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Abstract

We consider a setting where market microstructure noise is a parametric function

of trading information, possibly with a remaining noise component. Assuming that the

remaining noise is Op(1/
√
n), allowing irregular times and jumps, we show that we can

estimate the parameters at rate n, and propose a volatility estimator which enjoys
√
n

convergence rate. Simulation studies show that our method performs well even with model

misspecification and rounding. Empirical studies demonstrate the practical relevance and

advantages of our method. Furthermore, we find that a simple model can account for a

high percentage of the total variation in microstructure noise.
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1. Introduction

High-frequency data has attracted tremendous attention in recent years. In the vast litera-

ture of high frequency data studies, a central focus is to estimate volatilities consistently and

efficiently. A major challenge arises from the presence of market microstructure noise, which is

an integral part of the financial market.

A widely used assumption about market microstructure noise in the volatility estimation

literature is that they are independent and identically distributed (i.i.d.) and additive to the

log-price process. More specifically, over a time interval of interest [0, T ], one observes at times

0 = t0 < t1 < . . . < tn = T ,

Ytk = Xtk + εtk , k = 0, 1, · · · , n, (1)

where Xtk and εtk denote the latent log-price and market microstructure noise at the obser-

vation time tk respectively, and εtk ’s are i.i.d. and independent of X. Consistent estimators

of the integrated volatility under this setting include the two-scales realized volatility (TSRV,

Zhang et al. (2005)), multi-scale realized volatility (MSRV, Zhang (2006)), realized kernels (RK,

Barndorff-Nielsen et al. (2008)), pre-averaging estimator (PAV, Jacod et al. (2009) and Podol-

skij and Vetter (2009)), and quasi-maximum likelihood estimator (QMLE, Xiu (2010)). The

optimal rate of convergence is n1/4 (Gloter and Jacod (2001)). MSRV, RK, PAV and QMLE

are all rate-optimal.

On the other hand, studies on market microstructure noise can be traced back to the 1980s;

see, Black (1986), Madhavan (2000), O’Hara (1995), Stoll (2003), and Hasbrouck (2007), among

many others. An example of a simple model for microstructure noise is the “implicit measure

of the effective bid-ask spread” as in Roll (1984):

εtk = αIb/s(tk), (2)

where Ib/s(tk) denotes the trade type, indicating if the trade is buyer-initiated (+1) or seller-

initiated (−1); and the coefficient α can be interpreted as one-half of the effective bid-ask

spread. Roll’s model was extended in Glosten and Harris (1988) by incorporating the trading

volume:

εtk = Ib/s(tk)
(
α + βVtk

)
, (3)

where Vtk denotes the trading volume at time tk. Almgren and Chriss (2000) consider an

optimal execution problem and they model the market impact as a function of trade type and
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trading rate. A variant in the spirit of (3) is then the following

εtk = Ib/s(tk)
(
α + βVtk/∆tk

)
, (4)

where ∆tk := tk − tk−1 denotes the duration between two consecutive transactions. A pioneer

paper in high-frequency volatility estimation literature Aı̈t-Sahalia et al. (2005) also models the

market microstructure noise in a parametric way (but without covariates), and shows that even

with model misspecification, such parametric modeling enables one to estimate the volatility

at the optimal rate n1/4 under Model (1).

Rich information is available in high-frequency data. For example, in trade data, in addition

to transaction prices, trading volumes are also reported. Furthermore, quotes data are also

publicly available, which contain even richer information. Individuals or institutions can also

have additional trading information. This motivates us to consider taking advantage of the rich

information available in the market and study the setting where the noise term in (1) can be

further modeled using available trading information through a parametric function such as (2),

(3) or (4). The function can be either linear or nonlinear. We show that in this case, even with

irregular observation times and jumps, the parameters in the noise model can be estimated

with high precision (with convergence rate n instead of
√
n as in usual parametric estimations),

and consequently the “latent log-prices” can be estimated highly accurately. This allows us

to further obtain an efficient volatility estimator, based on the estimated log-prices. We call

this estimator “estimated-price realized volatility” (ERV). We show that the proposed ERV,

which is based on noisy observations, provides
√
n rate of convergence and the same asymptotic

properties as realized volatility (RV) based on latent log-prices.

Given the complexity of market microstructure noise, we further consider the setting where

market microstructure noise admits an extra noise component. Under the assumption that

the extra noise component is Op(1/
√
n), we propose another volatility estimator ERVext which

still enjoys
√
n rate of convergence. Numerically, we demonstrate that ERVext (and E-QMLE,

another estimator that we propose without establishing its asymptotic properties) performs

well even in the situations where there are rounding errors and model misspecification on the

parametric model. More importantly, extensive empirical studies demonstrate the relevance of

our method and the advantages of our estimator. An interesting additional empirical finding

is that, for various stocks examined, a simple model for market microstructure noise, which

incorporates only trade type and trading rate, can account for around 70%-80% of the total

variation in noise. Our analysis also provides a useful framework for studying the market
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microstructure.

An independent and concurrent research, Chaker (2013), shares the same spirit as this

paper. There are however quite a few major differences. In this paper, the models for market

microstructure noise are allowed to be nonlinear1; the observation times are allowed to be

irregularly spaced, in fact the observation times can even be endogenous as what is considered

in Li et al. (2014) and Li et al. (2013); and jumps are allowed in the latent price process.

Furthermore, our small additional noise assumption leads to rather different estimators and

asymptotic properties. Some earlier works along this line include Hansen and Lunde (2006)

and Engle and Sun (2007). Hansen and Lunde (2006) consider in Section 6 of their paper how

to estimate the efficient prices from bid and ask quotes and transaction prices, based on a vector

autoregressive model. Engle and Sun (2007) use GARCH model for the efficient price process

and a two-component ARMA model for the noise. Theoretical properties about the related

estimators have not been discussed.

The rest of this paper is organized as follows. Section 2 presents our proposed ERV estimator

and its extensions, together with their asymptotic properties. Sections 3 and 4 are devoted to

simulation studies and empirical studies, respectively. Section 5 concludes and discusses related

issues. Proofs are given in the Appendix.

2. Estimated-price Realized Volatility

2.1. When noise can be completely modeled

We assume that the latent log-price process has the following representation:

dXt = µt dt+ σt dWt + dJt, t ∈ [0, T ], (5)

where Wt is a Brownian motion, µt and σt are adapted locally bounded random processes, and Jt

is a pure jump process, all defined on a common filtered probability space (Ω,F , (Ft)t≥0, P ). The

quantity of interest is the quadratic variation (QV)
∫ T

0
σ2
t dt+

∑
t≤T (∆Jt)

2 with ∆Jt := Jt−Jt−,

or more often, the continuous part of QV, commonly referred to as the integrated volatility

IV :=
∫ T

0
σ2
t dt. Without loss of generality, we set T = 1.

1Nonlinear models are relevant in practice. For example, Keim and Madhavan (1996) show that the price

impact of block trades is a concave function of order size.
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Following Li et al. (2014) we shall allow the observation times to be endogenous and adopt

some of the notation therein. Denote the observation times at stage n by

0 = tn,0 < tn,1 < . . . < tn,N ≤ 1. (6)

Here n is a latent number that characterizes the observation frequency, and N = N(n), which

may be random, stands for the actual number of observations before time 1. See Section 3 of

Li et al. (2014) for various examples in this regard. In the exogenous case when observation

times are either deterministic or random but independent of the price process, without loss of

generality, we can and will take n = N . More generally, we will establish a feasible asymptotic

theory in terms of N under the assumption that N/n has a (possibly random) probability

limit F . Let us mention that in the endogenous setting, while in general n may not be uniquely

defined2, the feasible asymptotic theory will be independent of n (see also Remark 1 in Li et al.

(2014) or the discussion following Assumption (O) in Jacod et al. (2014)). For notational ease,

when there is no confusion we shall write tn,1, tn,k as t1, tk etc.

In this subsection we consider the setting where the market microstructure noise can be

completely modeled by trading information, through a parametric function g:

Ytk = Xtk + g(Ztk ;θ0), (7)

where Ytk is the observed log-prices at time tk, Ztk is the information set which can include, but

not limited to, trade type, trading volume, and bid-ask bounds; and θ0 is a (finite-dimensional)

parameter. The aforementioned Models (2), (3), and (4) are all examples of g. We shall also

consider some other forms of g in the numerical studies in Section 3. In our theoretical analysis,

we allow the function g to be of any parametric form g(Z;θ) (satisfying certain mild conditions

to be specified later).

We first discuss how to estimate the parameter θ0. Denote ∆Xtk = Xtk − Xtk−1
, ∆Ytk =

Ytk − Ytk−1
, and ∆g(Ztk ;θ) = g(Ztk ;θ)− g(Ztk−1

;θ). One then has

∆Ytk = ∆g(Ztk ;θ0) + ∆Xtk . (8)

2To see this, similar to Examples 4 - 6 in Li et al. (2014), define the observation times tn,i to be successive

hitting times: tn,i+1 := inf{t > tn,i : |Xt −Xtn,i
| ≥ Zi+1/

√
n}, where Zi’s are random variables which may or

may not be i.i.d. Such a definition suggests that n is a natural characterization of the observation frequency.

However, if another person takes Z̃i+1 =
√

2Zi+1, then tn,i+1 can be equivalently defined as t̃2n,i+1 := inf{t >
t̃2n,i : |Xt−Xt̃2n,i

| ≥ Z̃i+1/
√

2n}. The latter definition suggests 2n as another characterization of the observation

frequency.
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To estimate the parameter θ0, we first change our viewpoint by regarding ∆g(Ztk ;θ0) as the

“signal” and ∆Xtk as the “noise”. Observe that in the simplest case when the drift µt ≡ 0,

spot volatility σt ≡ σ and the observation times tk = k/n for k = 0, 1, . . . , n, we have that the

“noise” ∆Xtk ∼ N(0, σ2/n). Therefore if further ∆Xtk is independent of ∆g(Ztk ;θ0), then the

maximum-likelihood estimator (MLE) θ̂ of θ0 is given by

θ̂ = arg min
θ

QN(Y,Z,θ), where QN(Y,Z,θ) =
1

2

N∑
k=1

(∆Ytk −∆g(Ztk ;θ))2 . (9)

When g is a linear function such as in (2), (3), and (4), Eq. (8) becomes a linear regression,

and θ̂ is explicitly given by

θ̂L =

(
N∑
k=1

∆ZT
tk

∆Ztk

)−1

·

(
N∑
k=1

∆ZT
tk

∆Ytk

)
. (10)

We propose to estimate θ0 defined in (9) for the general setup as well. We will show that the

estimator θ̂ has a convergence rate of n.

2.1.1. The estimated-price realized volatility

It has long been established that realized volatility (RV)

RV :=
N∑
k=1

∆X2
tk

(11)

is an efficient estimator of the quadratic variation. In practice, we observe Ytk instead of Xtk ;

however by using the aforementioned model for microstructure noise (7) and the estimator θ̂,

we can estimate the latent log-prices by

X̂tk := Ytk − g(Ztk ; θ̂), (12)

which leads to our proposed estimator, the estimated-price realized volatility (ERV)

ERV =
N∑
k=1

∆X̂2
tk
, where ∆X̂tk = X̂tk − X̂tk−1

. (13)

To deal with jumps, following Mancini (2009) and Aı̈t-Sahalia and Jacod (2009), for a suitable

exponent ξ > 0 to be specified below, we define the thresholded ERV as follows:

ERVthreshold =
N∑
k=1

∆X̂2
tk
· 1|∆X̂tk |≤(∆tk)ξ . (14)
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Alternatively, one can also use bi- and multi-power variation (Barndorff-Nielsen and Shephard

(2004), Barndorff-Nielsen et al. (2006), Barndorff-Nielsen et al. (2006)). A slight difference is

that thresholded ERV is more convenient to use in the irregular time setting.

We next state our assumptions, which can be categorized into two sets: Assumption A is

about X, g, and Ztk , and Assumption B is about observation times {tk : k = 0, 1, . . . , N}.
We will use the following notation:

p−→ stands for convergence in probability,
L−→ represents

convergence in law, Yn = op(f(n)) means that Yn/f(n)
p−→ 0, and Yn = Op(f(n)) means that

the sequence |Yn|/f(n) is tight. With a slight abuse of notation, we use | · | to denote the

Euclidean norm in all dimensions.

Assumption A:

(A.i) (µt) is locally bounded;

(A.ii) (σt) is locally bounded with inft∈(0,1] σt > 0 almost surely;

(A.iii) (Jt) satisfies that
∑

t |∆Jt| = Op(1);

(A.iv) For all k, Ztk and ∆Xtk are conditionally independent given Ftk−1
;

(A.v) maxk |Ztk | = Op(1);

(A.vi) The parameter space Θ for θ is a compact set in Rd for some d ∈ N, and g(z;θ)

is twice continuously differentiable in θ in a neighborhood N (θ0) ⊂ Θ;

(A.vii) For all θ1,θ2 ∈ N (θ0), |g(z;θ1)−g(z;θ2)| ≤ L0(z)|θ1−θ2|, where L0(z) is locally

bounded;

(A.viii) For all θ ∈ N (θ0), | ∂g
∂θ

(z;θ)| ≤ f(z) where f(z) is locally bounded;

(A.ix) | ∂g
∂θ

(z;θ1)− ∂g

∂θ
(z;θ2)| ≤ L1(z)|θ1 − θ2|, where L1(z) is locally bounded;

(A.x) For any ε > 0, almost surely,

inf
|θ−θ0|≥ε

N∑
k=1

|∆g(Ztk ;θ)−∆g(Ztk ;θ0)|2 →∞ as n→∞;

(A.xi)

∣∣∣∣∣∣∣∣( 1
N

∑N
k=1 ∆ ∂g

∂θ
(Ztk ;θ0)∆ ∂g

∂θT
(Ztk ;θ0)

)−1
∣∣∣∣∣∣∣∣ = Op(1), where for any square ma-

trix A, ||A|| stands for its spectral norm;

(A.xii) For any i, j = 1, . . . , d, for all θ1,θ2 ∈ N (θ0),
∣∣∣ ∂2g
∂θi∂θj

(z;θ1)− ∂2g
∂θi∂θj

(z;θ2)
∣∣∣ ≤

L2(z)|θ1 − θ2|, where L2(z) is locally bounded;

(A.xiii) For any i, j = 1, . . . , d, for all θ ∈ N (θ0),
∣∣∣ ∂2g
∂θi∂θj

(z;θ)
∣∣∣ ≤ L3(z), where L3(z) is

locally bounded.

Remark 1. Assumption (A.iv) is analogous to the usual assumption in regression that the

predictor and noise are independent. Under Models (2), (3) and (4), the assumption amounts
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to assume that the immediate next trading depends solely on the market information up to the

latest transaction. We believe this is a reasonable assumption when transactions occur at high

frequency, and particularly so in algorithmic trading where whether to buy or to sell as well as

how much to trade are determined by past transactions.

Remark 2. Assumptions (A.vii), (A.ix), and (A.xii) are actually implied by Assumption (A.vi);

they are explicitly stated for ease of reference in the proofs. Assumption (A.x) is analogous to

the identifiability condition in MLE, and Assumption (A.xi) corresponds to the invertibility

condition of the Fisher information matrix.

Assumption B:

(B.i) The number of observations N in (6) satisfies that N/n
p−→ F for some positive

random variable F ;

(B.ii) The observation times GN := {tk : k = 0, 1, . . . , N} is nonrandom or independent

of the process X;

(B.iii) Let ∆tk = tk − tk−1 for all k = 1, 2, . . .. Then ∆(G) := maxk ∆tk satisfies that
√
N∆(G) = op(1) and N2

∑N
k=1(∆tk)

3 = Op(1);

(B.iv) The asymptotic quadratic variation of time (AQVT) Ht (see Mykland and Zhang

(2006)) exists:

Ht = lim
n→∞

N
∑
tk≤t

(∆tk)
2, t ∈ [0, 1].

(B.v) The shortest inter-observational period δ(G) := mink ∆tk satisfies that

N
√
δ(G)

p−→ ∞.

Remark 3. Assumption B is not required in establishing the convergence rate of the es-

timator θ̂, and Assumption (B.i) alone is sufficient in establishing the convergence rate of

ERV/ERVthreshold. Assumptions (B.ii)∼(B.iv) are used only in establishing a special form of

the central limit theorem (CLT) for ERV/ERVthreshold, see Remark 6 below. Recall also that if

Assumption(B.ii) holds, then one can take n = N and hence Assumption (B.i) automatically

holds with F ≡ 1.

Note that in Assumption (B.iii) we write
√
N∆(G) = op(1) instead of ∆(G) = op(1/

√
N)

because in our setting N is allowed to be a random variable. The same remark applies to

N2
∑N

k=1(∆tk)
3 = Op(1) and other similar statements below.

We now state our first set of main results. The first result concerns the convergence rate

of θ̂.
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Theorem 1. Under Assumption A, we have that N(θ̂ − θ0) = Op(1).

Remark 4. We do mean N(θ̂−θ0) = Op(1) instead of
√
N(θ̂−θ0) = Op(1) (which is what one

has in usual parametric estimations). The reason for such a higher convergence rate, intuitively

speaking, is that in regression (8), in the simple case when observation times are equally spaced,

the noise term ∆Xtk is of order Op(
√

∆tk) = Op(
√

1/n), which contributes an extra Op(
√

1/n).

In general, when observation times can be irregular, the extra Op(
√

1/n) is because the sum of

squared “noise”
∑N

k=1 ∆X2
tk

is Op(1) instead of Op(n), which is the rate of growth in usual

regression settings.

Remark 5. CLTs for θ̂ can be readily derived if one is willing to impose convergence properties

on {Ztk}. We do not pursue this because we are considering a general model and {Ztk} might

contain information for which there is no consensus on how it should be modeled.

To state our next result concerning the ERV/ERVthreshold estimator, we first recall the

definition of stable convergence.

Definition 1. Let Un be a sequence of χ-measurable variables, F1 ⊆ χ. We say that Un

converges F1-stably (or stably) in law to U as n→∞ if U is measurable with respect to an ex-

tension of χ, so that for all A ∈ F1 and for any bounded continuous function h, E(1Ah(Un))→
E(1Ah(U)) as n→∞, where 1· stands for the indicator function.

Theorem 2. Under Assumption A,

(i) if Assumption (B.i) holds, then as n→∞,

√
N(ERV− RV) = op(1); (15)

(ii) in particular, if Assumptions (B.ii)∼(B.iv) hold and Jt ≡ 0, then as n→∞,

√
N (ERV− IV)

L−→ Φ×
(

2

∫ 1

0

σ4
t dHt

)1/2

stably, (16)

where Φ is a standard normal random variable independent of F1;

(iii) more generally, if (Jt) admits only finitely many jumps, then under Assumptions (B.ii)∼(B.v),

for any ξ ∈ (0, 1/2), as n→∞,

√
N (ERVthreshold − IV)

L−→ Φ×
(

2

∫ 1

0

σ4
t dHt

)1/2

stably. (17)
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Remark 6. If the observation times are endogenous as what is considered in Li et al. (2014),

then
√
N (ERVthreshold − IV) will converge to the limit with t = 1 in Eq.(9) in Li et al. (2014) .

Remark 7. In practice, the threshold ∆tξk in (14) can be chosen in a data-driven way, for

example, σ̃ ·∆tξk where σ̃ is a rough estimate of the daily volatility, or as in Aı̈t-Sahalia et al.

(2013), chosen as 4σ̃ ·∆t1/2k .

Furthermore we have a feasible CLT for ERVthreshold as follows.

Proposition 1. Under Assumptions A and B, if (Jt) admits only finitely many jumps, then

for any ξ ∈ (0, 1/2), as n→∞, the statistic

Nn
1 :=

ERVthreshold − IV√
2
3

∑N
k=1 |∆X̂tk |4 · 1|∆X̂tk |≤(∆tk)ξ

L−→ Φ stably. (18)

2.2. Extensions: when there is an extra noise component

What if model (7) is not sufficient? In other words, what if the noise admits another source

of error which cannot be explained by past trading information? Here we consider the following

extension to model (7):

Ytk = Xtk + g(Ztk ;θ0) + εtk , (19)

where (εtk) are i.i.d. with mean 0, standard deviation σn, and also independent of F1. We

propose the following approach in such a setting:

(i). Estimate the parameter θ0 using (9). Define the estimated log-prices X̂tk just as in (12),

which is now an estimate of Xtk + εtk .

(ii). Then apply existing estimators for the noisy setting (such as TSRV, MSRV, RK, PAV

and QMLE) to X̂tk .

The advantages of this strategy, compared with directly applying existing estimators to the raw

log-prices, are twofold:

(i). Modeling and removing the noise component caused by trading and then applying existing

estimators to the estimated log-prices yields a higher efficiency;

(ii). The potential serial dependence as well as time variation in market microstructure noise

(see, e.g., Hansen and Lunde (2006), Jacod et al. (2014)) may be caused by dependence

and variation in trades. Filtering out the component caused by trading can help remove
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the dependence and idiosyncrasies in the noise, consequently make the remaining noise

more like white noise3.

On the other hand, under model (19), if one finds it reasonable to impose an additional

assumption on (εtk) that

nσ2
n := nE(ε2

tk
)→ σ2

ε ∈ [0,∞), and n2E(ε4
tk

) = O(1), (20)

then a more convenient estimator of IV is the following

ERVext =
N∑
k=1

(
∆X̂tk

)2 · 1|∆X̂tk |≤(∆tk+1/
√
N)ξ

+ 2
N∑
k=2

∆X̂tk ·∆X̂tk−1
1|∆X̂tk |≤(∆tk+1/

√
N)ξ, |∆X̂tk−1

|≤(∆tk−1+1/
√
N)ξ .

(21)

Remark 8. Condition (20) is similar in spirit to the small (rounding) error assumption in

Delattre and Jacod (1997) where the authors assume that the rounding level αn satisfies that
√
nαn → β ∈ [0,∞). Similar assumptions appeared in Hansen et al. (2008), Hansen and

Horel (2009) and Large (2011), among others. More generally, small noise assumption has

appeared in, for example, Aı̈t-Sahalia et al. (2005) (who consider in Section 9.2 a setting when

the variance contributed by the noise to the observed return is of the same order as the latent

return), Barndorff-Nielsen et al. (2008) (who consider in Section 4.7 a setting when the noise is

of order n−α for α ∈ [0, 1/2), hence the (total) noise is small), Rosenbaum (2009) (who studies

the case when the rounding level goes to zero), Li and Mykland (2007), Li and Mykland (2015)

and Li et al. (2015) (who consider both rounding and noise). Our motivation for considering

such a small additional noise assumption comes from the intuition that if we can model a big

portion of noise by trading information via the function g, then it is reasonable to view what is

left as a quantity of a smaller order. In fact, under model (19), a useful concept is the following

proportion

πexp :=
gV

gV + εV
, where gV =

N∑
k=1

(g(Ztk ;θ0))2 and εV =
N∑
k=1

ε2
tk
. (22)

3This is desirable, despite that several volatility estimators have been designed to accommodate serially

dependent and/or time-varying noise. Such estimators include the (multivariate) realized kernel estimator in

Barndorff-Nielsen et al. (2011), the Markov chain estimator in Hansen and Horel (2009), and moving average-

based estimator in Hansen et al. (2008), the extension of TSRV in Aı̈t-Sahalia et al. (2011) and the extension

of PAV in Jacod et al. (2015). These estimators are all more sophisticated than their counterparts when

microstructure noise is white.
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The two quantities, gV and εV , can be interpreted as follows: gV stands for the total variation

in the explained noise component g, and εV is the total variation in the unexplained noise com-

ponent (εtk). The ratio πexp is hence analogous to the coefficient of determination (R-squared)

in least squares regression, and measures the proportion of variation that is explained by the

model (g in our setting). The quantities in (22) can be estimated by

π̂exp :=
ĝV

ĝV + ε̂V
where ĝV :=

N∑
k=1

(g(Ztk , θ̂))2 and ε̂V :=

∑N
k=1(∆X̂tk)

2 − ERVext

2
. (23)

In our empirical studies, for various stocks examined, we find that with a simple function g,

the proportion of explained variation is around 70% – 80%, indicating that the variation left in

(εtk) only accounts for a small proportion of total variation in the noise.

Remark 9. The extra 1/
√
N in the threshold (∆tk +1/

√
N)ξ in (21) is used to account for the

extra term ∆εtk := εtk−εtk−1
in ∆X̂tk which approximates ∆Xtk +∆εtk . Under the assumption

on the fourth moment in (20), we have

P
(
|∆εtk | ≥ (1/

√
n)ξ
)
≤ n2ξE|∆εtk |4 = O(1/n2−2ξ).

Therefore, recall that N/n converges in probability to a positive (random) variable F , we obtain

P
(

maxk=1,...,N |∆εtk | ≥ (1/
√
n)ξ
)

= o(1) if ξ < 1/2. Using again N/n
p−→ F > 0 we see that

P
(

max
k
|∆εtk | ≥ (1/

√
N)ξ

)
= o(1) if ξ < 1/2. (24)

In practice, the threshold can again be chosen in a data-driven way. Under subgaussian tail

assumption on (εtk), the threshold can be chosen as 4 max
(√

B̂∆tk,

√
B̂/N

)
, where B̂ =∑N

k=1 ∆X̂2
tk

, which estimates IV + 2Fσ2
ε +

∑
t(∆Jt)

2.

When jump does not exist, for all n large enough, ERVext reduces to

ERVext, no jump :=
N∑
k=1

(
∆X̂tk

)2
+ 2

N∑
k=2

∆X̂tk ·∆X̂tk−1
, (25)

which equals RVext, no jump + op(1), where

RVext, no jump :=
N∑
k=1

(
∆Xtk + ∆εtk

)2
+ 2

N∑
k=2

(
∆Xtk + ∆εtk

)(
∆Xtk−1

+ ∆εtk−1

)
, (26)

see (75) in the proof of Theorem 3. Observe that ERV (as defined in (13)) converges to IV+2Fσ2
ε

(see (78) below), hence it is no longer a consistent estimator of IV unless σε = 0.

We impose the following additional assumptions on the observation times.
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(B.vi) N
∑

k ∆tk−1∆tk = Op(1);

(B.vii) The neighboring-variation of time (NQVT) Qt exists:

Qt = lim
n→∞

N
∑
tk≤t

∆tk−1∆tk, t ∈ [0, 1].

Remark 10. Certainly either Assumption (B.iv) or (B.vii) implies (B.vi). Note however that

the two limits, Ht and Qt, in Assumptions (B.iv) and (B.vii) could be different. A simple

example is as follows: for each n, define tk = tn,k so that ∆tk = 1/(2n) when k is odd, and

∆tk = 3/(2n) when k is even. In this case, Ht = 5/2 · t while Qt = 3/4 · t. Another example

is when (tk = tn,k) are successive arrival times of a Poisson process with rate n. In this case,

Ht = 2t while Qt = t.

As to the CLT for the estimator ERVext, we will further need the volatility itself to be an

Itô semimartingale. More precisely, we assume

(C.i) The process νt := σ2
t is an Itô semimartingale satisfying Assumption (H-2) in Aı̈t-

Sahalia and Jacod (2014).

Theorem 3. Under model (19), under Assumption A and (20),

(i) if Assumption (B.i) holds, then as n→∞,

N(θ̂ − θ0) = Op(1); (27)

(ii) under Assumptions (B.i), (B.v), (B.vi) and if (Jt) admits only finitely many jumps, then

for any ξ ∈ (0, 1/2), as n→∞,
√
N (ERVext − IV) = Op(1); (28)

(iii) under Assumptions (B.ii)∼(B.v), (B.vii) and (C.i), if (Jt) admits only finitely many

jumps, then for any ξ ∈ (0, 1/2), stably in law,

√
N (ERVext − IV)

L−→ Φ×
(

2

∫ 1

0

σ4
t dHt + 4

∫ 1

0

σ4
t dQt + 8σ2

ε IV + 8σ4
ε

)1/2

, (29)

where Φ is a standard normal random variable independent of F1.

As a special case of (29), in the equidistant case when tk = k/n, if (Jt) admits only finitely

many jumps, then, stably in law,

√
N (ERVext − IV)

L−→ Φ×
(

6

∫ 1

0

σ4
t dt+ 8σ2

ε

∫ 1

0

σ2
t dt+ 8σ4

ε

)1/2

. (30)

13



Finally we give a feasible CLT. Assume additionally that

n2E(ε4
tk

)→ κ ∈ [0,∞), and n3E(ε6
tk

) = O(1). (31)

We introduce the following estimator of the variance in (29):

ÂVarε :=
2N

3

(
N∑
k=2

(X̂tk − X̂tk−2
)4 · 1|∆X̂tk |≤(∆tk+1/

√
N)ξ, |∆X̂tk−1

|≤(∆tk−1+1/
√
N)ξ

−
N∑
k=1

(∆X̂tk)
4 · 1|∆X̂tk |≤(∆tk+1/

√
N)ξ

)

+ 2

(
N∑
k=1

(∆X̂tk)
2 · 1|∆X̂tk |≤(∆tk+1/

√
N)ξ − ERVext

)2

.

(32)

Proposition 2. Under the assumptions of Theorem 3(iii), assuming further that (31) holds,

then for any ξ ∈ (0, 1/2), as n→∞,

Nn
1,ε :=

√
N(ERVext − IV)√

ÂVarε

L−→ Φ stably. (33)

The significance of the extended estimator ERVext is that it is robust to small deviations

from model (7). In addition, it is also seen in numerical studies that ERVext performs well even

with misspecification of the noise model g. Loosely speaking, if under model (7) or model (19),

the function g is misspecified, then the “residual” after fitting g will be absorbed into the ε term

in (19). To avoid the risk of model misspecification, in the empirical studies below we shall

adopt this estimator ERVext instead of our original estimator ERV or ERVthreshold. Accordingly

we only demonstrate the performance of ERVext in the simulation studies.

2.2.1. Discussion about the estimator ERVext

The estimator ERVext also fits the framework of QMLE studied in Aı̈t-Sahalia et al. (2005)

and Xiu (2010). To see this, consider the simplest setting where the latent process (Xt) satisfies

that dXt = σdWt, the additional noise εtk ∼i.i.d. N(0, σ2
ε/n), and the observation times tk = k/n

for k = 0, 1, . . . , n. In this case, Vk :=
√
n ·
(
∆Xtk + ∆εtk

)
can be written as an MA(1) process:

Vk = δk + ηδk−1, δk ∼i.i.d. N(0, γ2),

where γ2 and η satisfy that

γ2(1 + η2) = Var(Vk) = σ2 + 2σ2
ε

γ2η = Cov(Vk, Vk−1) = −σ2
ε ,

14



see equations (8), (9) and (10) in Aı̈t-Sahalia et al. (2005). To estimate the parameters, note

that by ergodicity, we have∑n
k=1 V

2
k

n
=

n∑
k=1

(
∆Xtk + ∆εtk

)2 p−→ σ2 + 2σ2
ε , and∑n

k=2 VkVk−1

n
=

n∑
k=2

(
∆Xtk + ∆εtk

)(
∆Xtk−1

+ ∆εtk−1

) p−→ −σ2
ε .

Therefore, RVext, no jump defined in (26) converges to σ2, and since ERVext = RVext, no jump +

op(1), so does ERVext.

Such a connection also suggests the following alternative strategy:

(i). Estimate the parameter θ0 using (9). Define the estimated log-prices X̂tk just as in (12),

which is now an estimate of Xtk + εtk .

(ii). Then apply QMLE 4 to X̂tk .

We conjecture that this alternative estimator (call it, say, E-QMLE with “E” for estimated

price) has the same convergence rate of
√
n under condition (20). Under some situations,

E-QMLE may yield a smaller asymptotic variance than ERVext, at the price of a higher com-

putational cost. Rigorous treatment of this proposal is beyond the scope of this paper5. We

do try this estimator in our simulation studies, and find that indeed sometimes it can yield a

smaller RMSE than ERVext.

3. Simulation Studies

3.1. The feasible CLT, when required conditions are met

We conduct simulation studies to examine the performance of our proposed estimators, θ̂

and ERVext. We directly consider a challenging situation which involves irregular sampling

times, jumps, and additional noise.

To motivate our simulation design, we first recall two concepts introduced in Barndorff-

Nielsen et al. (2008):

ξ2 =
ω2√∫ 1

0
σ4
t dt

and ρ =

∫ 1

0
σ2
t dt√∫ 1

0
σ4
t dt

,

4One common advantage of ERVext and QMLE is that they are both free of tuning parameters.
5In a private communication, we learned from Dacheng Xiu that he is working on QMLE assuming the small

noise assumption (20). This future result can facilitate a complete analysis of E-QMLE.
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where ω2 stands for the variance of noise, see p.1492 therein. ξ2 can be regarded as the noise-to-

signal ratio, and ρ measures the heteroskedasticity. As is explained in Barndorff-Nielsen et al.

(2008), ρ ≤ 1, and ρ = 1 corresponds to the constant volatility case.

We first discuss the model for the latent log-price process X. In our empirical studies, we

found that ρ ranges from 0.3 to 0.7. In the simulation studies below, we choose a simple model

for the volatility process to feature ρ ≈ 0.5 and a U-shaped pattern:

νt := σ2
t =

 15ζ, if t < 0.05 or t ≥ 0.95,

ζ, otherwise,
(34)

where ζ > 0 is any fixed constant. Under such a setting, the ratio between the maximum and

minimum (spot) volatilities is
√

15 ≈ 3.9. One can of course perturb the function above to

make it continuous or even stochastic while still have a similar ρ. As to ζ which determines the

volatility level, we take it to be 0.000125 so that the daily integrated volatility is 0.0003, which

is a typical scale of the stocks analyzed in empirical studies.

With such a νt, we define our latent log-price process X to be

dXt = (µ− νt/2)dt+ σtdBt + Jt dNt, (35)

where Nt is a Poisson process with intensity λ, and Jt denotes the jump size which is assumed

to be independent of everything else. We assume that Jt follows a normal distribution with

mean zero and variance σ2
J . We set the parameters as µ = 0.0002, λ = 0.02 and σJ = 0.015

(the parameter setting in Section 7.1.3 of Aı̈t-Sahalia et al. (2013) is taken for reference, where

annualized values were used). We further set X0 as log(30).

Next, we discuss the model for microstructure noise. We assume part of the noise can be

modeled through a parametric function g:

Ytk =Xtk + g(Ztk ;θ0) + εtk , where εtk ∼i.i.d. N(0, σ2
n). (36)

We consider the following three forms for the function g:

g1(Vtk , Ib/s(tk);α, β) =Ib/s(tk)
(
α + βVtk/∆tk

)
; (37)

g2(Vtk , Ib/s(tk);α, β
+, β−) =

{
α + β+Vtk/∆tk, if buyer-initiated,

−α− β−Vtk/∆tk, if seller-initiated;
(38)

g3(Vtk , Ib/s(tk); β, γ) =Ib/s(tk) log(γ + βVtk/∆tk). (39)
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Model g1 is the same as (4). Model g2 allows for asymmetric impact of buys and sells. Model

g3 is nonlinear in trading rates, in particular, it is concave for buys and convex for sells, which

is consistent with the findings in Keim and Madhavan (1996). When the trading rate is low, g3

is approximately the same as g1, whereas when the trading rate is high, |g3| grows more slowly

than linearly.

The trade type process {Ib/s(tk)} is simulated as a Bernoulli process (±1 valued) with a

success probability of p = 1/2 and with an autocorrelation of 0.3. Here the correlation is

incorporated to mimic the positive autocorrelation in trade types that are found in various

empirical studies. With the correlated trade types, the g component and consequently the

total microstructure noise becomes serially dependent.

As to the trading volume, inspired by Bia lkowski et al. (2008) and Kim and Murphy (2011)6,

we simulate the trading volume process {Vtk} by rounding {|V ∗tk |} up to hundreds, where {V ∗tk}
are generated as

V ∗tk = Htk + etk , (40)

where Htk , k = 0, 1 . . . , are independent Gamma random variables with mean
∫ tk
tk−1

htdt and

standard deviation 5, 000, in which ht = (0.025(t − 0.5)2 + 0.05) × 108 features a “U-shaped

pattern”7; and {etk} follows an ARMA(1,1) model

etk = φ1etk−1
+ ψ1utk−1

,

where φ1 = 0.5, ψ1 = 0.5, and {utk} consists of i.i.d. normal random variables with mean 0

and standard deviation 100. The resulting trading volumes have means approximately 400 and

standard deviations approximately 5,000.

Regarding the observation times {tk}, we consider the irregular time setting generated by

Poisson arrival time: tk’s are the arrival times of a Poisson process with rate 23, 400.

We now discuss the choice for the parameters σn, α, β etc. in equations (36) – (39). We

take σn = 0.00012, α = 1.875 × 10−4, β = 0.75 × 10−12, β+ = 0.75 × 10−12, β− = 0.30 ×
6Bia lkowski et al. (2008) presented a decomposition for modeling intraday volume: one part reflects volume

changes caused by market evolution, the other part describes the stock specific volume pattern. The dynamic

of the specific volume part is depicted using autoregressive moving average (ARMA) and self-exciting threshold

autoregressive (SETAR) models. Kim and Murphy (2011) observed that in 2009, the average size of an individual

trade for the S&P 500 ETF (SPY) is 400 shares with a standard deviation of 5,100 shares.
7Biais et al. (1995), Gourieroux et al. (1999), and Bia lkowski et al. (2008), among others, observed that a

U-shaped pattern is present in intraday volume.
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10−12 and γ = 1 + α = 1.0001875. Under these choices, the realized values of g1, g2, and g3

have means approximately zero and standard deviations approximately 0.00024, 0.000226 and

0.00024 respectively. These numbers are typical values of what we found in empirical studies.

We run three sets of simulations for the situations where the g component in the noise

follows Model g1, g2 and g3 respectively, each with 2, 500 replications. The parameters are

estimated using (10) for linear models g1 and g2; whereas for g3, the parameters are estimated

by minimizing the objective function (9), which is performed in R by using the function “optim”.

In Table 1, target records the true parameter values ((α×104, β×1012) for g1, (α×104, β+×
1012, β− × 1012) for g2 and (γ, β × 1012) for g3); bias gives average values for the difference

between estimated values and target values; RMSE records the square root of the mean squared

deviations. These statistics indicate for both parametric estimation and IV estimation, under

all Models g1, g2 and g3, our estimators yield small estimation errors.

g1(Vtk , Ib/s(tk);α, β) g3(Vtk , Ib/s(tk); β, γ)

α̂× 104 β̂ × 1012 ERVext γ̂ β̂ × 1012 ERVext

target 1.875 0.75 0.0003 1.0001875 0.75 0.0003

bias 4.80× 10−4 −1.29× 10−3 5.45× 10−7 −1.67× 10−7 4.00× 10−4 3.80× 10−7

RMSE 1.29× 10−2 6.92× 10−3 1.39× 10−5 6.90× 10−7 1.24× 10−2 1.46× 10−5

g2(Vtk , Ib/s(tk);α, β
+, β−)

α̂× 104 β̂+ × 1012 β̂− × 1012 ERVext

target 1.875 0.75 0.30 0.0003

bias 4.18× 10−4 −1.67× 10−3 −5.33× 10−4 1.67× 10−7

RMSE 1.29× 10−2 9.79× 10−3 6.06× 10−3 1.38× 10−5

Table 1

Estimation results based on 2,500 replications for the Poisson arrival time case for model (36)

with X following (35), g being one of the g1, g2 and g3 in (37)–(39). The RVs based on the

raw observations have large biases of 2.7× 10−3, 2.4× 10−3 and 2.7× 10−3, which are omitted

in the table.

Figure 1 displays the Q-Q plots and histograms for the statistic Nn
1,ε defined in (33) for all

three sets of simulations. The asymptotic standard normality of Nn
1,ε is clearly supported.
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Fig. 1. Normal Q-Q plot and histogram based on 2,500 replications of Nn
1,ε under model (36)

with X satisfying (35), and g being g1 (upper-left), g2 (upper-right) and g3 (lower), for the

Poisson arrival time case. In each of histogram, the red curve is the density plot of the standard

normal distribution.

3.2. Comparisons

3.2.1. Existing popular estimators to be compared with

In this subsection we compare our proposed estimators ERVext and E-QMLE with existing

widely used volatility estimators MSRV, RK, PAV and QMLE. The estimator TSRV is not

included in the comparison due to its suboptimal convergence rate. To make the comparisons

fair, below we create a setting where microstructure noise is i.i.d. and observation times are

equally spaced, so that the required assumptions for all these estimators are satisfied.

In the following, we briefly introduce the aforementioned estimators and how we compute

them and their associated standard errors under Model (1). Let θ be a positive constant that

can take different values for different estimators. Let Q̂N
1 be defined as in (3.14) in Jacod

et al. (2009) (see (47) below), which is a consistent estimator of the quarticity
∫ 1

0
σ4
t dt. Let

Êε2 =
∑N

k=1(∆Ytk)
2/(2N) and V̂ar(ε2) =

∑N
k=1(∆Ytk)

4/(2N) − 4(Êε2)2 be the estimators of

the variances of the noise and squared noise, respectively (p.1402 in Zhang et al. (2005)).

(i) Let MN = [θ
√
N ]. The MSRV (Zhang (2006)) is a weighted average over MN different
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time scales:

MSRV =

MN∑
i=1

αN,i

{
1

Ki

N−Ki∑
k=0

(Ytk+Ki − Ytk)
2

}
, (41)

where the weights αN,i and Ki are given by (see Eq. (20) in Zhang (2006))

αN,i = 12
i

M2
N

i/MN − 1/2− 1/(2MN)

1− 1/M2
N

, and Ki = i.

The asymptotic standard deviation can be estimated by (Eq.(37) in Zhang (2006))

N−1/4

{
48θ−3(Êε2)2 +

52

35
θ Q̂N

1 +
12

5
θ−1(V̂ar(ε2)) +

48

5
θ−1(Êε2)MSRV

}1/2

. (42)

The tuning parameter θ is chosen to be the value that minimizes (42) with MSRV es-

timated using θ = 1 (call it MSRV1), namely, if one lets a = 48(Êε2)2, b = 52
35
Q̂N

1 ,

c = 12
5

V̂ar(ε2)+48
5
Êε2MSRV1, then the optimal tuning parameter is chosen as

√
6a√

c2+12ab−c .

(ii) Let H = [θ
√
N ] and K(x) (x ∈ [0, 1]) be a kernel function. The RK (Barndorff-Nielsen

et al. (2008)) is defined as

RK =
N∑
k=1

(∆Ytk)
2 +

H∑
h=1

K

(
h− 1

H

){ N∑
k=1

∆Ytk∆Ytk−h +
N∑
k=1

∆Ytk∆Ytk+h

}
. (43)

We choose K(·) to be the Parzen kernel, namely, K(x) = 1− 6x2 + 6x3 when 0 ≤ x ≤ 1/2

and 2(1−x)3 when 1/2 ≤ x ≤ 1. The asymptotic standard deviation is estimated by (the

first paragraph on p.1495 and Table II in Barndorff-Nielsen et al. (2008))

N−1/4

√
8.54(Êε2)1/2(Q̂N

1 )3/4. (44)

In our numerical studies, we use the estimated optimal θ = 4.77
√
Êε2/(Q̂N

1 )1/4 (see

Table II on p.1495, and p.1492 for the definition of ξ).

(iii) The PAV (Jacod et al. (2009)) with weight function g(x) = x ∧ (1 − x) for x ∈ (0, 1) is

defined as follows: with kN = [θ
√
N ] being the window length over which the averaging

takes place, let

PAV =
12

θ
√
N

N−kN+1∑
k=0

(Y
N

k )2 − 6

θ2N

N∑
k=1

(∆Ytk)
2, (45)
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where Y
N

k = (
∑kN−1

i=kN/2
Ytk+i −

∑kN/2−1
i=0 Ytk+i)/kN . The estimator of the asymptotic stan-

dard deviation is given by N−1/4
√

ΓN , where (Eq.(3.7) in Jacod et al. (2009))

ΓN =
1812

35θ

N−kN+1∑
k=0

(Y
N

k )4 − 2916

35θ3N

N−2kN+1∑
k=0

(Y
N

k )2

k+2kN−1∑
j=k+kN

(∆Ytj)
2

+
939

35θ3N

N−2∑
k=1

(∆Ytk)
2(∆Ytk+2

)2.

(46)

An estimator of the quarticity
∫ 1

0
σ4
t dt is given by

Q̂N
1 =

48

θ2

N−kN+1∑
k=0

(Y
N

k )4 − 144

θ4 N

N−2kN+1∑
k=0

(Y
N

k )2

k+2kN−1∑
j=k+kN

(∆Ytj)
2

+
36

θ4 N

N−2∑
k=1

(∆Ytk)
2(∆Ytk+2

)2.

(47)

The tuning parameter θ is taken to be 4.777

√
Êε2/σ̂2 (see Remark 2 of Jacod et al.

(2009)), where σ̂2 is taken to be PAV with tuning parameter θ = 0.5, as in Aı̈t-Sahalia

et al. (2013).

(iv) The QMLE (Xiu (2010)) is the estimated σ2 obtained by maximizing the following quasi-

likelihood function

l(a2, σ2) = −1

2
log det(Ω)− N

2
log(2π)− 1

2
YTΩ−1Y, (48)

where

Ω =


σ2∆t1 + 2a2 −a2 0 . . . 0

−a2 σ2∆t2 + 2a2 −a2 . . . . . .

. . . . . . . . . . . . . . .

0 . . . 0 . . .− a2 σ2∆tN + 2a2

 .

The asymptotic standard deviation is estimated by (p.240 in Xiu (2010))

N−1/4
{

5(Êε2)1/2 Q̂N
1 /QMLE1/2 + 3 QMLE3/2(Êε2)1/2

}1/2

. (49)

3.2.2. The comparison

In this subsection, we create a setting where

(i). the latent log-price process is continuous;
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(ii). the observation times are equally spaced; and

(iii). the market microstructure noises are i.i.d. and also independent with the latent log-price

process.

Again, such a design is so that the required assumptions for all these estimators are satisfied.

More specifically, for the latent log-price we consider a similar model to (35) but without

jumps:

dXt = (µ− νt/2)dt+ σtdBt. (50)

The parameter µ is chosen to be the same as in Section 3.1, namely, µ = 0.0002. We again set

X0 = log(30).

As to the noise, we adopt (36) with g being g1, namely,

Ytk =Xtk + g1(Ztk ; θ0) + εtk . (51)

The εtk ’s are taken to be i.i.d. normal with mean 0 and standard deviation 0.00012.

To make the whole noise i.i.d., we simulate the trade type process {Ib/s(tk)} as a Bernoulli

process (±1 valued) with a success probability of p = 1/2, and simulate the trading volumes

{Vtk} as i.i.d. Gamma random variables with mean 400 and standard deviation 5,000.

Finally, regarding the observation times {tk}, we consider the

Equidistant time case: tk = k/23, 400 for k = 0, 1, . . . , 23, 400.

With the specifications above, the conditions required by the aforementioned volatility es-

timators are satisfied and these estimators can be readily applied. The standard deviation

of g1(Ztk ; θ0) is about 0.00021, which leads to a proportion of explained variation πexp as

0.000212/(0.000212 + 0.000122) ≈ 75%, and the noise-to-signal ratio ξ2 about (0.000212 +

0.000122)/
√

0.9ζ2 + 0.1× 152ζ2 ≈ 0.0001.

In the comparison we compute the estimated volatilities and confidence intervals based on

the estimators MSRV, RK, PAV, QMLE, and our proposed estimators ERVext and E-QMLE.

Table 2 reports the bias, RMSE, average width of confidence intervals (AWidth), and the coverage

rate of the confidence intervals (CR, which is the percentage of times that the true integrated

volatility is inside the confidence intervals), based on 2,500 replications. The first column Intv

records the sampling interval. It ranges from one observation per second to one observation

per 10 seconds. The advantages of ERVext and E-QMLE are clearly demonstrated:
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(i). ERVext has smaller RMSE’s, so does E-QMLE. The reduction in RMSE compared with

the smallest RMSE achieved by MSRV, RK, PAV and QMLE ranges from 8% to 18%

across different frequencies;

(ii). ERVext yields confidence intervals with coverage rates close to the nominal level.

MSRV RK

Intv bias RMSE AWidth CR bias RMSE AWidth CR

1 -0.089 0.168 0.551 88.3% -0.001 0.151 0.544 91.9%

5 -0.204 0.321 0.834 76.7% -0.003 0.253 0.825 89.3%

10 -0.250 0.415 1.023 72.4% -0.006 0.349 1.016 84.1%

PAV QMLE

Intv bias RMSE AWidth CR bias RMSE AWidth CR

1 0.043 0.190 0.602 89.6% -0.004 0.150 0.574 93.7%

5 -0.109 0.328 0.957 82.3% -0.010 0.259 0.858 90.3%

10 -0.060 0.465 1.250 79.8% -0.015 0.344 1.050 85.4%

ERVext E-QMLE Reduction in RMSE

Intv bias RMSE AWidth CR bias RMSE by ERVext by E-QMLE

1 -0.007 0.127 0.506 95.5% -0.005 0.123 15.3% 18.0%

5 -0.012 0.220 0.879 95.1% -0.005 0.225 13.0% 11.1%

10 -0.026 0.315 1.202 94.3% -0.007 0.315 8.4% 8.4%

Table 2

Comparison among different estimators based on 2,500 replications under the equidistant time

setting for model (51) with X following (50). The true IV is 0.0003. All values (except Intv,

CR and Reduction in RMSE) are reported after being multiplied by 104. The bottom right corner

reports the reductions in RMSE by using ERVext or E-QMLE compared with the smallest RMSE

achieved by MSRV, RK, PAV and QMLE.

Remark 11. Notice that the comparisons are made under an ideal setting where the assump-

tions for all the alternative estimators are satisfied. Our estimator ERVext is applicable to much

more general situations, notably, microstructure noise can be serially dependent, can have di-

urnal features, and observation times can be irregular. See Section 3.1 for an illustration.
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3.3. When there is model misspecification, irregular observation times and

rounding in both price and time

In this subsection, we demonstrate that ERVext still performs well even with some degrees of

model misspecification. The setting considered in this subsection is the same as in Section 3.2.2

except that

(i). In (51) the function g1 is changed to be g3;

(ii). observations occur at irregular times, with the observation times rounded down to the

previous second, and

(iii). the observed prices are rounded to cents.

The observations arrive as a Poisson process with rate 11,700. It is chosen such that at the

one second sampling interval, the previous tick method yields a sample size of about 9,000, a

typical size for the stocks in the empirical studies. The observation times are further rounded

down to the previous second, to mimic the empirical data that we have access to which has

transaction times recorded only accurate to seconds. All estimators are to be applied to data

subsampled by the previous tick method.

To evaluate the performance of our estimators when model is misspecified, in the parametric

estimation step we use the wrong model g1 for the g component in the noise. Model g1 involves

the trading durations (∆tk in (37)). In the data generating procedure we purposely rounded

the observation times, which induces errors in the trading durations. The error is particularly

severe when there are multiple observations in a same second, in which case the times of all the

observations are recorded to have a same time stamp, which leads to zero trading durations.

To reduce the errors, we adopt the following proxy: if there are m transactions recorded at a

same time t, then the transaction times of the ith (i = 1, · · · ,m) transaction is set to be t+ i/m

seconds. Taking the difference of successive transaction times yields the trading durations ∆tk.

The estimation results based on 2,500 replications are shown in Table 3. The percentage

of explained variation πexp and noise-to-signal ratios ξ2 are estimated to be about 71.5% and

0.00011 respectively. In the table, Intv records the sampling interval (in units of seconds),

and Freq records the average total number of observations when we sample every Intv seconds

using the previous tick method. We only report the biases and RMSE’s. The summaries

about confidence intervals are omitted because with the violation of assumptions, the inference

theories for all estimators become less reliable. From Table 3 we again see that ERVext and
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E-QMLE yield smaller RMSE’s, the reduction ranging from roughly 6% to 10% compared with

the best among MSRV, RK, PAV and QMLE.

Let us add that if the rounding in time is less severe, for example, if one has access to

millisecond data, then the performance of ERVext (and E-QMLE) can be further improved.

In our unreported simulation studies, with the true time stamps, ERVext yields a reduction in

RMSE of 13.0% at the one second frequency, which is more than twice the reduction reported

in Table 3.

MSRV RK PAV QMLE

Intv Freq bias RMSE bias RMSE bias RMSE bias RMSE

1 9199 -0.186 0.269 -0.002 0.216 -0.008 0.253 -0.009 0.219

5 4294 -0.209 0.332 -0.010 0.267 -0.081 0.327 -0.015 0.271

10 2324 -0.244 0.412 -0.017 0.340 -0.096 0.450 -0.025 0.340

ERVext E-QMLE Reduction in RMSE

Intv Freq bias RMSE bias RMSE by ERVext by E-QMLE

1 9197 0.003 0.203 -0.007 0.195 6.0% 9.7%

5 4294 -0.004 0.246 -0.013 0.248 7.9% 7.1%

10 2323 -0.012 0.315 -0.019 0.320 7.4% 5.9%

Table 3

Comparison among different estimators based on 2,500 replications for model (36) with X

following (50) and g = g3 (but misspecified as g1 when applying ERV/E-QMLE), under the

setting when observation times are irregular and there is rounding in both price and time. The

true IV is 0.0003. All values (except Intv, Freq and Reduction in RMSE) are reported after

being multiplied by 104. The bottom right corner reports the reductions in RMSE by using ERVext

or E-QMLE compared with the smallest RMSE achieved by MSRV, RK, PAV and QMLE.

Figure 2 displays the Q-Q plot and histogram for the statistic Nn
1,ε defined in (33) based on

1-second data. The asymptotic standard normality of Nn
1,ε appears to still roughly hold.
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Fig. 2. Normal Q-Q plot and histogram of Nn
1,ε under model misspecification and rounding in

both price and time. The red curve in the histogram is the density plot of the standard normal

distribution.

4. Empirical Studies

We analyze trade and quote (TAQ) data on a random day (June 1, 2012) for four stocks:

Arch Coal Inc.(NYSE:ACI), Dell Inc.(NASDAQ:DELL), EMC Corp.(NYSE:EMC) and General

Electric Co.(NYSE:GE).

Our method requires the information of trade type: whether a trade is buyer-initiated (a

“buy”) or seller-initiated (a “sell”). We obtain such information by applying the Lee Ready

algorithm (program provided by WRDS) to the WRDS-derived Trades files (WCT datasets)

which was generated from TAQ Trades and Quotes datasets. See

https://wrds-web.wharton.upenn.edu/wrds/research/applications/intraday/index.cfm

for detailed information. In the analysis below we remove the transactions with undefined trade

type (i.e. LeeReady=0 in the generated dataset).

We assume model (19) and use g1 in (37) to conduct the estimations. For each stock, we

study three different sampling intervals: (Intv) 10s, 5s, and 1s. Same as in Section 3.3, all

estimators are to be applied to data sampled by the previous tick method.

As we discussed in Section 3.3, Model g1 involves another variable, the trading durations

(∆tk in (37)). The database that we have access to has transaction times recorded only accurate
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to seconds, hence the durations cannot be accurately calculated especially when there are

multiple trades in single seconds. We adopt the same proxy as in Section 3.3, namely, if there

are m transactions recorded with a same time stamp t, then the transaction times of the ith

(i = 1, · · · ,m) transaction is set to be t + i/m seconds. The trading durations ∆tk are then

obtained by taking differences of successive transaction times.

Tables 4-7 show the estimation results of the six volatility estimators that we consider

in Section 3, namely, MSRV, RK, PAV, QMLE , ERVext and E-QMLE. We adopt the non-

truncated version of ERVext in (25), to be consistent with other estimators that do not remove

jumps. The tuning parameters for MSRV, RK and PAV are chosen as in Section 3.2. We also

record the estimates of RV.

We also report the estimates of the two variations, gV and εV , and the ratio πexp that we

discussed in Remark 8. Recall that πexp stands for the percentage of variation in the noise

that is explained by the model g. Based on these quantities, one can estimate the standard

deviations of g and εtk by
√
ĝV /N and

√
ε̂V /N respectively, which are also reported in the

tables.

In Tables 4-7, Intv records the sampling interval (in units of seconds), and Freq records

the total number of observations when we sample every Intv seconds. The highest frequency

we use is 1-second. We do not go into higher frequencies so that (1) the time information is

reasonably accurate, and (2) when applying the alternative estimators, the required assumption

of equidistant observation times will not be severely violated. Again, since there may be no

observation in some sampling intervals, Freq may not equal 23,400/Intv.

Intv Freq RV MSRV RK PAV QMLE ERVext E-QMLE ĝV ε̂V π̂exp ŝd(g) ŝd(ε)

1 8364 84.890 18.012 18.273 18.407 18.717 18.589 18.940 31.405 8.052 79.6% 6.128 3.103

5 3810 48.918 19.743 20.746 19.562 20.245 20.243 20.199 14.753 1.874 88.7% 6.223 2.218

10 2214 37.628 18.735 20.168 20.691 20.271 19.783 19.545 8.661 1.648 84.0% 6.255 2.728

Table 4

Estimation results for stock ACI on June 1, 2012. All volatility estimates, ĝV , ε̂V , ŝd(g) and

ŝd(ε) are reported after being multiplied by 104.
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Intv Freq RV MSRV RK PAV QMLE ERVext E-QMLE ĝV ε̂V π̂exp ŝd(g) ŝd(ε)

1 8338 17.277 2.776 3.013 2.980 3.144 3.438 3.275 6.088 1.848 76.7% 2.702 1.489

5 3937 9.619 3.265 3.423 3.254 3.549 3.354 3.420 2.680 0.886 75.2% 2.609 1.500

10 2247 7.082 2.737 3.782 4.018 3.857 3.495 3.576 1.579 0.485 76.5% 2.651 1.469

Table 5

Estimation results for stock DELL on June 1, 2012. All volatility estimates, ĝV , ε̂V , ŝd(g) and

ŝd(ε) are reported after being multiplied by 104.

Intv Freq RV MSRV RK PAV QMLE ERVext E-QMLE ĝV ε̂V π̂exp ŝd(g) ŝd(ε)

1 9654 7.050 1.573 1.737 1.809 1.715 1.783 1.803 2.287 0.773 74.7% 1.539 0.895

5 4091 3.992 1.762 1.854 1.832 1.889 1.818 1.818 0.876 0.340 72.0% 1.464 0.912

10 2279 3.079 1.428 1.918 2.017 1.917 1.875 1.872 0.519 0.130 79.9% 1.509 0.756

Table 6

Estimation results for stock EMC on June 1, 2012. All volatility estimates, ĝV , ε̂V , ŝd(g) and

ŝd(ε) are reported after being multiplied by 104.

Intv Freq RV MSRV RK PAV QMLE ERVext E-QMLE ĝV ε̂V π̂exp ŝd(g) ŝd(ε)

1 13404 12.985 1.801 1.845 1.699 1.888 1.947 1.884 4.353 1.513 74.2% 1.802 1.062

5 4508 5.922 2.069 2.136 2.030 2.201 2.078 2.105 1.479 0.532 73.5% 1.811 1.087

10 2331 4.331 1.826 2.510 2.656 2.538 2.172 2.269 0.805 0.340 70.3% 1.859 1.207

Table 7

Estimation results for stock GE on June 1, 2012. All volatility estimates, ĝV , ε̂V , ŝd(g) and

ŝd(ε) are reported after being multiplied by 104.

We see from Tables 4-7 that

(i). ERVext and E-QMLE are close to each other, both of which are close to the typical

estimates based on the alternative noise-robust estimators.

(ii). Across different sampling intervals, ERVext and E-QMLE provide stable estimates.

• They do not exhibit “volatility signature plot” pattern (Andersen et al. (2000), the

pattern that we see on RV, which gives larger estimated daily volatilities as the

sampling interval goes smaller);
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• ERVext and E-QMLE appear to give more stable estimates across different sampling

intervals compared with the alternative estimators.

(iii). The ratio π̂exp is stable across different sampling intervals.

• For the stocks reported (and many other stocks we analyzed), the ratios are around

70%-80%, by using the simple model g1. This suggests that microstructure noise

can indeed be largely accounted for by trade type, trading volume/rate, etc.

The analyses also indicate that π̂exp provides a useful criterion to search for better models for

the market microstructure, which will be of both theoretical and practical interest.

5. Conclusion and Discussion

This paper is among the first attempts to make efficient use of available information in the

market for volatility estimation. Under a general parametric model for microstructure noise, in

a setting where the observation times can be irregular and jumps are allowed, we show that we

can estimate the parameters with rate n, which allows us to estimate the latent log-prices with

high accuracy. Based on the estimated log-prices, we build “estimated-price realized volatility”

(ERV), which provides
√
n rate of convergence and the same asymptotic properties as realized

volatility (RV) based on latent log-prices. To adapt to broader realistic situations, we further

propose an extended version ERVext in the presence of an additional noise component. Under

the assumption that the additional noise is “small” (Op(1/
√
n) to be precise), ERVext also

enjoys
√
n rate of convergence.

The superior performance of our estimators, both for parameter estimation and volatility

estimation, is demonstrated via simulation studies. ERVext is seen to perform well even with

rounding in both price and time and model misspecifications on the parametric model. About

the other estimator, E-QMLE, that we propose, although we do not establish its asymptotic

properties in this article, numerical studies show that it also performs well in various settings.

Empirically, our estimators also perform favorably. An interesting additional finding is

that a simple model for market microstructure noise, which incorporates only trade types and

trading rates, can account for a high percentage of the total variation in the noise.

Of course the market information to be incorporated should by no means be restricted to

trade type and trading rate, and the model for the noise should not be restricted to the ones that
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we illustrated. Users of our estimators are advised to further explore more sophisticated noise

models and incorporate more available information and use the general framework provided in

this paper.

The framework proposed in this paper and the concept of percentage of explained variation

in the noise are useful in studies of market microstructure.
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Appendix A. Proofs

First observe that, by using standard localization techniques (see, for example, Section 2.4.5

of Mykland and Zhang (2012)), for proving Theorems 1 - 3 and Propositions 1 - 2, we can replace

the assumptions (A.i), (A.ii) and (A.v) with the following stronger assumptions:

(SA.i) (|µt|) is bounded;

(SA.ii) (σt) is bounded from both below and above;

(SA.iv) maxk |Ztk | is bounded.

Similarly, as in Appendix (A.5) in Jacod and Protter (2012), Assumption (C.i) can be replaced

with Assumption (SH-2) therein, which, in particular, implies that for any p ≥ 2, for any finite

stopping times s ≤ t:

E
(
|νt − νs|p | Fs

)
≤ C E(t− s | Fs), (52)

see (A.67) therein. We always assume these strengthened assumptions below, mostly without

special mention. Also in all the sequel, C,C1 etc. denote generic constants whose values may

change from line to line.

A.1. Proof of Theorem 1

Proof. We first prove consistency of θ̂:

θ̂
p−→ θ0. (53)

In the case when (σt) satisfies certain additional assumptions (e.g., (σt) itself is an Itô process),

jump is not present, both {tk} and {Ztk} are independent of (Xt), and {Ztk} are mutually

independent, one can work with the probability measure P ∗n in Mykland and Zhang (2009) and

apply Theorem 2.4 in White (1980) to prove (53). In general, to establish (53), it suffices to

show that for any ε > 0,

P

(
inf

|θ−θ0|≥ε
(QN(Y,Z,θ)−QN(Y,Z,θ0)) > 0

)
→ 1. (54)

In fact,

2 (QN(Y,Z,θ)−QN(Y,Z,θ0))

=
N∑
k=1

(∆g(Ztk ;θ0)−∆g(Ztk ;θ))2 + 2
N∑
k=1

(∆g(Ztk ;θ0)−∆g(Ztk ;θ)) ∆Xtk .
(55)
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Using Assumption (A.x) we only need to show that

N∑
k=1

(∆g(Ztk ;θ0)−∆g(Ztk ;θ)) ∆Xtk = Op(1). (56)

In fact, by (5),
N∑
k=1

(∆g(Ztk ;θ0)−∆g(Ztk ;θ)) ∆Xtk

=
N∑
k=1

(∆g(Ztk ;θ0)−∆g(Ztk ;θ))

∫ tk

tk−1

µt dt

+
N∑
k=1

(∆g(Ztk ;θ0)−∆g(Ztk ;θ))

∫ tk

tk−1

σt dWt

+
N∑
k=1

(∆g(Ztk ;θ0)−∆g(Ztk ;θ))

∫ tk

tk−1

dJt

:=I + II + III.

Note that by Assumptions (A.vii) and (SA.iv),

|∆g(Ztk ;θ0)−∆g(Ztk ;θ)| ≤
(
L0(Ztk) + L0(Ztk−1

)
)
|θ0 − θ| ≤ C|θ0 − θ|. (57)

Hence, for term I, by Assumption (SA.i), we have

I ≤
N∑
k=1

C|θ0 − θ| · C∆tk ≤ C|θ0 − θ|.

As to term II, by Assumptions (A.iv) and (SA.ii), it is a martingale, hence by the Burkholder-

Davis-Gundy (BDG) inequality,

E(II2) ≤CE

(
N∑
k=1

(∆g(Ztk ;θ0)−∆g(Ztk ;θ))2 ∆tk

)
≤C|θ0 − θ|2.

Finally, for term III, by (57) again we have

|III| ≤ C|θ0 − θ| ·
∑
t

|∆Jt|.

Combining the three estimates above and Assumption (A.iii) we see that (56) and consequently

(53) hold.

Next we prove the stronger conclusion that N(θ̂ − θ0) = Op(1). By (53), with probability

approaching one, θ̂ ∈ N (θ0) ⊂ Θ, under which case since θ̂ minimizes QN(Y,Z,θ), we must
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have ∂QN
∂θ

(Y,Z, θ̂) = 0. It follows from the mean-value theorem that for each j = 1, . . . , d, there

exists a θ∗j which lies on the line segment connecting θ0 and θ̂ such that

∂QN

∂θj
(Y,Z,θ0) +

∂2QN

∂θ∂θj
(Y,Z,θ∗j)(θ̂ − θ0) = 0.

Hence

N(θ̂ − θ0) = −∂QN

∂θ
(Y,Z,θ0)

(
1

N

∂2QN

∂θ∂θT
(Y,Z,θ∗)

)−1

, (58)

where
∂2QN

∂θ∂θT
(Y,Z,θ∗) :=

(
∂2QN

∂θ∂θj
(Y,Z,θ∗j)

)
j=1,...,d

.

Observe that the jth component of ∂QN
∂θ

(Y,Z,θ0) is given by

∂QN

∂θj
(Y,Z,θ0) = −

N∑
k=1

∆
∂g

∂θj
(Ztk ;θ0)∆Xtk . (59)

By Assumption (A.viii) (and Assumption (SA.iv)) and using a similar argument to that for (56)

we can show that
∂QN

∂θ
(Y,Z,θ0) = Op(1).

It remains to show that (
1

N

∂2QN

∂θ∂θT
(Y,Z,θ∗)

)−1

= Op(1). (60)

Note that for any θ,

1

N

∂2QN

∂θ∂θT
(Y,Z,θ)

=
1

N

N∑
k=1

∆
∂g

∂θ
(Ztk ;θ)∆

∂g

∂θT
(Ztk ;θ)− 1

N

N∑
k=1

(∆Ytk −∆g(Ztk ;θ)) ∆
∂2g

∂θ∂θT
(Ztk ;θ).

Hence the (i, j)th entry of 1
N

∂2QN

∂θ∂θT
(Y,Z,θ∗) equals

1

N

∂2QN

∂θi∂θj
(Y,Z,θ∗j)

=
1

N

N∑
k=1

∆
∂g

∂θi
(Ztk ;θ

∗
j)∆

∂g

∂θj
(Ztk ;θ

∗
j)−

1

N

N∑
k=1

(
∆Ytk −∆g(Ztk ;θ

∗
j)
)

∆
∂2g

∂θi∂θj
(Ztk ;θ

∗
j)

:=Iij − IIij, i, j = 1, . . . , d.

(61)

We have

Iij =
1

N

N∑
k=1

∆
∂g

∂θi
(Ztk ;θ0)∆

∂g

∂θj
(Ztk ;θ0) + I1,ij, (62)
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where

|I1,ij| =

∣∣∣∣∣ 1

N

N∑
k=1

∆
∂g

∂θi
(Ztk ;θ

∗
j)∆

∂g

∂θj
(Ztk ;θ

∗
j)−

1

N

N∑
k=1

∆
∂g

∂θi
(Ztk ;θ0)∆

∂g

∂θj
(Ztk ;θ0))

∣∣∣∣∣
≤C
N

N∑
k=1

(L1(Ztk) + L1(Ztk−1
))|θ∗j − θ0|

≤C
N

N∑
k=1

|θ̂ − θ0|
p−→ 0,

(63)

where the inequalities hold thanks to Assumptions (A.ix), (A.viii) and (SA.iv) (and the simple

fact that |θ∗j − θ0| ≤ |θ̂ − θ0|), and the last convergence is due to (53).

As to IIij, we have

IIij =
1

N

N∑
k=1

∆Xtk∆
∂2g

∂θi∂θj
(Ztk ;θ0) +

1

N

N∑
k=1

(∆g(Ztk ;θ0)−∆g(Ztk ;θ
∗
j))∆

∂2g

∂θi∂θj
(Ztk ;θ

∗
j)

+
1

N

N∑
k=1

∆Xtk

(
∆

∂2g

∂θi∂θj
(Ztk ;θ

∗
j)−∆

∂2g

∂θi∂θj
(Ztk ;θ0)

)
:=II1,ij + II2,ij + II3,ij.

(64)

For II1,ij, by a similar argument to (56) and using Assumption (A.xiii), one can show that

II1,ij = op(1). Moreover, by Assumptions (A.vii) and (A.xiii) and (53),

|II2,ij| ≤
C

N

N∑
k=1

(L0(Ztk) + L0(Ztk−1
))|θ̂ − θ0|

∣∣∣∣∆ ∂2g

∂θi∂θj
(Ztk ;θ

∗
j)

∣∣∣∣ p−→ 0.

Finally, by the Cauchy-Schwarz inequality, Assumption (A.xii) and (53),

|II3,ij| ≤
1

N

√√√√ N∑
k=1

∆X2
tk
·
N∑
k=1

(
∆

∂2g

∂θi∂θj
(Ztk ;θ

∗
j)−∆

∂2g

∂θi∂θj
(Ztk ;θ0)

)2

≤ 1

N

√√√√ N∑
k=1

∆X2
tk
·
N∑
k=1

2(L2(Ztk)
2 + L2(Ztk−1

)2)|θ̂ − θ0|2
p−→ 0.

Combining the estimates above we see that

1

N

∂2QN

∂θ∂θ
(Y,Z,θ∗) =

1

N

N∑
k=1

∆
∂g

∂θ
(Ztk ;θ0)∆

∂g

∂θT
(Ztk ;θ0) + op(1).

and hence (60) holds by Assumption (A.xi).
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A.2. Proof of Theorem 2

Proof. Rewrite ERV as follows:

ERV =
N∑
k=1

(
∆Ytk −∆g(Ztk ; θ̂)

)2
=

N∑
k=1

(
∆Xtk − (∆g(Ztk ; θ̂)−∆g(Ztk ;θ0))

)2

=
N∑
k=1

∆X2
tk

+
N∑
k=1

(
∆g(Ztk ; θ̂)−∆g(Ztk ;θ0)

)2

− 2
N∑
k=1

(
∆g(Ztk ; θ̂)−∆g(Ztk ;θ0)

)
∆Xtk

:=I + II − III.

Note that term I is just the realized volatility RV. Under Assumptions (B.ii)∼(B.iv) and if

further that Jt ≡ 0, we have,

√
N

(
RV−

∫ 1

0

σ2
t dt

)
L−→ Φ×

(
2

∫ 1

0

σ4
t dHt

)1/2

stably, (65)

see, for example, Corollary 2.30 of Mykland and Zhang (2012). Therefore to prove parts (i)

and (ii) of the theorem, it suffices to show that, under Assumptions A and (B.i), we have

√
N(II − III) = op(1). (66)

We first deal with term II. By Assumption (A.vii),∣∣∣∆g(Ztk ; θ̂)−∆g(Ztk ;θ0)
∣∣∣ ≤ (L0(Ztk) + L0(Ztk−1

)
)
· |θ̂ − θ0|.

Using Theorem 1 (and Assumption (SA.iv)) one can then easily verify that N · II = Op(1),

which certainly implies that
√
NII = op(1).

It remains to show that
√
NIII = op(1). Note that since θ̂ depends on the whole process

((Xt), (Ztk)), term III is not a martingale even if µt = Jt ≡ 0, and hence the BDG inequality is

not applicable. To circumvent this difficulty, observe that since we have proved that N(θ̂−θ0) =

Op(1), by Assumption (B.i) that N/n
p−→ F > 0, to show

√
NIII = op(1), it suffices to show

that for any K > 0,

√
n sup
|θ−θ0|≤K/n

∣∣∣∣∣
N∑
k=1

(∆g(Ztk ;θ)−∆g(Ztk ;θ0)) ∆Xtk

∣∣∣∣∣ = op(1). (67)

To show (67), first note that by Assumptions (A.vii) and (SA.iv), for any θ1, θ2 ∈ N (θ0),

|∆g(Ztk ;θ1)−∆g(Ztk ;θ2| ≤ (L0(Ztk) + L0(Ztk−1
)) · |θ1 − θ2| ≤ C|θ1 − θ2|.
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Therefore, using further Assumption (SA.i) and (A.iii) we obtain that

√
n sup
|θ−θ0|≤K/n

∣∣∣∣∣
N∑
k=1

(∆g(Ztk ;θ)−∆g(Ztk ;θ0)) ·
∫ tk

tk−1

µt dt

∣∣∣∣∣
≤
√
n sup
|θ−θ0|≤K/n

∣∣∣∣∣
N∑
k=1

C|θ − θ0| ∆tk

∣∣∣∣∣
≤C
√
n ·K/n→ 0,

and
√
n sup
|θ−θ0|≤K/n

∣∣∣∣∣
N∑
k=1

(∆g(Ztk ;θ)−∆g(Ztk ;θ0)) ·
∫ tk

tk−1

dJt

∣∣∣∣∣
≤
√
n sup
|θ−θ0|≤K/n

C|θ − θ0| ·
∑
t

|∆Jt|

≤C
√
n ·K/n ·

∑
t

|∆Jt|
p−→ 0.

It remains to show that

√
n sup
|θ−θ0|≤K/n

∣∣∣∣∣
N∑
k=1

(∆g(Ztk ;θ)−∆g(Ztk ;θ0)) ·
∫ tk

tk−1

σt dWt

∣∣∣∣∣ = op(1). (68)

Define

FN(θ) =
N∑
k=1

(∆g(Ztk ;θ)−∆g(Ztk ;θ0)) ·
∫ tk

tk−1

σt dWt.

Further define for any function φ : N (θ0)→ R, the modulus of continuity as follows

w(φ, h) := sup{|φ(θ1)− φ(θ2)| : |θ1 − θ2| ≤ h}, for any h ≥ 0.

Below we show that for all n such that B(θ0, K/n)(= {θ : |θ − θ0| ≤ K/n}) ⊆ N (θ0), for all

` ∈ N large enough,

E(
√
n w(FN , K/n))2` = o(1), (69)

which clearly implies (67). The proof of (69) is via a modification of the Kolmogorov-Centsov

continuity theorem. More specifically, for any θ1, θ2 ∈ N (θ0), by the BDG inequality (and

Assumptions (SA.ii)), for any ` ∈ N there exists C` <∞ such that

E|FN(θ1)− FN(θ2)|2` ≤ C`E

(
N∑
k=1

(∆g(Ztk ;θ1)−∆g(Ztk ;θ2))2 ∆tk

)`

≤ CE

(
N∑
k=1

(
(L0(Ztk) + L0(Ztk−1

)) · |θ1 − θ2|
)2

∆tk

)`

≤ C|θ1 − θ2|2`,
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where in the second to the last inequality we used Assumption (A.vii) (and in the last inequal-

ity we used Assumption (SA.iv)). Following the argument in the proof of Corollary 14.9 in

Kallenberg (1997) one obtains that for any ` > d/2 and any m ∈ N,

E(w(FN , 2
−m))2` ≤ C2−m(2`−d).

Taking m be such that 2−m ≥ K/n > 2−m−1 yields

E(
√
nw(FN , K/n))2` ≤ Cn` · (K/n)2`−d = O(n−(`−d)),

and therefore (69) holds for all ` > d.

We now prove part (iii) of the theorem, which deals with the thresholded ERV. Note that

∆X̂tk = ∆Xtk + (∆g(Ztk ;θ0)−∆g(Ztk ; θ̂)) := ak + bk. (70)

By Assumption (A.vii) (and Assumption (SA.iv)), there exists C > 0 such that for all k,

|bk| ≤ C|θ̂−θ0|. Using Theorem 1 and Assumption (B.v) we then obtain that, with probability

approaching one, for any ξ ∈ (0, 1/2), |bk| ≤ (∆tk)
ξ/2 for all k, under which case |∆X̂tk | ≥

(∆tk)
ξ only if |ak| = |∆Xtk | ≥ (∆tk)

ξ/2. However, by Lévy’s modulus of continuity theorem,

under Assumption (B.iii), for all n large enough the latter could only happen when there is

a jump during [tk−1, tk]. On the other hand, since (Jt) admits only finitely many jumps, for

all n large enough, each interval [tk−1, tk] would contain at most one jump, and if indeed there

is a jump during [tk−1, tk], then we will have that |∆Xtk | > 3/2 · (∆tk)ξ, which implies that

|∆X̂tk | > (∆tk)
ξ. Therefore we conclude that, with probability approaching one,

|∆X̂tk | · 1|∆X̂tk |>(∆tk)ξ = |∆Xtk + bk| · 1jump exists in [tk−1,tk] for all k. (71)

Using again the assumption that Jt admits only finitely many jumps and that
√
N∆(G)

p−→ 0

in assumption (B.iii) we see that

ERVthreshold =
∑
k

|∆X̂tk |2 · 1|∆X̂tk |≤(∆tk)ξ

=
∑
k

(∆X̃tk + bk)
2 + op(1/

√
n),

(72)

where (X̃t) is the continuous part of (Xt) satisfying dX̃t = µtdt+ σt dWt. The conclusion then

follows from part (ii).
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A.3. Proof of Proposition 1

Proof. By a similar argument to (72), without loss of generality, we can assume that Jt ≡ 0.

In this case, by Proposition 2 in Mykland and Zhang (2006), under Assumptions (B.ii)∼(B.iv),

as n→∞, we have

N

3

N∑
k=1

|∆Xtk |4
p−→
∫ 1

0

σ4
t dHt. (73)

To prove the proposition, it then suffices to show that

N

3

N∑
k=1

(
|∆X̂tk |4 − |∆Xtk |4

)
p−→ 0. (74)

Using the notation in the decomposition (70), we have that

N∑
k=1

(
|∆X̂tk |4 − |∆Xtk |4

)
=4

N∑
k=1

a3
kbk + 6

N∑
k=1

a2
kb

2
k + 4

N∑
k=1

akb
3
k +

N∑
k=1

b4
k.

By Hölder’s inequality, for i = 1, 2, 3,∣∣∣∣∣
N∑
k=1

aikb
4−i
k

∣∣∣∣∣ ≤
(

N∑
k=1

a4
k

)i/4( N∑
k=1

b4
k

)(4−i)/4

.

By (73), if we can show that

N
N∑
k=1

b4
k = op(1),

then (74) will follow. The last claim is true thanks to Assumptions (A.vii) and (SA.iv) and

Theorem 1.

A.4. Proof of Theorem 3

Proof. Part (i) can be proved by slight modifications of the proof of Theorem 1. The key

property used is that ∑
k

(∆εtk)
2 ≤ 2

∑
k

ε2
tk

= Op(1)

thanks to condition (20), where ∆εtk = εtk − εtk−1
for any k.

We now prove part (ii). Firstly, by a similar reasoning for (72) and using (24), we can

assume without loss of generality that the jump does not exist. In this case, we can further

assume that
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(SA.i) µt ≡ 0,

see, for example, Section 2.2 (p.1407-1409) of Mykland and Zhang (2009). Furthermore, using

the conclusion of part (i) and by a similar argument for (66), we have that
√
N (ERVext − RVext) = op(1), (75)

where

RVext =
N∑
k=1

(∆Xtk + ∆εtk)
2 + 2

N∑
k=2

(∆Xtk + ∆εtk)(∆Xtk−1
+ ∆εtk−1

).

Simple algebra and that
√
N∆(G)

p−→ 0 in assumption (B.iii) yields

RVext

=
∑
k

∆X2
tk

+ 2
∑
k

∆Xtk−1
∆Xtk − 2

∑
k

(
(Xtk −Xtk−1

)− (Xtk−3
−Xtk−4

)
)
εtk−2

+ 2
∑
k

(εtk−1
− εtk−2

)εtk + op(1/
√
n)

:=I + 2II − 2III + 2IV + op(1/
√
n),

where the op(1/
√
n) is due to the edge effects. Term I is just the realized volatility, for which

we have the CLT (65) under Assumptions (B.ii) – (B.iv). As to term II, it is a martingale under

Assumptions (SA.i) and (SA.ii), and we have that

E(II2) = E

(∑
k

∆X2
tk−1

∆X2
tk

)
≤ CE

(∑
k

∆tk−1∆tk

)
.

By Assumption (B.vi) we then get that
√
NII = Op(1). As to term III, we have

E(III2|F1) = E

(∑
k

(
(Xtk −Xtk−1

)− (Xtk−3
−Xtk−4

)
)2
ε2
tk−2

∣∣∣∣∣F1

)
≤ 2σ2

n ·
∑
k

(Xtk −Xtk−1
)2,

and hence
√
NIII = Op(1) by Assumptions (B.i) and (20). Finally,

E(IV 2|F1) = E

(∑
k

(εtk−1
− εtk−2

)2ε2
tk
|F1

)
= 2Nσ4

n,

hence, again by Assumptions (B.i) and (20), we have that
√
NIV = Op(1).

We now establish CLT under Assumptions (B.ii)∼(B.v) and (B.vii). In this case, we have

N = n, and (65) holds. Furthermore, by the martingale CLT we have, stably in law,

√
NII

L−→ Φ2 ×
(∫ 1

0

σ4
t dQt

)1/2

,

√
NIII

L−→ Φ3 ×
(

2σ2
ε

∫ 1

0

σ2
t dt

)1/2

,

√
NIV

L−→ Φ4 ×
(
2σ4

ε

)1/2
,

(76)
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where Φi, i = 2, 3, 4, are standard normal random variables independent of F1. To show the

desired convergence, it then remains to show that the Φi, i = 2, 3, 4 in (76) and the Φ in (65)

are mutually independent.

We shall only show that Φ and Φ1 are independent; the independence of other pairs can be

shown similarly (and actually slightly more easily).

To prove that Φ and Φ1 are independent, firstly we have

√
N

(
I −

∫ 1

0

σ2
t dt

)
= M1,

where (Mt)t∈[0,1], a martingale, is the interpolated and rescaled error process defined by

dMt = 2
√
N(Xt −Xtk∗ ) dXt , M0 = 0,

where k∗ is the largest k such that tk ≤ t (see, for example, the proof of Proposition 2 (p. 1952)

of Mykland and Zhang (2006) or the proof of Theorem 1 in Li et al. (2014)). Similarly, term

II is the end value of a martingale (IIt)t∈[0,1] defined as

dIIt =
√
N∆Xtk∗−1

dXt, II0 = 0.

Recall that νt = σ2
t . It follows that the quadratic covariation of (Mt) and (IIt) equals

〈M, II〉t = 2N

(∑
k≤k∗

∆Xtk−1

∫ tk

tk−1

(Xt −Xtk−1
)νt dt+ ∆Xtk∗−1

∫ t

tk∗

(Xt −Xtk∗ )νt dt

)
.

To show that Φ and Φ2 are independent, it suffices to show that 〈M, II〉t → 0 for all t ≤ 1. For

ease of exposition, we shall only deal with the major term

2N
∑
k≤k∗

∆Xtk−1

∫ tk

tk−1

(Xt −Xtk−1
)νt dt

=2N
∑
k≤k∗

∆Xtk−1
νtk−1

∫ tk

tk−1

(Xt −Xtk−1
) dt+ 2N

∑
k≤k∗

∆Xtk−1

∫ tk

tk−1

(Xt −Xtk−1
)(νt − νtk−1

) dt

:=2(A+B).

It is easy to show by conditioning that for any k1 < k2,

E

(
∆Xtk1−1

νtk1−1

∫ tk1

tk1−1

(Xt −Xtk1−1
) dt ·∆Xtk2−1

νtk2−1

∫ tk2

tk2−1

(Xt −Xtk2−1
) dt

)
= 0.
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Therefore

E(A2) = N2
∑
k≤k∗

E

∆X2
tk−1

ν2
tk−1

(∫ tk

tk−1

(Xt −Xtk−1
) dt

)2


≤ N2
∑
k≤k∗

E

(
∆X2

tk−1
ν2
tk−1

∆tk

∫ tk

tk−1

(Xt −Xtk−1
)2 dt

)

= N2
∑
k≤k∗

E

(
∆X2

tk−1
ν2
tk−1

∆tk

∫ tk

tk−1

E
(
(Xt −Xtk−1

)2 | Ftk−1

)
dt

)

≤ CN2
∑
k≤k∗

E

(
∆X2

tk−1
ν2
tk−1

∆tk

∫ tk

tk−1

(t− tk−1) dt

)
≤ CN2

∑
k≤k∗

∆tk−1(∆tk)
3,

where in the first inequality we used the Cauchy-Schwarz inequality, and in the last two in-

equalities we used Assumptions (SA.i) and (SA.ii). By Assumption (B.iii), the last term is o(1).

As to term B, we have

E|B| ≤N
∑
k≤k∗

E
(
|∆Xtk−1

| ·
∫ tk

tk−1

E
(
|(Xt −Xtk−1

) · (νt − νtk−1
)|
∣∣Ftk−1

)
dt
)

≤N
∑
k≤k∗

E
(
|∆Xtk−1

| ·
∫ tk

tk−1

√
E((Xt −Xtk−1

)2|Ftk−1
) · E((νt − νtk−1

)2|Ftk−1
) dt
)

≤CN
∑
k≤k∗

E
(
|∆Xtk−1

| ·
∫ tk

tk−1

(t− tk−1) dt
)

≤CN
∑
k≤k∗

√
∆tk−1(∆tk)

2,

where in the last two inequalities we used Assumptions (SA.i), (SA.ii) and (52). Finally, note

that

N
∑
k≤k∗

√
∆tk−1(∆tk)

2 ≤
√∑

k≤k∗
∆tk−1 ·N2

∑
k≤k∗

(∆tk)4,

which is o(1) again by Assumption (B.iii).

A.5. Proof of Proposition 2

Proof. The proof is decomposed into several steps, each step towards estimating certain term

in the asymptotic variance in (29). By similar arguments as at the beginning of the proof of
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Theorem 3, we can assume that the jump does not exist, (SA.i) holds, and furthermore the

conclusion would follow if we can show that

2N

3

(
N∑
k=2

(Xtk −Xtk−2
+ εtk − εtk−2

)4 −
N∑
k=1

(∆Xtk + ∆εtk)
4

)

+ 2

(
N∑
k=1

(∆Xtk + ∆εtk)
2 − ERVext

)2

p−→2

∫ 1

0

σ4
t dHt + 4

∫ 1

0

σ4
t dQt + 8σ2

ε IV + 8σ4
ε .

(77)

Step 1: Estimate IV: by Theorem 3, ERVext
p−→ IV;

Step 2: Estimate σ2
ε(= limn→∞ nσ

2
n). Consider

B :=
N∑
k=1

(∆Xtk + ∆εtk)
2 =

N∑
k=1

(∆Xtk)
2 + 2

N∑
k=1

∆Xtk ·∆εtk +
N∑
k=1

(∆εtk)
2

:=RV +B.2 +B.3.

We have that RV
p−→ IV, and furthermore by using (20) it is easy to show that B.2

p−→ 0 and

B.3
p−→ 2 limnNσ

2
n = 2σ2

ε (recall that under Assumption (B.ii) we can and we do take n = N).

To sum up we get that

B
p−→ IV + 2σ2

ε , (78)

therefore,
B − ERVext

2

p−→ σ2
ε . (79)

Step 3: Estimate the quarticity. we have

C := N
N∑
k=1

(∆Xtk + ∆εtk)
4

=N
N∑
k=1

(∆Xtk)
4 +N

N∑
k=1

(∆εtk)
4 + 6N

N∑
k=1

(∆Xtk)
2(∆εtk)

2

+ 4N
N∑
k=1

(∆Xtk)
3 · (∆εtk) + 4N

N∑
k=1

(∆Xtk) · (∆εtk)3

:=C.1 + C.2 + 6 C.3 + 4 C.4 + 4 C.5.

By (73), C.1
p−→ 3

∫ 1

0
σ3
t dHt. Furthermore, by (20) and (31) it is straightforward to show that

C.2
p−→ 2κ+ 6σ4

ε . As to C.3, by (20) one can show that C.3
p−→ 2σ2

ε IV. Finally, by computing
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the second moment and using Assumption (B.iii) and (31) one can show that both C.4 and C.5

are op(1). To sum up, we have

C
p−→ 3

∫ 1

0

σ3
t dHt + 2κ+ 6σ4

ε + 12σ2
ε IV. (80)

Step 4: Estimate the “interlaced quarticity”
∫ 1

0
σ4
t dQt. Consider

D := N
N∑
k=2

(Xtk −Xtk−2
+ εtk − εtk−2

)4

=N
N∑
k=2

(Xtk −Xtk−2
)4 +N

N∑
k=2

(εtk − εtk−2)
)4 + 6 N

N∑
k=2

(Xtk −Xtk−2
)2(εtk − εtk−2

)2

+ remainder

:=D.1 +D.2 + 6 D.3 + op(1),

where the remainder term is op(1) by the same reasoning as in the previous step. Furthermore,

by similar proofs to that for (73) and using (B.vii) we have

D.1 = N
N∑
k=2

3σ4
tk−2
· (∆tk + ∆tk−1)2 + op(1)

= 3N
N∑
k=1

σ4
tk−2

((∆tk)
2 + (∆tk−1)2) + 6N

N∑
k=2

σ4
tk−2

(∆tk)(∆tk−1) + op(1)

p−→ 6

∫ 1

0

σ4
t dHt + 6

∫ 1

0

σ4
t dQt.

As to D.2 and D.3, just as in the previous step we have that D.2
p−→ 2κ + 6σ4

ε , and D.3
p−→

4σ2
ε IV. To sum up we obtain that

D
p−→ 6

∫ 1

0

σ4
t dHt + 6

∫ 1

0

σ4
t dQt + 2κ+ 6σ4

ε + 24σ2
ε IV. (81)

Combining this with (80) we get

D − C
3

p−→
∫ 1

0

σ4
t dHt + 2

∫ 1

0

σ4
t dQt + 4σ2

ε IV. (82)

Step 5: Combining the aforementioned convergences we get the desired convergence (77).
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