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1 Introduction

Financial institutions, such as pension funds and insurance companies, are exposed to se-

veral sources of risk through their assets and their liabilities. During their decision-making

process, they simultaneously consider the potential effects of their decisions on both the as-

set and the liability side of their balance sheet, hence the term Asset Liability Management.

However, unless the decision maker (the financial institution)1 knows the true model (the

data-generating process driving the asset and liability values) precisely, it faces not only

risk, but also uncertainty. Disregarding uncertainty can lead to suboptimal investment and

Asset Liability Management decisions, thus financial institutions want to make decisions

that “not only work well when the underlying model for the state variables holds exactly,

but also perform reasonably well if there is some form of model misspecification” (Maenhout

(2004)). In the literature these decisions are called robust decisions. Although the utility

loss resulting from model misspecification can be substantial (Branger and Hansis (2012)),

the majority of the literature still assumes perfect knowledge of the underlying model on

the decision maker’s side. Our aim with this paper is to fill this gap in the dynamic Asset

Liability Management literature.

Our model features a complete financial market with stochastic interest rates governed

by an N -factor Gaussian affine term structure model. The fund manager solves a dynamic

Asset Liability Management problem under model uncertainty. Using the martingale met-

hod of Cox and Huang (1989), we provide the optimal terminal wealth, the least-favorable

physical probability measure, and the optimal investment policy in closed form. We find

that the optimal portfolio weights consist of two components: the myopic demand and the

liability hedge demand, but notwithstanding the stochastic investment opportunity set, the

fund manager does not have an intertemporal hedging demand component. We then use

42 years of U.S. data to calibrate our model. We show that robustness induces a more

conservative investment policy: a robust fund manager’s optimal risk exposures are closer

1In this paper we focus on pension funds, but our results can be interpreted in a more general sense, and
they are valid for any financial institution which has to make Asset Liability Management decisions.
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to the liability risk exposures, hence reducing the speculative demand and increasing the

liability-hedging demand. In parallel with this, a robust fund manager invests less in the

constant maturity bond fund with a relatively short maturity (in our numerical example

1 year) and also in the stock market index than an otherwise identical non-robust fund

manager. The portfolio weight of the constant maturity bond fund with maturity equal to

the investment horizon increases due to its strong liability hedge effect, and thus effectively

reduces the exposure to the factor-specific risk sources.

Our paper relates to the literature on Asset Liability Management. The modern Asset

Liability Management literature dates back to Leibowitz (1987), who introduces the concept

of the surplus function (the excess of the plan’s asset value over the value of its liabilities).

Based on this notion, Sharpe and Tint (1990) extend the Mean-Variance portfolio alloca-

tion model of Markowitz (1952) to an Asset Liability Management model. The basic idea

is that instead of asset returns, the investor cares about the surplus returns, where surplus

means the value of assets minus the value of liabilities. Sharpe and Tint (1990) find that the

optimal portfolio consists of two components: a speculative portfolio and a liability-hedge

portfolio. Moreover, only the speculative portfolio depends on the investor’s preferences,

the liability-hedge portfolio is the same for each investor. More recently, Hoevenaars, Mole-

naar, Schotman, and Steenkamp (2008) extend the multi-period portfolio selection model of

Campbell and Viceira (2005) into a multi-period Asset Liability Management model. They

confirm the finding of Sharpe and Tint (1990) that the optimal portfolio consists of two

parts: a speculative portfolio and a liability hedge portfolio. Instead of maximizing a sub-

jective utility function, Shen, Pelsser, and Schotman (2014) assume that the fund manager

minimizes the expected shortfall (i.e., the expected amount by which the value of liabilities

exceeds the value of assets) at the terminal date. This assumption emphasizes that the fund

manager acts in the best interest of the sponsoring firm, but does not consider the inte-

rest of the pension holders. In contrast to this, van Binsbergen and Brandt (2016) assume

that the objective function is a sum of two parts: the first part expresses the (positive)

utility of the pension holders, while the second part represents the (negative) utility of the
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sponsoring firm. To be more concrete, pension holders derive (positive) utility from a high

funding ratio at the terminal date, while the sponsoring firm derives (negative) utility from

having to provide additional contributions to the fund in order to keep the funding ratio

above one throughout its life cycle. This model of van Binsbergen and Brandt (2016) nests

the non-robust version of the model of Shen, Pelsser, and Schotman (2014), if the weight

of the utility function of the pension holders is set to zero.

Our paper also relates to the literature on robust dynamic asset allocation. Anderson,

Hansen, and Sargent (2003) in their seminal paper develop a framework for dynamic asset

allocation models, which allows the investor to account for being uncertain about the phy-

sical probability measure. Within this framework, Maenhout (2004) provides an analytical

and homothetic solution to the robust version of the Merton problem. Maenhout (2006)

extends this model to incorporate a stochastic investment opportunity set. Branger, Larsen,

and Munk (2013) solve a robust dynamic stock-cash allocation problem including return

predictability, while Munk and Rubtsov (2014) also allow for ambiguity about the inflation

process. Horvath, de Jong, and Werker (2016) provide a non-recursive formulation of the

problem of Maenhout (2004), and also extend it to models featuring interest rate risk.

The paper is organized as follows. Section 2 introduces our model, i.e., the financial

market and the fund manager’s objective function. Moreover, Section 2 also provides the

analytical solution of the robust dynamic Asset Liability Management problem. In Section 3

we calibrate our model to 42 years of U.S. market data using Maximum Likelihood and

the Kalman filter. In Section 4 we link the level of uncertainty aversion to the theory of

Detection Error Probabilities. In Section 5 we quantitatively analyze the effects of model

uncertainty on the optimal Asset Liability Management decision. Section 6 concludes.
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2 Robust Asset Liability Management Problem

Our model features a complete financial market and a robust fund manager. By robustness

we mean that the fund manager is uncertain2 about the underlying model. To be more

precise, we assume that she is uncertain about the physical probability measure. She has a

base measure B in mind, which she thinks to be the most reasonable probability measure.

But she is uncertain about whether the base measure is indeed the true measure or not,

so she considers other probability measures as well. We call these alternative measures

and denote them by U. We provide the exact relationship between B and U, and also the

restrictions on the set of U measures under consideration in Section 2.3.

2.1 Financial market

We consider pension funds which have access to a complete, arbitrage-free financial market

consisting of a money-market account, N constant maturity bond funds, and a stock market

index. The short rate is assumed to be affine in an N -dimensional factor Ft, i.e.,

rt = A0 + ι′Ft, (1)

where ι denotes a column vector of ones. The factor Ft follows an Ornstein-Uhlenbeck

process under the base measure, i.e.,

dFt = −κ(Ft − µF )dt+ σFdW B
F,t. (2)

Here κ is an N×N diagonal matrix with the mean reversion parameters in its diagonal; µF

is an N -dimensional column vector containing the long-term means of the factors under the

base measure B; σF is an N ×N lower triangular matrix, with strictly positive elements in

2The terms uncertainty and ambiguity have slightly different meanings in the behavioral finance literature.
In the robust asset pricing and robust asset allocation literature, however, they are used interchangeably.
Since our paper primarily belongs to this latter branch of the literature, we do not differentiate between the
meaning of uncertainty and ambiguity, and use the two words interchangeably.
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its diagonal; and W B
F,t is an N -dimensional column vector of independent standard Wiener

processes under B.

The stock market index can be correlated with the factor Ft, i.e.,

dSt = St
[
rt + σ′F,SλF + σN+1,SλN+1

]
dt+ St

(
σ′F,SdW B

F,t + σN+1,SdWB
N+1,t

)
, (3)

where λF and λN+1 are the market prices of risk corresponding to the base measure B,

σF,S is an N -dimensional column vector governing the covariance between stock and bond

returns, σN+1,S is a strictly positive constant, and WB
N+1,t is a standard Wiener process

under the base measure B, which is independent of W B
F,t. The liability of the pension fund

is assumed to evolve according to

dLt = Lt
(
rt + σ′F,LλF + σN+1,LλN+1

)
dt+ Lt

(
σ′F,LdW B

F,t + σN+1,LdWB
N+1,t

)
, (4)

where σF,L is an N -dimensional column vector, and σN+1,L is a scalar.

To simplify notation, we denote W B
F,t and WB

N+1,t jointly as

W B
t =

 W B
F,t

WB
N+1,t

 , (5)

λF and λN+1 jointly as

λ =

 λF

λN+1

 , (6)

σF,S and σN+1,S jointly as

σS =

 σF,S

σN+1,S

 , (7)

and σF,L and σN+1,L jointly as

σL =

 σF,L

σN+1,L

 . (8)
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2.2 The liability-risk-neutral measure

Our fund manager, as we describe in more detail in Section 2.3, is optimizing over the

terminal funding ratio. Therefore, to facilitate the problem solving process, throughout the

paper we use the liability value as numeraire. Since the financial market is complete and

free of arbitrage opportunities, there exists a unique probability measure under which the

value of any traded asset scaled by the value of liability is a martingale.

Let Xt be the value of any traded asset, with

dXt = Xt

[
rt + σ′Xλ

]
dt+Xtσ

′
XdW B

t . (9)

Applying Ito’s lemma, we find the dynamics of the asset price scaled by the value of the

liability as

d

(
X

L

)
t

=

(
X

L

)
t

(σX − σL)′ (λ− σL) dt+

(
X

L

)
t

(σX − σL)′ dW B
t . (10)

Defining

dW B
t = dW L

t − λLdt, (11)

with

λL = λ− σL, (12)

the dynamics of the asset Xt scaled by the liability value can be rewritten as

d

(
X

L

)
t

=

(
X

L

)
t

(σX − σL)′ dW L
t . (13)

Then (12), together with (11), uniquely determines the relationship between the liability-

risk-neutral measure L and the base measure B.
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2.3 Preferences, beliefs, and problem formulation

We consider a pension fund manager who acts in the best interest of the pension holders.

She is risk-averse, and she has CRRA preferences over the terminal funding ratio. The fund

manager wants to maximize her expected utility, but she is uncertain about the physical

probability measure under which the expectation is supposed to be calculated. She has a

base measure (B) in mind, but she considers other, alternative probability measures (U) as

well. We assume that the investor knows which events will happen with probability one

and with probability zero, i.e., she considers only alternative probability measures which

are equivalent to the base measure. We now formalize the relationship between the base

measure B and the alternative measure U as

dW U
t = dW B

t − u(t)dt, (14)

where W B
t and W U

t are (N+1)-dimensional standard Wiener processes under the measures

B and U, respectively. Similarly to identifying λ as the (N +1)-dimensional vector of prices

of risks of the base measure B, we can identify u(t) as the (N + 1)-dimensional vector

of prices of risks of U.3 We assume that λ is constant, while u(t) is assumed to be a

deterministic function of time.4

We now formalize the robust optimization problem of the fund manager. Her investment

horizon is T , she has a utility function with a constant relative risk aversion of γ > 1 over the

terminal funding ratio,5 and a subjective discount rate of δ > 0. Her uncertainty-tolerance

is determined by the parameter Υt, which is allowed to be stochastic.

3Throughout the paper we assume
∫ T
0

‖u(s)‖2ds <∞.
4We could allow λ to be a deterministic function of time without much change in our conclusions, but it

would result in more complex expressions due to time-integrals involving λ (t). Thus, since for our purposes
a constant λ suffices, we throughout take λ to be constant.

5The case γ = 1 corresponds to the fund manager having log-utility. All of our results can be shown to
hold for the log-utility case as well.
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Problem 1. Given initial funding ratio A0/L0, find an optimal pair {AT ,U} for the robust

utility maximization problem

V0

(
A0

L0

)
= inf

U
sup
AT

EU

exp(−δT )

(
AT
LT

)1−γ
1− γ

+

∫ T

0
Υs exp(−δs)

∂EU [log
(
dU
dB
)
s

]
∂s

ds

}
, (15)

subject to the budget constraint

EL
(
AT
LT

)
=
A0

L0
. (16)

The formulation of Problem 1 follows the logic of the Martingale Method of Cox and

Huang (1989): the fund manager optimizes over the terminal wealth AT .6 The first part of

the objective function in Problem 1 expresses that the fund manager derives utility from the

terminal funding ratio. The second part is a penalty term, which assures that the investor

will use a pessimistic, but reasonable physical probability measure to calculate her expected

utility. This penalty term – in line with Anderson, Hansen, and Sargent (2003) – is the

integral of the discounted time-derivative of the Kullback-Leibler divergence (also known as

the relative entropy) between the base measure B and the alternative measure U, multiplied

by the fund manager’s uncertainty-tolerance parameter Υs. Intuitively, this penalty term

is high if the alternative measure U and the base measure B are very different from each

other, and low if they are similar to each other. If U and B coincide, the penalty term is

zero. Using Girsanov’s theorem, we can express the Kullback-Leibler divergence as

∂EU [log
(
dU
dB
)
t

]
∂t

=
∂

∂t
EU
[

1

2

∫ t

0
‖u(s)‖2ds−

∫ t

0
u(s)dW U

s

]
=

1

2
‖u(t)‖2. (17)

To insure homotheticity of the solution, i.e., that the optimal portfolio weights do not

6Actually, the fund manager optimizes over the terminal funding ratio AT /LT . However, as we describe
it in more detail in Section 2.1, the liability process Lt is assumed to be exogenous, hence choosing an
optimal terminal funding ratio AT /LT is equivalent to choosing “only” an optimal terminal wealth AT .
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depend on the actual funding ratio, we – following Maenhout (2004) – express the manager’s

uncertainty-tolerance parameter as

Υt = exp (δt)
1− γ
θ

Vt

(
At
Lt

)
, (18)

where Vt (At/Lt) is the value function of the fund manager at time t, i.e.,

Vt

(
At
Lt

)
= inf

U
sup
AT

EU
t

exp(−δT )

(
AT
LT

)1−γ
1− γ

+

∫ T

t
Υs exp(−δs)

∂EU [log
(
dU
dB
)
s

]
∂s

ds

}
, (19)

subject to the budget constraint

EL
t

(
AT
LT

)
=
At
Lt
. (20)

Substituting (18) into the value function (15), and also making use of (17), we can rewrite

Problem 1 in a form which has a non-recursive goal function. This is stated in the following

theorem, the proof of which is provided in the Appendix.

Theorem 1. If the fund manager’s uncertainty-tolerance parameter Υt takes the form (18),

then the value function in Problem 1 is equivalent to

V0

(
A0

L0

)
= inf

U
sup
AT

EU

exp

(
1− γ

2θ

∫ T

0
‖u(t)‖2dt− δT

) (AT
LT

)1−γ
1− γ

 , (21)

subject to the budget constraint

EL
(
AT
LT

)
=
A0

L0
. (22)

As noted by Horvath, de Jong, and Werker (2016), the expression in (21) provides

an alternative interpretation of robustness: the goal function of a robust fund manager is

equivalent to the goal function of a more impatient7 non-robust fund manager. Besides

7By a fund manager being more impatient, we mean that her subjective discount rate is higher.
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increasing the subjective discount rate, the other effect of robustness is a change in the

physical probability measure from B to U.

2.4 Optimal Terminal Funding Ratio

To solve the robust dynamic ALM problem, we apply the martingale method (developed by

Cox and Huang (1989), and adapted to robust problems by Horvath, de Jong, and Werker

(2016)). The next theorem – which we prove in the Appendix – provides the optimal

terminal wealth and the least-favorable distortions.

Theorem 2. The solution to Problem 1 under (18) is given by

ÂT = LT
A0

L0

exp
[
1
γ

∫ T
0

(
λL + û (t)

)′
σLdt+ 1

γ

∫ T
0

(
λL + û (t)

)′
dW L

t

]
EL exp

[
1
γ

∫ T
0 (λL + û (t))

′
σLdt+ 1

γ

∫ T
0 (λL + û (t))

′
dW L

t

] , (23)

with the least-favorable distortion

û (t) = − θ

γ + θ
λL. (24)

Using the martingale method to solve the robust dynamic ALM problem has the ad-

vantage of providing insight into the optimization process of the fund manager. The form

of the optimal terminal wealth (23) suggests that the decision process of the fund manager

can be separated into two parts. First, as a starting point, she wants to obtain a perfect

hedge for the liabilities at time T , i.e., she wants a terminal wealth equal to LT . Then,

she modifies this terminal wealth based on her preferences to achieve the optimal terminal

wealth.

The least-favorable distortion of the fund manager differs in two important aspects

from the least-favorable distortion of an otherwise identical investor who optimizes over her

terminal wealth, instead of the terminal funding ratio (see Horvath, de Jong, and Werker

(2016)). First, the least-favorable distortion of the fund manager is independent of time,

while the least-favorable distortion of an investor deriving utility from terminal wealth
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contains a time-dependent component. This time-dependent component is present due to

the intertemporal hedging potential of the constant maturity bond funds, and it results

in the investor having a “less severe” distortion. However – as we show in Section 2.5 –,

deriving utility from the terminal funding ratio instead of the terminal wealth, the fund

manager does not have an intertemporal hedging demand for the constant maturity bond

funds. So, intuitively, regardless of how far away from the end of her investment horizon

the fund manager is, she will distort her base measure to the same extent.

Another aspect in which the least-favorable distortion of the fund manager differs from

the least-favorable distortion of an otherwise identical investor deriving utility from terminal

wealth is that the market price of risk in which the least-favorable distortion is affine

corresponds to the liability value as numeraire, instead of to the money market account.8

Intuitively, this means that the magnitude of the distortion is reduced due to the fund

manager deriving utility from the terminal funding ratio instead of the terminal wealth.

This is true for both ûF and for ûN+1. Because the liability process behaves very similarly

to a zero-coupon bond with approximately 15 years of maturity, we expect the elements of

σF,L to be negative. Since the first N elements of λ are also negative, and the difference

between the market price of risk corresponding to to the money market account as numeraire

and the market price of risk corresponding to the liability as numeraire is σL, deriving

utility from the terminal funding ratio instead of the terminal wealth reduces the (positive)

elements of ûF . The same logic applies to ûN+1. The market price of risk using the money

market account as numeraire, i.e., λN+1 is positive, and intuition suggests σL,N+1 is also

positive, therefore, optimizing over the terminal funding ratio instead of the terminal wealth

will reduce the magnitude of the (negative) ûN+1.

If the fund manager is not uncertainty averse at all, her θ parameter is equal to zero

and her least-favorable distortion reduces to zero as well. In other words, she will use her

base probability measure B to evaluate her expected utility. At the other extreme, if her

8That is, the fund manager’s least-favorable distortion is affine in λL, while the least-favorable distortion
of an otherwise identical investor who derives utility from terminal wealth is affine in λ, i.e., the market price
of risk of the base measure B over the risk-neutral measure with the money market account as numeraire.
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uncertainty aversion (i.e., her θ parameter) is infinity, she uses the globally-least-favorable

distortion

ũ = −λL. (25)

Optimizing over the terminal wealth, the globally-least-favorable distortion would be equal

to the market price of risk using the money market account as numeraire, and the investor

would consider the scenario when she receives no compensation above the risk-free rate

for bearing any risk. For a fund manager optimizing over the funding ratio, however, this

scenario would still be “of value” in the sense that she would still be willing to bear some risk,

due to its hedging potential.9 To achieve the least-favorable distortion, the fund manager

has to correct for this and hence her least-favorable distortion becomes the market price of

risk of the L measure over the base measure B.

2.5 Optimal Portfolio Strategy

Since our financial market is complete, there exists a unique investment process which

enables the fund manager to achieve the optimal terminal wealth (23). We provide the

optimal risk exposure process corresponding to this optimal investment policy in Corollary 1,

and the optimal investment process itself in Corollary 2. Both proofs are provided in the

Appendix.

Corollary 1. Under the conditions of Theorem 2, the optimal investment is a continuous

re-balancing strategy where the exposures to the N+1 risk sources – as a fraction of wealth

– are

Π̂t =
1

γ + θ
λL + σL (26)

=
1

γ + θ
λ+

(
1− 1

γ + θ

)
σL. (27)

9We would like to emphasize here that this hedging potential refers to the liability hedge, i.e., by being
exposed to some risk in the above-mentioned scenario the investor can achieve a lower volatility of her
terminal funding ratio than by investing everything in the money market account.
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The form of the optimal exposure to the risk sources in (26) also reflects the separation

of the investment decision into two parts which we described in Section 2.4, i.e., the fund

manager first achieves a perfect hedge of the liability (second part of (26)), then she modifies

her exposure according to her preferences (first part of (26)). If the correlation between the

asset returns and the liability return is zero (i.e., if σL = 0), then the optimal exposure to

the risk sources is equal to the scaled market price of risk, i.e., λL/ (γ + θ), which in that

case coincides with λ/ (γ + θ).10

In the next corollary we provide the unique optimal investment process, with notation

B (τ) = [B (τ1) ι; . . . ;B (τN ) ι] , (28)

where τj denotes the maturity of bond fund j, and B (t) is defined as

B(t) = (I − exp {−κt})κ−1. (29)

Corollary 2. Under the conditions of Theorem 2, the optimal investment is a continuous

re-balancing strategy where the fraction of wealth invested in the constant maturity bond

funds is

π̂B,t =− 1

γ + θ
B (τ)−1

(
σ′F
)−1(

λF −
λN+1

σN+1,S
σF,S

)
+

1− γ − θ
γ + θ

B (τ)−1
(
σ′F
)−1(

σF,L −
σN+1,L

σN+1,S
σF,S

)
, (30)

and the fraction of wealth invested in the stock market index is

π̂S,t =
λN+1

(γ + θ)σN+1,S
− (1− γ − θ)

(γ + θ)

σN+1,L

σN+1,S
. (31)

10We want to stress that this does not mean that the optimal decision for an investor optimizing over
terminal wealth only (instead of over the terminal funding ratio) is equal to λL/ (γ + θ) or λ/ (γ + θ). The
reason of the difference is that even if the liability process is a constant (i.e., σL = 0), the fund manager
still hedges against it, and the liability hedge demand is equal to the negative of the intertemporal hedge
demand. Thus, the two latter demand components of the fund manager cancel out. In contrast with this, if
the investor optimizes over her terminal wealth only, she still has a non-zero intertemporal hedging demand.
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In line with Sharpe and Tint (1990) and Hoevenaars, Molenaar, Schotman, and Steen-

kamp (2008), we find that the optimal portfolio consists of two parts: a speculative portfolio

(first line of (30) and first part of (31)), and a liability hedge portfolio (second line of (30)

and second part of (31)). The source of the liability hedge demand is the covariance be-

tween the asset returns and the liability returns. The higher the covariance between the

bond fund returns and the liability returns (i.e., the lower the elements of σF,L), the higher

the optimal portfolio weight of the constant maturity bond funds. Also: the higher the

covariance between the stock market index return and the liability return (i.e., the higher

σN+1,L), the higher the optimal portfolio weight of the stock market index. Intuitively, a

higher covariance between the return of an asset and the liability induces a higher optimal

investment in that particular asset, because a higher covariance provides a higher hedging

potential and therefore makes the asset more desirable. The second terms within the brac-

kets in both the first and the second line of (30) are correction terms to the speculative

constant maturity bond fund demand and the liability hedge constant maturity bond fund

demand, respectively. These two correction terms arise due to the covariance between the

bond returns and the stock market index return. The higher this covariance (i.e., the lower

the elements of σF,S), the lower the correction term to both the speculative bond demand

and the liability hedge bond demand. The intuition of this is that a higher covariance

between the constant maturity bond fund returns and the stock market index return re-

sults in the same investment in the stock market index providing a higher exposure to the

N factors, and hence to retain the optimal exposure to these factors, the constant maturity

bond funds should have lower portfolio weights than with zero covariance.

We find that the optimal asset allocation is determined by the sum of the risk-aversion

parameter and the uncertainty-aversion parameter, i.e., by γ + θ. This is in line with, e.g.,

Maenhout (2004), Maenhout (2006), and Horvath, de Jong, and Werker (2016). Intuitively,

a robust fund manager behaves the same way as a non-robust, but more risk-averse fund

manager.
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Table 1. Parameter estimates and standard errors
Estimated parameters and standard errors using Maximum Likelihood. We observed four
points weekly on the U.S. zero-coupon, continuously compounded yield curve, correspon-
ding to maturities of 3 months, 1 year, 5 years and 10 years; and the total return index of
Datastream’s US-DS Market. The observation period is from 5 January 1973 to 29 Janu-
ary 2016.

Estimated parameter Standard error
κ̂1 0.0763∗∗∗ 0 .0024

κ̂2 0.3070∗∗∗ 0 .0108

Â0 0.0862∗∗∗ 0 .0013

λ̂F,1 −0.1708−∗∗∗ 0 .1528

λ̂F,2 −0.5899∗∗∗− 0 .1528

λ̂N+1 0.3180∗∗∗ 0 .1528
σ̂F,11 0.0208∗∗∗ 0 .0009
σ̂F,21 −0.0204∗∗∗− 0 .0012
σ̂F,22 0.0155∗∗∗ 0 .0003
σ̂FS,1 −0.0035−∗∗∗ 0 .0038
σ̂FS,2 −0.0121∗∗∗− 0 .0035
σ̂N+1 0.1659∗∗∗ 0 .0025

3 Model Calibration

The two-factor version of our model for the financial market is identical to the model of

Horvath, de Jong, and Werker (2016). Hence, we directly adapt the estimates therein for our

model parameters. For completeness, we briefly recall the estimation methodology followed

by Horvath, de Jong, and Werker (2016). The model is calibrated to U.S. market data using

the Kalman filter and Maximum Likelihood. The data consist of weekly observations of the

3-month, 1-year, 5-year, and 10-year points of the yield curve, and Datastream’s U.S. Stock

Market Index. The observation period is from 1 January 1973 to 29 January 2016. The

starting values of the filtered factors are equal to their long-term means. The parameter

estimates can be found in Table 1.

All model parameters are estimated with small standard errors, the only exception being

the market price of risk. This confirms the validity of our model setup, namely, that the

fund manager is uncertain about the physical probability measure, which – together with

her considering only equivalent probability measures – is equivalent to saying that she is
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uncertain about the market price of risk.

As a proxy for the liability process, we follow van Binsbergen and Brandt (2016) and use

the price of a zero-coupon bond. Intuitively, we think of the liability as a rolled-over asset

with constant duration. As of the duration itself, we use 15 years, which is approximately

the average duration of U.S. pension fund liabilities (van Binsbergen and Brandt (2016)).

Then, the volatility parameters of the liabilities are

σF,L = −σ′FB (15) ι (32)

and

σN+1,L = 0. (33)

Using our parameter estimates in Table 1, the estimated volatility vector of the liability

process is

σ′L =

[
−0.1201 −0.0501 0

]
. (34)

4 Detection Error Probabilities

In the previous section we estimated the model parameters related to the financial market,

based on historical data. Calibrating the parameters related to the preferences, i.e., the

risk-aversion parameter γ and the uncertainty-aversion parameter θ, is less straightforward.

There is no agreement in the literature about what the relative risk aversion of a re-

presentative investor precisely is, but the majority of the literature considers risk aversion

parameters between 1 and 5 to be reasonable. Several studies attempt to estimate what

a reasonable risk aversion value is, usually by using consumption data or by conducting

experiments. Friend and Blume (1975) estimate the relative risk aversion parameter to be

around 2; Weber (1975) and Szpiro (1986) estimate it to be between about 1.3 and 1.8; the

estimates of Hansen and Singleton (1982) and Hansen and Singleton (1983) are 0.68–0.97

and 0.26-2.7, respectively; using nondurable consumption data, Mankiw (1985) estimates
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the relative risk aversion to be 2.44-5.26, and using durable goods consumption data it to

be 1.79-3.21; Barsky, Juster, Kimball, and Shapiro (1997) use an experimental survey to

estimate the relative risk aversion parameter of the subjects, the mean of which turns out to

be 4.17; while in the study of Halek and Eisenhauer (2001) the mean relative risk aversion

is 3.7. Later in this section we vary the risk-aversion parameter between 1 and 5 to see its

effect on the optimal investment decision.

Calibrating the uncertainty-aversion parameter θ is even more complicated than the

calibration of the risk aversion. Ever since the seminal paper of Anderson, Hansen, and

Sargent (2003), the most puzzling questions in the robust asset pricing literature are related

to how to quantify uncertainty aversion, and how much uncertainty is reasonable. Anderson,

Hansen, and Sargent (2003) propose a theory to address these problems based on the

Detection Error Probabilities. They assume that the investor can observe a sample of

historical data, and she performs a likelihood ratio test to decide whether these data are

generated by a data-generating process corresponding to the base measure B, or by a data-

generating process corresponding to the alternative measure U. Based on this test, the

investor is assumed to be able to correctly guess the true physical probability measure in

p% of the cases, i.e., she is wrong in (1− p) % of the cases. Making this (1− p) % equal

to the probability of making an error based on the likelihood ratio test, we can disentangle

the risk aversion and the uncertainty aversion. The question of what a reasonable level

of (1 − p)%, i.e., the Detection Error Probability, is, is the subject of an active line of

research. Anderson, Hansen, and Sargent (2003) suggest that Detection Error Probabilities

between 10% and 30% are plausible. Now we give the formal definition of the Detection

Error Probability.

Definition 1. The Detection Error Probability (DEP) is defined as

DEP =
1

2
PB
(

log
dB
dU

< 0

)
+

1

2
PU
(

log
dB
dU

> 0

)
. (35)

Following the reasoning of Horvath, de Jong, and Werker (2016), we can express the
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Detection Error Probability in closed form. This is stated in Theorem 3 and in Corollary 3.

Theorem 3. Assume that the fund manager continuously observes the prices of N constant

maturity bond funds, and the level of the stock market index. The observation period lasts

from t − H to the moment of observation, t. Then, the detection error probability of the

fund manager for given U is

DEP = 1− Φ

(
1

2

√∫ t

t−H
‖u (s) ‖2ds

)
, (36)

where u (·) is defined in (14).

Substituting the least-favorable distortion (24) into (36), we obtain the closed-form

expression in Corollary 3.

Corollary 3. Assume that the conditions of Theorem 3 hold. Then, the detection error

probability of the fund manager for the least-favorable U is

DEP = 1− Φ

(
θ

2 (γ + θ)

√
H‖λL‖

)
. (37)

The Detection Error Probability used by a fund manager who is not uncertainty-averse at

all (i.e., whose θ parameter is zero) is 0.5. That is, she might as well flip a coin to distinguish

between two probability measures instead of performing a likelihood-ratio test on a sample of

data. On the other hand, a fund manager with an uncertainty aversion parameter of infinity

uses the lowest possible Detection Error Probability, which is 1− Φ
(

(1/2)
√
H‖λL‖

)
.11

We assume that the observation period of the investor is 42 years,12 and that her De-

tection Error Probability is 10%. Given that she has access to a relatively long sample of

11One might expect that the lowest possible Detection Error Probability is zero, which would mean that
the fund manager knows the physical probability measure precisely. However, as (37) also shows, this is only
the case if the length of her observation period is infinity, i.e., H = ∞. If her observation period is finite,
the limitation of available data will always result in the fund manager not being able to correctly tell apart
two probability measures in 100% of the cases.

12We use 42 years of market data to estimate our model parameters, thus it is a reasonable assumption that
the fund manager has access to the same length of data. Even though our observation frequency is weekly,
assuming that the fund manager can observe data continuously does not cause a significant difference.
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data, and that she can observe the prices continuously, our choice of 10% as the Detection

Error Probability is justifiable.

5 Policy Evaluation

Now we use our parameter estimates from Section 3 to analyze the effects of robustness

on the optimal ALM decision, if the fund manager has access to a money market account,

to two constant maturity bond funds with 1 and 15 years of maturities, and to a stock

market index. Her investment horizon is 15 years. We show the quantitative relationship

between the level of uncertainty aversion and the optimal exposure to the different sources

of risk, and also the optimal portfolio weights. We find that regardless of the risk attitude of

the fund manager, robustness substantially changes the magnitude of her optimal portfolio

weights. Generally speaking, robustness translates into making more conservative ALM

decisions. More concretely, while investing significantly less in the stock market index and

the constant maturity bond fund with the shorter (1 year) maturity, the fund manager

increases her investments in the constant maturity bond fund with the same maturity as

her investment horizon (15 years) and in the money market account.

Figure 1 shows the optimal exposure of the fund manager to the three risk sources

for different levels of risk aversion and uncertainty aversion. Her uncertainty aversion is

measured by the Detection Error Probability. If she uses a Detection Error Probability of

50%, then she is not uncertainty-averse at all, while if she uses the lowest possible level

of Detection Error Probability (which in our case is 2.08%), her uncertainty aversion is

infinitely high. Figure 2 shows the optimal portfolio weights, which enable the fund manager

to achieve the optimal exposure to the risk sources. Due to the inherent nature of affine

term structure models, our fund manager takes a high short position in the money market

account, and she uses this money to obtain a highly leveraged long position in the 1-year

constant maturity bond fund.13 In Table 2 we provide the numerical values of the optimal

13If there are no constraints on the position which the fund manager can take in the different assets, it is
a common finding in the literature that she takes extremely large short and longe positions to achieve the
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exposures and the optimal portfolio weights for different levels of risk aversion of robust

and non-robust fund managers. A non-robust fund manager applies a Detection Error

Probability of 50%, while a robust fund manager assumes a Detection Error Probability

of 10%.

We find that the fund manager – regardless of her risk-aversion and uncertainty-aversion –

always chooses a negative exposure to the first two risk sources. This is intuitive, since these

two risk sources have negative market prices of risk. But it is less straightforward why an

infinitely risk-averse or an infinitely uncertainty-averse fund manager decides to take a

strictly negative exposure to these risk sources, instead of opting for zero exposure. Given

an infinitely high risk or uncertainty aversion, the fund manager’s optimal ALM decision is

to obtain a perfect hedge for the liabilities. Since the liabilities are a linear combination of

the first two factors, she will expose herself to these factors to an extent which is equal to

the exposure of the liabilities to these factors. This can be shown analytically by taking the

limit of the right-hand-side of (26) as θ →∞. Were the fund manager optimizing over the

terminal wealth instead of the terminal funding ratio, her optimal exposure to the first two

factors would be also strictly negative, but for a different reason: in this case her goal would

be to achieve an exposure equal to that of a zero-coupon bond with the maturity of her

investment horizon, thus eliminating risk and uncertainty totally, since she will receive the

face value of the zero-coupon bond at the end of her investment horizon for sure. Looking

at her decision from a different angle: her myopic demand for the constant maturity bond

funds would be zero, and the entire total (strictly positive) demand would be due to the

intertemporal hedging demand. In our case, when the fund manager optimizes over the ter-

minal funding ratio, and she is either infinitely risk-averse or infinitely uncertainty-averse,

her myopic demand for the constant maturity bond funds is zero, and her total demand is

due to the liability hedge demand.

The exposure of an infinitely risk-averse or infinitely uncertainty-averse fund manager to

the stock-market-index-specific source of risk is zero, because we assumed that the liability

optimal risk exposures. See, e.g., Brennan and Xia (2002), Figure 4 and Figure 6.
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Figure 1. Optimal exposure to the risk sources
Optimal exposure of the fund manager to the risk sources as a function of the Detection
Error Probability (DEP), for different levels of relative risk aversion. We use our parameter
estimates in Table 1, and assume that the liability value is always equal to a zero-coupon
bond with 15 years of maturity. The fund manager’s investment horizon is 15 years. A
DEP of 50% corresponds to a non-uncertainty-averse fund manager, while a DEP of 2.08%
corresponds to a fund manager with infinitely high uncertainty aversion.

value is always equal to the value of a zero-coupon bond with 15 years of maturity, and the

value of such a bond is not influenced by the stock-market-index-specific risk source. In

absence of this assumption, the optimal exposure of an infinitely risk-averse or an infinitely
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Figure 2. Optimal portfolio weights
Optimal portfolio weights as a function of the Detection Error Probability (DEP), for diffe-
rent levels of relative risk aversion. We use our parameter estimates in Table 1, and assume
that the liability value is always equal to a zero-coupon bond with 15 years of maturity.
The fund manager’s investment horizon is 15 years. A DEP of 50% corresponds to a non-
uncertainty-averse fund manager, while a DEP of 2.08% corresponds to a fund manager
with infinitely high uncertainty aversion.

22



Table 2. Optimal risk exposures and portfolio weights
Optimal exposures and portfolio weights for different levels of risk aversion of robust and
non-robust fund managers. The non-robust exposures and portfolio weights correspond to
a Detection Error Probability of 50%, while their robust counterparts assume a Detection
Error Probability of 10%. Optimal exposures and portfolio weights are calculated using the
assumptions of Section 3.

Optimal portfolio weights and exposures
γ = 1 γ = 3 γ = 5

Non-robust Robust Non-robust Robust Non-robust Robust
Π1 -0.17 -0.14 -0.14 -0.13 -0.13 -0.12
Π2 -0.59 -0.25 -0.23 -0.12 -0.16 -0.09
Π3 0.32 0.12 0.11 0.04 0.06 0.02
πB(1) 4030% 1494% 1343% 498% 806% 299%
πB(15) 54% 83% 85% 94% 91% 97%
πS 192% 71% 64% 24% 38% 14%

πMMA -4176% -1548% -1392% -516% -835% -310%

uncertainty-averse fund manager would be σN+1,L, due to the reasoning in the previous

paragraph.14 If the fund manager were optimizing over the terminal wealth instead of the

terminal funding ratio, her optimal exposure to the stock-market-index-specific source of

risk would be zero even without our previous assumption about the liabilities, because her

total demand would be equal to the intertemporal hedging demand, and the stock-market-

specific risk source cannot be hedged intertemporally.

We also find that both a higher risk aversion and a higher uncertainty aversion result

in a lower optimal exposure in absolute value to the risk sources, and in order to achieve

this lower exposure the fund manager has lower optimal portfolio weight (again, in absolute

value) in the constant maturity bond fund with 1 year of maturity and in the stock market

index. Her optimal portfolio weight for the constant maturity bond fund with 15 years of

maturity is, on the other hand, an increasing function of both risk aversion and uncertainty

aversion, due to its strong liability hedge potential.15

14The stock-market-index-specific risk source affects the liability of a pension fund if, e.g., the pension
payout is linked to the industry wage level, and the industry wage level is affected by the stock-market-
index-specific risk source via, e.g., performance-dependent wage schemes.

15The fact that the effects of risk aversion and uncertainty aversion have the same sign can directly be
deduced from the risk-aversion parameter and the uncertainty-aversion parameter appearing only as a sum
in the optimal portfolio weights in (30) and (31).
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Accounting for uncertainty aversion has a substantial effect on both the optimal ex-

posures to the risk sources and the optimal portfolio weights. We find that the optimal

exposures (in absolute value) to each of the risk sources are a decreasing function of the

level of robustness. I.e., the more uncertainty-averse the fund manager, the less exposure

she finds optimal to each risk source. The decrease in the optimal exposure is especially

substantial in the case of the stock-market-specific risk source (more than 60%) and the

factor-specific risk source with a higher (absolute value of) market price of risk (more than

40%), while it is less significant in the case of the factor-specific risk source with a lower

(absolute value of) market price of risk. The intuition behind this is that as the uncertainty

aversion of the fund manager increases and approaches infinity, the optimal exposures ap-

proach the volatility loadings of the liability, concretely -0.1201, -0.0501, and 0. The optimal

exposure of a non-robust fund manager with log-utility (i.e., γ = 1) to the first risk source

is -0.17, hence there is not much scope for reduction in the magnitude of this exposure.16 In

contrast with this, the exposure of a non-robust fund manager with log-utility to the second

and third risk sources is relatively higher in magnitude (-0.59 and 0.32) due to their higher

market price of risk (in absolute terms). Moreover, the magnitudes of liability exposures

to the second and third risk sources are lower than that of the first risk source (-0.0501

and 0, respectively), therefore there is more scope for reduction in the optimal exposure as

the uncertainty aversion increases. The lower exposure levels due to robustness translate

to a lower demand for the constant maturity bond fund with 1 year of maturity (more

than 62% decrease) and for the stock-market-index (also more than 62%). The demand for

the constant maturity bond fund with a maturity equal to the investment horizon of the

fund manager, however, increases with the level of robustness, due to its liability hedging

potential.

16I.e., even if her level of robustness is infinity, her optimal exposure would still be -0.1201, which is equal
to the liability exposure to this risk source.
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6 Conclusion

We have shown that model uncertainty has significant effects on Asset Liability Manage-

ment decisions. A fund manager who derives utility from the terminal funding ratio and

who accounts for model uncertainty does not necessarily have an intertemporal hedging

demand component, even though the investment opportunity set is stochastic. Robustness

substantially changes the optimal exposures to the risk sources: as the level of uncertainty

aversion increases, the optimal exposures approach the liability exposures to the respective

risk sources. In the case of a two-factor affine term structure model and an additional,

stock-market-specific risk source, optimal exposures can change by more than 60% due to

robustness. These changes in the risk exposures translate into substantial changes in the

optimal portfolio weights as well: while a robust fund manager invests less in the constant

maturity bond fund with a relatively short maturity and also in the stock market index,

she increases her investment in the constant maturity bond fund with a maturity equal to

her investment horizon to make use of its liability hedge potential.

In our model we assume that the fund manager acts in the best interest of the pension

holders, and she does not consider the interest of the pension fund sponsors. Extending the

model to include the negative utility derived by the pension fund sponsors from having to

contribute to the fund can provide further insight into the effects of model uncertainty on

more complex Asset Liability Management decisions.

We also assume that the fund manager’s uncertainty tolerance parameter is linear in

the value function, hence the solution of our robust dynamic Asset Liability Management

problem is homothetic, and it can be obtained in closed form. There is, however, an

active and current debate in the literature whether this functional form of the uncertainty

tolerance is justifiable. Solving our robust dynamic Asset Liability Managent problem with

a differently formulated uncertainty tolerance parameter is another fruitful line of further

research.
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Appendix

Proof of Theorem 1. Substituting (17) and (18) into (15), the value function at time t

satisfies

Vt

[(
A

L

)
t

]
= EU

t

{
exp(−δT )

[(
A
L

)
T

]1−γ
1− γ

+

∫ T

t

(1− γ) ‖u (s) ‖2

2θ
Vs

[(
A

L

)
s

]
ds

}

= EU
t

{
exp(−δT )

[(
A
L

)
T

]1−γ
1− γ

}
+ EU

t

{∫ T

0

(1− γ) ‖u (s) ‖2

2θ
Vs

[(
A

L

)
s

]
ds

}

−
∫ t

0

(1− γ) ‖u (s) ‖2Vs
[(
A
L

)
s

]
2θ

ds, (38)

where
(
A
L

)
T

and U denote the optimal terminal wealth and least-favorable physical measure,

respectively. Introduce the square-integrable martingales, under U,

M1,t = EU
t

{
exp(−δT )

[(
A
L

)
T

]1−γ
1− γ

}
, (39)

M2,t = EU
t

{∫ T

0

(1− γ) ‖u (s) ‖2

2θ
Vs

[(
A

L

)
s

]
ds

}
. (40)

The martingale representation theorem (see, e.g., Karatzas and Shreve (1991), pp. 182,

Theorem 3.4.15) states that there exist square-integrable stochastic processes Z1,t and Z2,t

such that

M1,t = EU
0

{
exp(−δT )

[(
A
L

)
T

]1−γ
1− γ

}
+

∫ t

0
Z ′1,sdW

U
s , (41)

M2,t = EU
0

{∫ T

0

(1− γ) ‖u (s) ‖2

2θ
Vs

[(
A

L

)
s

]
ds

}
+

∫ t

0
Z ′2,sdW

U
s . (42)

Substituting in (38), we can express the dynamics of the value function as

dVt

[(
A

L

)
t

]
= −(1− γ) ‖u (t) ‖2

2θ
Vt

[(
A

L

)
t

]
dt+ (Z1,t + Z2,t)

′ dW U
t . (43)
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This linear backward stochastic differential equation with the terminal condition VT
[(
A
L

)
T

]
=

exp(−δT )
[(
A
L

)
T

]1−γ
/(1 − γ)) has an explicit particular solution (see, e.g., Pham (2009),

pp. 141-142). The unique solution to (43) is given by

ΓtVt

[(
A

L

)
t

]
= EU

t

{
ΓT exp(−δT )

[(
A
L

)
T

]1−γ
1− γ

}
, (44)

where Γt solves the linear differential equation

dΓt = Γt
(1− γ) ‖u (t) ‖2

2θ
dt; Γ0 = 1, (45)

i.e.,

Γt = exp

(∫ t

0

(1− γ) ‖u (s) ‖2

2θ
ds

)
. (46)

Substituting into (44), we obtain the closed-form solution of the value function as

Vt(Xt) = EU
t

{
exp

(∫ T

t

(1− γ) ‖u (s) ‖2

2θ
ds− δT

)
X1−γ
T

1− γ

}
, (47)

with
[(
A
L

)
t

]
and U representing the optimal funding ratio and the least-favorable physical

probability measure. As a result, we obtain (21).

Proof of Theorem 2. The first step of the optimization is to determine the optimal terminal

wealth, given the budget constraint. In order to determine the optimal terminal wealth, we
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form the Lagrangian from (21) and (22). This Lagrangian is

L (A0) = inf
U

sup
AT

EU exp

(
1− γ

2θ

∫ T

0
‖u(t)‖2dt− δT

) (AT
LT

)1−γ
1− γ

−y
[
EL
(
AT
LT

)
− A0

L0

]}

= inf
U

sup
AT

EL
(

dU
dL

)
T

exp

[
1− γ

2θ

∫ T

0
‖u(t)‖2dt− δT

] (AT
LT

)1−γ
1− γ

−y
[
EL
(
AT
LT

)
− A0

L0

]}
, (48)

where y is the Lagrange-multiplier. Now we solve the inner optimization, taken U as given.

The first-order condition for the optimal terminal funding ratio, denoted by ÂT /LT , is

ÂT
LT

=
y
− 1
γ(

dU
dL
)− 1

γ

T exp
{
− 1
γ

[
1−γ
2θ

∫ T
0 ‖u(t)‖2dt− δT

]} . (49)

After substituting the optimal terminal funding ratio into the budget constraint, we obtain

the Lagrangian as

y
− 1
γ =

A0

L0EL
{(

dU
dL
) 1
γ

T exp
{

1
γ

[
1−γ
2θ

∫ T
0 ‖u(t)‖2dt− δT

]}} . (50)

Together with the Radon-Nikodym derivative

(
dU
dL

)
t

= exp

{∫ t

0

(
λL + u (s)

)′
dW L

s

+

∫ t

0

[(
λL + u (s)

)′
σL −

1

2

(
‖λL + σL + u (s) ‖2 − ‖σL‖2

)]
ds

}
, (51)

we substitute the Lagrangian back into (49) to determine the optimal terminal funding ratio
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as

ÂT
LT

=
A0

L0

exp
[
1
γ

∫ T
0

(
û (t) + λL)′ σLdt+ 1

γ

∫ T
0

(
û (t) + λL)′ dW L

t

]
EL exp

[
1
γ

∫ T
0 (û (t) + λL)

′
σLdt+ 1

γ

∫ T
0 (û (t) + λL)

′
dW L

t

] . (52)

Multiplying both sides by LT , we obtain (23), and this proves the first part of Theorem 2.

Now we solve the outer optimization problem. Substituting the optimal terminal wealth

back into the value function, we obtain

V0 (A0) =

(
A0
L0

)1−γ
1− γ

exp

(
1− γ

2θ

∫ T

0
‖u(t)‖2dt− δT − 1

2

∫ T

0

[
‖λL + σL + u (t) ‖2 − ‖σL‖2

]
dt

)
× exp

(∫ T

0

(
û (t) + λL

)′
σLdt+

1

2γ

∫ T

0
‖û (t) + λL‖2dt

)
. (53)

Now we can write down the first-order condition for u (t) and we obtain

u (t) = − θ

γ + θ
λL, (54)

which is indeed the same as (24). This completes the proof.

Proof of Corollary 1. The optimal wealth process can be written as

Ât = LtE
L
t

(
ÂT
LT

)
. (55)

Substituting the optimal terminal wealth (23) into (55), the optimal wealth at time t beco-

mes

Ât =
A0

L0
Lt exp

[
1

γ

∫ t

0

(
û (s) + λL

)′
dW L

s +
1

γ

∫ T

0
(û (s) + λ)′ σLds

]

×
exp

(
1

2γ2

∫ T
t ‖û (s) + λL‖2ds

)
EL exp

[
1
γ

∫ T
0 (û (t) + λL)

′
dW L

t + 1
γ

∫ T
0 (û (t) + λL)

′
σLdt

] . (56)

Substituting the solution of the stochastic differential equation (4) for Lt, the optimal wealth
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at time t becomes

Ât =A0 exp

{∫ t

0

(
1

γ

(
ûF + λL

F

)
+ σF,L + σ′FB (t− s) ι

)′
dW L

F,s

+

∫ t

0

(
1

γ

(
ûN+1 + λL

N+1

)
+ σN+1,L

)′
dW L

N+1,s +

∫ t

0
ι′B (t− s)σFσLds

+
(
A0 + ι′

(
µL
F − σFσL

))
t+ ι′B (t)

(
F0 −

(
µL
F − σFσL

))
+

1

2
‖σL‖2t

+
1

γ

∫ T

0

(
û (s) + λL

)′
σLds

}
×

exp
(

1
2γ2

∫ T
t ‖û (s) + λL‖2ds

)
EL exp

[
1
γ

∫ T
0 (û (t) + λL)

′
dW L

t + 1
γ

∫ T
0 (û (t) + λL)

′
σLdt

] .
(57)

Applying Ito’s lemma, the optimal wealth dynamics can be expressed as

dÂt = ...dt+
Ât
γ

(
û+ λL + γσL

)′
dW L

t . (58)

Substituting the least-favorable distortion for û, we obtain

dÂt = ...dt+ Ât

(
1

γ + θ
λL + σL

)′
dW L

t . (59)

From (59) the optimal risk exposures follow directly. This completes the proof.

Proof of Corollary 2. Using the portfolio weights πB,t and πS,t, the optimal wealth dyna-

mics can be expressed as

dÂt = ...dt+ Ât

(
−π′B,tB′σFdW L

F,t + πS,t
[
σ′F,S ;σN+1,S

]
dW L

t

)
. (60)

Moreover, the optimal wealth dynamics can equivalently be written as (59). Then, due to

the martingale representation theorem we can write down a system of N+1 equations by

making the exposures to the N+1 risk sources in (59) and (60) equal to each other. Solving

this equation system, we indeed obtain the optimal portfolio weights (30) and (31). This

completes the proof.
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Proof of Theorem 3. From (11) and (14) the Radon-Nikodym derivative dB/dU follows di-

rectly. Substituting this into Definition 1 and evaluating the expectations, the closed-form

solution in (36) is obtained.

Proof of Corollary 3. Substituting the least-favorable distortions (24) into (36), (37) is im-

mediately be obtained.
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