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Abstract

We propose a new test for structural changes in large dimensional factor models via a discrete Fourier
transform (DFT) approach. If structural changes exist, the conventional principal component analysis
(PCA) will fail to estimate common factors and factor loadings consistently. The estimated residuals
will contain information about structural changes. Therefore, we can compare the DFT of the residuals
with the zero spectrum implied by no structural change. By construction, the proposed test is powerful
against both smooth structural changes and abrupt structural breaks with possibly unknown number of
breaks and unknown break dates in factor loadings. It can detect a class of local alternatives at the rate
T~Y2N=Y2 and so is asymptotically more efficient than the existing tests in the literature. Moreover,
it is easy to implement and tuning parameter-free. And our test is robust to serial correlation and
cross-sectional dependence of unknown form. Monte Carlo studies demonstrate its reasonable size and
excellent power in detecting structural changes of unknown types in factor loadings. In an application to
Stock and Watson’s (2012) U.S. macroeconomic data, we find significant evidence against time-invariant
factor loadings.
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1 Introduction

Factor models are useful for analyzing large dimensional macroeconomic and financial datasets. The Princi-
pal Component Analysis (PCA) has been extensively used to deal with latent factor models. Most existing
works (e.g., Stock and Watson, 2002; Bai and Ng, 2002; Bai, 2003) assume the factor loadings, which cap-
ture the relationship between economic variables and the unobserved common factors, are time invariant.
However, it is likely that the underlying structure of the dataset changes over time when the time span is
long. Even though Stock and Watson (2002, 2009) point out that the estimated factors by the PCA are
still consistent when the factor loadings undergo small instabilities, it is difficult to believe that the factor
loadings are time-invariant or only have small changes during a long sampling period for macroeconomic
and financial data. The changing economic environment such as policy shifts, economic transition, prefer-
ence changes and technological progress, may influence the relationship between economic variables and the
unobserved common factors, which is expected to induce the time varying behavior of factor loadings. If the
assumption of time-invariant factor loadings fails, the estimated common factors can be inconsistent and the
inference and forecasting based on such an assumption may lead to misleading conclusions. Furthermore, if
the factor loadings suffer from structural changes, most of the existing methods such as Bai and Ng (2002),
Onatski (2009), Ahn and Horenstein (2013) tend to deliver a wrong number of common factors.

Testing for structural changes in time series models is pioneered by Chow (1960). In the past decade,
along with the broad applications of factor models, a growing literature starts to focus on modeling and
testing structural changes in factor models. Stock and Watson (2009) investigate the forecasting reliability
when there exist abrupt structural breaks in factor loadings. Breitung and Eickmeier (2011) propose LR,
LM and Wald tests to detect the existence of a single structural break in factor loadings. Chen et al.
(2014) propose a two-stage procedure to detect a large break in factor loadings in which they first obtain
the estimated common factors via PCA and then test parameter stability in a regression of one estimated
factor on the remaining factors. Corradi and Swanson (2014) propose a test for structural stability in both
factor loadings and factor-augmented forecasting regression coefficients. Han and Inoue (2015) propose a
joint test for structural break of factor loadings by comparing the pre- and post-break subsample second
moments of estimated factors. Yamamoto and Tanaka (2015) propose a modified version of Breitung and
Eickmeier’s (2011) test that avoids the non-monotonic power problem. Cheng et al. (2016) consider the
case in which both factor loadings and the number of factors may change simultaneously. Although the
aforementioned works provide useful econometric tools on detecting the possible structural breaks in factor
loadings, they only focus on testing for abrupt structural breaks, especially a single structural break. The
source of structural changes as preference changes, technological progress and institutional transformation
usually take effect gradually over time. Even though some policy switches occur immediately, it may take
some time for an economic agent to react. Due to price stickiness, for instance, a company may not be able
to adjust the price of its product when facing a corporate tax increase. Thus, it is more realistic to assume
smooth changes rather than abrupt breaks in many economic scenarios. In fact, several papers study time
varying factor models, e.g., Stock and Watson (2002); Banerjee et al. (2008), Bates et al. (2013) and
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or a vector autoregressive process and discuss the estimation problem. However, they do not consider the
testing problem of structural change. Recently, Su and Wang (2017) propose an Lo-distance-based test
statistic to check the stability of factor loadings. They estimate the time-varying factor loadings and the
latent common factors by a local version of PCA, and construct statistic to check the null hypothesis of no
structural change by comparing the fitted values of the common components with those estimated by the
conventional PCA.

In this paper, we propose a new test for structural changes in large dimensional factor models via a
discrete Fourier transform (DFT) approach that is first proposed in Fu, Hong and Wang (FHW, hereafter)
(2018) under the framework of time series models. Unlike the related existing tests that are based on
time domain analysis, FHW propose a novel method that investigate the structural changes in frequency
domain. Our test is constructed using the similar idea but works for a different scenario. FHW’s tests
are proposed under the framework of linear time series regressions with observed regressors. While for
the large dimensional factor models, both the factor loadings and common factors are unobservable. The
intuition behind our test is quite straightforward. If factor loadings change over time, then the conventional
PCA will fail to capture the time-varying feature of the true factor loadings. As a result, the estimated
residuals based on the conventional PCA will contain the time-varying component. By the discrete Fourier
transform, we can project the residuals onto the frequency domain and infer the existence of structural
changes. Compared with the existing tests in the literature, the proposed test has the following appealing
features.

First, our test is consistent against a wide range of alternatives of structural changes. the test is powerful
against various kinds of smooth structural changes as well as abrupt structural breaks in factor loadings. For
abrupt structural breaks, we require that neither the number of breaks nor the break dates to be known.
This is contrast to the existing parametric tests for stability of factor loadings, most of which focus on
abrupt structural breaks, especially the case with a single break point.

Second, the test can detect a class of local alternatives that converges to the null hypothesis at a faster
rate than the existing tests for structural changes in factor models. Let N and 7" denote the numbers of
cross-sectional units and time series periods. Then the rate of local alternatives that our test can detect is
N—1/27-1/2 which is faster than the rate of local alternatives for such parametric tests as Breitung and
Eickmeier (2011), Chen et al. (2014), Han and Inoue (2015) and the nonparametric test by Su and Wang
(2017). This is an advantage of using the discrete Fourier transform. In comparison, Su and Wang (2017)
can only detect a class of local alternatives at a rate of T-/2N~1/4p=1/4 where h is a bandwidth, while the
parametric tests can only capture single structural break with a rate of 7~1/2. More importantly, as proved
by Chen et al. (2014), the order N—1/27=1/2 is the upper bound of structural changes in factor loadings
that guarantees the consistency of estimated common factors and the number of factor loadings. That is,
if the order of magnitude of structural changes in factor loadings is larger than N~/27-1/2  the estimated
number of common factors and the estimated common factors would be inconsistent. As a result, we could
detect any structural changes in factor loadings that may lead to inconsistent estimation of the number of

factors and the common factors. Simulation studies also demonstrate the significant power improvement of



our test over the existing tests in the literature.

Third, our test is tuning parameter-free. It avoids the delicate business of choosing a bandwidth and
the arbitrariness of specifying trimming parameters. More importantly, the power of the smoothed non-
parametric test by Su and Wang (2017) depends on the choice of the bandwidth h. While they propose
a bootstrap version test statistic to relieve this problem, the power of their test is still sensitive to the
choice of bandwidth in finite samples. Furthermore, different choices of a bandwidth may lead to conflicting
conclusions. The supremum-type tests of Breitung and Eickmeier (2011), Chen et al. (2014), Han and
Inoue (2015) and Cheng et al. (2016) all rely on the pre-specified trimming parameter and hence would
miss possible structural changes in the boundary regions.

Finally, our test allows for both cross-sectional dependence and temporal dependence of unknown forms
in the error term. Su and Wang (2017) allows for cross-sectional dependence, but require the error term
to be a martingale difference sequence. Hence, it assumes that all time series dependence in the observed
data is due to the small dimensional common factors. This is rather restrictive for factor analysis with
macroeconomic time series, or multi-country or multi-sector factor models. We relax this assumption to
allow for time series dependence, and hence broaden the applicability of the proposed test.

The rest of this paper is organized as follows. We introduce our test in Section 2 and establish its
asymptotic theory in Section 3. We then demonstrate its finite sample performance in Section 4 and
provide an empirical application to U.S. Macroeconomic data in Section 5. We conclude in Section 6.
Throughout this paper, we denote i = v/—1 to be an imaginary number. For an m x n real matrix A,
we denote its transpose as A', its Euclidean norm as [|A[|(= 22, 27, |A;;2]1/?), where “="means “is
defined as”. The operator 2 denotes convergence in probability, 4 convergence in distribution, and plim
the probability limit. We use (N,T) — oo to denote that N and T pass to infinity jointly. Let C € (0, 00)

denote a generic positive constant that may vary from case to case.

2 Hypotheses and Test Statistic

In this section, we introduce the hypotheses of interest and show how to detect structural changes in factor

models via a DFT approach.

2.1 Hypotheses

Let {X;;,i=1,2,...,N;t=1,2,...,T} be an N-dimensional time series with 7" observations. The index
i represents the ¢th cross-sectional unit in panel data set or the ¢th random variable in a multivariate time

series data set. We assume that X;; is generated via the following factor model
Xit = N Fy + e, (2.1)

where F} is an R X 1 vector of unobserved common factors, A;; is an R x 1 vector of factor loadings that

can admit abrupt and/or smooth structural changes over time, and €;; is the idiosyncratic error term.



The null hypothesis of no structural change in the above factor model is:
Hy:Ais =Ap fori=1,2,...,Nand t=1,2,...,T. (2.2)
The alternative hypothesis is
H; : Aiz # Ao for some non-negligible values of (i,t). (2.3)

Obviously, under Hp, ;¢ is time-invariant and model degenerates to the conventional factor model
with time-invariant factor loadings. This model has been elaboratively studied in the literature (e.g., Stock
and Watson, 2002; Bai and Ng, 2002; Bai, 2003). However, since a data may span a long time period,
factor loadings may change over time during the sampling period. In this regard, testing for structural
changes in factor models has drawn more and more attention. See, e.g., Breitung and Eickmeier (2011),
Chen et al. (2014), Cheng et al. (2016), and Han and Inoue (2015). Most existing works focus on testing
for a single structural break in factor loadings by using some supremum-type test statistics. However, it
is rather restrictive to assume only a single abrupt structural break in factor loadings, since usually no
prior information about possible structural changes is available in practice. Recently, Su and Wang (2017)
model Ay = A\;(¢/T), where A;(-) is a deterministic function of scaled time ratio ¢/7T. By assuming A;; to
be a piece-wise smooth function, Su and Wang (2017) allow for both smooth structural changes and abrupt
structural breaks in factor loadings. In this paper, we do not assume that \;; is a smooth deterministic
function of scaled time ratio t/T. Thus, the alternative allows various kinds of structural changes in
factor loadings, including smooth structural changes, a single structural break as well as multiple structural
breaks, with possibly unknown break dates or unknown number of breaks. The setting of our test is rather

general.

2.2 Test Statistic

Under the null hypothesis of no structural change in factor loadings, we can follow Bai and Ng (2002) and
Bai (2003) and apply the PCA method to estimate the following model

Xiy = NoF, + €y, (2.4)

where s;rt = ¢4+ under Hy and they are distinct under H; .

Let X; = (X1t7...,XNt)/, g = (Elt,...,ENt)/, EI = (EL,...,E}LW)/, F = (Fl,...7FT)’7 and Ay =
Moy Ano) - Put X = (X1,..., X7) , e = (e1,...,e7), el = (51,...,5;)’. Then we can rewrite 1} in
vector form

X = FAy+¢'.



The PCA method solves the following minimization problem:

T
. - / _ I\ _ L\ 2
min tr (X = FAQ) (X = FAQ) =D (Xi = NgF)

i=1 t=1

under certain identification restrictions. In this paper, we follow Bai (2003) and consider the following
identification restrictions:

T 'F'F =1 and A)A, is a diagonal matrix.

Let F} and \;o be the principal component estimators of F; and )\, respectively under the above identifica-
tion restrictions. Let F' = (Fy, ..., Fr) and Ag = (A0, ..., Awo)’- It is well known that F'is v/T times cigenvec-
tors corresponding to the R largest eigenvalues of the T'x T matrix X X', and Aj = (F'F)"'F'X = T~ F'X.

After obtaining the restricted estimators Ft and 5\1‘0 of F; and \;g, we now consider the following complex-

valued empirical process:

N T
i _ 1 Frz, pluznt/T
W = Y R
t=1

1 TZ=1 § L&
_ ? Z At <N Zélf> 6iu27rt/T,

where &; = Xt — ;\;Oﬁ't is the residuals from PCA. To construct A(u)7 we first perform a discrete Fourier
transform of Ftéit for each i, and then take the average over cross-sectional units. The individual DFT can
detect structural change at each i. Taking a cross-sectional average can combine individual DFT's together.
Such a treatment is quite common in the literature. For instance, when testing for cross section dependence
in panel data model, Pesaran (2004) first estimates pairwise serial correlations and then construct a test
via their cross-sectional average; Levin et al. (2002) consider testing for unit root in panel data and their
test statistics is constructed via double summation in both cross-sectional and time series indices; Chen and
Huang (2018) test for smooth structural change in panel data models by comparing the difference between
the consistent estimate under structural change and conventional least squares estimate; In factor models,
Breitung and Eickmeier construct (2011) LR, LM, and Wald statistics at each cross-sectional unit ¢ and
then combine the individual statistics to obtain a pooled test for a single structural break, etc.

A(u) is equivalent to an average of discrete Fourier transforms at each cross-sectional unit 7. If structural
change exits, a test based on A(u) is consistent as long as the DFTs does not cancel with each other. The
intuition behind our test is quite straightforward: if the factor loadings have structural changes, then the
PCA fails to capture the time-varying behavior of A\;¢, and such information will be hidden in the residuals
éit- By DFT, we can reveal such information in the frequency domain, because the possible time-varying
behavior of the factor loadings can be completely captured by the DFT of é;;. By examining the pattern of
the DFT at each frequency, we can detect structural change of unknown types. Compared to the existing

tests that are based on time domain analysis, the DFT-based approach does not need prior information



about the types of structural change. For instance, to apply the tests by Breitung and Eickmeier (2011),
Chen et al. (2014), and Han and Inoue (2015), one needs to specify an abrupt type of structural change.
On the other hand, while the consistent test by Su and Wang (2017) does not require to specify the change
to be abrupt or smooth, it requires nonparametric local smoothing over the time domain. In contrast, our
DFT-based test is free of the aforementioned issues.

To gain further insight into A(u), we decompose it as the following:

N T
§ E Ftéiteiu%rt/T

Alu) =

i=1 t=1 t=1
N T 1 N
= ZZ t( )FI it WZZGt(U)&t
i=1 t=1 i=1 t=1
= Ai(u)+ Az(u),
where we define
R 1 N T
A(u) = WZZ@( VF/ Nt
i=1 t=1
1 N T
Ag (U) == g Z Gt(u)€zt
NT i=1 t=1

and Gy(u) = Fyetv2mt/T _ (% Zthl Ftﬁt’ei“%t/T> F,. Under certain regularity conditions, e.g., F} is weakly

stationary, we can show that G¢(u) is asymptotically equivalent to

1
F, (eluQﬂ't/T _ / elu27‘(7'd7_) ,
0

which is a product of the estimated factor F, and a demeaned Fourier series. The component Ay (u) captures
the structural changes in factor loadings since it is asymptotically equivalent to pseudo-covariance of \;; and
Fourier basis function of time. The component A, (u) is a pure noise term and it determines the asymptotic
distribution given the orthogonality conditions between F; and &;;. Intuitively, the DFT A(u) is equivalent
to a linear projection of X;; onto the frequency domain. The projection vector Gi¢(u) can be viewed as

a filter in the space spanned by F, and time t/T. Tt is asymptotically orthogonal to X;; when the factor



loadings are constant over time. By Euler’s formula, ¢!*?™/T = cos(u2rt/T)+isin(u2xt/T). If the unknown
factor loading has structural change, i.e., A;; is an unknown function of time, then it can be represented as
an infinite sum of Fourier series. Since \;; is contained by X, the linear projection X;; cannot pass the
filter G¢(u) and will converge to a non-constant spectrum. On the other hand, when there is no structural
change, i.e., \;; is a constant function over time, the linear projection of X;; converges to a zero spectrum.

The test is based on Fourier series approximation of unknown A;. To ensure our DFT approach can
detect structural change of unknown form, we need to examine the deviation of A(u) from a zero spectrum

at each frequency u. Thus, we consider the following test statistic
D= NT/ | A(w)|2W (u)du, (2.5)
R

where W : R — RT is a nonnegative symmetric weighting function of u. The use of W (u) allows us to
examine fl(u) at all frequencies via different weights. If we choose a discrete probability mass function, then
degenerates to a weighted sum over various points of u. However, a discontinuous weighting function
may adversely affect the power of the test. In practice, one may like to avoid numerical integration in
by choosing some suitable weighting functions. For example, if we follow Hong et al. (2017) to use the
standard normal weighting function, then the test statistic could be written as:

N T

~ 1 A 2 2

Dw = g7 20 X Filteusss o2t = 9)/TF)
1,j=1t,5=

3 Asymptotic Properties of the Test Statistic

In this section, we derive the asymptotic null distribution of our test and investigate its asymptotic local
power property. We also propose a block bootstrap procedure to improve the finite sample performance of
the test.

3.1 Assumptions

Let v (s,t) = N7 'E(cley), &t = N7lele, — E(eher)], N Fpr (s,t) = NTYE(FyeleF)) and 7555 =
E (es6sF]Fy). We use max;, max;, max; ; and max ; to denote maxj<;<n, Mmaxj<;<7, Maxj<;< N MaXj<i<7
and max; <, <7, respectively. Throughout, we make the following assumptions.

Assumption A.1 [Factors| (i) E (F,F]) = S for some Rx R positive definite matrix ¥ 5; (ii) max; | Fy||®* <
oo for some § > 0; (iii) E||F;||¥% < oo for some & > 0; (iv) E(F,F]) is finite and nonsingular.

Assumption A.2 [Factor Loadings] (i) Aip are nonrandom such that max; [[Xio| < C; (i) N71AjA =
N1t Zf\; AioAyy — B, for some R X R positive definite matrix X,; (iii) The eigenvalues of the R x R

matrix Y pX,, are distinct.

Assumption A.3 [Error term] (i) E(g;;) = 0, max;; Ele;|3T° < C and max; ¢ E||Fye; |84 < C for some

d > 0; (ii) For each i = 1,2,..., N, the process {(g;, Ft),t = 1,2,...} is strong mixing with mixing coeffi-



cients a;(-). a(-) = max; a;(-) satisfies 7% a(s)*/ 9 < C for some § > 0; (iii) max; 30_, [yw (s,1)] < C,
max,, E [NV2¢,|" < €, max, EIN"12 YN 2 — E(2)][* < C; (iv) max, 7, |yw.er (s,8)] < C,
maxz, E|| N~ 2Fele, F!||* < C, and N~1T1 Zmzl Zs,t:l |Tij.st] < C; (v) HgHSp = Op(N'/2 4T3,

Assumption A.4 [Weighting function] (i) W(-) : R — RT is nonnegative, symmetric, continuous and
integrable weighting function; (i) [; |ul*W (u)du < occ.

Assumption A.1 imposes conditions on the latent common factors. We follow Stock and Watson (2002),
Breitung and Eickmeier (2011), Chen et al. (2014), Han and Inoue (2015) and Su and Wang (2017) and
assume that E (F3F}) = X is homogeneous over ¢t. This assumption assumes that there is no structural
change on the second moment of F;. It greatly facilitates the derivation of the asymptotic results and can
be regarded as an identification condition. As is well known, the latent common factors and the factor
loadings are not separately identifiable. A factor model with structural changes in common factors and
time-invariant factor loadings is equivalent to a model with stationary common factors and time-varying
factor loadings. In fact, even if there is no structural change in factor loadings and the second moment of
common factors, we can always write that \,F, = N,Q(t/T)"*Q(t/T)F; = X F* for any nonsingular matrix
Q(t/T) with X}, = Q(t/T)~*\; and F;} = Q(t/T)F; being time varying factor loadings and common factors
with time varying second moment. Assumption A.1(i) rules out this problem. Assumption A.2 ensures that
each factor has a nontrivial contribution to the variance of X;. Following Bai (2003) and Breitung and
Eickmeier (2011), we assume that factor loadings are nonrandom for simplicity.

Assumption A.3 imposes moment conditions on the errors and their interactions with the factors and
factor loadings. Assumptions A.3(i) and (iii) correspond to Assumptions C.1 and C.5 in Bai (2003). Com-
pared to Su and Wang (2017), we allow for both serial correlation and cross-sectional dependence in the error
terms. A.3(ii) requires the process {(g;, F¥),t = 1,2,...} to be strong mixing with some algebraic mixing
rate. With a more complicated notation, one could allow different individual time series to have various
mixing rates and relax the summability mixing condition to limsupy + Zf;l Pyt (3)6/(1+5) < C < o0.
If the processes are strong mixing with a geometric rate (e.g., a(s) = p® for some p € [0,1)), then the
conditions on « (-) can be met by specifying Ty = |ColnT| for some sufficiently large positive constant
Cyp. Assumptions A.3(iii) and (iv) control the cross-sectional dependence among {e;,4 = 1,2,..., N} and
{Fieit,i = 1,2,..., N}, respectively. Assumption A.3(v) is widely assumed in the factor model literature;
see, e.g., Moon and Weidner (2015), Su and Wang (2017), and Ma and Su (2017). Assumption A.4 imposes
some mild conditions on the weighting function. It ensure the existence of the integral in .

3.2 Asymptotic Null Distribution

We now state the asymptotic distribution of A(u) under H.

Proposition 3.1 Under Assumptions A.1-A.3, and Hy : A\jy = A\jo holds,

1

N T
)= w7 2 2 Gelu) Bigw + O(T ™) + 0,(1)

=1 t=1



where B; =1 — X}, (A{)AO/N)_1 o, and Ao = limy_ o0 % Zf\il Xio- Let T o< N¥ with v > 1/2, then

| N7
Nizz u)Bigit + 0p(1).

Under Hy, the asymptotic behavior of the empirical process /Al(u) depends on the relative speeds between
N and T. When VN/T — 0, i.e., v > 1/2, the leading term of A(u) is a weighted average of error term
€it, and it will converge to a zero-spectrum in frequency domain. The intuition is that when T grows faster
than v/N, the Fourier transform dominates the asymptotic behavior of A(u) It is consistent with the result
in Bai (2003) since the estimation impact on the factors depends on the relative speeds between N and
T. And it includes the general case that N and T are the same order of magnitude. On the other hand,
when VN grows faster than 7, A(u) will become a degenerate statistic. Although it still converges to a
zero-spectrum at rate 7-3/2 under Hy, the leading term now consists of two components, which are the
same order of magnitude. The first component is the same as the leading term in the case of v > 1/2, while
the second component arises due to serial correlation of the error term and it is asymptotically equivalent
to a pseudo-covariance between Fourier series and the long-run variance. If we follow Su and Wang (2017)
to impose the martingale difference sequence assumption for the error term, this second component of the
leading term disappears. That is, if we rule out the serial dependence in the error term, then we do not need
to impose any restriction on the relative order of N and T'. However, since serial correlation is common in
macroeconomic and financial data, we allow for serial correlation in the error term and impose a condition
on the relative speeds between N and T when we derive the asymptotic distribution of our test statistic.

In addition, the results of this paper are built under the framework of large IV and large T". Theoretically,
the above relative speed between N and T also allows for the classical factor model (see Lawley and Maxwell,
1971; Anderson, 1984) or the approximate factor model (see Chamberlain and Rothschild, 1983) with large
T and fixed N. However, as mentioned by Anderson (1984) and Bai (2003), with a fixed N, one can
consistently estimate factor loadings but not the common factors. Since the estimated common factors is
contained in the process A(u) and our test statistic given bellow, we do not consider this case. In addition,
under the assumption of the martingale difference error term, our test is suitable for the case of fixed T
and large N. If we follow Bai (2003) to further impose the asymptotic homoskedasticity condition that
% Zf\il g2, — o2 for all t as N — oo, then the estimated common factors are consistent and our test is
applicable. However, if T is fixed and small, it is meaningless to consider the structural change problem.
Hence, we rule out the cases of fixed T and fixed N in this paper.

Let Vy7 be the R x R diagonal matrix of the first R largest eigenvalues of X X', and define Hy =
plimy o, H, where H = (% El 1 Ao )(T Et:l E,F!)Vyp. Under Hy, the followmg proposition shows

that A(u) will converge to a non-constant spectrum.

Proposition 3.2 Suppose Assumptions A.1-A.3 hold, and under Hy : Ay # Xio for at least some i. Then
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as N, T — oo

supl|A(u) — A(u)]| 50,
u€eR

where A(u) = H)E(F,F}) im0 & S, (% ST ewamt/Ty, LS giuzmt/T LT Ait) . In par-
ticular, when Xy = Ni(%), it follows that A(u) = HLE(FF)) limy o0 %Zf\il cov(e™2™T \i(1)), where

cov(e™27™ \;(7)) is a pseudo-covariance such that

1 1 1
@[eiU2WT, )\i (T)] _ / eiu?ﬂ'r)\i (7_) dr — / eiu27r'rd7_/ >\i (7_) dr.
0 0 0

We observe that A(u) is asymptotically equivalent to a pseudo-covariance between the Fourier series el“27¢/T

and \i;. When structural changes exist such that A(u) # 0 for all u, A(u) can capture the time-varying
behavior of the factor loading A;; and will converge to a non-zero spectrum. Therefore, by checking the

behavior of fl(u) at each frequency u, we can capture possible structural changes in factor loadings.

Theorem 3.3 Suppose Assumptions A.1-A.4 hold, and T < NV with v > 1/2. Then under Hy : Ayy = Mo,
b4 [ oI (wydu
R

where G(u) is a complex-valued Gaussian process with a covariance-kernel K(u1,uz)

T N

. 1 N

Klu,u) = lm o ;1 ’Zl B;B;H(E [FyFeiejs| HoMy(ur) M (u2)",
st=114,j=

; 1 ) .
and M;(u) = e™2mt/T Jo €% 7dr is a demeaned Fourier process.

Theorem provides the asymptotic null distribution of the test statistic D, which is robust to both
serial correlation and cross-sectional dependence of unknown form. The condition on the relate speeds of
magnitude of N and T simplifies the derivation of our asymptotic result. As shown in Proposition [3.1]
if T o« N” with v < 1/2, the leading term of A(u) will contain two components with the same order of
magnitude, which will determine the asymptotic distribution jointly. For simplicity, we impose the condition
that v > 1/2. Recall that the second component of the leading term rises due to the existence of temporal
dependence in £;;. Hence, if the error term is serially uncorrelated, the condition on the relative speeds
between N and T is not necessary. We note that Bai (2003) also require v > 1/2. Breitung and Eickmeier
(2011), Chen et al. (2014) and Han and Inoue (2015) all require v < 2. Su and Wang (2017) imposes an
even stronger condition: Th/N — 0. If h = O(T~'/5h=1/10)  then it implies v < 11/8. Unlike the related
works which impose restrictions on the upper bound v, we impose a restriction on the low bound of v, which

is mild.
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3.3 Asymptotic Local Power

To gain insight into the asymptotic power property of D, we now consider a class of local alternatives:
H; (anT) : Ait = Aio + anTgit for each i and ¢,

where ayr — 0 as (N, T) — oo. The rate ayr controls the speed at which the local alternative converges to
the null hypothesis, and g;; is a deterministic function of time ¢ for each ¢. We note that the local alternative
H; (anT) does not impose any smoothness condition on the alternative. This setting is more general than
Su and Wang’s (2017) setting, in which they require g;; to be a piece-wise smooth function of scaled time
ratio % for each .

Notmg that Xio + anrgie = (Nio + ¢inT) + ant[git — cinT/anT) for any ¢; n7 € R we will assume
below that

i:

for the purpose of location normalization. It turns out such a normalization greatly simplifies local asymp-
totic power analysis. Both \;p and g;; can depend on the sample sizes N and 7. For notational simplicity,

we continue to write them as \;g and g;;.

Theorem 3.4 Suppose Assumptions A.1-A.4 hold, T o< N¥ with v > 1/2, and 7 Z;‘ll lgit||> < oo under
H, (ant) with ayy = (NT)~Y2. Then as N, T — oo,

/R 1€(u) + G () [PW (w)dus,

where

T
f(u) - H E(Ft Nggm N Z ( Z iu27rt/Tgit - 1112; zu27rt/T 1 Zg”> .

Theorem provides the asymptotic distribution of D under the local alternative H; (anT). It shows that
our test can detect a class of local alternatives with &(u) # 0 for all u, at the rate ayr = T-/2N~%2, In
terms of Pitman’s criterion, it is asymptotically more efficient than the smoothed nonparametric test of Su
and Wang (2017), which could only detect the local alternative H; (ax7) with a rate of T-1/2N~1/4p=1/4,
This is an advantage of DFT which avoids nonparametric smoothing over ¢/T. Strictly speaking, our test
is not a consistent test. Because when the average of pseudo-covariances converge to zero, our test has no
power. However, such case is really rare since it requires the DFTs for each cross-sectional unit ¢ have to
cancel with each other.

In addition, the specification of g;; allows for various kinds of structural changes in factor loadings,
including smooth structural changes, a single structural break, the multiple structural breaks, or mixtures

of abrupt and smooth changes. The case of a single structural break overlaps with the alternative hypothesis
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considered by Breitung and Eickmeier (2011), Chen et al. (2014) and Han and Inoue (2015). The previous
parametric tests all reduce the infinite dimensional problem to a finite dimensional one in various ways.
For example, Breitung and Eickmeier (2011) propose three test statistics for each 4; Chen et al. (2014)
run the regression of one estimated factor on the remaining ones and then test for the structural changes
in such a linear regression by constructing the sup-Wald and sup-LM statistics of Andrews (1993); Han
and Inoue (2015) construct their sup-Wald and sup-LM statistics by comparing the pre-and post- break
subsample second moments of the estimated factors. All these test statistics have the same asymptotic
distribution and convergence rate as the conventional sup-Wald statistic of Andrews (1993). They could

1/2 which is slower than our rate

only detect the local alternative that converge to the null at the rate T~
anyt = T~Y2N~1/2 The proposed test has power against a wide range of structural changes, including
abrupt and smooth structural changes, when the average of the noncentrality process over all individuals is
not a zero function.

In fact, the order anr = T~'/2N~1/2 is the upper bound of structural changes in factor loadings that
guarantees consistency of the estimated number of common factors and the estimated common factor by
PCA. If the order of magnitude of structural changes is smaller than T-'/2N~1/2] then the estimated
common factors and the number of factor loadings are consistent. This order of magnitude corresponds
to the definition of small break by Chen et al. (2014). For such small structural changes, our test has no
power. In contrast, if the order of magnitude of structural changes is larger than 7-1/2N~1/2  the estimated
common factors and the number of factor loadings will not be consistent. Thus, our test has nontrivial power
to detect any structural changes that lead to inconsistent estimation of the number of common factors and
the common factor given by PCA.

Finally, our test is tuning-parameter free. We require neither the smoothing parameter nor the trim-
ming parameters. That is appealing in practice, because there has been no criteria to choose the optimal
bandwidth for the nonparametric smoothing test of Su and Wang (2017) and the trimming parameter for
the aforementioned parametric tests. In fact, the result of a smoothed nonparametric test can be largely
affected by the choice of the smoothing parameter. Even if one uses the bootstrap, the power of nonpara-
metric smoothing tests is still sensitive to the choice of a bandwidth. Moreover, when the sample size (N, T')
is sufficiently large, the proposed test can detect any structural changes that occur close to the starting and
ending points of the sample period, because we do not need to trim the data. In contrast, Breitung and
Eickmeier (2011), Chen et al. (2014), Han and Inoue (2015), Yamamoto and Tanaka (2015) and Cheng et
al. (2016) all rely on a prespecified tuning parameter 7 to trim out the first and last 77" observations in the

sample and hence would miss the possible structural changes in the boundary regions.

3.4 A Bootstrap Version of the Test

The asymptotic distribution of D is not pivotal, and it depends on the unknown data generating process.
We need to use some resampling methods to obtain the critical values in finite samples. To account
for the possible serial correlation and cross-sectional dependence of unknown forms in the error term,

we follow Gonglaves (2011) and propose the following moving blocks bootstrap (MBB) procedure. Let
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Ir =U1(T) e N(1 <lp <T) be a block length such that Iy — oo and I7/T — 0 as T — co.

Step (i). Estimate the model via the conventional PCA and obtain the estimated common factors
and factor loadings {Ft}thl and {S\io}i]\;y Then we obtain the residuals &; = X;; — :\goﬁt,i =

1,2,--- ,N;t=1,2,--- ,T. Compute the test statistic D.

Step (ii). Let & be the N x T demeaned residual matrix with each (i,t)th element being &; =
Eit — ﬁ Ef\il Zthl €;t. Divide the column vectors of & into T' — [l + 1 blocks and generate a block
dataset {Z ;‘F;llT“, where & = [€14,...,&n¢)" is @ N x 1 column vector, and Z; = [&,&41..., Etip—1]
is a N x lp matrix. Resample {Z,}7 /7!
satisfying L = |T/Ir] + 1; Let {2}, be the first 7' column vectors of {Z0}1 ;.

with replacement to form a bootstrap data set {Z0}L

Step (iii). Generate a bootstrap sample {Xft}iv:’ftzl such that XU = NoF, 4 €, where €%, is the ith

7
element of €. Run PCA on {Xﬁ}f\iitzl and compute the test statistic D.

Step (iv). Repeat Step (ii)-(iii) B times to obtain B bootstrap test statistics {D?}2 .

Step (v). Compute the p-value for D with p = B~! 25:1 1(D° > D).

We reject Hy when p is smaller than a pre-specified significance level. Choosing an appropriate block

length is crucial and many approaches have been proposed (e.g., Lahiri, 1999) in the literature. In this

paper, we adopt Politis and White’s (2004) automatic block-length selection procedure. The the following

simulation studies demonstrate the excellent finite sample performance of the proposed MBB approach. We

note that the MBB procedure proposed by Gonglaves (2011) requires T' — oo faster than N, ie., v > 1.

However, this does not affect the theoretical applicability of our test to the case with serially correlated

€rrors.

4 Monte Carlo Simulations

We now study the finite sample performance of the proposed test through Monte Carlo simulations. We

compare our test with the tests of Breitung and Eickmeier (2011), Chen et al. (2014) and Han and Inoue

(2015) for a single structural break with an unknown break date in factor loadings and Su and Wang’s

(2017) nonparametric smoothing test.

4.1

Data Generating Process

We generate data under the framework of large factor models with R = 2 common factors:

Xit = Ny Fy + €4,

where i = 1,...N, t = 1,....T, F, = (FM,FM)/, with Fi; = 0.6F1 t—1 + w1, uge ~ i.0.d.N(0,1 — 0.6%);
F27t == 0.3F27t_1 + U2t, U2t ™~ ZZdN(O, 1-— 032)
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To examine size and power, we consider the following setups for the factor loading A\is = (it 1, /\iw)':

Aok, for t =1,2,....T/2 N
DGPPL: Ay =4 OF o N Mok ~ it d.N(1,1) for k =1,2;
Ao,k + 0.2, fOTtZT/2+1,...,T
Xio,1, for 0.17T <t <0.2T or 0.7T <t <0.8T
DGP.P2: A1 =19 XNo1+02, for 047 <t <0.5T s Ait2 = Nio,2 ~ 4.4.d.N (0, 1);

Aio,1 — 0.2, otherwise
DGP.P3: A1 = g + 0.5G(10t/T; 0.1, (1,3,7,9)), p1i ~ i-i-d. N(0,1), Air.2 = Aio.2 ~ .i.d. N(0,1);
where G(z; k,7) = {1 +exp[—r [[]_;(z—7)]} ! denotes the Logistic function with a scale parameter x and
a location parameter v = (1, ..., vp)/.

For each DGP, we consider five cases for the error term e;: (i) i.i.d. case, ;; ~ i.i.d.N(0,1), (i)
heteroskedastic case, ;1 = o0, 05 ~ 1.5.d.U(0.5,1.5), v ~ 1.i.d.N(0,1); (iii) cross sectional dependence
case, £.4+ ~ i...d.N (0, %.), (iv) time series dependence case, ;; = 0.5e;1—1 + Vi, Vit ~ 4.0.d.N(0,1); (v) cross
sectional and time series dependence case, £.4 = 0.5e.,_14v.¢, vy ~ 1.5.d.N(0, X, ), , where X = (¢i5)ij=1,...N
with ¢;; = 0.5/"771 for cases (iii), (iv) and (v).

DGP.S1 satisfies the null hypothesis of time-invariant factor loadings and is used to study the size of all
tests. We examine the performance of the tests under i.i.d., heteroskedasticity, cross-sectional dependence,
temporal dependence, and both the cross-sectional and temporal dependence, respectively. DGP.P1-P3
describe various time-varying factor loadings. Among them, DGP.P1-P2 have a single abrupt structural
break and multiple abrupt structural breaks, respectively, while DGP.P3 is a smooth structural change. We

check the power of all the tests by using DGP.P1-P3 with various types of error terms.

4.2 Test Statistics and Simulation Results

For each DGP, we simulate 500 data sets with sample sizes N = 100, 200, and T" = 100, 200, respectively.
In addition to our test, we also consider Breitung and Eickmeier’s (2011) sup-LM N-variable specific test,
Chen et al.’s (2014) sup-LM and sup-Wald tests, Han and Inoue’s (2015) sup-LM and sup-Wald tests and
Su and Wang’s (2017) nonparametric test. Following Su and Wang (2017), we use the Epanechnikov kernel
and Silverman’s rule-of-thumb bandwidth h = (2.35/4/12)T~ /5 N=1/10 for Su and Wang’s (2017) test. We
set the trimming parameter 7 = 0.15 for the parametric tests, which is a common choice in the literature.
We also examine the performance of these tests with 7 = 0.1 and 0.25 and find the results are quite similar.
The tests of Chen et al. (2014) and Han and Inoue (2015) involve long-run variance estimation. We follow
the HAC literature by setting the truncation parameter m = |T v 3| and choosing the Bartlett kernel to
estimate the long-run variance. The critical values presented in Andrews (1993) are used for the tests
of Breitung and Eickmeier (2011), Chen et al. (2014) and Han and Innoe (2015). We apply bootstrap
procedures for Su and Wang’s (2017) test and our test. We set the number of bootstrap B = 200.

Table (1| reports the sizes of our test as well as the tests of Breitung and Eickmeier (2011), Chen et al.
(2014), Han and Inoue (2015) and Su and Wang (2017) at the 5% and 10% significance levels when the

number of common factors are fixed and the true value R = 2. As shown in Table[I| our test has reasonable
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Table 1: Size of tests under DGP.S1 when the number of factors is fixed to the true value

N T Dx SW Hlpar Hiw CDGra  CDGw BELu
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
iid. error term: g; ~ i.0.d.N(0,1)
100 100 4.6 9.2 5.6 126 1.0 4.4 0.2 1.4 2.0 6.2 5.2 12.8 2.7 6.3
100 200 4.0 10.8 6.6 12.8 2.2 7.0 2.2 6.6 3.4 8.0 4.8 11.6 3.5 7.5
200 100 5.6 11.0 5.0 11.2 1.2 5.0 0.6 2.6 2.2 6.2 76 118 2.8 6.4
200 200 58 10.8 56 114 34 76 3.0 86 24 72 66 98 3.3 7.3
heteroskedastic error term: e;; = o;v;t, 0; ~ 1.4.d.U(0.5,1.5),v;z ~ i.1.d.N(0,1)
100 100 5.2 10.6 5.4 12.0 0.8 4.4 0.2 1.6 1.4 7.0 5.6 12.2 2.8 6.3
100 200 54 114 6.8 14.6 2.2 7.2 2.4 6.8 3.4 8.6 46 11.2 3.5 7.4
200 100 4.8 11.0 5.6 10.0 14 5.2 0.6 2.6 2.0 5.8 7.2 118 2.8 6.4
200 200 5.0 10.2 5.4 11.8 3.2 7.6 3.0 8.4 2.0 7.0 5.8 9.2 3.3 7.3
cross sectional dependence error term: €. ~ i.i.d.N (0, X,)
100 100 5.8 10.2 5.4 10.2 1.0 4.0 0.2 1.0 1.6 7.0 6.6 128 2.7 6.3
100 200 5.0 10.8 4.2 8.8 2.0 6.4 2.0 4.6 2.0 7.2 5.0 10.6 3.4 7.4
200 100 8.0 12.2 5.8 124 1.6 6.0 0.8 3.0 1.6 5.8 7.0 12.0 2.8 6.4
200 200 5.4 9.2 5.4 11.2 3.2 7.6 3.4 8.0 2.6 7.2 5.8 9.4 3.5 7.6
time series dependence error term: €;; = 0.5¢;4—1 + v, vy ~ 1.6.d.N(0, 1)
100 100 7.6 138 100 100 10 32 02 18 16 7.8 6.0 108 136 227
100 200 4.0 104 100 100 2.6 6.8 2.4 8.2 4.2 9.4 6.4 126 17.6 27.8
200 100 5.2 13.0 100 100 1.6 3.8 0.8 2.6 2.2 7.2 6.8 11.8 13.3 226
200 200 6.0 11.4 100 100 3.4 7.2 2.4 9.4 4.8 108 6.4 12.0 17.7 278
cross sectional and time series dependence error term: .4 = 0.5¢.4—1 + v.4, v ~ 1.4.d.N (0, 3,)
100 100 6.8 13.0 100 100 0.4 3.2 0.4 2.0 2.4 8.0 4.4 11.2 13.6 225
100 200 7.2 12,6 99.8 100 2.4 6.0 3.4 8.0 3.2 8.2 4.8 9.4 18.1 284
200 100 6.6 12.4 100 100 1.2 3.8 0.4 2.0 2.0 5.4 6.0 12.0 139 23.1
200 200 7.0 134 100 100 3.2 6.8 2.6 9.6 48 11.6 6.8 124 178 278

Notes: (i) Dp denotes the results of our D test using bootstrap critical values; (ii) SW denotes the results
of Su and Wang’s (2017) bootstrap-based test; (iii) HIrys and HIy denote Han and Inoue’s (2015) sup-LM
and Wald tests; (iv) CDGpy and CDGy denote Chen et al.’s (2014) sup-LM and Wald tests; (v) BEL
denotes Breitung and Eickmeier’s (2011) N variable-specific sup-LM test. The main entries report the
average percentage of rejections.

sizes using bootstrap critical values. For the case of both cross-sectional and temporal dependence, our test
tends to over-reject a bit but is still acceptable. Han and Inoue’s (2014) sup-LM and sup-Wald tests tend
to under-reject. Chen et al.’s (2014) sup-Wald test has reasonable sizes, but their sup-LM test also exhibits
under-rejection. Su and Wang’s (2017) test tends to over-reject slightly, but is still acceptable for the first
three cases. However, when the error term has serial correlation, it displays serious over-rejection and the
rejection rates even achieve 100%. It is not surprising to see the poor size performance of Su and Wang’s
(2017) test since it requires the error term to be a martingale difference sequence. On the other hand,
Breitung and Eickmeier’s (2011) test suffers from slight under-rejection for the first three cases, and severe
over-rejection for the last two cases. In fact, Assumption 2 in Breitung and Eickmeier (2011) requires that

the error term be serially independent, which does not hold in the last two cases.
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Table 2: Power of tests under DGP.P1-P2 when the number of factors is fixed to the true value

N T Dg SW Hloa Hlw  CDGry CDGw  BEou

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
iid. error term: €; ~ i.1.d.N(0,1)
DGP.P1 100 100 99.0 994 71.0 802 16 56 00 20 22 7.6 6.0 126 54 10.8
100 200 100 100 976 99.0 46 98 56 122 36 7.6 6.0 11.4 10.5 17.7
200 100 100 100 886 932 14 54 12 32 24 90 76 11.2 54 10.7
200 200 100 100 100 100 54 126 5.6 128 4.0 88 3.6 10.6 10.7 17.9
DGP.P2 100 100 26.2 374 102 178 12 44 02 16 18 7.6 40 102 2.9 6.6
100 200 62.6 76.6 214 31.0 22 74 22 58 38 86 48 94 3.9 8.3
200 100 42.0 594 114 200 1.2 54 04 30 32 &84 6.6 104 29 6.7
200 200 87.2 934 246 374 34 80 24 82 42 92 28 98 3.8 82
heteroskedastic error term: e;; = o;v;t, 0; ~ 1.6.d.U(0.5,1.5), v;z ~ i.1.d.N(0,1)
DGP.P1 100 100 99.0 998 736 814 16 56 00 20 22 76 56 122 6.7 123
100 200 100 100 98.2 98.6 4.6 98 56 122 36 7.8 6.4 11.6 13.2 20.5
200 100 100 100 914 958 14 52 12 30 26 90 74 116 6.7 122
200 200 100 100 100 100 5.8 13.0 6.0 128 4.0 9.2 3.8 104 135 20.7
DGP.P2 100 100 26.6 406 10.2 188 1.2 42 02 16 18 7.8 38 102 29 6.6
100 200 62.8 754 21.2 338 26 6.8 24 60 42 86 48 10.2 4.1 8.6
200 100 456 628 13.2 20.2 14 54 04 32 32 92 64 104 3.0 6.8
200 200 86.4 92.6 28.2 394 32 76 24 82 40 96 3.0 98 40 85
cross sectional dependence error term: e.4 ~ i.i.d.N (0, X,.)
DGP.P1 100 100 98.6 994 662 764 12 46 00 12 24 74 56 130 54 10.6
100 200 100 100 976 986 52 9.8 44 124 3.0 84 56 10.8 10.9 18.0
200 100 100 100 880 946 14 54 1.0 40 22 84 6.4 114 55 108
200 200 100 100 100 100 5.8 13.2 5.8 120 44 88 4.6 10.6 109 18.1
DGP.P2 100 100 26.4 380 104 172 12 50 00 08 26 7.2 4.4 102 29 6.6
100 200 62.8 776 174 274 26 74 16 6.6 40 92 46 88 3.8 8.1
200 100 40.6 56.4 124 198 16 50 06 32 22 78 58 102 3.0 6.7
200 200 88.6 946 276 428 34 78 32 7.8 42 92 26 98 40 &85
time series dependence error term: €;; = 0.5¢;4—1 + v, vt ~ 1.0.d.N(0, 1)

DGP.P1 100 100 89.6 93.2 100 100 1.2 50 04 34 16 6.0 46 10.8 16.4 26.1
100 200 100 100 100 100 5.4 104 54 140 46 9.6 5.6 11.6 24.5 354
200 100 100 100 100 100 1.8 48 08 32 20 64 50 122 164 26.1
200 200 100 100 100 100 5.8 12,6 5.0 150 58 94 74 12.0 246 35.6
DGP.P2 100 100 16.4 264 99.0 994 08 44 02 18 14 6.2 32 98 13.7 228
100 200 41.2 588 100 100 28 74 28 6.6 3.8 104 4.0 11.2 18.2 28.3
200 100 244 380 998 998 16 46 04 20 14 6.2 34 88 135 226
200 200 65.2 79.8 100 100 3.2 74 26 84 46 108 44 102 182 284

cross sectional and time series dependence error term: .4 = 0.5¢.4—1 + v.¢, vy ~ 1.3.d.N (0, 2,)
DGP.P1 100 100 90.2 946 100 100 1.0 48 04 30 26 7.6 44 102 16.4 26.2
100 200 100 100 100 100 5.0 10.8 5.6 138 42 88 6.0 11.6 25.0 35.8
200 100 100 100 100 100 16 44 06 32 20 56 46 124 16.8 26.6
200 200 100 100 100 100 4.8 124 52 144 52 98 7.0 122 246 354
DGP.P2 100 100 14.8 236 998 100 08 32 04 16 18 6.8 38 88 135 227
100 200 39.4 53.2 100 100 26 7.2 32 82 44 104 4.6 11.0 185 29.0
200 100 25.6 404 99.8 100 12 38 04 22 14 62 4.0 9.0 14.0 23.0
200 200 65.8 788 100 100 28 6.6 22 84 46 108 5.0 104 182 285

Note: See the notes in Table 1.
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Tables [2] and [3] report the power performance of the tests under DGP.P1-P3 at the 5% and 10% sig-
nificance levels when the number of common factors is fixed and the true value R = 2. Our test is most
powerful in detecting all forms of time-varying factor loadings given by DGP.P1-P3 and its power increases
as either T or N increases. Recall that DGP.P1-P2 are factor models with abrupt structural breaks, while
DGP.P3 is the factor model with smooth structural changes. The simulation results demonstrate the ex-
cellent performance of our test in detecting both a finite number of abrupt structural breaks and smooth
structural changes. Moreover, Su and Wang’s (2017) test is also powerful in detecting all these DGPs, but
the rejection rates are all lower than our new test except for the last two cases of serially dependent error
term. Since Su and Wang’s (2017) test could even achieve unity rejection under DGP.S1, it is not surprise
to see its high rejection rate for DGP.P1-P3 when the error term has serial dependence. The results for
other cases are consistent with our analysis on the relative efficiency between our test and Su and Wang’s
(2017) test. In contrast, Han and Inoue’s (2015) sup-LM and sup-Wald tests, Chen et al.’s (2014) sup-LM
and sup-Wald tests and Breitung and Eickmeier’s (2011) N-variable-specific sup-LM test all have relatively
quite low power against DGP.P1-P3, which exhibit either abrupt structural breaks or smooth structural
changes in factor loadings.

As the exact number R of common factors is typically unknown in practice, one should determine the
number of common factors before estimating and testing. In the literature on testing for structural breaks
in factor loadings, the number of common factors is either determined by Bai and Ng’s (2002, BN hereafter)
information criteria (e.g., Han and Inoue, 2015) or specified by some fixed numbers, which may be equal
to, less than, or greater than the correct number of factors (e.g., Chen et al., 2014). Of course, one can also
consider applying the testing procedures of Onatski (2009, 2010) or Ahn and Horenstein (2013) to determine
the number of factors, which have been shown to work well in the presence of moderate or strong cross-
sectional dependence. Alternatively, one can apply Su and Wang’s (2017, SW hereafter) nonparametric
method to determine the number of factors that is robust to the presence of structural changes in factor
loadings. In general, all the aforementioned methods can select the correct number of factors consistently
under the null hypothesis of no structural change, but only SW’s method has been proven valid even under
the alternative. Indeed, if we apply SW’s method to determine the number of factors, the size and power
performance of all tests will be similar to those in Tables [I] and [2| To allow the possible misspecification
of the number of factors under the alternative, we follow Han and Inoue (2015) and select the number of
factors based on BN’s information criteria ICp; and ICpy. The simulation results based on ICp; and 1C»
are also similar to those reported in Tables[l]and [3] In fact, for all DGPs, our simulation studies show that
Bai and Ng’s (2002) IC)p; only tends to overparameterize slightly, and the problem alleviates as the sample
size increases. To save space, we relegate the results based on IC}; to the online supplement. Moreover,
we also examine the performance of the proposed test as well as other various tests by setting the number
of common factors as 3. The power of our bootstrap-based test is a bit lower than in the case of correctly
specified factors as reported in Tables [2| and |3l However, our test still has reasonable power that increases
as either T' or N increases. More importantly, it is still the most powerful test among all the tests under

consideration. For space, we do not report the results for this case here.
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Table 3: Power of tests under DGP.P3 when the number of factors is fixed to the true value

N T Dp SW HIpn HIyy CDGry CDGw BEpym
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

iid. error term: e ~ 1.4.d.N(0,1)
DGP.P3 100 100 82.8 91.8 36.8 482 06 36 04 24 22 80 58 11.8 3.7 83
100 200 99.6 100 72.0 8.8 16 56 38 98 42 86 46 11.8 56 11.1
200 100 91.2 972 428 542 16 46 1.0 34 1.8 4.6 100 158 3.7 82
200 200 99.8 100 90.4 936 2.0 60 40 11.6 28 74 76 134 57 114

heteroskedastic error term: e = o0, 0; ~ 1.4.d.U(0.5,1.5), v ~ i..d.N(0, 1)
100 100 80.0 914 31.2 432 06 32 04 26 24 84 56 124 4.2 8.9
100 200 98.8 99.8 63.6 734 14 56 3.8 98 40 &84 48 11.6 6.8 12.5
200 100 87.6 97.2 38.0 498 16 48 1.0 34 16 4.6 10.0 152 4.1 8.7
200 200 99.6 100 83.2 90.6 2.0 6.2 4.0 114 3.0 74 76 136 69 129

cross sectional dependence error term: €.4 ~ i.4.d.N (0, X.)
100 100 83.0 916 31.2 434 08 38 06 24 18 88 80 134 36 79
100 200 99.2 100 74.0 824 14 54 26 9.0 36 86 54 114 56 11.2
200 100 92.2 97.8 456 578 14 54 1.0 36 1.8 56 106 156 3.8 8.1
200 200 100 100 922 954 18 56 3.6 11.0 28 74 82 136 59 11.6

time series dependence error term: €;; = 0.56;4—1 + v, Vit ~ 1.2.d.N(0, 1)
100 100 57.2 74.8 99.2 100 04 34 02 34 18 &80 6.4 128 146 24.1
100 200 93.2 97.0 100 100 22 5.6 4.0 102 28 9.0 50 11.6 204 31.1
200 100 80.2 90.2 99.8 100 14 36 08 28 16 6.0 7.2 148 14.6 24.1
200 200 99.0 99.8 100 100 2.2 52 28 11.8 26 74 9.0 152 204 313

cross sectional and time series dependence error term: .4 = 0.56.4—1 + v.4, 0.4 ~ 1.3.d.N (0, X¢)
100 100 584 76.4 994 100 04 22 04 34 18 74 58 144 14.7 21.2
100 200 92.8 974 100 100 1.8 5.6 38 84 28 86 50 11.0 21.0 31.7
200 100 79.6 90.8 99.6 100 0.8 3.8 02 26 1.8 56 &84 13.6 150 24.5
200 200 99.0 99.6 100 100 1.8 48 3.2 114 28 78 74 154 206 31.3

Note: See the notes in Table 1.
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Table 4: Tests of structural changes in the U.S. economy

Number of selected factors 1 2 3 4
Criterion functions Ona, ER, GR ICh1,IChe | PCp1,PCpy | IC,1 ,ICH

Notes: (i) PCp1, PCp2, ICp1 and ICp2 denote Bai and Ng’s (2002) information criteria; (ii) Ona denotes the results of Onatski’s
(2009) test; (iii) ER and GR denote Ahn and Horenstein’s (2013) criteria; (iv) ICh1 and IC}o denote the information criteria
proposed by Su and Wang (2017).

Table 5: Tests for Structural Changes for the U.S. Economy

Dp SW,c=05] SW,c=1 | SW,c=2 |Han and Inoue (2015)| Chen et al. (2014)
Dp 5% |SMp 5% |SMp 5% | SMp 5% | LM Wald 5% LM Wald 5%
r=1|11.27 548|-3.20 -7.45| 6.15 1.59 | 10.30 1.74 |11.43 6.49 8.85 - - -
r=2/10.63 5.52|-3.60 -0.12|18.56 8.50 |32.06 5.88 |21.26 10.05 14.15 | 4.67 189 8.85
r=23|14.70 8.02| 0.96 6.53 [32.57 16.60| 53.74 10.70|25.43 12.69 20.26 | 3.26 10.45 11.79
r=4|12.68 8.03| 1.70 11.77(32.11 23.56| 53.63 14.46|28.79 27.37 27.03 |24.39 24.13 14.15

Notes (i) Dp denotes the results of our D test using bootstrap critical value based on B = 1000 iterations;
(i) 5% and 10% denote the corresponding significance level.

5 An Empirical Application to U.S. Macroeconomic Data Set

We now apply our test to check whether the U.S. macroeconomic dynamics suffers from structural changes.
The data set, firstly constructed by Stock and Watson (2012), and then extended by Cheng et al. (2016),
consists of N = 102 series of monthly macroeconomic and financial indicators, spanning from 1985:M1 to
2013:M1 (T = 337). All the data have been standardized to have zero mean and unit variance. For the
details of the data description and processing, one can refer to Stock and Watson (2012) and Cheng et al.
(2016).

We first determine the appropriate number of common factors. The maximum number of common factors
is set to be 8 in this empirical study. We use Bai and Ng’s (2002) information criteria PCp1, PCp2, ICp1, ICs,
Onatski’s (2009) testing procedure, Ahn and Horenstein’s (2013) criterion functions ER and GR and Su
and Wang’s (2017) local information criteria ICh1, IChs to determine the number of common factors. The
results are reported in Table |4 where we see that different methods choose deliver different numbers of
common factors. Below, we report the test results for the cases of one to four common factors respectively.

We apply our test ﬁB, Su and Wang’s (2017) nonparametric test S, Han and Innoue’s (2014) sup-LM
and sup-Wald tests, as well as Chen et al.’s (2014) sup-LM and sup-Wald tests to investigate the possible
structural changes in factor loadings. For Su and Wang’s (2017) test, we choose the bandwidth h = ch*
with h* = (2.35/3/12)T /> N=1/10 given in their paper. By choosing ¢ = 0.5,1,2, we consider the effect of
different bandwidths on the results of Su and Wang’s (2017) test. The other settings, including the kernel
functions and tuning parameters, are all the same to those used in our simulation studies. For our test and

Su and Wang’s (2017) test, we focus on the bootstrap results based on B = 1000 bootstrap replications.
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Table [5] reports the results of various tests and the corresponding critical values at the 5% significant
level. Our test clearly rejects the null hypothesis of no structural changes for all the cases of one to four
common factors. Su and Wang’s (2017) results are sensitive to the choice of bandwidth. By using different
bandwidths, different results arise, and so the evidence is mixed. Moreover, Chen et al.’s (2014) sup-LM
and sup-Wald tests can only reject the null for the case of R = 4, while Han and Inoue’s (2015) results are
mixed. Their sup-LM test rejects the null hypothesis for all cases while the sup-Wald test can only reject
the null hypothesis for the case of four common factors. This result is consistent with our simulation studies
that indicate the relative low power of the tests given by Chen et al. (2014) and Han and Inoue (2014).

6 Conclusion

Conventional factor models assume factor loadings, which capture the relationship between observed random
variables and the latent common factors, to be time-invariant. In fact, since macroeconomic data usually
have a long time span, it is difficult to assume that factor loadings are constant over time. In this paper,
we propose a new test for structural changes in large dimensional factor models via a discrete Fourier
transform approach. Compared to FHW, our test is constructed in large dimensional factor models where
the regressors are unobservable. By construction, our test can capture a wide range of smooth and abrupt
structural changes in factor loadings with unknown break dates and unknown number of breaks. More
importantly, the proposed test is asymptotically more powerful than all the existing related tests in the
literature. Our test is tuning parameter-free, and it is robust to serial correlation and cross-sectional
dependence of unknown forms, which greatly extends the scope of applicability of our test. Simulation
studies show that in comparison with the tests of Breitung and Eickmeier (2011), Chen et al. (2014), Han
and Inoue (2015) and Su and Wang (2017), the proposed test has both reasonable size and excellent power
against various alternatives in finite samples. We apply our test to check whether the U.S. macroeconomic
dynamics suffers from structural changes, and document significant evidence to against the time invariance
property of factor loadings.

There are several interesting topics for further research. For instance, when our test rejects the null
hypothesis, one can further check the type of structural changes, i.e., distinguishing smooth structural
changes from abrupt structural breaks. That is an interesting and challenging issue, but it is out of scope

of the present paper. We will leave it to subsequent studies.
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A Mathematical Appendix

Notations: Denote yn(s,t) = E(ehe/N) = E(% Zivzl €is€it), Cst = %egetf'yN(s,t), Nst = FIAGer /N, Eot =
F{Ajes/N. Let Vg denote the R x R diagonal matrices of the first R largest eigenvalues of (NT) ™' X X’
in decreasing order and H = (AyAo/N)(F'F/T)Vyg. Let Cyr = min{v/N,VT}.

A.1 Technical Lemmas
Lemma A.1 Suppose Assumptions A.1 to A.J hold,
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are stochastically equicontinuous.

Proof. We first show that % ZZ;I Ftﬁ}’ —1Ir) e2m/T ig stochastically equicontinuous, i.e., we need to
show that, for any ¢ > 0 and k > 0, there exists d > 0 such that
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where the third to last inequality is by triangle inequality and the second to last is by Cauchy-Swartz
inequality. As is shown in Andrews (1994), the last inequality holds since we always find a 6 > 0 small

L 2
enough given Zil H (FtFt' - ]IR) H is Op(1), and 7+ Zle 47t?/T? is O(1). By analogous argument, we
can show Zle (FtFt’ - E(FtFt’)) el“2m/T ig also stochastically equicontinuous. m
Lemma A.2 Suppose Assumptions A.1 to A.4 hold, then as T — oo
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We now show Dy = op(1).
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Next, we show that Ry; = op(1). Let D be the space of all functions 0 : [0,1] — [—1, 1], where 6(1) =
cos(u2nt) for 1 =¢/T,t=1,2,...,T, and 6(7) = 0 otherwise. Therefore,
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where we let {B( ,0):j=1,2,...,J} be a finite cover of D such that 8 € B(6;,9) if and only if d(6,6;) =
\/fo |6(T 7)|2dr < 6. To let the last inequality hold, we need to show: (i). = S (Ftﬁ’t’ — ]IR) 0(r)

is stochastlcally equicontinuous; and (ii). = Et:l (FtFt - ]IR) 0 (1) = op(1) for any 6 € D.

For (i):

by analogous arguments in the proof of Lemma A.1. The point-wise convergence (ii) is easy to verify given
E(Ftﬁ’) = Ig, and the boundedness condition of D. By analogous proof, we can show that Ris = op(1).
Therefore, R; = op(1).

By Riemann approximation of an integral, we can show that Rs is o(1). Thus, we have shown
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By analogous proof, we can also show
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Lemma A.3 Suppose Assumptions A.1 to A.4, and Hy hold, then as N, T — oo,
VNT Ay(u) = N (u),

where N (u) is a complex-valued Gaussian process with covariance-kernel M(uy,usz)
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where My(u) is a demeaned Fourier process such that
Mt(u) — eiu27rt/T _ /6iU2TerT.

Proof. By Lemma A.2, we have
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According to Bai (2003), F;—H'F; = op(1), thus Ay (u) = op(1) since M (u) is bounded for all u. Therefore,
the leading term in A (u ) is Ago(u). Under Assumption A.1 to A.4, it follows that for each fixed u € R

VNT Ay(u) & N(0, M(u,u)),
where
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Furthermore, given the stochastic equi-continuity result established in Lemma A.1, we can show
VNT Ay(u) = N (u),

where N (u) is a complex-valued Gaussian process with covariance-kernel M (u;, uz)
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Furthermore, if ¢;; is also cross-sectional uncorrelated,
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A.2 Proof of the Theorems

Proof of Proposition 3.1
Proof. Under Hy : A\;; = \jg, we have
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where the last equality comes from the fact that S B E =15
By Bai (2003),

T T T
1 - 1 - 1 .
Fy,—H'F, = ( Z Fow(s,t) + 75 ) Foat =Y Fana+ ) Fsgst> :
s=1 s=1 s=1
Then, it follows

T
F,—H'F=—-H 'V, (;, > Foyn(s,t) ZF Cst + = ZF Nst + = ZF ést> ;
s=1

and
T 1
= = Op| —
T ; P (ﬁm)
T
1 . 1
b = oo )
T ; VNCnr
T
1 . 1
= slls = 0 ——
T ; sMst (\/N>
T
1 . 1
T; sgst - p(\/ﬁC]\]’]“)’
where

CNT = min{\/ﬁ, \/T}

We claim only + Z;F:l Fyn(s,t) and + 23:1 F.ng can be the leading terms. Let T' < N, we have the
following three cases

e CASE 1: If v > 1/2, then the leading term is

1< . 1
— Fing =0 — .
L3 p(ﬁN)

s=1

e CASE 2: If v = 1/2, then the leading terms will be
1 & 1 1
TZ t+TZFs’YN(57t)_OP(\/N>_OP<T>-
s=1 s=1

e CASE 3: If v < 1/2, then the leading term will be

Fu(s.) = Op (}) |

L
T

M~



When v > 1/2,

Il
——
el
M=

£
&

where 1<
B; =1— X5 (AGAo/N) " Xo.

When v < 1/2,

R 1 X 1 I !
An(u) = fZGt(u) (—H’_lVN%TZFSny(s,t)>

N T
1
= TNT2 Z Z Gi(w)ELE(giseit) Vs H ' Xo + op(1)
i=1 s,t1=1
;] XT
- TNT2 ZZGt( VL E(e5) Vi o
i=1t=1
1 L& _
TNT? ZZ Gt(“)Fs/E(i?isSit)VI\?%H*l)\o + op(1)

i=1 s#t
= 1‘1111(U) + Auz(u) +op(1), say.

2y _ 2
%) =07, and

N
1
R UL I B 9
=1

When ¢;; is weakly stationary, then F(e



1A . 1A 1SN . . (1 &
= — |2 BT - (TZFt #e‘"*””) (TZFt é) VerH "o (NZJ§>
t=1 t=1 t=1 =1
= 0.
For Allg(’u)7
. 1 X _
Ajp(u) = — NT2ZZGt(u)FgE(gisgit)VﬁH—le
i=1 s#t

T2 ZGt Elyn (s, ) Ve H

s#t
1 -
= 7 Z FyE My (u)yn (s, 8) Vg H X + op(1)
s#£t
9 T—1T—-3
= 75 > D BB M(w)yn (tt+ )V H ™ Ao + op(1)
7j=1 t=1
9 T—1T—j3
= 7 D D BEFu ) M(upyn (.t + ) VirH ' X
Jj=1 t=1
g T-1T—j )
72 [FtFtﬂ' - E(FtthLj)} My(u)yn (8t + 5)VapH ' Ao + op(1)
j=1 t=1
T-1 T
= -7 > E(FFipg)n(tt+ ) Z )| Vb H X + op(1)
J=1 t=1

= O(T Y*Oo(1r'?),

where we use the fact that

Z 1/2)7

’ﬂ \

and

> E(FFij)yw(tt+j) <C < oo
j=—00
Therefore, A1 (u) = Op(T~3/2). And

T-1

2
Alw) = —= ZE FtFt+J)’YN (t,t+j)
_7 1

VyrH " Xo + op(1),

LS

which is a degenerate statistic. When v = 1/2, it is straightforward to show that
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Proof of Proposition 3.2
Proof. Under H;, we can show that
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By Lemma A.2, Ay (u) =Op ( ) . Thus, we proved the result. m
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By Lemma A.3,

VNTA(u) = G(u),
where G(u) is a complex-valued Gaussian process with covariance-kernel fC(uq,ug) such that
| TN
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By Lemma A.1, it is straightforward to show that A(u) is stochastically equicontinuous over v € R, under
Assumption A.4 and continuous mapping theorem, we have

D5 [ 10w ()

[
Proof of Theorem [3.4]
Proof. Under Hi(anT) : Ait = Nio + anTGit,
| DT
. 7 ’.
Ai(u) = NT ; ; Gi(u)F Ait

I
Z‘H
~
M) =
Mq
EP
“q
3’
_|_

s

2

)ﬂ
M
1[~]=
53

By Proposition 3.1, we have

N T
= - ZZGt(u)sitAgo(A{,Ao/N)*l/_\o+Op(T73/2) + op(1).

Given ayT = —~=, by Proposition 3.2,
VNT

aNTZZGt VE{git = &(u),

i=1 t=1

where

N

N /T 1z 1z
_ n - iw2nt/T iu2mt/T — )
fw) = B(EF) Im - Z ( t:Zle git = 7 Zle - t:zlg”> :
Given Theorem [3.3] it follows

VNTA(u) = £(u) + G(u)

when VN /T — 0. By continuous mapping theorem, we have

D4 [l + 6w W (u)du
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Table A.1 Size of tests under DGP.S1 when the number of factors is determined from the data

N T Dp SW HIp HIy CDGrp CDGw BE v

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

i.id. error term: g; ~ i.1.d.N(0,1)

100 100 4.6 9.2 5.6 126 1.0 4.4 0.2 1.4 2.0 6.2 5.2 128 2.7 6.3
100 200 4.0 10.8 6.6 128 22 70 22 6.6 34 80 48 11.6 3.5 7.5
200 100 56 11.0 50 11.2 12 50 06 26 22 62 76 11.8 28 6.4
200 200 58 108 56 114 34 76 30 86 24 72 66 98 3.3 7.3

heteroskedastic error term: ;4 = ov5, 0; ~ 1.4.d.U(0.5,1.5), vy ~ i.5.d.N(0,1)
100 100 5.2 106 54 120 08 44 02 16 14 70 56 122 28 6.3
100 200 54 114 6.8 146 22 72 24 68 34 86 46 11.2 3.5 7.4
200 100 48 11.0 56 100 14 52 06 26 20 58 72 11.8 28 6.4
200 200 5.0 102 54 11.8 3.2 7.6 3.0 8.4 2.0 7.0 5.8 9.2 3.3 7.3

cross sectional dependence error term: €. ~ .i.d.N (0, X.)
100 100 5.8 102 54 102 1.0 40 02 10 16 70 6.6 128 2.7 6.3
100 200 5.0 10.8 42 88 20 64 20 46 20 72 50 106 34 7.4
200 100 8.0 122 5.8 124 16 6.0 0.8 3.0 1.6 5.8 7.0 12.0 2.8 6.4
200 200 54 92 54 112 32 76 34 80 26 72 58 94 3.5 7.6
time series dependence error term: €;; = 0.5¢;4—1 + v, vy ~ 1..d.N(0, 1)
100 100 76 13.8 100 100 1.0 40 02 10 16 7.0 6.6 128 2.7 6.4
100 200 4.0 104 100 100 2.0 6.4 2.0 4.6 2.0 7.2 5.0 10.6 3.4 7.4
200 100 5.2 130 100 1000 16 60 08 30 16 58 70 120 28 6.4
200 200 6.0 114 100 100 32 76 34 80 26 72 58 94 3.5 7.6
cross sectional and time series dependence error term: e.; = 0.5e.4_1 + v.,v.4 ~ 1.5.d.N(0,3,)

100 100 6.8 13.0 100 100 04 32 04 20 24 80 44 112 13.6 225
100 200 7.2 126 100 100 24 6.0 34 80 32 82 48 94 181 284
200 100 6.6 124 100 100 1.2 3.8 4 20 20 54 6.0 12.0 139 23.1
200 200 70 134 100 100 32 68 26 96 48 116 6.8 124 178 278

Note: See the note in Table 1.

Furthermore, when v/N /T — oo,

VNTA(u) = .

B Some Additional Simulation Results

In this appendix, we report some additional simulation results. Tables A.1 to A.3 report the size and power
performance of various tests at the 5% and 10% significant levels when the number of factors is determined
by Bai and Ng’s (2002) ICp1. The results are similar to those reported in Tables 1| to
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Table A.2 Power of tests under DGP.P1-P2 when the number of factors is determined from the data

N T Dp SW Hip H Iy CDGry  CDGwy BEpm

5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
iid. error term: e; ~ i.i.d.N(0,1)
DGP.P1 100 100 99.0 994 71.0 802 16 56 00 20 22 7.6 6.0 126 54 10.8
100 200 100 100 97.6 99.0 46 98 56 122 36 7.6 6.0 114 105 17.7
200 100 100 100 886 932 14 54 12 32 24 90 76 11.2 54 10.7
200 200 100 100 100 100 54 126 5.6 128 40 88 3.6 10.6 10.7 179
DGP.P2 100 100 26.2 374 102 178 1.2 44 02 16 1.8 76 40 102 29 6.6
100 200 626 766 214 310 22 74 22 58 38 86 48 94 40 83
200 100 42.0 594 114 200 12 54 04 30 32 84 6.6 104 29 6.7
200 200 87.2 934 246 374 34 80 24 82 42 92 28 98 38 82
heteroskedastic error term: ;4 = ov5, 0; ~ 1.4.d.U(0.5,1.5), vy ~ i.1.d.N(0, 1)
DGP.P1 100 100 99.0 99.8 736 814 16 56 00 02 22 76 56 122 6.7 123
100 200 100 100 98.2 986 46 98 56 122 36 7.8 64 11.6 13.2 205
200 100 100 100 914 958 14 52 12 3.0 26 90 74 11.6 6.7 12.2
200 200 100 100 100 100 5.8 13.0 6.0 12.8 4.0 9.2 3.8 104 13.5 20.7
DGP.P2 100 100 26.6 406 102 188 1.2 42 02 16 1.8 78 38 102 29 6.6
100 200 62.8 754 21.2 338 26 68 24 6.0 42 86 4.8 102 41 86
200 100 45.6 62.8 13.2 202 14 54 04 32 32 92 64 104 30 6.8
200 200 86.4 926 282 394 32 76 24 82 40 96 3.0 98 40 85
cross sectional dependence error term: €. ~ ...d.N (0, X.)
DGP.P1 100 100 98.6 994 66.2 764 12 46 00 12 24 74 56 13.0 54 10.6
100 200 100 100 97.6 986 52 98 44 124 3.0 84 56 108 10.9 180
200 100 100 100 88.0 946 14 54 1.0 40 22 84 64 114 55 108
200 200 100 100 100 100 5.8 13.2 5.8 12.0 44 88 4.6 10.6 109 18.1
DGP.P2 100 100 26.4 38.0 104 172 12 50 00 08 26 72 44 102 29 6.6
100 200 62.8 776 174 274 26 74 16 6.6 40 92 46 88 3.8 8.1
200 100 40.6 564 124 198 16 50 06 32 22 78 58 102 30 6.7
200 200 88.6 946 276 428 34 78 32 78 42 92 26 98 39 85
time series dependence error term: £;; = 0.5¢;4—1 + vit, vt ~ 4.9.d.N(0, 1)

DGP.P1 100 100 89.4 92.8 998 100 1.2 50 04 34 16 6.2 46 11.0 16.5 26.3
100 200 100 100 100 100 5.4 104 54 140 46 9.6 56 11.6 245 354
200 100 98.6 99.2 100 100 18 48 0.8 32 20 64 48 12.0 164 26.2
200 200 100 100 100 100 5.8 126 5.0 150 58 94 74 12.0 246 35.6
DGP.P2 100 100 164 264 99.0 994 08 44 02 18 14 6.2 32 98 13.7 2238
100 200 41.2 588 100 100 28 74 28 6.6 38 104 4.0 11.2 18.2 283
200 100 244 38.0 100 100 16 46 04 20 14 6.2 34 88 135 226
200 200 65.2 79.8 100 100 3.2 74 26 84 46 108 4.4 102 182 284

cross sectional and time series dependence error term: .4 = 0.5¢.4—1 + v.¢, vy ~ 1.0.d.N (0, X)
DGP.P1 100 100 894 944 100 100 10 48 04 30 26 7.8 48 10.6 16.5 26.3
100 200 99.0 99.2 100 100 5.0 10.8 56 138 42 88 6.0 11.6 25.0 358
200 100 99.0 100 100 100 16 44 06 32 20 56 4.6 124 16.8 26.6
200 200 100 100 100 100 4.8 124 52 144 52 98 7.0 122 246 354
DGP.P2 100 100 14.8 234 998 100 08 32 04 16 1.8 6.8 40 9.0 136 2238
100 200 394 53.2 100 100 26 7.2 32 82 44 104 46 11.0 18.5 29.0
200 100 25.6 404 100 100 12 38 04 22 14 6.2 4.0 9.0 14.0 23.0
200 200 65.8 78.8 100 100 28 6.6 22 84 46 108 5.0 104 182 285

Note: See the note in Table 1.
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Table A.3 Power of tests under DGP.P3 when the number of factors is determined from the data

N T Dp SW Hip HIy CDGry  CDGw BE
5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%
iid. error term: g ~ i.7.d.N(0,1)

DGP.P3 100 100 822 91.2 370 484 06 36 04 24 22 80 58 12.0 3.7 8.2
100 200 98.2 986 720 80.8 16 56 3.8 98 42 88 48 120 5.5 110
200 100 89.6 95.6 428 544 1.6 46 1.0 34 18 46 98 156 3.7 8.2
200 200 100 100 89.8 934 1.8 56 36 11.2 26 7.0 74 126 5.5 11.0

heteroskedastic error term: ¢;; = o;v;t, 0; ~ 1.6.d.U(0.5,1.5),v;z ~ i.t.d.N(0,1)
100 100 784 89.6 31.6 434 06 3.0 04 26 22 84 78 132 3.9 8.2
100 200 96.0 974 638 734 12 50 38 104 32 76 52 126 5.7 110
200 100 86.6 96.0 37.8 496 14 46 1.0 36 16 48 98 146 3.8 8.1
200 200 100 100 83.0 906 2.0 56 42 11.2 26 7.6 82 13.8 57 11.1
cross sectional dependence error term: €. ~ 1.1.d.N (0, )
100 100 82.2 90.6 314 436 0.8 32 08 28 22 84 86 14.0 34 7.5
100 200 98.4 99.2 740 824 14 54 32 96 34 78 50 120 5.0 10.2
200 100 90.6 96.2 458 578 14 46 1.2 40 16 5.2 104 152 35 7.7
200 200 98.8 99.6 91.8 950 1.6 50 38 114 22 76 7.8 150 53 104
time series dependence error term: ;s = 0.5;4—1 + v, Vit ~ 1.2.d.N(0, 1)
100 100 55.0 71.8 99.2 100 04 32 04 34 1.8 6.8 7.8 13.8 145 24.0
100 200 91.0 94.8 100 100 24 46 4.0 108 2.8 &2 54 13.0 19.7 30.1
200 100 76.0 86.2 99.8 100 1.2 3.0 08 28 16 6.4 7.6 14.8 145 24.0
200 200 96.2 97.0 100 100 1.8 3.8 2.6 122 3.0 80 9.0 154 199 304
cross sectional and time series dependence error term: .4 = 0.56.4—1 + v.4, v ~ 1.0.d.N (0, 2,)
100 100 554 71.2 100 100 0.2 22 04 34 1.8 66 7.2 144 14.7 242
100 200 91.2 95.8 100 100 14 54 32 90 24 78 48 11.4 20.3 30.8
200 100 76.0 87.0 100 100 0.8 36 0.6 26 18 54 7.2 13.6 14.8 24.2
200 200 96.0 96.6 100 100 1.8 42 34 11.2 28 6.8 82 154 20.0 30.5

Note: See the note in Table 1.
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