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Abstract

In this paper, we propose two asymmetry measures of stock returns. In contrast to

the usual measure, skewness, ours are based on the tail distribution of the data instead

of just the third moment. While it is inconclusive with the skewness, we find that,

with our new measures, greater upside asymmetries imply lower average returns in the

cross section, consistent with theoretical models such as Barberis and Huang (2008)

and Han and Hirshleifer (2015).
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1 Introduction

In theory, Tversky and Kahneman (1992), Polkovnichenko (2005), Barberis and Huang

(2008) and Han and Hirshleifer (2015) show that greater upside asymmetry is associated

with lower expected return. Empirically, using skewness, the most popular measure of

asymmetry, Harvey and Siddique (2000), Zhang (2005), Smith (2007), Boyer et al. (2010),

and Kumar (2009) find empirical evidence supporting the theory. However, Bali et al.

(2011) find that skewness is not statistically significant in explaining the expected returns

in a more general set-up.1 More recently, An et al. (2015) find that the correlation between

skewness and expected return depends on capital gains overhang (CGO). In short, the

evidence on the ability of skewness in capturing asymmetry to explain the cross-section

stock returns is mixed and inconclusive.

In this paper, we propose two distribution-based measures of asymmetry. We argue

that skewness, as a measure of asymmetry, is limited because two distributions can have

the same skewness while quite different in asymmetry. Intuitively, asymmetry reflects a

characteristic of the entire distribution, but skewness consists of only the third moment.

Therefore, even if the skewness is inconclusive in explain asset returns, it does not mean

asymmetry matters any less.2 This clearly comes down to how we can measures asymmetry

adequately. Our first measure of asymmetry is a simple difference between the upside

probability and downside probability, which captures the degree of upside asymmetry based

1The results are similar for applying the realized or regression estimated expected idiosyncratic skewness.
For brevity, we do not present results for expected idiosyncratic skewness, but they are available upon
request.

2Previous literature also realizes the limitation of skewness and try to measure lottery-type stocks using
information beyond skewness. Kumar (2009) proposes using the combination of stock price, idiosyncratic
volatility and idiosyncratic skewness.
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on probabilities. The second measure is a modified entropy measure, modified from Racine

and Maasoumi (2007), that assesses asymmetry based on integrated density difference.

Statistically, we show via simulations that our distribution-based measures can capture

asymmetry more accurately than skewness, the third moment only measure.

Empirically, we examine the explanatory power of both skewness and our new measures

in the cross-section of stock returns, and find that our measures explain well the returns and

skewness does not. We conduct our analysis with two approaches. In the first approach,

we study their performances in explaining the returns using Fama and MacBeth (1973)

regressions. Using data from January 1962 to December 2013, we find that there is no

apparent relation between the skewness and the cross-sectional average returns, which is

consistent with the findings by Bali et al. (2011). In contrast, based on our new measures,

we find that asymmetry does matter in explaining the cross-sectional variation of stock

returns. The greater the upside tail asymmetry, the lower the average returns in the

cross-section. In the second approach, we sort stocks into decile portfolios of high and low

asymmetry with respect to skewness or to our new asymmetry measures. We find that while

high skewness portfolios do not necessarily imply low returns, high upside asymmetries

based on the new measures do associate with low returns.

Our empirical findings support the theoretical predictions of Tversky and Kahneman

(1992), Polkovnichenko (2005), Barberis and Huang (2008) and Han and Hirshleifer (2015).

In particular, under certain behavior preferences, Barberis and Huang (2008), though fo-

cusing on skewness, in fact show that tail asymmetry matters for the expected returns.

Without their inherent behavior preferences, Han and Hirshleifer (2015) show, via a self-

enhancing transmission bias (i.e., investors are more likely to tell their friends about their

winner picks instead of loser stocks), that investors favor the adoption of investment prod-

ucts or strategies that produce a higher probability of large gains as opposed to large losses.
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Consistent with these studies, our measures reflect investor’s preference of lottery-type as-

sets or strategies. Moreover, they also reflect the degree of short sale constraints on stocks.

The more difficult the short sell, the more the distribution of the stock return is likely to

lean towards the upper tail, and the lower the return expected due to the likely over-pricing

of the stock (see Acharya et al. (2011), and Jones and Lamont (2002)). This is also related

to strategic timing of information by firm managers (Acharya et al. (2011)).

In this paper, we also examine the relation between asymmetry and return conditional

on sentiment and CGO, respectively. We find that skewness is only negatively significant

related to the stock expected return during high sentiment period (when sentiment is above

the 0.5 or 1 standard deviation of the sentiment time series) or for firms whose represen-

tative investors experienced capital losses. The results are robust to alternative skewness

measures: the total skewness, the idiosyncratic skewness and their expected counterparts.3

In contrast, using our measures, the expected returns are unconditionally negative for

lottery-type stocks. The results are consistent with the theory that preference for up-

side asymmetry can be induced from the over-weighting of very low probability events

(Tversky and Kahneman (1992), Polkovnichenko (2005), Barberis and Huang (2008)). For

sentiment, Baker and Wurgler (2006) point out firms which are difficult to arbitrage should

be more overvalued during high sentiment periods. Our empirical documents indicate that

high skewness firms can still face high arbitrage risk, which are difficult to arbitrage, then

the evaluation of them are largely impacted by sentiment. However, high upside asym-

metry stock does not necessary associate with arbitrage risk, it should be less influenced

by sentiment. Our conditional result on sentiment is consistent with Baker and Wurgler

(2006)’s theory. Stambaugh et al. (2012, 2015) consider impediments to short selling as

the major obstacle to eliminating sentiment-driven mispricing. To the extent such mispric-

3The total skewness and expected idiosyncratic skewness results are available from the authors upon
request.
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ing exists, overpricing should then be more prevalent than underpricing, and overpricing

should be more prevalent when market-wide sentiment is high. For CGO, Wang et al.

(2014) find that among stocks where average investors face prior losses, there could be a

negative risk-return relation. And recently, An et al. (2015) document that the skewness

preference only holds for capital loss stocks. As we mentioned before, high skewness stocks

can still associate with high arbitrage risk, thus its negative relationship with expected

return exist among stocks with capital loss which consistent with by Wang et al. (2014)’s

argument. But high upside asymmetry stock does not necessary associate with high risk,

thus its relationship with expected return is less affect by CGO level.

The paper is organized as follows. Section 2 presents our new asymmetry measures.

Section 3 provides the measures as asymmetry tests for simulated data and size portfolios.

Section 4 provides the empirical results. Section 5 concludes.

2 Asymmetry Measures

In this section, we introduce our two asymmetry measures and also discuss their estimation

in practice.

Let x be the daily excess return of a stock for total asymmetry or the residual after

adjusted statistical benchmark from risk factors for idiosyncratic asymmetry. Without

loss of generality, x is standardized with mean 0 and variance 1. To assess the upside

asymmetry of a stock return distribution, we consider its excess tail probability (ETP),

which defined as:

Eϕ =

ˆ +∞

1
f(x) dx−

ˆ −1
−∞

f(x) dx =

ˆ ∞
1

[f(x)− f(−x)] dx, (1)
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where the probabilities are evaluated at 1 standard deviation away from the mean.4 The

first term measures the cumulative chance of gains, while the second measures the chance

cumulative of losses. If Eϕ is positive, it implies that the probability of a large loss is less

than the probability of a large gain. For an arbitrary concave utility, a linear function

of wealth will be its first-order approximation. In this case, if two assets pay the same

within one standard deviation of the return, the investor will prefer to hold the asset with

greater Eϕ. In general, investors may prefer stocks with high upside potentials and dislike

stocks with high possibility of big loss (Kelly and Jiang (2014), Barberis and Huang (2008),

Kumar (2009), Bali et al. (2011) and Han and Hirshleifer (2015)). This implies that, every

thing else equal, the asset expected return will be lower than otherwise.

Our second measure of distributional asymmetry is a entropy-based measure. Following

Racine and Maasoumi (2007) and Maasoumi and Racine (2008), consider a stationary

series {Xt}Tt=1 with mean µx = E[Xt], and density function f(x). Let X̃t = −Xt + 2µx be

a rotation of Xt about its mean, and let f(x̃) be its density function. We say {Xt}Tt=1 is

symmetric about the mean if

f(x) ≡ f(x̃) (2)

almost surely. Then any difference between f(x) and f(x̃) is clearly a measure of asym-

metry. Shannon (1948) first introduced entropy measure, and Kullback and Leibler (1951)

makes extension to the concept of relative entropy. However, Shannon’s entropy measure

is not a proper measure of distance. Maasoumi and Racine (2008) suggest the use of a

4Since a certain number of sample size is needed for density estimation, we focus on using 1 standard
deviation only, but the results are qualitatively similar with 1.5 standard deviations and other convectional
levels.
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normalization of the Bhattacharya-Matusita-Hellinger measure,

Sρ =
1

2

ˆ ∞
−∞

(f
1
2
1 − f

1
2
2 )2dx, 5 (3)

where f1 = f(x) and f2 = f(x̃). This entropy measure has four desirable statistical

properties: (1) it can be applied to both discrete and continuous variables; (2) if f1 = f2,

that is, the original and rotated distributions are equal, then Sρ = 0. Because of the

normalization, the measure lies in between 0 and 1; (3) it is a metric, implying that a larger

number Sρ indicates greater distance, and the measure is comparable; (4) it is invariant

under continuous and strictly increasing transformation on the underlying variables.

Assume that the density is smooth enough. Then we have the following interesting

relation (see Appendix A.1 for the proof) between Sρ and various moments,6 such as

skewness and kurtosis,

Sρ = c1 · σ2 + c2 · γ1σ3 + c3 · (γ2 + 3)σ4 + o(σ4), (4)

where µ is the mean of x, σ2 is the variance, γ1 is the skewness, γ2 is the kurtosis, ci’s

are constants and o(σ4) denotes the higher than 4th order terms. It is clear that Sρ is

related to the skewness. Every thing else equal, higher skewness means greater Sρ and

greater asymmetry.7 However, in practice for stocks, it is impossible to control for all

other moments, and hence a high skewness will not necessarily imply a high Sρ.

Since Sρ is a distance measure, it does not distinguish the downside asymmetry from

5Sρ = 1
2

ˆ [
1 − f

1
2
2

f
1
2
1

]2
dF1(x) =

1

2

ˆ [
1 − f(−x+ 2µx)

1
2

f(x)
1
2

]2
dF(x)

6From footnote 5, Sρ has the expectation form, then it can be written as the linear combination of
moments. In contrast, Eϕ does not has the expectation form, thus it can not be decomposed into moments.

7Our measure is also consistent with the intuition in Kumar (2009). He indicates that cheap and volatile
stocks with high skewness attract investors who also tend to invest in state lotteries. But our measure is
more adequate and simple.
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the upside asymmetry. Hence, we modify Sρ by defining our second measure of asymmetry

as

Sϕ = sign(Eϕ)× 1

2

[ˆ −1
−∞

(f
1
2
1 − f

1
2
2 )2dx+

ˆ ∞
1

(f
1
2
1 − f

1
2
2 )2dx

]
. (5)

The sign of Eϕ ensures that Sϕ has the same sign as Eϕ, so that the magnitude of Sϕ

indicates upside potential. In fact, Sϕ is closely related to Eϕ. While Eϕ provides an equal-

weighting on asymmetry, Sϕ weights the asymmetry by probability mass. Theoretically,

Sϕ may be preferred as it uses more information of the distribution. However, empirically,

their performances can clearly vary from one application to another.

The econometric estimation of Eϕ is trivial as one can simply replaces the probabilities

by the empirical averages. However, the estimation of Sϕ requires a substantial amount

of computation. In this paper, following Maasoumi and Racine (2008), we use ”Parzen-

Rosenblatt” kernel density estimator,

f̂(x) =
1

nh

n∑
i=1

k

(
Xi − x
h

)
, (6)

where n is sample size of the time series data {Xi}, k(·) is a nonnegative bounded kernel

function such as the normal density, and h is a smoothing parameter or bandwidth to be

determined below.

In selecting the optimal bandwidth for (6), we use the well-known Kullback-Leibler

likelihood cross-validation method (see Li and Racine (2007) for details). This procedure

minimizes the Kullback-Leibler divergence between the actual density and the estimated

one,

max
h
L =

n∑
i=1

ln
[
f̂−i(Xi)

]
, (7)
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where f̂−i(Xi) is the leave-one-out kernel estimator of f(Xi) which is defined from

f̂−i(Xi) =
1

(n− 1)h

n∑
j=1j 6=i

k

(
Xi −Xj

h

)
. (8)

Under a weakly time dependent assumption, which is reasonable assumptions for stock

returns, the estimated density converges to the actual density (see, e.g., Li and Racine

(2007) for details). With the above, we can estimate Ŝϕ by computing the associated

integrals numerically.

3 Asymmetry Tests

In this section, to gain insights on differences between skewness and our new measures,

we use them as test statistics of asymmetry for both simulated data and size portfolios.

We show that distribution-based asymmetry measures can capture asymmetry information

that cannot be detected by skewness.

Many commonly used skewness tests, such as D’Agostino (1970), assume normality

under the null hypothesis. Therefore, they are mainly tests of normality and they could

reject the null when the data is symmetric but not normally distributed. Since we are in-

terested in testing for return asymmetry rather than normality, it is inappropriate to apply

those tests in our setting directly. The skewness test we employ is based on bootstrap re-

sampling method. As suggested by Horowitz (2001), bootstrap with pivotal test statistics

can achieve asymptotic refinement. So we develop the skewness test using pivotized (stu-

dentized) skewness as the test statistic. Monte Carlo simulations show that this test has

correct size and good finite sample powers. The entropy tests of asymmetry mainly follow

the test proposed by Racine and Maasoumi (2007) and Maasoumi and Racine (2008) with

a slight variation. We use the studentized Sρ which has, in simulations, better finite sample
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properties than the original entropy test proposed in Racine and Maasoumi (2007). In this

way, the entropy test and the skewness test share the same setup and the only difference

is how the test statistic is computed. Due to the heavy computational demands, follow-

ing Racine and Maasoumi (2007) and Maasoumi and Racine (2008), significance levels are

obtained via stationary block bootstrap with 399 replications.

Consider first the case in which skewness is a good measure. We simulate the data,

with n = 500, independently from two distributions: N(120, 240) and χ2(10). The first

is a normal distribution with mean 120 and variance 140, and the second is a chi-squared

distribution with 10 degrees of freedom. With M = 1000 simulations (a typical simulation

size in this context), the second and third columns of Table 1 report the average statistics

of skewness and our new measures. There are no rejections for the normal data, and there

are always rejections for the chi-squared. Hence, all the measures work well in this simple

case.

[Insert Table 1 about here]

Consider now a more complex situation. The difference is defined as the difference

of two beta distribution Beta(1,3.7)-Beta(1.3,2.3). As plotted in Figure 1, it has longer

left tail and negative asymmetry.8 With the same n = 500 sample size and M = 1000

simulations as before, the skewness test is now unable to detect any asymmetry. Indeed,

the fourth column of Table 1 shows that it has a value of 0.0004 with a t-statistics of

0.13. In contrast, both Sϕ and Eϕ have highly significant negative values which correctly

captures the asymmetric feature of Beta(1,3.7)-Beta(1.3,2.3).

[Insert Figure 1 about here]

8The difference of two beta distribution is a well-defined distribution whose density function is provided
by Pham-Gia et al. (1993) and Gupta and Nadarajah (2004).
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To understand the testing results, Figure 2 plots the distributions of two beta distribu-

tions, Beta(1,3.70) and Beta(2,12.42), which have roughly the same skewness value of 1.

It is clear that Beta(1,3.70) has longer right tail and and higher upside asymmetry. This

can by captured by both Sϕ and Eϕ, but not skewness.

[Insert Figure 2 about here]

The second example compares the performance of the distribution based asymmetry

measure Sρ and skewness, when they are used to statistically test asymmetry in commonly

used size portfolios. The test portfolios we use are value-weighted and equal-weighted

monthly returns of decile stocks portfolios sorted by market capitalization. The sample

period is from January 1962 to December 2013 (624 observations in total). In general, we

find that entropy can detect asymmetry more effectively than skewness in both empirical

applications and in simulations.

Table 2 reports the results for SKEW and Sρ tests (the results of using Eϕ are omitted

for brevity). For the value-weighted size portfolios, the entropy test rejects symmetry for

the first 3 smallest and the 5th size portfolios at the convectional 5% level. In contrast,

skewness test can only detect asymmetry for the smallest size portfolio. For the equal-

weighted size portfolios, the 1st, 2nd, 7th, and the 10th are asymmetric based on the

entropy test at the same significance level. In contrast, only the 1st, and the 7th have

significant asymmetry according to skewness test. Overall, tests based on the entropy

measures generally detect more asymmetry than skewness test.

[Insert Table 2 about here]
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4 Empirical Results

4.1 Data

We use data from Center for Research in Securities Prices (CRSP), from January 1962

to December 2013. The data include all common stocks listed on NYSE, AMEX and

NASDAQ. As usual, we restrict the sample to the stocks with beginning-of-month prices

between $5 and $1,000. In order to mitigate the concern of double-counted stock trading

volume in NASDAQ, we, following Gao and Ritter (2010), adjust the trading volume

to calculate turnover ratio (TURN) and Amihud (2002) ratio (ILLIQ). The latter is

normalized to account for inflation and is truncated at 30 to eliminate the effect of outliers

(Acharya and Pedersen (2005)). Firm size (SIZE), book-to-market ratio (BM), and

momentum (MOM) are computed in the standard way. Market beta (β) is estimated by

using the time-series regression of individual daily stock excess returns on market excess

returns, and it is annually updated.

Following Bali et al. (2011), we compute volatility (V OL) and maximum (MAX) of

stock returns as the standard deviation and the maximum return of daily returns of the

previous month. In addition, we compute idiosyncratic volatility (IV OL) of a stock as

the standard deviation of daily idiosyncratic returns of the month. We calculate skewness

(SKEW ), idiosyncratic skewness (ISKEW ), and proposed asymmetry measures (Eϕ and

Sϕ) and idiosyncratic counterparts (IEϕ and ISϕ) using return and benchmark adjusted

residuals. We calculate proposed asymmetry using the daily information up to 12 months

in order to have accurate measures. We use last month excess returns or risk adjusted-

returns (the excess returns which adjusted for Fama-French three factors, see Brennan et al.

(1998)) as the proxy for short-term reversals (REV or REV A for risk adjusted-returns).

Table 3 summarizes the correlation of volatility and the asymmetry measures. For
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comparison, the table reports the results for both the total measures (based on the raw

returns) and the idiosyncratic measures (based on the market model residuals). It is in-

teresting that the correlations in the similar magnitude in either case. ISKEW has very

small correlations with IEϕ or ISϕ. It indicates the importance to use our proposed asym-

metry measures rather than skewness as proxy. And IEϕ or ISϕ have a high correlation

of over 67%. The volatility has around 8% correlation with the skewness, and much lower

correlation with IEϕ or ISϕ. The simple correlation analysis shows that the new measure

capture information beyond volatility and skewness.

[Insert Table 3 about here]

Two sentiment proxies by Baker and Wurgler (2006, 2007), and Huang et al. (2015)

are applied in our paper. We use BW to denote the sentiment time series index by Baker

and Wurgler (2006, 2007), while HJTZ represents the sentiment index proposed by Huang

et al. (2015). Since the data provided by Jeffrey Wurgler’s website is only available until

December 2010, we extend the data to December 2013 (from Guofu Zhou’s website). In

addition, HJTZ is also obtained from Guofu Zhou’s website.9 Following Grinblatt and

Han (2005), we calculate the capital gain overhang (CGO) for representative investors

for each month using weekly price and turnover ratio. The reference price is weighted

average of past prices at which investor purchase stocks but never sell. As in Grinblatt

and Han (2005), we use information for past 260 weeks (with at least 200 valid price and

turnover observations) for each reference price, which reflects the unimportance of price

information older than 5 years. The CGO at week t is the difference between price at

week t− 1 and reference price at week t (divided by the price at week t− 1). In this way,

the complicated microstructure effect can be avoided. The details of all the variables are

9BW is available at http://people.stern.nyu.edu/jwurgler/, the extended BW and HJTZ are available
at http://apps.olin.wustl.edu/faculty/zhou/.
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defined in Appendix A.2.

4.2 Firm Characteristics and Asymmetries

In this subsection, we examine what types of stock are associated with asymmetries as

measures by ISKEW , IEϕ and ISϕ. Using idiosyncratic asymmetry measures as depen-

dent variables, we run Fama-Macbeth regressions on common characteristics: SIZE, BM ,

MOM , TURN , ILLIQ and the market beta (β),

IAi,t = at +BtXi,t + εi,t, (9)

where IAi,t is one of the three asymmetry measures of the firm i and Xi,t are firm char-

acteristics. Idiosyncratic asymmetry measures are winsorized at 0.5 percentile and 99.5

percentile. The Fama-MacBeth standard errors are adjusted using the Newey and West

(1987) correction with three lags.10

Table 4 provides the results. Consistent with other studies such as Boyer et al. (2010)

and Bali et al. (2011), ISKEW is negatively related to SIZE andBM , positively related to

MOM , ILLIQ, and market beta (β), but is insignificant related to TURN . Interestingly,

despite low correlations, IEϕ and ISϕ are significantly related to all the characteristics

except TURN in the same direction as skewness. A likely reason is that all of these

characteristics are related to asymmetry of firms. As a result, different measures show

similar relations to them.

However, in contrast to skewness, IEϕ and ISϕ are positively and significantly related

to TURN . This result is consist with Kumar (2009) who finds that lottery type stocks

have much higher turnover ratios. Since our proposed asymmetry measures can capture

the property of asymmetric distribution of lottery type stocks, then it is not surprising

10The results here and later are qualitatively similar if we use up to 24 lags.
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that they are related to turnover ratios positively and significantly.

[Insert Table 4 about here]

4.3 Expected Returns and Asymmetries

In this subsection, we examine the power of our new asymmetry measures in explaining the

cross section of stock returns, and compare them with skewness, the previously commonly

used proxy for asymmetry.

One of the fundamental problems in finance is to understand which factor loadings or

characteristics can explain the cross section of stock returns. To compare the the power of

our new asymmetry measures and skewness, we run the following standard Fama-MacBeth

regressions,

Ri,t+1 = λ0,t + λ1,tIAϕ,i,t + λ2,tISKEWi,t + ΛtXi,t + εi,t+1, (10)

where Ri,t+1 is the excess return, the difference between monthly stock return and one-

month T-bill rate, on stock i at time t, IAϕ,i,t is either ISϕ,i,t or IEϕ,i,t at t, and Xi,t is a

set of control variables including SIZE, BM , MOM , TURN , ILLIQ, β, MAX, REV ,

V OL or IV OL for the full specification.

Table 5 reports the results. When using either IEϕ,i,t or ISϕ,i,t alone, the regression

slopes are −3.4598 and −0.8584 (the third and the fourth columns). Both of slopes are

significant at the 1% level and their signs are consistent with the theoretical prediction that

the right-tail asymmetry is negatively related to expected returns. In contrast, the slope

on ISKEW is slightly positive, 0.0113 (the second column, the univariate regression), and

statistically insignificant. Hence, it is inconclusive on the ability of skewness to explain
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cross section of stock returns over period from January 1962 to December 2013.11

[Insert Table 5 about here]

The explanatory power of IEϕ,i,t or ISϕ,i,t is robust to various controls. Adding

ISKEW into the univariate regression of IEϕ,i,t (the fifth column), the slope changes

little from −3.4598 to −3.7902 and remains statistically significant at 1%. With addi-

tional controls, especially the market beta (β) and the MAX variable of Bali et al. (2011),

columns 6–8 of the table show that neither the sign nor the significance level have altered

for IEϕ,i,t. Similar conclusions hold true for ISϕ,i,t.

Since the value-weighted excess market return, size (SMB) and book-to-market (HML)

factors are major statistical benchmark for stock returns, we consider whether our results

are robust using risk-adjusted returns. We remove the systematic components from the

returns by subtracting the products of their beta times the market, size and book-to-

market factors (see Brennan et al. (1998)). Denote the risk-adjusted return of stock i by

RAi. Then we re-run the earlier regressions using the adjusted returns as the dependent

variable,

RAi,t+1 = λ0,t + λ1,tIAϕ,i,t + λ2,tISKEWi,t + ΛtXi,t + εi,t+1, (11)

where Xi,t is a set of control variables excluding the market beta.

Table 6 reports the results. In this alternative model specification, skewness is still

insignificant, though now the value is slightly negative. In contrast, both the effects of

IEϕ,i,t and ISϕ,i,t are negatively significant as before. The results reaffirm that new asym-

metry have significant power in explaining the cross-section of stock returns, while skewness

measure barely matters.12

11Instead of using the realized skewness ISKEW , one can use the estimated future skewness as Boyer
et al. (2010) or Bali et al. (2011), the results are still insignificant. They are available upon request

12If we further remove the tail risk factor proposed by Kelly and Jiang (2014), our results from risk-
adjusted returns are qualitatively similar.

16



[Insert Table 6 about here]

4.4 Asymmetry Portfolios

In this subsection, we examine the performances of portfolios sorted by skewness, IEϕ,i,t

and ISϕ,i,t, respectively. This provides an alternative with respect to the previous Fama-

MacBeth regressions in terms of assessing the ability of these asymmetry measures in

explaining the cross-section of stock returns.

Table 7 reports the results on the skewness decile portfolios, equal-weighted as usual,

from the lowest skewness level to the highest, as well as the return spread of the highest

minus the lowest portfolios. The second column of the table clearly does not show any

monotonic pattern. The return difference is 0.073% per month, which is not economically

significant nor statistically significant. Hence, stock with high skewness do not necessarily

imply low return, indicating that skewness is not adequate, since theoretical models such

as Tversky and Kahneman (1992), Polkovnichenko (2005), Barberis and Huang (2008) and

Han and Hirshleifer (2015), generally imply high asymmetry leads to lower return or show

that greater upside asymmetry is associated with lower expected return.

From an asset pricing perspective, it is of interest to examine whether the portfolio

alphas are significant. The third and fourth columns of Table 7 reports the results based

on the CAPM and Fama and French (1993) 3-factor alphas. While some deciles appear to

have some alpha values, the spread portfolio has a CAPM alpha of 0.077% per month and

a Fama-French alpha of 0.048% per month, both of which are small and insignificant. The

results show overall that skewness risk does not appear earn abnormal returns relative to

the standard factor models.

[Insert Table 7 about here]
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Consider now asymmetry measure IEϕ,i,t. The second column of Table 8 show clearly an

approximate pattern of deceasing returns across the deciles. Moreover, the spread portfolio

has a (negatively) large value of −0.179% per month that is statistically significant at the

1% level. The annualized return is 2.15% which is economically significant. In addition,

its alphas are large and significant too. Overall, the results show strongly that high IEϕ,i,t

leads to low return, and it is consistent with the theory.

Finally, Table 9 provides the results on the decile portfolios sorted by ISϕ,i,t. The

decreasing pattern of returns across the decile is similar to the case of IEϕ,i,t, and the

spread earns significant alphas. This is not surprising as both measures are similar and their

time-series average of cross-sectional correlation is around 68%. In summary, the empirical

results support that both IEϕ,i,t and ISϕ,i,t, improving upon skewness, are useful measures

of asymmetry, and they explain the cross-section of stocks returns in a way consistent with

theory.

[Insert Table 8 about here]

[Insert Table 9 about here]

4.5 Asymmetry and Sentiment

In this subsection, we examine how asymmetry measures vary during high and low senti-

ment periods. Stambaugh et al. (2012, 2015) find that anomalous returns are high following

high sentiment periods because mispricing is likely more prevalent when the investor sen-

timent is high. Since asymmetry measures are related to lottery type of stocks, it is of

interest to investigate whether their effects on expected return are related to sentiment.

Following Stambaugh et al. (2012, 2015), we run Fama-MacBeth regressions in two

regimes. The first is high sentiment periods, which are defined as those months when
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the Baker and Wurgler (2006) sentiment index (BW index henceforth) is one standard

deviation above its mean. The second is low sentiment periods, when the BW index is one

standard deviation below its mean.13

Consider first the regressions of the excess returns on ISKEW and various controls,

Ri,t+1 = λ0,t + λ1,tISKEWi,t + ΛtXi,t + εi,t+1, (12)

where Xi,t is a vector of control variables. We run the regressions in high and low sentiment

periods separately.

Table 10 reports the results. Columns 2–5 show that, conditional on high sentiment,

skewness always has negative effect on expected return no matter there are various controls

or none. However, when the sentiment is low, their loadings, provided in Columns 6–9, are

always positive. 14 The results seem to shed light on the earlier mixed evidence on the

ability of skewness to explain the returns.15

[Insert Table 10 about here]

Consider now the Fama-MacBeth regressions of the excess returns on IEϕ conditional

on high and low sentiment periods. Table 11 shows that IEϕ always have negatively

loadings, though it is more significant in high sentiment periods. The same pattern is

observed on ISϕ in Table 12. Overall, the results show that skewness is quite sensitive to

13The results are similar with the PLS sentiment index of Huang et al. (2015).
14The result we shown is conditional on the previous month sentiment, and the result is similar for the

current month sentiment.
15Boyer et al. (2010) show that the expected idiosyncratic skewness has a significant negative effect on

the expected return, while Bali et al. (2011) point out the effect is significant positive applying several
skewness measures: the total skewness, the idiosyncratic skewness and the expected total skewness (In the
full specifications, these average coefficients on the skewness variables become statistically insignificant, but
still positive according to Bali et al. (2011)). Boyer et al. (2010)’s estimation period is from December 1987
to November 2005, which is shorter compared with the period from July 1962 to December 2005 in Bali
et al. (2011).
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sentiment, while IEϕ and ISϕ are much less so.16

[Insert Table 11 about here]

[Insert Table 12 about here]

4.6 Asymmetry and Capital Gains Overhang

In this subsection, we examine how the effect of asymmetry on stock return vary with

the capital gains overhang (CGO) using different measures. Recently, An et al. (2015)

find that the existence of skewness preference depends on the CGO level. It is of interest

to investigate whether our new asymmetry measures also behave in the similar way to

skewness which only capture partial asymmetry of the data.

Following Grinblatt and Han (2005), CGO is the normalized difference between the

current stock price and the reference price. The reference price is the weighted average of

past stock prices with the weight based on the past turnover. Then high CGO generally

implies large capital gains. An et al. (2015) find that the skewness only matters for stocks

with capital loss. But it is still unclear whether the relationship between asymmetry and

expected return depends on CGO if we use more accurate measure of asymmetry.

As in An et al. (2015), we add CGO and its interaction with ISKEW to the early

Fama-MacBeth regressions of the excess returns on ISKEW ,

Ri,t+1 = λ0,t + λ1,tβi,t + λ2,tCGOi,t + λ3,tISKEWi,t

+λ4,tCGOi,t × ISKEWi,t + ΛtXi,t + εi,t+1,

(13)

16Using risk adjusted return, we find the effects of IEϕ and ISϕ are even stronger in low sentiment
periods than what observed using excess return, while the effect of skewness is similar. The results are
available upon request.
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where Xi,t is a vector of other firm characteristics.

Table 13 reports the results. With any controls of other firm characteristics, the third

column of the table shows that, the effect of skewness on stock return changes with CGO

in the absence of any controls. The rest of the columns provide similar results, consistent

with An et al. (2015)’s finding that the skewness preference depends on the CGO level:

investors like positive skewed stocks only when they experienced a capital loss.

[Insert Table 13 about here]

Replacing ISKEW by either IEϕ or ISϕ, Table 14 and 15 report the results of the

same regressions. IEϕ or ISϕ always matters regardless of the level of CGO. Moreover, in

all cases, there are no strong interaction effects between our new measures and CGO at 5

% level. Hence, using our new asymmetry measures, the preference of positive asymmetric

stocks is invariant with respect to CGO.

[Insert Table 14 about here]

[Insert Table 15 about here]

To examine the effect of CGO further, we conduct a double-sort analysis. At the

beginning of each month from 1962 to 2013, we first sort stocks by CGO into quintile

portfolios, and then, within each CGO portfolio, we sort stocks into quintile portfolios by

one of asymmetry measures: ISKEW or ISϕ or IEϕ. Table 16 reports the equal-valued

excess returns of some selected portfolios for brevity. Only in the lowest quintile of CGO,

the return on the spread portfolio of P5−P1 (the difference between the highest and lowest

skewness stocks), −0.465%, is significant, reaffirming that skewness is tied to CGO level.

In contrast, the spread portfolios for ISϕ and ISϕ have mostly significant returns across

the CGO quintiles. Therefore, while the effect of skewness is closely related to CGO, our
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new measures of asymmetry is fairly robust.

[Insert Table 16 about here]

5 Conclusion

In this paper, we propose two distribution-based measures of stock return asymmetry to

substitute skewness in asset pricing tests. They are mathematical more accurate than skew-

ness. The first one is based on the probability difference of upside potential and downside

loss of a stock, and the second is based on entropy which is adapted from the Bhattacharya-

Matusita-Hellinger distance measure in Racine and Maasoumi (2007). In contrast to the

widely used skewness measure, our measures make use of the entire tail distribution beyond

the third moment. As a result, they capture asymmetry more effectively as shown in our

simulations and empirical results.

Based on our new measures, we find that, in the cross section of stock returns, greater

tail asymmetries imply lower average returns. This is statistically significant not only at

firm-level, but also in the cross section of portfolios sorted based on the new asymmetry

measures. In contrast, the empirical results from skewness is elusive. Our empirical results

are consistent with the predictions of theoretical models such as Barberis and Huang (2008)

and Han and Hirshleifer (2015).
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Appendix

In this appendix, we provide the proof Equation (4) and the detailed definitions of all the

variables used in the paper.

A.1 Proof of Equation (4)

Following Maasoumi and Theil (1979)’s, let Ex = µx = µ, V ar(x) = σ2, skewness γ1 =

E(x−µ)3
σ3 , kurtosis γ2 = E(x−µ)4

σ4 − 3, and g(x) = f(−x+2µ)
f(x) , then we have

Sρ = 1
2Ex

[
1− g(x)

1
2

]2
= 1

2Ex

[
g(x)

]
− Ex

[
g(x)

1
2

]
+ 1

2 .

(14)

Using Taylor expansion of g(x) at the mean µ,

g(x) = g(µ) + g(1)(µ)(x− µ) + g(2)(µ)
2! (x− µ)2 + g(3)(µ)

3! (x− µ)3

+g(4)(µ)
4! (x− µ)4 + o((x− µ)4),

(15)

we have

E
[
g(x)

]
= g(µ) + g(2)(µ)

2! σ2 + g(3)(µ)
3! γ1σ

3

+g(4)(µ)
4! (γ2 + 3)σ4 + o(σ4).

(16)

Similarly, applying the Taylor expansion of g(x)
1
2 at the mean µ, we obtain

g(x)
1
2 = g(µ)

1
2 + (g(x)

1
2 )(1)|x=µ(x− µ) +

(g(x)
1
2 )(2)|x=µ
2! (x− µ)2 +

(g(x)
1
2 )(3)|x=µ
3! (x− µ)3

+
(g(x)

1
2 )(4)|x=µ
4! (x− µ)4 + o((x− µ)4),

(17)
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then, take the expectation, we obtain

E
[
g(x)

1
2

]
= g(µ)

1
2 +

(g(x)
1
2 )(2)|x=µ
2! σ2 +

(g(x)
1
2 )(3)|x=µ
3! γ1σ

3

+
(g(x)

1
2 )(4)|x=µ
4! (γ2 + 3)σ4 + o(σ4).

(18)

Hence, (14) becomes

Sρ = 1
2 − g(µ)

1
2 + 1

2g(µ) +
[
g(2)(µ)

4 − (g(x)
1
2 )(2)|x=µ
2

]
σ2

+
[
g(3)(µ)

12 − (g(x)
1
2 )(3)|x=µ
6

]
γ1σ

3

+
[
g(4)(µ)

48 − (g(x)
1
2 )(4)|x=µ
24

]
(γ2 + 3)σ4 + o(σ4)

= 1
2 − g(µ)

1
2 + 1

2g(µ)

+
[
g(2)(µ)

4 + 1
8g(µ)−

3
2 (g(1)(µ))2 − 1

4g(µ)−
1
4 g(2)(µ)

]
σ2

+
[
g(3)(µ)

12 − 1
16g(µ)−

5
2 (g(1)(µ))3 + 1

8g(µ)−
3
2 g(1)(µ)g(2)(µ)− 1

12g(µ)−
1
2 g(3)(µ)

]
γ1σ

3

+
[
g(4)(µ)

48 + 5
128g(µ)−

7
2 (g(1)(µ))4 − 3

32g(µ)−
5
2 (g(1)(µ))2g(2)(µ) + 1

32g(µ)−
3
2 (g(2)(µ))2

+ 1
24g(µ)−

3
2 g(1)(µ)g(3)(µ)− 1

48g(µ)−
1
2 g(4)(µ)

]
(γ2 + 3)σ4 + o(σ4),

=
[
g(2)(µ)

4 + 1
8g(µ)−

3
2 (g(1)(µ))2 − 1

4g(µ)−
1
4 g(2)(µ)

]
σ2

+
[
g(3)(µ)

12 − 1
16g(µ)−

5
2 (g(1)(µ))3 + 1

8g(µ)−
3
2 g(1)(µ)g(2)(µ)− 1

12g(µ)−
1
2 g(3)(µ)

]
γ1σ

3

+
[
g(4)(µ)

48 + 5
128g(µ)−

7
2 (g(1)(µ))4 − 3

32g(µ)−
5
2 (g(1)(µ))2g(2)(µ) + 1

32g(µ)−
3
2 (g(2)(µ))2

+ 1
24g(µ)−

3
2 g(1)(µ)g(3)(µ)− 1

48g(µ)−
1
2 g(4)(µ)

]
(γ2 + 3)σ4 + o(σ4),

(19)

which is (4) with the constants defined accordingly. Q.E.D.
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A.2 Variable Definitions

• Eϕ: Excess tail probability or total excess tail probability of stock i (at one standard

deviation) in month t is defined as (1), x is the standardized daily excess return. For

stock i in month t, we use daily returns from month t− 1 to t− 12 to calculate Eϕ.

• Sϕ: Sϕ or total Sϕ of stock i in month t is defined as (5), x is the standardized daily

excess return. For stock i in month t, we use daily returns from month t−1 to t−12

to calculate Sϕ.

• IEϕ: Idiosyncratic Eϕ of stock i (at one standard deviation) in month t is defined as

(1), x is the standardized residual after adjusted market factor. Following Bali et al.

(2011) and Harvey and Siddique (2000), when estimating idiosyncratic measurements

other than volatility, we utilize the daily residuals εi,d in the following expression:

Ri,d = αi + βi ·Rm,d + γi ·R2
m,d + εi,d, (20)

where Ri,d is the excess return of stock i on day d, Rm,d is the market excess return

on day d, and εi,d is the idiosyncratic return on day d.

We use daily residuals εi,d from month t− 1 to t− 12 to calculate IEϕ.

• ISϕ: Idiosyncratic Sϕ of stock i (at one standard deviation) in month t is defined as

(5), x is the standardized residual after adjusted market factor. Similar to IEϕ, we

use daily residuals εi,d (20) from month t− 1 to t− 12 to calculate ISϕ.

• VOLATILITY (V OL): V OL or total volatility of stock i in month t is defined as the

standard deviation of daily returns within month t− 1:

V OLi,t =
√
var(Ri,d), d = 1, ..., Dt−1. (21)

• IDIOSYNCRATIC VOLATILITY (IV OL): Following Bali et al. (2011), idiosyn-
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cratic volatility (IV OL) of stock i in month t is defined as the standard deviation of

daily idiosyncratic returns within month t− 1. In order to calculate return residuals,

we assume a single-factor return generating process:

Ri,d = αi + βi ·Rm,d + εi,d, d = 1, ..., Dt, (22)

where εi,d is the idiosyncratic return on day d for stock i. Then IV OL of stock i in

month t is defined as follows:

IV OLi,t =
√
var(εi,d), d = 1, ..., Dt−1. (23)

• SKEWNESS (SKEW ): skewness or total skewness of stock i in month t is computed

using daily returns from month t− 1 to t− 12, the same with Bali et al. (2011):

SKEWi,t =
1

Dt

Dt∑
d=1

(
Ri,d − µi

σi
)3, (24)

where Dt is the number of trading days in a year. Ri,d is the excess return on stock

i on day d, µi is the mean of returns of stock i in the year, and σi is the standard

deviation of returns of stock i in the year.

• IDIOSYNCRATIC SKEWNESS (ISKEW ): Idiosyncratic skewness of stock i in

month t is computed using daily residuals εi,d (20) instead of stock excess returns in

(24) from month t− 1 to t− 12.

• MARKET BETA (β):

Ri,d = α+ βi,y ·Rm,d + εi,d, d = 1, ..., Dy, (25)

where Ri,d is the excess return of stock i on day d, Rm,d is the market excess return
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on day d and Dy is the number of trading days in year y. β is annually updated.

• MAXIMUM (MAX): MAX is the maximum daily return in a month following Bali

et al. (2011):

MAXi,t = max(Ri,d), d = 1, ..., Dt−1, (26)

where Ri,d is the excess return of stock i on day d and Dt−1 is the number of trading

days in month t− 1.

• SIZE (SIZE): Following the existing literature, firm size at each month t is measured

using the natural logarithm of the market value of equity at the end of month t− 1.

• BOOK-TO-MARKET (BM): Following Fama and French (1992, 1993), a firm’s

book-to-market ratio in month t is calculated using the market value of equity at the

end of December of the last year and the book value of common equity plus balance-

sheet deferred taxes for the firm’s latest fiscal year ending in the prior calendar year.

Our measure of book-to-market ratio, BM , is defined as the natural log of the book-

to-market ratio.

• MOMENTUM (MOM): Following Jegadeesh and Titman (1993), the momentum

effect of each stock in month t is measured by the cumulative return over the previous

6 months, with the previous one month skipped, i.e. the cumulative return from

month t− 7 to month t− 2.

• SHORT-TERM REVERSAL (REV ): Following Jegadeesh (1990), Lehmann (1990)

and Bali et al. (2011)’s definition, reversal for each stock in month t is defined as the

excess return on the stock over the previous month, i.e., the return in month t− 1.

• ADJUSTED SHORT-TERM REVERSAL (REV A): It is defined as the adjusted-

return (the excess return which adjusted for Fama-French three factors (Brennan

et al. (1998))) over the previous month.

• TURNOVER (TURN): TURN is calculated monthly as the adjusted monthly trad-
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ing volume divided by shares outstanding.

• ILLIQUIDITY (ILLIQ): Following Amihud (2002), the proxy for daily stock illiq-

uidity is from normalizing Li,d = |Ri,d|/dvi,t. It is the ratio of absolute change of

price ri,d to the dollar trading volume dvi,d for stock i at day d. The monthly ILLIQ

is the daily average of the illiquidity ratio for each stock. To get an accurate esti-

mate of monthly Amihud ratio, we drop the months for stocks if the number of the

monthly observations is less than 15. Following Acharya and Pedersen (2005), we

also normalized the Amihud ratio to adjust for inflation and truncated it at 30 to

eliminate the effect of outliers (the stocks with transaction cost larger than 30% of

the price),

ILLIQi,t = min(0.25+0.3Li,t×
capitalization of market portfoliot−1

capitalization of market portfolioJuly 1962
, 30). (27)

• CAPITAL GAINS OVERHANG (CGO): Following Equation (9), page 319, and

Equation (11), page 320 in Grinblatt and Han (2005), the capital gains overhang

(CGO) at week w is defined as:

CGOw =
Pw−1 −RPw

Pw−1
, (28)

where Pw is the stock price at the end of week w, and RPw is the reference price for

each individual stock which defined as follows.

RPw = k−1
W∑
n=1

(Vw−n

n−1∏
τ=1

(1− Vw−n+τ ))Pw−n, (29)

where Vw is the turnover in week w. W is 260, the number of weeks in the previous

five years. k is the constant that makes the weights on past prices sum to one. Weekly
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turnover is calculated as the weekly trading volume divided by the number of shares

outstanding. The weight on Pw−n reflects the probability that share purchased at

week w − n has not been traded since. The market price is lagged by one week, and

the monthly CGO is just the last week CGO within each month. The CGO variable

ranges from 1962 to 2013.
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Figure 1: Asymmetric, skewness=0
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Figure 2: Different Asymmetry, skewness=1
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Table 1: Simulation

The table provides the average values and associated t-statistics (in parentheses) of
skewness(SKEW ), Eϕ, and Sϕ from 1,000 draws simulated from a normal distribution, a
chi-squared distribution of degree 10 and a Beta difference distribution. Significance at 1%
level is indicated by ***.

N(120, 240) χ2(10) Beta(1,3.7)-
Beta(1.3,2.3)

SKEW 0.0038 0.8802*** 0.0004
(1.05) (170.56) (0.13)

Eϕ 0.0002 0.0035*** -0.0127***
(0.57) (12.33) (-45.10)

Sϕ 0.0004 0.0554*** -0.0304***
(0.44) (11.95) (-33.60)
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Table 3: Correlations of Asymmetry Measures and Volatility

Panel A provides the time series average of the correlations of asymmetry measures and
volatility from January 1962 to December 2013. Panel B provides the same correlations
for the idiosyncratic measures.

Panel A: Total Measures

SKEW Eϕ Sϕ V OL

SKEW 1.0000
Eϕ -0.1233 1.0000
Sϕ -0.0071 0.7051 1.0000
V OL 0.0738 0.0312 0.0241 1.0000

Panel B: Idiosyncratic Measures

ISKEW IEϕ ISϕ IV OL

ISKEW 1.0000
IEϕ -0.1649 1.0000
ISϕ -0.0342 0.6789 1.0000
IV OL 0.0806 0.0610 0.0546 1.0000
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Table 4: Firm Characteristics and Asymmetry Measures

The table reports the average slopes and their t-values of Fama-MacBeth regressions of
firm characteristics (in the first column) on one of asymmetry measures from Columns
(1)–(3), respectively. The characteristic variables are size (SIZE), book to market ratio
(BM), momentum (MOM), turnover (TURN), liquidity measure (ILLIQ) and market
beta (β). The slopes are scaled by 100. Significance at 1% and 5% levels are indicated by
*** and **, respectively.

(1) (2) (3)

VARIABLES ISKEW IEϕ ISϕ

SIZE -8.8554*** -0.0271*** -0.1108***
(-23.78) (-7.56) (-9.64)

BM -3.4407*** -0.0643*** -0.1931***
(-6.04) (-11.46) (-11.73)

MOM 0.7705*** 0.0014*** 0.0081***
(23.85) (6.43) (13.73)

TURN -0.4458 0.1170*** 0.2797***
(-0.82) (21.33) (18.22)

ILLIQ 0.4324*** 0.0036*** 0.0120***
(5.48) (3.46) (3.27)

β 3.0997** 0.0596*** 0.3457***
(2.53) (6.10) (9.78)

Constant 78.2001*** 0.1945*** 0.5875***
(26.42) (7.23) (7.94)

R2 0.103 0.028 0.020
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Table 7: Decile Portfolios Sorted by ISKEW

The table reports the average returns and their t-values, as well as the CAPM Alpha
denotes the average CAPM alpha and Fama-French 3-factor alpha for decile portfolios
sorted by ISKEW based on data from January 1962 to December 2013. Significance at
1%, 5%, and 10% levels are indicated by ***, **, and *, respectively.

Portfolio Monthly Excess
Return (%)

CAPM Alpha (%) FF3 Alpha (%)

1(lowest) 0.477*** -0.030 -0.216**
(2.26) (-0.32) (-3.31)

2 0.660*** 0.176** -0.020
(3.35) (2.25) (-0.39)

3 0.659*** 0.173** -0.033
(3.32) (2.17) (-0.64)

4 0.687*** 0.190** -0.016
(3.39) (2.35) (-0.32)

5 0.751*** 0.241*** 0.044
(3.60) (2.84) (0.94)

6 0.782*** 0.254*** 0.035
(3.58) (2.73) (0.75)

7 0.723*** 0.182* -0.018
(3.20) (1.82) (-0.37)

8 0.735*** 0.175 -0.030
(3.12) (1.62) (-0.58)

9 0.659*** 0.099 -0.094*
(2.76) (0.86) (-1.80)

10(highest) 0.550** 0.047 -0.168***
(2.48) (0.40) (-2.97)

10-1 spread 0.073 0.077 0.048
(0.77) (0.81) (0.54)
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Table 8: Decile Portfolios Sorted by IEϕ

The table reports the average returns and their t-values, as well as the CAPM Alpha
denotes the average CAPM alpha and Fama-French 3-factor alpha for decile portfolios
sorted by IEϕ based on data from January 1962 to December 2013. Significance at 1%,
5%, and 10% levels are indicated by ***, **, and *, respectively.

Portfolio Monthly Excess
Return (%)

CAPM Alpha (%) FF3 Alpha (%)

1(lowest) 0.694*** 0.226** -0.015
(3.51) (2.45) (-0.29)

2 0.718*** 0.217** -0.008
(3.46) (2.44) (-0.16)

3 0.713*** 0.207** -0.009
(3.42) (2.37) (-0.19)

4 0.729*** 0.217** 0.006
(3.47) (2.51) (0.13)

5 0.706*** 0.183** -0.029
(3.29) (2.07) (-0.64)

6 0.701*** 0.173* -0.030
(3.24) (1.96) (-0.70)

7 0.623*** 0.092 -0.096**
(2.87) (1.05) (-2.23)

8 0.651*** 0.119 -0.065
(2.97) (1.30) (-1.55)

9 0.610*** 0.072 -0.104**
(2.73) (0.74) (-2.41)

10(highest) 0.515** -0.021 -0.197***
(2.28) (-0.20) (-4.09)

10-1 spread -0.179** -0.247*** -0.182***
(-2.57) (-3.77) (-3.11)
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Table 9: Decile Portfolios Sorted by ISϕ

The table reports the average returns and their t-values, as well as the CAPM Alpha
denotes the average CAPM alpha and Fama-French 3-factor alpha for decile portfolios
sorted by ISϕ based on data from January 1962 to December 2013. Significance at 1%,
5%, and 10% levels are indicated by ***, **, and *, respectively.

Portfolio Monthly Excess
Return (%)

CAPM Alpha (%) FF3 Alpha (%)

1(lowest) 0.768*** 0.249** 0.026
(3.51) (2.45) (0.49)

2 0.761*** 0.255*** 0.019
(3.62) (2.80) (0.39)

3 0.702*** 0.209** -0.014
(3.44) (2.39) (-0.28)

4 0.714*** 0.232** 0.004
(3.59) (2.76) (0.08)

5 0.631*** 0.132 -0.057
(3.10) (1.60) (-1.25)

6 0.607*** 0.086 -0.109**
(2.85) (1.01) (-2.49)

7 0.632*** 0.108 -0.078*
(2.94) (1.21) (-1.71)

8 0.651*** 0.109 -0.081*
(2.93) (1.18) (-1.82)

9 0.631*** 0.081 -0.097**
(2.78) (0.84) (-2.18)

10(highest) 0.575** 0.023 -0.162***
(2.45) (0.21) (-3.09)

10-1 spread -0.193*** -0.226*** -0.188***
(-3.42) (-4.08) (-3.58)
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