some ρ ∈ [0, 1)), then the

conditions on α (·) can be met by specifying T0 = bC0 lnT c for some sufficiently large positive constant

C0. Assumptions A.3(iii) and (iv) control the cross-sectional dependence among {εit, i = 1, 2, . . . , N} and

{Ftεit, i = 1, 2, . . . , N}, respectively. Assumption A.3(v) is widely assumed in the factor model literature;

see, e.g., Moon and Weidner (2015), Su and Wang (2017), and Ma and Su (2017). Assumption A.4 imposes

some mild conditions on the weighting function. It ensure the existence of the integral in (2.5).

3.2 Asymptotic Null Distribution

We now state the asymptotic distribution of Â(u) under H0.

Proposition 3.1 Under Assumptions A.1-A.3, and H0 : λit = λi0 holds,

Â(u) =
1

NT

N∑
i=1

T∑
t=1

Gt(u)Biεit +O(T−3/2) + op(1)
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where Bi = 1− λ′i0 (Λ′0Λ0/N)
−1
λ̄0, and λ̄0 = limN→∞

1
N

∑N
i=1 λi0. Let T ∝ Nν with ν > 1/2, then

Â(u) =
1

NT

N∑
i=1

T∑
t=1

Gt(u)Biεit + op(1).

Under H0, the asymptotic behavior of the empirical process Â(u) depends on the relative speeds between

N and T . When
√
N/T → 0, i.e., ν > 1/2, the leading term of Â(u) is a weighted average of error term

εit, and it will converge to a zero-spectrum in frequency domain. The intuition is that when T grows faster

than
√
N , the Fourier transform dominates the asymptotic behavior of Â(u). It is consistent with the result

in Bai (2003) since the estimation impact on the factors depends on the relative speeds between N and

T . And it includes the general case that N and T are the same order of magnitude. On the other hand,

when
√
N grows faster than T , Â(u) will become a degenerate statistic. Although it still converges to a

zero-spectrum at rate T−3/2 under H0, the leading term now consists of two components, which are the

same order of magnitude. The first component is the same as the leading term in the case of ν > 1/2, while

the second component arises due to serial correlation of the error term and it is asymptotically equivalent

to a pseudo-covariance between Fourier series and the long-run variance. If we follow Su and Wang (2017)

to impose the martingale difference sequence assumption for the error term, this second component of the

leading term disappears. That is, if we rule out the serial dependence in the error term, then we do not need

to impose any restriction on the relative order of N and T . However, since serial correlation is common in

macroeconomic and financial data, we allow for serial correlation in the error term and impose a condition

on the relative speeds between N and T when we derive the asymptotic distribution of our test statistic.

In addition, the results of this paper are built under the framework of large N and large T . Theoretically,

the above relative speed between N and T also allows for the classical factor model (see Lawley and Maxwell,

1971; Anderson, 1984) or the approximate factor model (see Chamberlain and Rothschild, 1983) with large

T and fixed N . However, as mentioned by Anderson (1984) and Bai (2003), with a fixed N , one can

consistently estimate factor loadings but not the common factors. Since the estimated common factors is

contained in the process Â(u) and our test statistic given bellow, we do not consider this case. In addition,

under the assumption of the martingale difference error term, our test is suitable for the case of fixed T

and large N . If we follow Bai (2003) to further impose the asymptotic homoskedasticity condition that
1
N

∑N
i=1 ε

2
it → σ2 for all t as N → ∞, then the estimated common factors are consistent and our test is

applicable. However, if T is fixed and small, it is meaningless to consider the structural change problem.

Hence, we rule out the cases of fixed T and fixed N in this paper.

Let VNT be the R × R diagonal matrix of the first R largest eigenvalues of 1
NTXX

′, and define H0 ≡
plimN,T→∞H, where H = ( 1

N

∑N
i=1 λi0λ

′
i0)( 1

T

∑T
t=1 F̂tF

′
t )VNT . Under H1, the following proposition shows

that Â(u) will converge to a non-constant spectrum.

Proposition 3.2 Suppose Assumptions A.1-A.3 hold, and under H1 : λit 6= λi0 for at least some i. Then
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as N,T →∞

sup
u∈R
‖Â(u)− Ã(u)‖ p→ 0,

where Ã(u) = H ′0E(FtF
′
t ) limN,T→∞

1
N

∑N
i=1

(
1
T

∑T
t=1 e

iu2πt/Tλit − 1
T

∑T
t=1 e

iu2πt/T 1
T

∑T
t=1 λit

)
. In par-

ticular, when λit = λi(
t
T ), it follows that Ã(u) = H ′0E(FtF

′
t ) limN→∞

1
N

∑N
i=1 c̃ov(eiu2πτ , λi(τ)), where

c̃ov(eiu2πτ , λi(τ)) is a pseudo-covariance such that

c̃ov[eiu2πτ , λi(τ)] =

∫ 1

0

eiu2πτλi (τ) dτ −
∫ 1

0

eiu2πτdτ

∫ 1

0

λi (τ) dτ.

We observe that Â(u) is asymptotically equivalent to a pseudo-covariance between the Fourier series eiu2πt/T

and λit. When structural changes exist such that Â(u) 6= 0 for all u, Â(u) can capture the time-varying

behavior of the factor loading λit and will converge to a non-zero spectrum. Therefore, by checking the

behavior of Â(u) at each frequency u, we can capture possible structural changes in factor loadings.

Theorem 3.3 Suppose Assumptions A.1-A.4 hold, and T ∝ Nν with ν > 1/2. Then under H0 : λit = λi0,

D̂
d→
∫
R
‖G(u)‖2W (u)du,

where G(u) is a complex-valued Gaussian process with a covariance-kernel K(u1, u2)

K(u1, u2) = lim
N,T→∞

1

NT

T∑
s,t=1

N∑
i,j=1

BiBjH
′
0E [FtF

′
sεitεjs]H0Mt(u1)Ms(u2)∗,

and Mt(u) = eiu2πt/T −
∫ 1

0
eiu2πτdτ is a demeaned Fourier process.

Theorem 3.3 provides the asymptotic null distribution of the test statistic D̂, which is robust to both

serial correlation and cross-sectional dependence of unknown form. The condition on the relate speeds of

magnitude of N and T simplifies the derivation of our asymptotic result. As shown in Proposition 3.1,

if T ∝ Nν with ν ≤ 1/2, the leading term of Â(u) will contain two components with the same order of

magnitude, which will determine the asymptotic distribution jointly. For simplicity, we impose the condition

that ν > 1/2. Recall that the second component of the leading term rises due to the existence of temporal

dependence in εit. Hence, if the error term is serially uncorrelated, the condition on the relative speeds

between N and T is not necessary. We note that Bai (2003) also require ν > 1/2. Breitung and Eickmeier

(2011), Chen et al. (2014) and Han and Inoue (2015) all require ν < 2. Su and Wang (2017) imposes an

even stronger condition: Th/N → 0. If h = O(T−1/5h−1/10), then it implies ν < 11/8. Unlike the related

works which impose restrictions on the upper bound ν, we impose a restriction on the low bound of ν, which

is mild.
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3.3 Asymptotic Local Power

To gain insight into the asymptotic power property of D̂, we now consider a class of local alternatives:

H1 (aNT ) : λit = λi0 + aNT git for each i and t,

where aNT → 0 as (N,T )→∞. The rate aNT controls the speed at which the local alternative converges to

the null hypothesis, and git is a deterministic function of time t for each i. We note that the local alternative

H1 (aNT ) does not impose any smoothness condition on the alternative. This setting is more general than

Su and Wang’s (2017) setting, in which they require git to be a piece-wise smooth function of scaled time

ratio t
T for each i.

Noting that λi0 + aNT git = (λi0 + ci,NT ) + aNT [git − ci,NT /aNT ] for any ci,NT ∈ RR, we will assume

below that

1

T

T∑
t=1

git = 0

for the purpose of location normalization. It turns out such a normalization greatly simplifies local asymp-

totic power analysis. Both λi0 and git can depend on the sample sizes N and T. For notational simplicity,

we continue to write them as λi0 and git.

Theorem 3.4 Suppose Assumptions A.1-A.4 hold, T ∝ Nν with ν > 1/2, and 1
T

∑T
t=1 ‖git‖2 < ∞ under

H1 (aNT ) with aNT = (NT )−1/2. Then as N,T →∞,

D̂
d→

∫
R
‖ξ(u) + G(u)‖2W (u)du,

where

ξ(u) = H ′0E(FtF
′
t ) lim
N,T→∞

1

N

N∑
i=1

(
1

T

T∑
t=1

eiu2πt/T git −
1

T

T∑
t=1

eiu2πt/T 1

T

T∑
t=1

git

)
.

Theorem 3.4 provides the asymptotic distribution of D̂ under the local alternative H1 (aNT ). It shows that

our test can detect a class of local alternatives with ξ(u) 6= 0 for all u, at the rate aNT = T−1/2N−1/2. In

terms of Pitman’s criterion, it is asymptotically more efficient than the smoothed nonparametric test of Su

and Wang (2017), which could only detect the local alternative H1 (aNT ) with a rate of T−1/2N−1/4h−1/4.

This is an advantage of DFT which avoids nonparametric smoothing over t/T . Strictly speaking, our test

is not a consistent test. Because when the average of pseudo-covariances converge to zero, our test has no

power. However, such case is really rare since it requires the DFTs for each cross-sectional unit i have to

cancel with each other.

In addition, the specification of git allows for various kinds of structural changes in factor loadings,

including smooth structural changes, a single structural break, the multiple structural breaks, or mixtures

of abrupt and smooth changes. The case of a single structural break overlaps with the alternative hypothesis
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considered by Breitung and Eickmeier (2011), Chen et al. (2014) and Han and Inoue (2015). The previous

parametric tests all reduce the infinite dimensional problem to a finite dimensional one in various ways.

For example, Breitung and Eickmeier (2011) propose three test statistics for each i; Chen et al. (2014)

run the regression of one estimated factor on the remaining ones and then test for the structural changes

in such a linear regression by constructing the sup-Wald and sup-LM statistics of Andrews (1993); Han

and Inoue (2015) construct their sup-Wald and sup-LM statistics by comparing the pre-and post- break

subsample second moments of the estimated factors. All these test statistics have the same asymptotic

distribution and convergence rate as the conventional sup-Wald statistic of Andrews (1993). They could

only detect the local alternative that converge to the null at the rate T−1/2, which is slower than our rate

aNT = T−1/2N−1/2. The proposed test has power against a wide range of structural changes, including

abrupt and smooth structural changes, when the average of the noncentrality process over all individuals is

not a zero function.

In fact, the order aNT = T−1/2N−1/2 is the upper bound of structural changes in factor loadings that

guarantees consistency of the estimated number of common factors and the estimated common factor by

PCA. If the order of magnitude of structural changes is smaller than T−1/2N−1/2, then the estimated

common factors and the number of factor loadings are consistent. This order of magnitude corresponds

to the definition of small break by Chen et al. (2014). For such small structural changes, our test has no

power. In contrast, if the order of magnitude of structural changes is larger than T−1/2N−1/2, the estimated

common factors and the number of factor loadings will not be consistent. Thus, our test has nontrivial power

to detect any structural changes that lead to inconsistent estimation of the number of common factors and

the common factor given by PCA.

Finally, our test is tuning-parameter free. We require neither the smoothing parameter nor the trim-

ming parameters. That is appealing in practice, because there has been no criteria to choose the optimal

bandwidth for the nonparametric smoothing test of Su and Wang (2017) and the trimming parameter for

the aforementioned parametric tests. In fact, the result of a smoothed nonparametric test can be largely

affected by the choice of the smoothing parameter. Even if one uses the bootstrap, the power of nonpara-

metric smoothing tests is still sensitive to the choice of a bandwidth. Moreover, when the sample size (N,T )

is sufficiently large, the proposed test can detect any structural changes that occur close to the starting and

ending points of the sample period, because we do not need to trim the data. In contrast, Breitung and

Eickmeier (2011), Chen et al. (2014), Han and Inoue (2015), Yamamoto and Tanaka (2015) and Cheng et

al. (2016) all rely on a prespecified tuning parameter τ to trim out the first and last τT observations in the

sample and hence would miss the possible structural changes in the boundary regions.

3.4 A Bootstrap Version of the Test

The asymptotic distribution of D̂ is not pivotal, and it depends on the unknown data generating process.

We need to use some resampling methods to obtain the critical values in finite samples. To account

for the possible serial correlation and cross-sectional dependence of unknown forms in the error term,

we follow Gonçlaves (2011) and propose the following moving blocks bootstrap (MBB) procedure. Let
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lT = l(T ) ∈ N(1 ≤ lT < T ) be a block length such that lT →∞ and lT /T → 0 as T →∞.

• Step (i). Estimate the model via the conventional PCA and obtain the estimated common factors

and factor loadings {F̂t}Tt=1 and {λ̂i0}Ni=1. Then we obtain the residuals ε̂it = Xit − λ̂′i0F̂t, i =

1, 2, · · · , N ; t = 1, 2, · · · , T . Compute the test statistic D̂.

• Step (ii). Let ε̄ be the N × T demeaned residual matrix with each (i, t)th element being ε̄it =

ε̂it − 1
NT

∑N
i=1

∑T
t=1 ε̂it. Divide the column vectors of ε̄ into T − lT + 1 blocks and generate a block

dataset {Ξt}T−lT +1
t=1 , where ε̄t = [ε̄1t, ..., ε̄Nt]

′ is a N × 1 column vector, and Ξt = [ε̄t, ε̄t+1..., ε̄t+lT−1]

is a N × lT matrix. Resample {Ξt}T−lT +1
t=1 with replacement to form a bootstrap data set {Ξbt}Lt=1

satisfying L = bT/lT c+ 1; Let {εbt}Tt=1 be the first T column vectors of {Ξbt}Lt=1.

• Step (iii). Generate a bootstrap sample {Xb
it}

N,T
i=1,t=1 such that Xb

it = λ̂′i0F̂t + εbit, where εbit is the ith

element of εbt . Run PCA on {Xb
it}

N,T
i=1,t=1 and compute the test statistic D̂b.

• Step (iv). Repeat Step (ii)-(iii) B times to obtain B bootstrap test statistics {D̂b}Bb=1.

• Step (v). Compute the p-value for D̂ with p̂ = B−1
∑B
b=1 1(D̂b > D̂).

We reject H0 when p̂ is smaller than a pre-specified significance level. Choosing an appropriate block

length is crucial and many approaches have been proposed (e.g., Lahiri, 1999) in the literature. In this

paper, we adopt Politis and White’s (2004) automatic block-length selection procedure. The the following

simulation studies demonstrate the excellent finite sample performance of the proposed MBB approach. We

note that the MBB procedure proposed by Gonçlaves (2011) requires T → ∞ faster than N , i.e., ν > 1.

However, this does not affect the theoretical applicability of our test to the case with serially correlated

errors.

4 Monte Carlo Simulations

We now study the finite sample performance of the proposed test through Monte Carlo simulations. We

compare our test with the tests of Breitung and Eickmeier (2011), Chen et al. (2014) and Han and Inoue

(2015) for a single structural break with an unknown break date in factor loadings and Su and Wang’s

(2017) nonparametric smoothing test.

4.1 Data Generating Process

We generate data under the framework of large factor models with R = 2 common factors:

Xit = λ′itFt + εit,

where i = 1, ..., N, t = 1, ..., T, Ft ≡ (F1,t, F2,t)
′
, with F1,t = 0.6F1,t−1 + u1t, u1t ∼ i.i.d.N(0, 1 − 0.62);

F2,t = 0.3F2,t−1 + u2t, u2t ∼ i.i.d.N(0, 1− 0.32).
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To examine size and power, we consider the following setups for the factor loading λit ≡ (λit,1, λit,2)
′
:

DGP.S1: λit = λi0 ∼ i.i.d. N(0, I2);

DGP.P1: λit,k =

{
λi0,k, for t = 1, 2, . . . , T/2

λi0,k + 0.2, for t = T/2 + 1, . . . , T
, λi0,k ∼ i.i.d.N(1, 1) for k = 1, 2;

DGP.P2: λit,1 =


λi0,1, for 0.1T < t ≤ 0.2T or 0.7T < t ≤ 0.8T

λi0,1 + 0.2, for 0.4T < t ≤ 0.5T

λi0,1 − 0.2, otherwise

, λit,2 = λi0,2 ∼ i.i.d.N(0, 1);

DGP.P3: λit,1 = µi + 0.5G(10t/T ; 0.1, (1, 3, 7, 9)′), µi ∼ i.i.d. N(0, 1), λit,2 = λi0,2 ∼ i.i.d. N(0, 1);

where G(z;κ, γ) = {1+exp[−κ
∏p
l=1(z−γl)]}−1 denotes the Logistic function with a scale parameter κ and

a location parameter γ = (γ1, ..., γp)
′
.

For each DGP, we consider five cases for the error term εit: (i) i.i.d. case, εit ∼ i.i.d.N(0, 1), (ii)

heteroskedastic case, εit = σivit, σi ∼ i.i.d.U(0.5, 1.5), vit ∼ i.i.d.N(0, 1); (iii) cross sectional dependence

case, ε·t ∼ i.i.d.N(0,Σe), (iv) time series dependence case, εit = 0.5εit−1 + vit, vit ∼ i.i.d.N(0, 1); (v) cross

sectional and time series dependence case, ε·t = 0.5ε·t−1+v·t, v·t ∼ i.i.d.N(0,Σe), , where Σe = (cij)i,j=1,...,N

with cij = 0.5|i−j| for cases (iii), (iv) and (v).

DGP.S1 satisfies the null hypothesis of time-invariant factor loadings and is used to study the size of all

tests. We examine the performance of the tests under i.i.d., heteroskedasticity, cross-sectional dependence,

temporal dependence, and both the cross-sectional and temporal dependence, respectively. DGP.P1-P3

describe various time-varying factor loadings. Among them, DGP.P1-P2 have a single abrupt structural

break and multiple abrupt structural breaks, respectively, while DGP.P3 is a smooth structural change. We

check the power of all the tests by using DGP.P1-P3 with various types of error terms.

4.2 Test Statistics and Simulation Results

For each DGP, we simulate 500 data sets with sample sizes N = 100, 200, and T = 100, 200, respectively.

In addition to our test, we also consider Breitung and Eickmeier’s (2011) sup-LM N -variable specific test,

Chen et al.’s (2014) sup-LM and sup-Wald tests, Han and Inoue’s (2015) sup-LM and sup-Wald tests and

Su and Wang’s (2017) nonparametric test. Following Su and Wang (2017), we use the Epanechnikov kernel

and Silverman’s rule-of-thumb bandwidth h = (2.35/
√

12)T−1/5N−1/10 for Su and Wang’s (2017) test. We

set the trimming parameter τ = 0.15 for the parametric tests, which is a common choice in the literature.

We also examine the performance of these tests with τ = 0.1 and 0.25 and find the results are quite similar.

The tests of Chen et al. (2014) and Han and Inoue (2015) involve long-run variance estimation. We follow

the HAC literature by setting the truncation parameter m = bT 1/3c and choosing the Bartlett kernel to

estimate the long-run variance. The critical values presented in Andrews (1993) are used for the tests

of Breitung and Eickmeier (2011), Chen et al. (2014) and Han and Innoe (2015). We apply bootstrap

procedures for Su and Wang’s (2017) test and our test. We set the number of bootstrap B = 200.

Table 1 reports the sizes of our test as well as the tests of Breitung and Eickmeier (2011), Chen et al.

(2014), Han and Inoue (2015) and Su and Wang (2017) at the 5% and 10% significance levels when the

number of common factors are fixed and the true value R = 2. As shown in Table 1, our test has reasonable
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Table 1: Size of tests under DGP.S1 when the number of factors is fixed to the true value

N T DB SW HILM HIW CDGLM CDGW BELM
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

i.i.d. error term: εit ∼ i.i.d.N(0, 1)
100 100 4.6 9.2 5.6 12.6 1.0 4.4 0.2 1.4 2.0 6.2 5.2 12.8 2.7 6.3
100 200 4.0 10.8 6.6 12.8 2.2 7.0 2.2 6.6 3.4 8.0 4.8 11.6 3.5 7.5
200 100 5.6 11.0 5.0 11.2 1.2 5.0 0.6 2.6 2.2 6.2 7.6 11.8 2.8 6.4
200 200 5.8 10.8 5.6 11.4 3.4 7.6 3.0 8.6 2.4 7.2 6.6 9.8 3.3 7.3

heteroskedastic error term: εit = σivit, σi ∼ i.i.d.U(0.5, 1.5), vit ∼ i.i.d.N(0, 1)
100 100 5.2 10.6 5.4 12.0 0.8 4.4 0.2 1.6 1.4 7.0 5.6 12.2 2.8 6.3
100 200 5.4 11.4 6.8 14.6 2.2 7.2 2.4 6.8 3.4 8.6 4.6 11.2 3.5 7.4
200 100 4.8 11.0 5.6 10.0 1.4 5.2 0.6 2.6 2.0 5.8 7.2 11.8 2.8 6.4
200 200 5.0 10.2 5.4 11.8 3.2 7.6 3.0 8.4 2.0 7.0 5.8 9.2 3.3 7.3

cross sectional dependence error term: ε·t ∼ i.i.d.N(0,Σe)
100 100 5.8 10.2 5.4 10.2 1.0 4.0 0.2 1.0 1.6 7.0 6.6 12.8 2.7 6.3
100 200 5.0 10.8 4.2 8.8 2.0 6.4 2.0 4.6 2.0 7.2 5.0 10.6 3.4 7.4
200 100 8.0 12.2 5.8 12.4 1.6 6.0 0.8 3.0 1.6 5.8 7.0 12.0 2.8 6.4
200 200 5.4 9.2 5.4 11.2 3.2 7.6 3.4 8.0 2.6 7.2 5.8 9.4 3.5 7.6

time series dependence error term: εit = 0.5εit−1 + vit, vit ∼ i.i.d.N(0, 1)
100 100 7.6 13.8 100 100 1.0 3.2 0.2 1.8 1.6 7.8 6.0 10.8 13.6 22.7
100 200 4.0 10.4 100 100 2.6 6.8 2.4 8.2 4.2 9.4 6.4 12.6 17.6 27.8
200 100 5.2 13.0 100 100 1.6 3.8 0.8 2.6 2.2 7.2 6.8 11.8 13.3 22.6
200 200 6.0 11.4 100 100 3.4 7.2 2.4 9.4 4.8 10.8 6.4 12.0 17.7 27.8

cross sectional and time series dependence error term: ε·t = 0.5ε·t−1 + v·t, v·t ∼ i.i.d.N(0,Σe)
100 100 6.8 13.0 100 100 0.4 3.2 0.4 2.0 2.4 8.0 4.4 11.2 13.6 22.5
100 200 7.2 12.6 99.8 100 2.4 6.0 3.4 8.0 3.2 8.2 4.8 9.4 18.1 28.4
200 100 6.6 12.4 100 100 1.2 3.8 0.4 2.0 2.0 5.4 6.0 12.0 13.9 23.1
200 200 7.0 13.4 100 100 3.2 6.8 2.6 9.6 4.8 11.6 6.8 12.4 17.8 27.8

Notes: (i) DB denotes the results of our D test using bootstrap critical values; (ii) SW denotes the results
of Su and Wang’s (2017) bootstrap-based test; (iii) HILM and HIW denote Han and Inoue’s (2015) sup-LM
and Wald tests; (iv) CDGLM and CDGW denote Chen et al.’s (2014) sup-LM and Wald tests; (v) BELM
denotes Breitung and Eickmeier’s (2011) N variable-specific sup-LM test. The main entries report the
average percentage of rejections.

sizes using bootstrap critical values. For the case of both cross-sectional and temporal dependence, our test

tends to over-reject a bit but is still acceptable. Han and Inoue’s (2014) sup-LM and sup-Wald tests tend

to under-reject. Chen et al.’s (2014) sup-Wald test has reasonable sizes, but their sup-LM test also exhibits

under-rejection. Su and Wang’s (2017) test tends to over-reject slightly, but is still acceptable for the first

three cases. However, when the error term has serial correlation, it displays serious over-rejection and the

rejection rates even achieve 100%. It is not surprising to see the poor size performance of Su and Wang’s

(2017) test since it requires the error term to be a martingale difference sequence. On the other hand,

Breitung and Eickmeier’s (2011) test suffers from slight under-rejection for the first three cases, and severe

over-rejection for the last two cases. In fact, Assumption 2 in Breitung and Eickmeier (2011) requires that

the error term be serially independent, which does not hold in the last two cases.
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Table 2: Power of tests under DGP.P1-P2 when the number of factors is fixed to the true value

N T DB SW HILM HIW CDGLM CDGW BELM
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

i.i.d. error term: εit ∼ i.i.d.N(0, 1)
DGP.P1 100 100 99.0 99.4 71.0 80.2 1.6 5.6 0.0 2.0 2.2 7.6 6.0 12.6 5.4 10.8

100 200 100 100 97.6 99.0 4.6 9.8 5.6 12.2 3.6 7.6 6.0 11.4 10.5 17.7
200 100 100 100 88.6 93.2 1.4 5.4 1.2 3.2 2.4 9.0 7.6 11.2 5.4 10.7
200 200 100 100 100 100 5.4 12.6 5.6 12.8 4.0 8.8 3.6 10.6 10.7 17.9

DGP.P2 100 100 26.2 37.4 10.2 17.8 1.2 4.4 0.2 1.6 1.8 7.6 4.0 10.2 2.9 6.6
100 200 62.6 76.6 21.4 31.0 2.2 7.4 2.2 5.8 3.8 8.6 4.8 9.4 3.9 8.3
200 100 42.0 59.4 11.4 20.0 1.2 5.4 0.4 3.0 3.2 8.4 6.6 10.4 2.9 6.7
200 200 87.2 93.4 24.6 37.4 3.4 8.0 2.4 8.2 4.2 9.2 2.8 9.8 3.8 8.2

heteroskedastic error term: εit = σivit, σi ∼ i.i.d.U(0.5, 1.5), vit ∼ i.i.d.N(0, 1)
DGP.P1 100 100 99.0 99.8 73.6 81.4 1.6 5.6 0.0 2.0 2.2 7.6 5.6 12.2 6.7 12.3

100 200 100 100 98.2 98.6 4.6 9.8 5.6 12.2 3.6 7.8 6.4 11.6 13.2 20.5
200 100 100 100 91.4 95.8 1.4 5.2 1.2 3.0 2.6 9.0 7.4 11.6 6.7 12.2
200 200 100 100 100 100 5.8 13.0 6.0 12.8 4.0 9.2 3.8 10.4 13.5 20.7

DGP.P2 100 100 26.6 40.6 10.2 18.8 1.2 4.2 0.2 1.6 1.8 7.8 3.8 10.2 2.9 6.6
100 200 62.8 75.4 21.2 33.8 2.6 6.8 2.4 6.0 4.2 8.6 4.8 10.2 4.1 8.6
200 100 45.6 62.8 13.2 20.2 1.4 5.4 0.4 3.2 3.2 9.2 6.4 10.4 3.0 6.8
200 200 86.4 92.6 28.2 39.4 3.2 7.6 2.4 8.2 4.0 9.6 3.0 9.8 4.0 8.5

cross sectional dependence error term: ε·t ∼ i.i.d.N(0,Σe)
DGP.P1 100 100 98.6 99.4 66.2 76.4 1.2 4.6 0.0 1.2 2.4 7.4 5.6 13.0 5.4 10.6

100 200 100 100 97.6 98.6 5.2 9.8 4.4 12.4 3.0 8.4 5.6 10.8 10.9 18.0
200 100 100 100 88.0 94.6 1.4 5.4 1.0 4.0 2.2 8.4 6.4 11.4 5.5 10.8
200 200 100 100 100 100 5.8 13.2 5.8 12.0 4.4 8.8 4.6 10.6 10.9 18.1

DGP.P2 100 100 26.4 38.0 10.4 17.2 1.2 5.0 0.0 0.8 2.6 7.2 4.4 10.2 2.9 6.6
100 200 62.8 77.6 17.4 27.4 2.6 7.4 1.6 6.6 4.0 9.2 4.6 8.8 3.8 8.1
200 100 40.6 56.4 12.4 19.8 1.6 5.0 0.6 3.2 2.2 7.8 5.8 10.2 3.0 6.7
200 200 88.6 94.6 27.6 42.8 3.4 7.8 3.2 7.8 4.2 9.2 2.6 9.8 4.0 8.5

time series dependence error term: εit = 0.5εit−1 + vit, vit ∼ i.i.d.N(0, 1)
DGP.P1 100 100 89.6 93.2 100 100 1.2 5.0 0.4 3.4 1.6 6.0 4.6 10.8 16.4 26.1

100 200 100 100 100 100 5.4 10.4 5.4 14.0 4.6 9.6 5.6 11.6 24.5 35.4
200 100 100 100 100 100 1.8 4.8 0.8 3.2 2.0 6.4 5.0 12.2 16.4 26.1
200 200 100 100 100 100 5.8 12.6 5.0 15.0 5.8 9.4 7.4 12.0 24.6 35.6

DGP.P2 100 100 16.4 26.4 99.0 99.4 0.8 4.4 0.2 1.8 1.4 6.2 3.2 9.8 13.7 22.8
100 200 41.2 58.8 100 100 2.8 7.4 2.8 6.6 3.8 10.4 4.0 11.2 18.2 28.3
200 100 24.4 38.0 99.8 99.8 1.6 4.6 0.4 2.0 1.4 6.2 3.4 8.8 13.5 22.6
200 200 65.2 79.8 100 100 3.2 7.4 2.6 8.4 4.6 10.8 4.4 10.2 18.2 28.4
cross sectional and time series dependence error term: ε·t = 0.5ε·t−1 + v·t, v·t ∼ i.i.d.N(0,Σe)

DGP.P1 100 100 90.2 94.6 100 100 1.0 4.8 0.4 3.0 2.6 7.6 4.4 10.2 16.4 26.2
100 200 100 100 100 100 5.0 10.8 5.6 13.8 4.2 8.8 6.0 11.6 25.0 35.8
200 100 100 100 100 100 1.6 4.4 0.6 3.2 2.0 5.6 4.6 12.4 16.8 26.6
200 200 100 100 100 100 4.8 12.4 5.2 14.4 5.2 9.8 7.0 12.2 24.6 35.4

DGP.P2 100 100 14.8 23.6 99.8 100 0.8 3.2 0.4 1.6 1.8 6.8 3.8 8.8 13.5 22.7
100 200 39.4 53.2 100 100 2.6 7.2 3.2 8.2 4.4 10.4 4.6 11.0 18.5 29.0
200 100 25.6 40.4 99.8 100 1.2 3.8 0.4 2.2 1.4 6.2 4.0 9.0 14.0 23.0
200 200 65.8 78.8 100 100 2.8 6.6 2.2 8.4 4.6 10.8 5.0 10.4 18.2 28.5

Note: See the notes in Table 1.
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Tables 2 and 3 report the power performance of the tests under DGP.P1-P3 at the 5% and 10% sig-

nificance levels when the number of common factors is fixed and the true value R = 2. Our test is most

powerful in detecting all forms of time-varying factor loadings given by DGP.P1-P3 and its power increases

as either T or N increases. Recall that DGP.P1-P2 are factor models with abrupt structural breaks, while

DGP.P3 is the factor model with smooth structural changes. The simulation results demonstrate the ex-

cellent performance of our test in detecting both a finite number of abrupt structural breaks and smooth

structural changes. Moreover, Su and Wang’s (2017) test is also powerful in detecting all these DGPs, but

the rejection rates are all lower than our new test except for the last two cases of serially dependent error

term. Since Su and Wang’s (2017) test could even achieve unity rejection under DGP.S1, it is not surprise

to see its high rejection rate for DGP.P1-P3 when the error term has serial dependence. The results for

other cases are consistent with our analysis on the relative efficiency between our test and Su and Wang’s

(2017) test. In contrast, Han and Inoue’s (2015) sup-LM and sup-Wald tests, Chen et al.’s (2014) sup-LM

and sup-Wald tests and Breitung and Eickmeier’s (2011) N -variable-specific sup-LM test all have relatively

quite low power against DGP.P1-P3, which exhibit either abrupt structural breaks or smooth structural

changes in factor loadings.

As the exact number R of common factors is typically unknown in practice, one should determine the

number of common factors before estimating and testing. In the literature on testing for structural breaks

in factor loadings, the number of common factors is either determined by Bai and Ng’s (2002, BN hereafter)

information criteria (e.g., Han and Inoue, 2015) or specified by some fixed numbers, which may be equal

to, less than, or greater than the correct number of factors (e.g., Chen et al., 2014). Of course, one can also

consider applying the testing procedures of Onatski (2009, 2010) or Ahn and Horenstein (2013) to determine

the number of factors, which have been shown to work well in the presence of moderate or strong cross-

sectional dependence. Alternatively, one can apply Su and Wang’s (2017, SW hereafter) nonparametric

method to determine the number of factors that is robust to the presence of structural changes in factor

loadings. In general, all the aforementioned methods can select the correct number of factors consistently

under the null hypothesis of no structural change, but only SW’s method has been proven valid even under

the alternative. Indeed, if we apply SW’s method to determine the number of factors, the size and power

performance of all tests will be similar to those in Tables 1 and 2. To allow the possible misspecification

of the number of factors under the alternative, we follow Han and Inoue (2015) and select the number of

factors based on BN’s information criteria ICp1 and ICp2. The simulation results based on ICp1 and ICp2

are also similar to those reported in Tables 1 and 3. In fact, for all DGPs, our simulation studies show that

Bai and Ng’s (2002) ICp1 only tends to overparameterize slightly, and the problem alleviates as the sample

size increases. To save space, we relegate the results based on ICp1 to the online supplement. Moreover,

we also examine the performance of the proposed test as well as other various tests by setting the number

of common factors as 3. The power of our bootstrap-based test is a bit lower than in the case of correctly

specified factors as reported in Tables 2 and 3. However, our test still has reasonable power that increases

as either T or N increases. More importantly, it is still the most powerful test among all the tests under

consideration. For space, we do not report the results for this case here.
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Table 3: Power of tests under DGP.P3 when the number of factors is fixed to the true value

N T DB SW HILM HIW CDGLM CDGW BELM
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

i.i.d. error term: εit ∼ i.i.d.N(0, 1)
DGP.P3 100 100 82.8 91.8 36.8 48.2 0.6 3.6 0.4 2.4 2.2 8.0 5.8 11.8 3.7 8.3

100 200 99.6 100 72.0 80.8 1.6 5.6 3.8 9.8 4.2 8.6 4.6 11.8 5.6 11.1
200 100 91.2 97.2 42.8 54.2 1.6 4.6 1.0 3.4 1.8 4.6 10.0 15.8 3.7 8.2
200 200 99.8 100 90.4 93.6 2.0 6.0 4.0 11.6 2.8 7.4 7.6 13.4 5.7 11.4

heteroskedastic error term: εit = σivit, σi ∼ i.i.d.U(0.5, 1.5), vit ∼ i.i.d.N(0, 1)
100 100 80.0 91.4 31.2 43.2 0.6 3.2 0.4 2.6 2.4 8.4 5.6 12.4 4.2 8.9
100 200 98.8 99.8 63.6 73.4 1.4 5.6 3.8 9.8 4.0 8.4 4.8 11.6 6.8 12.5
200 100 87.6 97.2 38.0 49.8 1.6 4.8 1.0 3.4 1.6 4.6 10.0 15.2 4.1 8.7
200 200 99.6 100 83.2 90.6 2.0 6.2 4.0 11.4 3.0 7.4 7.6 13.6 6.9 12.9

cross sectional dependence error term: ε·t ∼ i.i.d.N(0,Σe)
100 100 83.0 91.6 31.2 43.4 0.8 3.8 0.6 2.4 1.8 8.8 8.0 13.4 3.6 7.9
100 200 99.2 100 74.0 82.4 1.4 5.4 2.6 9.0 3.6 8.6 5.4 11.4 5.6 11.2
200 100 92.2 97.8 45.6 57.8 1.4 5.4 1.0 3.6 1.8 5.6 10.6 15.6 3.8 8.1
200 200 100 100 92.2 95.4 1.8 5.6 3.6 11.0 2.8 7.4 8.2 13.6 5.9 11.6

time series dependence error term: εit = 0.5εit−1 + vit, vit ∼ i.i.d.N(0, 1)
100 100 57.2 74.8 99.2 100 0.4 3.4 0.2 3.4 1.8 8.0 6.4 12.8 14.6 24.1
100 200 93.2 97.0 100 100 2.2 5.6 4.0 10.2 2.8 9.0 5.0 11.6 20.4 31.1
200 100 80.2 90.2 99.8 100 1.4 3.6 0.8 2.8 1.6 6.0 7.2 14.8 14.6 24.1
200 200 99.0 99.8 100 100 2.2 5.2 2.8 11.8 2.6 7.4 9.0 15.2 20.4 31.3
cross sectional and time series dependence error term: ε·t = 0.5ε·t−1 + v·t, v·t ∼ i.i.d.N(0,Σe)
100 100 58.4 76.4 99.4 100 0.4 2.2 0.4 3.4 1.8 7.4 5.8 14.4 14.7 21.2
100 200 92.8 97.4 100 100 1.8 5.6 3.8 8.4 2.8 8.6 5.0 11.0 21.0 31.7
200 100 79.6 90.8 99.6 100 0.8 3.8 0.2 2.6 1.8 5.6 8.4 13.6 15.0 24.5
200 200 99.0 99.6 100 100 1.8 4.8 3.2 11.4 2.8 7.8 7.4 15.4 20.6 31.3

Note: See the notes in Table 1.
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Table 4: Tests of structural changes in the U.S. economy

Number of selected factors 1 2 3 4
Criterion functions Ona, ER, GR ICh1, ICh2 PCp1, PCp2 ICp1 ,ICp2

Notes: (i) PCp1, PCp2, ICp1 and ICp2 denote Bai and Ng’s (2002) information criteria; (ii) Ona denotes the results of Onatski’s

(2009) test; (iii) ER and GR denote Ahn and Horenstein’s (2013) criteria; (iv) ICh1 and ICh2 denote the information criteria

proposed by Su and Wang (2017).

Table 5: Tests for Structural Changes for the U.S. Economy

DB SW, c = 0.5 SW, c = 1 SW, c = 2 Han and Inoue (2015) Chen et al. (2014)
DB 5% SMB 5% SMB 5% SMB 5% LM Wald 5% LM Wald 5%

r = 1 11.27 5.48 -3.20 -7.45 6.15 1.59 10.30 1.74 11.43 6.49 8.85 - - -
r = 2 10.63 5.52 -3.60 -0.12 18.56 8.50 32.06 5.88 21.26 10.05 14.15 4.67 1.89 8.85
r = 3 14.70 8.02 0.96 6.53 32.57 16.60 53.74 10.70 25.43 12.69 20.26 3.26 10.45 11.79
r = 4 12.68 8.03 1.70 11.77 32.11 23.56 53.63 14.46 28.79 27.37 27.03 24.39 24.13 14.15

Notes (i) DB denotes the results of our D test using bootstrap critical value based on B = 1000 iterations;
(ii) 5% and 10% denote the corresponding significance level.

5 An Empirical Application to U.S. Macroeconomic Data Set

We now apply our test to check whether the U.S. macroeconomic dynamics suffers from structural changes.

The data set, firstly constructed by Stock and Watson (2012), and then extended by Cheng et al. (2016),

consists of N = 102 series of monthly macroeconomic and financial indicators, spanning from 1985:M1 to

2013:M1 (T = 337). All the data have been standardized to have zero mean and unit variance. For the

details of the data description and processing, one can refer to Stock and Watson (2012) and Cheng et al.

(2016).

We first determine the appropriate number of common factors. The maximum number of common factors

is set to be 8 in this empirical study. We use Bai and Ng’s (2002) information criteria PCp1, PCp2, ICp1, ICp2,

Onatski’s (2009) testing procedure, Ahn and Horenstein’s (2013) criterion functions ER and GR and Su

and Wang’s (2017) local information criteria ICh1, ICh2 to determine the number of common factors. The

results are reported in Table 4, where we see that different methods choose deliver different numbers of

common factors. Below, we report the test results for the cases of one to four common factors respectively.

We apply our test D̂B , Su and Wang’s (2017) nonparametric test SW , Han and Innoue’s (2014) sup-LM

and sup-Wald tests, as well as Chen et al.’s (2014) sup-LM and sup-Wald tests to investigate the possible

structural changes in factor loadings. For Su and Wang’s (2017) test, we choose the bandwidth h = ch∗

with h∗ = (2.35/
√

12)T−1/5N−1/10 given in their paper. By choosing c = 0.5, 1, 2, we consider the effect of

different bandwidths on the results of Su and Wang’s (2017) test. The other settings, including the kernel

functions and tuning parameters, are all the same to those used in our simulation studies. For our test and

Su and Wang’s (2017) test, we focus on the bootstrap results based on B = 1000 bootstrap replications.
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Table 5 reports the results of various tests and the corresponding critical values at the 5% significant

level. Our test clearly rejects the null hypothesis of no structural changes for all the cases of one to four

common factors. Su and Wang’s (2017) results are sensitive to the choice of bandwidth. By using different

bandwidths, different results arise, and so the evidence is mixed. Moreover, Chen et al.’s (2014) sup-LM

and sup-Wald tests can only reject the null for the case of R = 4, while Han and Inoue’s (2015) results are

mixed. Their sup-LM test rejects the null hypothesis for all cases while the sup-Wald test can only reject

the null hypothesis for the case of four common factors. This result is consistent with our simulation studies

that indicate the relative low power of the tests given by Chen et al. (2014) and Han and Inoue (2014).

6 Conclusion

Conventional factor models assume factor loadings, which capture the relationship between observed random

variables and the latent common factors, to be time-invariant. In fact, since macroeconomic data usually

have a long time span, it is difficult to assume that factor loadings are constant over time. In this paper,

we propose a new test for structural changes in large dimensional factor models via a discrete Fourier

transform approach. Compared to FHW, our test is constructed in large dimensional factor models where

the regressors are unobservable. By construction, our test can capture a wide range of smooth and abrupt

structural changes in factor loadings with unknown break dates and unknown number of breaks. More

importantly, the proposed test is asymptotically more powerful than all the existing related tests in the

literature. Our test is tuning parameter-free, and it is robust to serial correlation and cross-sectional

dependence of unknown forms, which greatly extends the scope of applicability of our test. Simulation

studies show that in comparison with the tests of Breitung and Eickmeier (2011), Chen et al. (2014), Han

and Inoue (2015) and Su and Wang (2017), the proposed test has both reasonable size and excellent power

against various alternatives in finite samples. We apply our test to check whether the U.S. macroeconomic

dynamics suffers from structural changes, and document significant evidence to against the time invariance

property of factor loadings.

There are several interesting topics for further research. For instance, when our test rejects the null

hypothesis, one can further check the type of structural changes, i.e., distinguishing smooth structural

changes from abrupt structural breaks. That is an interesting and challenging issue, but it is out of scope

of the present paper. We will leave it to subsequent studies.
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A Mathematical Appendix

Notations: Denote γN (s, t) = E(ε′sεt/N) = E( 1
N

∑N
i=1 εisεit), ζst = 1

N ε
′
sεt−γN (s, t), ηst = F ′sΛ

′
0εt/N , ξst =

F ′tΛ
′
0εs/N . Let VNT denote the R × R diagonal matrices of the first R largest eigenvalues of (NT )−1XX ′

in decreasing order and H = (Λ′0Λ0/N)(F ′F̂ /T )V −1
NT . Let CNT = min{

√
N,
√
T}.

A.1 Technical Lemmas

Lemma A.1 Suppose Assumptions A.1 to A.4 hold,

1

T

T∑
t=1

(
F̂tF̂

′
t − IR

)
eiu2πt/T ,

and

1

T

T∑
t=1

(
F̂tF

′
t − E(F̂tF

′
t )
)
eiu2πt/T

are stochastically equicontinuous.

Proof. We first show that 1
T

∑T
t=1

(
F̂tF̂

′
t − IR

)
eiu2πt/T is stochastically equicontinuous, i.e., we need to

show that, for any ε > 0 and κ > 0, there exists δ > 0 such that

lim
T→∞

P

[
sup

u1,u2∈R:|u1−u2|<δ

∥∥∥∥∥ 1

T

T∑
t=1

(
F̂tF̂

′
t − IR

)(
eiu12πt/T − eiu22πt/T

)∥∥∥∥∥ > κ

]
< ε.

Let ū = au1 + (1− a)u2 for some a ∈ (0, 1) and

eiu12πt/T = eiu22πt/T + i2πt/Teiū2πt/T (u1 − u2),
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then

lim
T→∞

P

[
sup

u1,u2∈R:|u1−u2|<δ

∥∥∥∥∥ 1

T

T∑
t=1

(
F̂tF̂

′
t − IR

)(
eiu12πt/T − eiu22πt/T

)∥∥∥∥∥ > κ

]

= lim
T→∞

P

[
sup

u1,u2∈R:|u1−u2|<δ

∥∥∥∥∥ 1

T

T∑
t=1

(
F̂tF̂

′
t − IR

)(
i2πt/Teiū2πt/T

)
(u1 − u2)

∥∥∥∥∥ > κ

]

≤ lim
T→∞

P

[
sup
ū∈R

∥∥∥∥∥ 1

T

T∑
t=1

(
F̂tF̂

′
t − IR

)(
i2πt/Teiū2πt/T

)∥∥∥∥∥ > κ/δ

]

≤ lim
T→∞

P

[
sup
ū∈R

1

T

T∑
t=1

∥∥∥(F̂tF̂ ′t − IR
)(

i2πt/Teiū2πt/T
)∥∥∥ > κ/δ

]

≤ lim
T→∞

P


√√√√ 1

T

T∑
t=1

∥∥∥(F̂tF̂ ′t − IR
)∥∥∥2

sup
ū∈R

√√√√ 1

T

T∑
t=1

∥∥(i2πt/Teiū2πt/T
)∥∥2

> κ/δ


= lim

T→∞
P


√√√√ 1

T

T∑
t=1

∥∥∥(F̂tF̂ ′t − IR
)∥∥∥2

√√√√ 1

T

T∑
t=1

4πt2/T 2 > κ/δ


< ε,

where the third to last inequality is by triangle inequality and the second to last is by Cauchy-Swartz
inequality. As is shown in Andrews (1994), the last inequality holds since we always find a δ > 0 small

enough given 1
T

∑T
t=1

∥∥∥(F̂tF̂ ′t − IR
)∥∥∥2

is Op(1), and 1
T

∑T
t=1 4πt2/T 2 is O(1). By analogous argument, we

can show 1
T

∑T
t=1

(
F̂tF

′
t − E(F̂tF

′
t )
)
eiu2πt/T is also stochastically equicontinuous.

Lemma A.2 Suppose Assumptions A.1 to A.4 hold, then as T →∞

supu∈R

∥∥∥ 1
T

∑T
t=1 F̂tF̂

′
te

iu2πt/T − IR
∫
eiu2πτdτ

∥∥∥ p→ 0,

supu∈R

∥∥∥ 1
T

∑T
t=1 F̂tF

′
te

iu2πt/T − E(F̂tF
′
t )
∫
eiu2πτdτ

∥∥∥ p→ 0.

Proof.

sup
u∈R

∥∥∥∥∥ 1

T

T∑
t=1

F̂tF̂
′
te

iu2πt/T − IR
∫
eiu2πτdτ

∥∥∥∥∥
= sup

u∈R

∥∥∥∥∥ 1

T

T∑
t=1

F̂tF̂
′
te

iu2πt/T − IR
1

T

T∑
t=1

eiu2πt/T + IR
1

T

T∑
t=1

eiu2πt/T − IR
∫
eiu2πτdτ

∥∥∥∥∥
≤ sup

u∈R

∥∥∥∥∥ 1

T

T∑
t=1

F̂tF̂
′
te

iu2πt/T − IR
1

T

T∑
t=1

eiu2πt/T

∥∥∥∥∥+ sup
u∈R

∥∥∥∥∥IR 1

T

T∑
t=1

eiu2πt/T − IR
∫
eiu2πτdτ

∥∥∥∥∥
= sup

u∈R

∥∥∥∥∥ 1

T

T∑
t=1

(
F̂tF̂

′
t − IR

)
eiu2πt/T

∥∥∥∥∥+ IR sup
u∈R

∥∥∥∥∥ 1

T

T∑
t=1

(
eiu2πt/T −

∫
eiu2πτdτ

)∥∥∥∥∥
= R1 +R2,

2



We now show D1 = op(1).

supu∈R

∥∥∥∥∥ 1

T

T∑
t=1

(
F̂tF̂

′
t − IR

)
eiu2πt/T

∥∥∥∥∥
≤ sup

u∈R

∥∥∥∥∥ 1

T

T∑
t=1

(
F̂tF̂

′
t − IR

)
cos(u2πt/T )

∥∥∥∥∥+ sup
u∈R

∥∥∥∥∥ 1

T

T∑
t=1

(
F̂tF̂

′
t − IR

)
sin(u2πt/T )

∥∥∥∥∥
≡ R11 +R12, say.

Next, we show that R11 = op(1). Let D be the space of all functions θ : [0, 1] → [−1, 1], where θ(τ) =
cos(u2πτ) for τ = t/T , t = 1, 2, ..., T , and θ(τ) = 0 otherwise. Therefore,

lim
T→∞

P (R11 > 2κ) ≤ lim
T→∞

P

(
sup
θ∈D

∥∥∥∥∥ 1

T

T∑
t=1

(
F̂tF̂

′
t − IR

)
θ (τ)

∥∥∥∥∥ > 2κ

)

≤ lim
T→∞

P

(
max
j≤J

sup
θ̃∈B(θj ,δ)

{∥∥∥∥∥ 1

T

T∑
t=1

(
F̂tF̂

′
t − IR

) [
θ̃ (τ)− θj (τ)

]∥∥∥∥∥
+

∥∥∥∥∥ 1

T

T∑
t=1

(
F̂tF̂

′
t − IR

)
θj (τ)

∥∥∥∥∥
}
> 2κ

)

≤ lim
T→∞

P

(
sup
θ∈D

sup
θ̃∈B(θj ,δ)

∥∥∥∥∥ 1

T

T∑
t=1

(
F̂tF̂

′
t − IR

) [
θ̃ (τ)− θj (τ)

]∥∥∥∥∥ > κ

)

+ lim
T→∞

P

(
max
j≤J

∥∥∥∥∥ 1

T

T∑
t=1

(
F̂tF̂

′
t − IR

)
θj (τ)

∥∥∥∥∥
}
> κ

)
< κ,

where we let {B(θj , δ) : j = 1, 2, ..., J} be a finite cover of D such that θ ∈ B(θj , δ) if and only if d(θ, θj) ≡√∫ 1

0
|θ(τ)− θj(τ)|2dτ ≤ δ. To let the last inequality hold, we need to show: (i). 1

T

∑T
t=1

(
F̂tF̂

′
t − IR

)
θ (τ)

is stochastically equicontinuous; and (ii). 1
T

∑T
t=1

(
F̂tF̂

′
t − IR

)
θ (τ) = op(1) for any θ ∈ D.

For (i):

lim
T→∞

P

[
sup

θ1,θ2∈D:d(θ1,θ2)<δ

∥∥∥∥∥ 1

T

T∑
t=1

(
F̂tF̂

′
t − IR

)
(θ1(τ)− θ2(τ))

∥∥∥∥∥ > κ

]

≤ lim
T→∞

P

[∥∥∥∥∥ 1

T

T∑
t=1

(
F̂tF̂

′
t − IR

)∥∥∥∥∥ > κ/δ

]
< ε,

by analogous arguments in the proof of Lemma A.1. The point-wise convergence (ii) is easy to verify given
E(F̂tF̂

′) = IR, and the boundedness condition of D. By analogous proof, we can show that R12 = op(1).
Therefore, R1 = op(1).

By Riemann approximation of an integral, we can show that R2 is o(1). Thus, we have shown

sup
u∈R

∥∥∥∥∥ 1

T

T∑
t=1

F̂tF̂
′
te

iu2πt/T − IR
∫
eiu2πτdτ

∥∥∥∥∥ p→ 0.
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By analogous proof, we can also show

sup
u∈R

∥∥∥∥∥ 1

T

T∑
t=1

F̂tF
′
te

iu2πt/T − E(F̂tF
′
t )

∫
eiu2πτdτ

∥∥∥∥∥ p→ 0.

Lemma A.3 Suppose Assumptions A.1 to A.4, and H0 hold, then as N,T →∞,
√
NTÂ2(u)⇒ N (u),

where N (u) is a complex-valued Gaussian process with covariance-kernelM(u1, u2)

M(u1, u2) = lim
N,T→∞

1

NT

T∑
s,t=1

N∑
i,j=1

H ′0E [FtF
′
sεitεjs]H0Mt(u1)Ms(u2)∗,

where Mt(u) is a demeaned Fourier process such that

Mt(u) = eiu2πt/T −
∫
eiu2πτdτ.

Proof. By Lemma A.2, we have

Â2(u) =
1

NT

N∑
i=1

T∑
t=1

Gt(u)εit

=
1

NT

N∑
i=1

T∑
t=1

F̂te
iu12πt/T εit −

1

NT

N∑
i=1

(
1

T

T∑
t=1

F̂tF̂
′
te

iu22πt/T

)
T∑
t=1

F̂tεit

=
1

NT

N∑
i=1

T∑
t=1

F̂te
iu12πt/T εit −

1

NT

N∑
i=1

IR
∫
eiu2πτdτ

T∑
t=1

F̂tεit + op(1)

=
1

NT

N∑
i=1

T∑
t=1

F̂tεitMt(u) + op(1),

where

Mt(u) = eiu2πt/T −
∫
eiu2πτdτ.

It follows

Â2(u) =
1

NT

N∑
i=1

T∑
t=1

(F̂t −H ′Ft)εitMt(u) +
1

NT

N∑
i=1

T∑
t=1

H ′FtεitMt(u) + op(1)

≡ Â21(u) + Â22(u) + op(1), say.

According to Bai (2003), F̂t−H ′Ft = op(1), thus Â21(u) = op(1) since Mt(u) is bounded for all u. Therefore,
the leading term in Â2(u) is Â22(u). Under Assumption A.1 to A.4, it follows that for each fixed u ∈ R

√
NTÂ2(u)

d→ N(0,M(u, u)),

where

M(u, u) = avar[
√
NTÂ22(u)]

4



= lim
N,T→∞

1

NT
var

[
N∑
i=1

T∑
t=1

H ′FtεitMt(u)

]

= lim
N,T→∞

1

NT

T∑
s,t=1

N∑
i,j=1

H ′0E [FtF
′
sεitεjs]H0Mt(u)Ms(u)∗.

Furthermore, given the stochastic equi-continuity result established in Lemma A.1, we can show
√
NTÂ2(u)⇒ N (u),

where N (u) is a complex-valued Gaussian process with covariance-kernel M(u1, u2)

M(u1, u2) = lim
N,T→∞

1

NT

T∑
s,t=1

N∑
i,j=1

H ′0E [FtF
′
sεitεjs]H0Mt(u1)Ms(u2)∗.

Especially, when εit is a MDS, then

M(u1, u2) = lim
N→∞

1

N

N∑
i,j=1

H ′0E(FtF
′
tεitεjt)H0

[∫
ei2πτ(u1−u2)dτ −

∫∫
ei2π(τu1−λu2)dτdλ

]
.

Furthermore, if εit is also cross-sectional uncorrelated,

M(u1, u2) = H ′0E(FtF
′
tε

2
it)H0

[∫
ei2πτ(u1−u2)dτ −

∫∫
ei2π(τu1−λu2)dτdλ

]
.

A.2 Proof of the Theorems

Proof of Proposition 3.1
Proof. Under H0 : λit = λi0, we have

Â1(u) =
1

N

N∑
i=1

[
1

T

T∑
t=1

Gt(u)F ′tλi0

]

=

[
1

T

T∑
t=1

Gt(u)F ′t

][
1

N

N∑
i=1

λi0

]

=

[
1

T

T∑
t=1

Gt(u)(Ft −H ′−1F̂t)
′

]
λ̄0 +

[
1

T

T∑
t=1

Gt(u)F̂ ′tH
−1

]
λ̄0

≡ Â11(u) + Â12(u),

where λ̄0 =
[

1
N

∑N
i=1 λi0

]
.

For Â12(u), it follows that

Â12(u) =

[
1

T

T∑
t=1

Gt(u)F̂ ′tH
−1

]
λ̄0

=

[
1

T

T∑
t=1

F̂te
iu2πt/T F̂ ′tH

−1 −

(
1

T

T∑
t=1

F̂tF̂
′
te

iu2πt/T

)(
1

T

T∑
t=1

F̂tF̂
′
t

)
H−1

]
λ̄0
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= 0,

where the last equality comes from the fact that 1
T

∑T
t=1 F̂tF̂

′
t = IR.

By Bai (2003),

F̂t −H ′Ft = V −1
NT

(
1

T

T∑
s=1

F̂sγN (s, t) +
1

T

T∑
s=1

F̂sζst +
1

T

T∑
s=1

F̂sηst +
1

T

T∑
s=1

F̂sξst

)
.

Then, it follows

Ft −H ′−1F̂t = −H ′−1V −1
NT

(
1

T

T∑
s=1

F̂sγN (s, t) +
1

T

T∑
s=1

F̂sζst +
1

T

T∑
s=1

F̂sηst +
1

T

T∑
s=1

F̂sξst

)
,

and

1

T

T∑
s=1

F̂sγN (s, t) = Op

(
1√

TCNT

)
1

T

T∑
s=1

F̂sζst = Op

(
1√

NCNT

)
1

T

T∑
s=1

F̂sηst = Op

(
1√
N

)
1

T

T∑
s=1

F̂sξst = Op

(
1√

NCNT

)
,

where
CNT = min{

√
N,
√
T}.

We claim only 1
T

∑T
s=1 F̂sγN (s, t) and 1

T

∑T
s=1 F̂sηst can be the leading terms. Let T ∝ Nν , we have the

following three cases

• CASE 1: If ν > 1/2, then the leading term is

1

T

T∑
s=1

F̂sηst = Op

(
1√
N

)
.

• CASE 2: If ν = 1/2, then the leading terms will be

1

T

T∑
s=1

F̂sηst +
1

T

T∑
s=1

F̂sγN (s, t) = Op

(
1√
N

)
= Op

(
1

T

)
.

• CASE 3: If ν < 1/2, then the leading term will be

1

T

T∑
s=1

F̂sγN (s, t) = Op

(
1

T

)
.
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When ν > 1/2,

Â11(u) =

 1

T

T∑
t=1

Gt(u)

(
−H ′−1V −1

NT

1

T

T∑
s=1

F̂sηst

)′ λ̄0 + op(1)

=

 1

T

T∑
t=1

Gt(u)

[
−H ′−1V −1

NT

(
1

T

T∑
s=1

F̂sF
′
s

)(
1

N

N∑
i=1

λi0εit

)]′ λ̄0 + op(1)

=

− 1

T

T∑
t=1

Gt(u)

(
1

N

N∑
i=1

λi0εit

)′(
1

T

T∑
s=1

F̂sF
′
s

)′
V −1
NTH

−1

 λ̄0 + op(1)

= − 1

NT

N∑
i=1

T∑
t=1

Gt(u)εitλ
′
i0

(
1

T

T∑
s=1

F̂sF
′
s

)′
V −1
NTH

−1λ̄0 + op(1)

= − 1

NT

N∑
i=1

T∑
t=1

Gt(u)εitλ
′
i0 (Λ′0Λ0/N)

−1
λ̄0 + op(1).

Therefore, we combine Â1(u) and Â2(u) and get

Â(u) =
1

NT

N∑
i=1

T∑
t=1

Gt(u)Biεit + op(1),

where
Bi = 1− λ′i0 (Λ′0Λ0/N)

−1
λ̄0.

When ν < 1/2,

Â11(u) =

 1

T

T∑
t=1

Gt(u)

(
−H ′−1V −1

NT

1

T

T∑
s=1

F̂sγN (s, t)

)′ λ̄0 + op(1)

=

 1

T

T∑
t=1

Gt(u)

(
−H ′−1V −1

NT

1

T

T∑
s=1

F̂s

(
1

N

N∑
i=1

E(εisεit)

))′ λ̄0 + op(1)

= − 1

NT 2

N∑
i=1

T∑
s,t=1

Gt(u)F̂ ′sE(εisεit)V
−1
NTH

−1λ̄0 + op(1)

= − 1

NT 2

N∑
i=1

T∑
t=1

Gt(u)F̂ ′tE(ε2
it)V

−1
NTH

−1λ̄0

− 1

NT 2

N∑
i=1

T∑
s6=t

Gt(u)F̂ ′sE(εisεit)V
−1
NTH

−1λ̄0 + op(1)

= Â111(u) + Â112(u) + op(1), say.

When εit is weakly stationary, then E(ε2
it) = σ2

i , and

Â111(u) = − 1

T

T∑
t=1

Gt(u)F̂tV
−1
NTH

−1λ̄0

(
1

N

N∑
i=1

σ2
i

)
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= −

[
1

T

T∑
t=1

F̂te
iu2πt/T F̂ ′t −

(
1

T

T∑
t=1

F̂tF̂
′
te

iu2πt/T

)(
1

T

T∑
t=1

F̂tF̂
′
t

)]
V −1
NTH

−1λ̄0

(
1

N

N∑
i=1

σ2
i

)
= 0.

For Â112(u),

Â112(u) = − 1

NT 2

N∑
i=1

T∑
s6=t

Gt(u)F̂ ′sE(εisεit)V
−1
NTH

−1λ̄0

= − 1

T 2

T∑
s6=t

Gt(u)F̂ ′sγN (s, t)V −1
NTH

−1λ̄0

= − 1

T 2

T∑
s6=t

F̂tF̂
′
sMt(u)γN (s, t)V −1

NTH
−1λ̄0 + op(1)

= − 2

T 2

T−1∑
j=1

T−j∑
t=1

F̂tF̂t+jMt(u)γN (t, t+ j)V −1
NTH

−1λ̄0 + op(1)

= − 2

T 2

T−1∑
j=1

T−j∑
t=1

E(F̂tF̂t+j)Mt(u)γN (t, t+ j)V −1
NTH

−1λ̄0

− 2

T 2

T−1∑
j=1

T−j∑
t=1

[
F̂tF̂t+j − E(F̂tF̂t+j)

]
Mt(u)γN (t, t+ j)V −1

NTH
−1λ̄0 + op(1)

= − 2

T

T−1∑
j=1

E(F̂tF̂t+j)γN (t, t+ j)

[
1

T

T−j∑
t=1

Mt(u)

]
V −1
NTH

−1λ̄0 + op(1)

= O(T−1) ∗O(T−1/2),

where we use the fact that

1

T

T∑
t=1

Mt(u) = O(T−1/2),

and
∞∑

j=−∞
E(FtFt+j)γN (t, t+ j) < C <∞

.
Therefore, Â11(u) = Op(T−3/2). And

Â(u) = − 2

T

T−1∑
j=1

E(F̂tF̂t+j)γN (t, t+ j)

[
1

T

T−j∑
t=1

Mt(u)

]
V −1
NTH

−1λ̄0 + op(1),

which is a degenerate statistic. When ν = 1/2, it is straightforward to show that

Â(u) =
1

NT

N∑
i=1

T∑
t=1

Gt(u)Biεit −
2

T

T−1∑
j=1

E(F̂tF̂t+j)γN (t, t+ j)

[
1

T

T−j∑
t=1

Mt(u)

]
V −1
NTH

−1λ̄0 + op(1).

where
Bi = 1− λ′i0 (Λ′0Λ0/N)

−1
λ̄0.
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Proof of Proposition 3.2
Proof. Under H1, we can show that

Â1(u) =
1

N

N∑
i=1

[
1

T

T∑
t=1

Gt(u)F ′tλit

]

=
1

N

N∑
i=1

[
1

T

T∑
t=1

F̂tF
′
te

iu2πt/Tλit −

(
1

T

T∑
t=1

F̂tF̂
′
te

iu2πt/T

)
1

T

T∑
t=1

F̂tF
′
tλit

]

By Lemma A.1, we have

1

T

T∑
t=1

F̂tF
′
te

iu2πt/Tλit ⇒ E(F̂tF
′
t ) lim
T→∞

1

T

T∑
t=1

eiu2πt/Tλit,

and (
1

T

T∑
t=1

F̂tF̂
′
te

iu2πt/T

)
1

T

T∑
t=1

F̂tF
′
tλit ⇒ E(F̂tF

′
t ) lim
T→∞

1

T

T∑
t=1

eiu2πt/T lim
T→∞

1

T

T∑
t=1

λit.

Thus

Â1(u)⇒ E(F̂tF
′
t ) lim
N,T→∞

1

N

N∑
i=1

(
1

T

T∑
t=1

eiu2πt/Tλit −
1

T

T∑
t=1

eiu2πt/T 1

T

T∑
t=1

λit

)
.

Furthermore, if λit = λi(
t
T ), we have

Â1(u)⇒ E(F̂tF
′
t ) lim
N→∞

1

N

N∑
i=1

c̃ov(eiu2πτ , λi(τ)),

where c̃ov(eiu2πτ , λi(τ)) is a pseudo-covariance such that

c̃ov[eiu2πτ , λi(τ)] =

∫ 1

0

eiu2πτλi (τ) dτ −
∫ 1

0

eiu2πτdτ

∫ 1

0

λi (τ) dτ.

By Lemma A.2, Â2(u) = Op
(

1√
NT

)
. Thus, we proved the result.

Proof of Theorem 3.3
Proof. Under H0 : λit = λi0, Proposition 3.1 shows

Â(u) =
1

NT

N∑
i=1

T∑
t=1

Gt(u)Biεit +O(T−3/2) + op(1).

Given
√
N/T → 0,

√
NTÂ(u) =

1√
NT

N∑
i=1

T∑
t=1

Gt(u)Biεit + op(1)
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By Lemma A.3,
√
NTÂ(u)⇒ G(u),

where G(u) is a complex-valued Gaussian process with covariance-kernel K(u1, u2) such that

K(u1, u2) = lim
N,T→∞

1

NT

T∑
s,t=1

N∑
i,j=1

BiBjH
′
0E [FtF

′
sεitεjs]H0Mt(u1)Ms(u2)∗.

By Lemma A.1, it is straightforward to show that Â(u) is stochastically equicontinuous over u ∈ R, under
Assumption A.4 and continuous mapping theorem, we have

D̂
d→
∫
R
‖G(u)‖2W (u)du.

Proof of Theorem 3.4
Proof. Under H1(aNT ) : λit = λi0 + aNT git,

Â1(u) =
1

NT

N∑
i=1

T∑
t=1

Gt(u)F ′tλit

=
1

NT

N∑
i=1

T∑
t=1

Gt(u)F ′tλi0 +
aNT
NT

N∑
i=1

T∑
t=1

Gt(u)F ′tgit.

By Proposition 3.1, we have

1

NT

N∑
i=1

T∑
t=1

Gt(u)F ′tλi0

= − 1

NT

N∑
i=1

T∑
t=1

Gt(u)εitλ
′
i0(Λ′0Λ0/N)−1λ̄0 +Op(T−3/2) + op(1).

Given aNT = 1√
NT

, by Proposition 3.2,

√
NT

aNT
NT

N∑
i=1

T∑
t=1

Gt(u)F ′tgit ⇒ ξ(u),

where

ξ(u) = E(F̂tF
′
t ) lim
N,T→∞

1

N

N∑
i=1

(
1

T

T∑
t=1

eiu2πt/T git −
1

T

T∑
t=1

eiu2πt/T 1

T

T∑
t=1

git

)
.

Given Theorem 3.3, it follows
√
NTÂ(u)⇒ ξ(u) + G(u)

when
√
N/T → 0. By continuous mapping theorem, we have

D̂
d→
∫
‖ξ(u) + G(u)‖2W (u)du.
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Table A.1 Size of tests under DGP.S1 when the number of factors is determined from the data

N T DB SW HILM HIW CDGLM CDGW BELM
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

i.i.d. error term: εit ∼ i.i.d.N(0, 1)
100 100 4.6 9.2 5.6 12.6 1.0 4.4 0.2 1.4 2.0 6.2 5.2 12.8 2.7 6.3
100 200 4.0 10.8 6.6 12.8 2.2 7.0 2.2 6.6 3.4 8.0 4.8 11.6 3.5 7.5
200 100 5.6 11.0 5.0 11.2 1.2 5.0 0.6 2.6 2.2 6.2 7.6 11.8 2.8 6.4
200 200 5.8 10.8 5.6 11.4 3.4 7.6 3.0 8.6 2.4 7.2 6.6 9.8 3.3 7.3

heteroskedastic error term: εit = σivit, σi ∼ i.i.d.U(0.5, 1.5), vit ∼ i.i.d.N(0, 1)
100 100 5.2 10.6 5.4 12.0 0.8 4.4 0.2 1.6 1.4 7.0 5.6 12.2 2.8 6.3
100 200 5.4 11.4 6.8 14.6 2.2 7.2 2.4 6.8 3.4 8.6 4.6 11.2 3.5 7.4
200 100 4.8 11.0 5.6 10.0 1.4 5.2 0.6 2.6 2.0 5.8 7.2 11.8 2.8 6.4
200 200 5.0 10.2 5.4 11.8 3.2 7.6 3.0 8.4 2.0 7.0 5.8 9.2 3.3 7.3

cross sectional dependence error term: ε·t ∼ i.i.d.N(0,Σe)
100 100 5.8 10.2 5.4 10.2 1.0 4.0 0.2 1.0 1.6 7.0 6.6 12.8 2.7 6.3
100 200 5.0 10.8 4.2 8.8 2.0 6.4 2.0 4.6 2.0 7.2 5.0 10.6 3.4 7.4
200 100 8.0 12.2 5.8 12.4 1.6 6.0 0.8 3.0 1.6 5.8 7.0 12.0 2.8 6.4
200 200 5.4 9.2 5.4 11.2 3.2 7.6 3.4 8.0 2.6 7.2 5.8 9.4 3.5 7.6

time series dependence error term: εit = 0.5εit−1 + vit, vit ∼ i.i.d.N(0, 1)
100 100 7.6 13.8 100 100 1.0 4.0 0.2 1.0 1.6 7.0 6.6 12.8 2.7 6.4
100 200 4.0 10.4 100 100 2.0 6.4 2.0 4.6 2.0 7.2 5.0 10.6 3.4 7.4
200 100 5.2 13.0 100 100 1.6 6.0 0.8 3.0 1.6 5.8 7.0 12.0 2.8 6.4
200 200 6.0 11.4 100 100 3.2 7.6 3.4 8.0 2.6 7.2 5.8 9.4 3.5 7.6

cross sectional and time series dependence error term: ε·t = 0.5ε·t−1 + v·t, v·t ∼ i.i.d.N(0,Σe)
100 100 6.8 13.0 100 100 0.4 3.2 0.4 2.0 2.4 8.0 4.4 11.2 13.6 22.5
100 200 7.2 12.6 100 100 2.4 6.0 3.4 8.0 3.2 8.2 4.8 9.4 18.1 28.4
200 100 6.6 12.4 100 100 1.2 3.8 .4 2.0 2.0 5.4 6.0 12.0 13.9 23.1
200 200 7.0 13.4 100 100 3.2 6.8 2.6 9.6 4.8 11.6 6.8 12.4 17.8 27.8

Note: See the note in Table 1.

Furthermore, when
√
N/T →∞,

√
NTÂ(u)⇒∞.

B Some Additional Simulation Results

In this appendix, we report some additional simulation results. Tables A.1 to A.3 report the size and power
performance of various tests at the 5% and 10% significant levels when the number of factors is determined
by Bai and Ng’s (2002) ICp1. The results are similar to those reported in Tables 1 to 3.
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Table A.2 Power of tests under DGP.P1-P2 when the number of factors is determined from the data

N T DB SW HILM HIW CDGLM CDGW BELM
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

i.i.d. error term: εit ∼ i.i.d.N(0, 1)
DGP.P1 100 100 99.0 99.4 71.0 80.2 1.6 5.6 0.0 2.0 2.2 7.6 6.0 12.6 5.4 10.8

100 200 100 100 97.6 99.0 4.6 9.8 5.6 12.2 3.6 7.6 6.0 11.4 10.5 17.7
200 100 100 100 88.6 93.2 1.4 5.4 1.2 3.2 2.4 9.0 7.6 11.2 5.4 10.7
200 200 100 100 100 100 5.4 12.6 5.6 12.8 4.0 8.8 3.6 10.6 10.7 17.9

DGP.P2 100 100 26.2 37.4 10.2 17.8 1.2 4.4 0.2 1.6 1.8 7.6 4.0 10.2 2.9 6.6
100 200 62.6 76.6 21.4 31.0 2.2 7.4 2.2 5.8 3.8 8.6 4.8 9.4 4.0 8.3
200 100 42.0 59.4 11.4 20.0 1.2 5.4 0.4 3.0 3.2 8.4 6.6 10.4 2.9 6.7
200 200 87.2 93.4 24.6 37.4 3.4 8.0 2.4 8.2 4.2 9.2 2.8 9.8 3.8 8.2

heteroskedastic error term: εit = σivit, σi ∼ i.i.d.U(0.5, 1.5), vit ∼ i.i.d.N(0, 1)
DGP.P1 100 100 99.0 99.8 73.6 81.4 1.6 5.6 0.0 0.2 2.2 7.6 5.6 12.2 6.7 12.3

100 200 100 100 98.2 98.6 4.6 9.8 5.6 12.2 3.6 7.8 6.4 11.6 13.2 20.5
200 100 100 100 91.4 95.8 1.4 5.2 1.2 3.0 2.6 9.0 7.4 11.6 6.7 12.2
200 200 100 100 100 100 5.8 13.0 6.0 12.8 4.0 9.2 3.8 10.4 13.5 20.7

DGP.P2 100 100 26.6 40.6 10.2 18.8 1.2 4.2 0.2 1.6 1.8 7.8 3.8 10.2 2.9 6.6
100 200 62.8 75.4 21.2 33.8 2.6 6.8 2.4 6.0 4.2 8.6 4.8 10.2 4.1 8.6
200 100 45.6 62.8 13.2 20.2 1.4 5.4 0.4 3.2 3.2 9.2 6.4 10.4 3.0 6.8
200 200 86.4 92.6 28.2 39.4 3.2 7.6 2.4 8.2 4.0 9.6 3.0 9.8 4.0 8.5

cross sectional dependence error term: ε·t ∼ i.i.d.N(0,Σe)
DGP.P1 100 100 98.6 99.4 66.2 76.4 1.2 4.6 0.0 1.2 2.4 7.4 5.6 13.0 5.4 10.6

100 200 100 100 97.6 98.6 5.2 9.8 4.4 12.4 3.0 8.4 5.6 10.8 10.9 18.0
200 100 100 100 88.0 94.6 1.4 5.4 1.0 4.0 2.2 8.4 6.4 11.4 5.5 10.8
200 200 100 100 100 100 5.8 13.2 5.8 12.0 4.4 8.8 4.6 10.6 10.9 18.1

DGP.P2 100 100 26.4 38.0 10.4 17.2 1.2 5.0 0.0 0.8 2.6 7.2 4.4 10.2 2.9 6.6
100 200 62.8 77.6 17.4 27.4 2.6 7.4 1.6 6.6 4.0 9.2 4.6 8.8 3.8 8.1
200 100 40.6 56.4 12.4 19.8 1.6 5.0 0.6 3.2 2.2 7.8 5.8 10.2 3.0 6.7
200 200 88.6 94.6 27.6 42.8 3.4 7.8 3.2 7.8 4.2 9.2 2.6 9.8 3.9 8.5

time series dependence error term: εit = 0.5εit−1 + vit, vit ∼ i.i.d.N(0, 1)
DGP.P1 100 100 89.4 92.8 99.8 100 1.2 5.0 0.4 3.4 1.6 6.2 4.6 11.0 16.5 26.3

100 200 100 100 100 100 5.4 10.4 5.4 14.0 4.6 9.6 5.6 11.6 24.5 35.4
200 100 98.6 99.2 100 100 1.8 4.8 0.8 3.2 2.0 6.4 4.8 12.0 16.4 26.2
200 200 100 100 100 100 5.8 12.6 5.0 15.0 5.8 9.4 7.4 12.0 24.6 35.6

DGP.P2 100 100 16.4 26.4 99.0 99.4 0.8 4.4 0.2 1.8 1.4 6.2 3.2 9.8 13.7 22.8
100 200 41.2 58.8 100 100 2.8 7.4 2.8 6.6 3.8 10.4 4.0 11.2 18.2 28.3
200 100 24.4 38.0 100 100 1.6 4.6 0.4 2.0 1.4 6.2 3.4 8.8 13.5 22.6
200 200 65.2 79.8 100 100 3.2 7.4 2.6 8.4 4.6 10.8 4.4 10.2 18.2 28.4
cross sectional and time series dependence error term: ε·t = 0.5ε·t−1 + v·t, v·t ∼ i.i.d.N(0,Σe)

DGP.P1 100 100 89.4 94.4 100 100 1.0 4.8 0.4 3.0 2.6 7.8 4.8 10.6 16.5 26.3
100 200 99.0 99.2 100 100 5.0 10.8 5.6 13.8 4.2 8.8 6.0 11.6 25.0 35.8
200 100 99.0 100 100 100 1.6 4.4 0.6 3.2 2.0 5.6 4.6 12.4 16.8 26.6
200 200 100 100 100 100 4.8 12.4 5.2 14.4 5.2 9.8 7.0 12.2 24.6 35.4

DGP.P2 100 100 14.8 23.4 99.8 100 0.8 3.2 0.4 1.6 1.8 6.8 4.0 9.0 13.6 22.8
100 200 39.4 53.2 100 100 2.6 7.2 3.2 8.2 4.4 10.4 4.6 11.0 18.5 29.0
200 100 25.6 40.4 100 100 1.2 3.8 0.4 2.2 1.4 6.2 4.0 9.0 14.0 23.0
200 200 65.8 78.8 100 100 2.8 6.6 2.2 8.4 4.6 10.8 5.0 10.4 18.2 28.5

Note: See the note in Table 1.
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Table A.3 Power of tests under DGP.P3 when the number of factors is determined from the data

N T DB SW HILM HIW CDGLM CDGW BELM
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

i.i.d. error term: εit ∼ i.i.d.N(0, 1)
DGP.P3 100 100 82.2 91.2 37.0 48.4 0.6 3.6 0.4 2.4 2.2 8.0 5.8 12.0 3.7 8.2

100 200 98.2 98.6 72.0 80.8 1.6 5.6 3.8 9.8 4.2 8.8 4.8 12.0 5.5 11.0
200 100 89.6 95.6 42.8 54.4 1.6 4.6 1.0 3.4 1.8 4.6 9.8 15.6 3.7 8.2
200 200 100 100 89.8 93.4 1.8 5.6 3.6 11.2 2.6 7.0 7.4 12.6 5.5 11.0

heteroskedastic error term: εit = σivit, σi ∼ i.i.d.U(0.5, 1.5), vit ∼ i.i.d.N(0, 1)
100 100 78.4 89.6 31.6 43.4 0.6 3.0 0.4 2.6 2.2 8.4 7.8 13.2 3.9 8.2
100 200 96.0 97.4 63.8 73.4 1.2 5.0 3.8 10.4 3.2 7.6 5.2 12.6 5.7 11.0
200 100 86.6 96.0 37.8 49.6 1.4 4.6 1.0 3.6 1.6 4.8 9.8 14.6 3.8 8.1
200 200 100 100 83.0 90.6 2.0 5.6 4.2 11.2 2.6 7.6 8.2 13.8 5.7 11.1

cross sectional dependence error term: ε·t ∼ i.i.d.N(0,Σe)
100 100 82.2 90.6 31.4 43.6 0.8 3.2 0.8 2.8 2.2 8.4 8.6 14.0 3.4 7.5
100 200 98.4 99.2 74.0 82.4 1.4 5.4 3.2 9.6 3.4 7.8 5.0 12.0 5.0 10.2
200 100 90.6 96.2 45.8 57.8 1.4 4.6 1.2 4.0 1.6 5.2 10.4 15.2 3.5 7.7
200 200 98.8 99.6 91.8 95.0 1.6 5.0 3.8 11.4 2.2 7.6 7.8 15.0 5.3 10.4

time series dependence error term: εit = 0.5εit−1 + vit, vit ∼ i.i.d.N(0, 1)
100 100 55.0 71.8 99.2 100 0.4 3.2 0.4 3.4 1.8 6.8 7.8 13.8 14.5 24.0
100 200 91.0 94.8 100 100 2.4 4.6 4.0 10.8 2.8 8.2 5.4 13.0 19.7 30.1
200 100 76.0 86.2 99.8 100 1.2 3.0 0.8 2.8 1.6 6.4 7.6 14.8 14.5 24.0
200 200 96.2 97.0 100 100 1.8 3.8 2.6 12.2 3.0 8.0 9.0 15.4 19.9 30.4
cross sectional and time series dependence error term: ε·t = 0.5ε·t−1 + v·t, v·t ∼ i.i.d.N(0,Σe)
100 100 55.4 71.2 100 100 0.2 2.2 0.4 3.4 1.8 6.6 7.2 14.4 14.7 24.2
100 200 91.2 95.8 100 100 1.4 5.4 3.2 9.0 2.4 7.8 4.8 11.4 20.3 30.8
200 100 76.0 87.0 100 100 0.8 3.6 0.6 2.6 1.8 5.4 7.2 13.6 14.8 24.2
200 200 96.0 96.6 100 100 1.8 4.2 3.4 11.2 2.8 6.8 8.2 15.4 20.0 30.5

Note: See the note in Table 1.
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