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Abstract

We present a nonparametric two stage Penalized B-spline regression method in solving

consumption-based asset pricing models, which allows the true dynamics of state variables

to determine asset prices. Unlike current numerical solution methods, this new method is

a one-step procedure with a closed-form solution. It does not require imposing auxiliary

assumptions on the conditional distributions of state variables. We establish the asymptotics of

the estimation for a broad class of stationary Markov state Variables. Our estimator overcomes

the ill-posed inverse problem which usually might be caused in nonparametric instrumental

variable regression and achieves the optimal convergence rate. The approach is robust to the

choice of the spline basis. We also design a fast generalized cross-validation procedure to well

tune the penalty parameter for practical use. As an application, we propose a nonparametric

decomposition of observed dividend yields and investigate its predictability ability on excess

future returns.
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1. Introduction

Considerable attempts to enrich the explanatory powers of economic models have been

witnessed in recent years. Economists load additional factors into canonical models to en-

hance the understanding of well-documented economic anomalies, thereby increasing model

complexity. In doing so, analytic or closed-form solutions usually become extremely difficult,

if not impossible, as is the case for dynamic stochastic general equilibrium (DSGE) models

(Fernández-Villaverde, Ramı́rez, and Schorfheide, 2016). In macroeconomics and finance,

Euler equations are often employed as a pivotal tool to understand the connection among

agent preferences, asset prices and economic fundamentals (Campbell, 2003; Christensen,

2017). In modeling dynamic asset prices, the price-dividend (P/D) ratio function, which is

recursively specified in Euler equations as a function of state variables, is one of the cen-

tral quantities that must be solved for. Mehra and Prescott (1985) show that equilibrium

asset returns can be formulated by P/D ratios. An accurate solution for the P/D ratio

function helps understand market volatility puzzle and provides us a reliable channel to test

the existence of bubbles or long-run risks (Campbell and Cochrane, 1999; Cochrane, 1992;

Jagannathan and Marakani, 2015; Bansal and Yaron, 2004).

Numerical solution methods have been widely used in solving the P/D ratio function,

as most most dynamic general equilibrium models do not offer analytical solutions (Pohl,

Schmedders, and Wilms, 2014; Fernández-Villaverde and Rubio-Ramı́rez, 2007). Judd,

Maliar, and Maliar (2011) divide most numerical methods into three broad classes: pro-

jection methods1, perturbation methods2, and regression-based methods3. Unfortunately,

all existing numerical approaches that are popularly employed all suffer from approximation

errors, which do not disappear even when the sample size goes to infinity. These proce-

1projection methods approximate the unknown functions through series expansions with a pre-specified
order for the expansion on a pre-specified domain using deterministic integration.

2Perturbation methods seek local approximations via Taylor expansions around some pre-determined
steady states.

3regression-based methods obtain approximations on a set of simulated points using Monte Carlo inte-
gration via a large number of iterations.
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dures must pre-assume auxiliary fully specified data generating process for state variables or

parametric functional form for unknown functions via iterative operations, which may lead

to misspecification errors compared to their true underlying dynamics. Blanchard (2016)

documents that misspecification will severely affect the estimation and model conclusions.

Therefore, cautions must be practised when interpreting conclusions from dynamic general

equilibrium models that are built on poorly approximated functions or spurious DGP of

state variables.

Despite its important roles, there are not well-developed estimations and inferences of

P/D ratios. To push beyond current methodological constraints, our paper will provide a

novel nonparametric estimation for the P/D ratio function in Euler equations. Our approach

does not require modelling the conditional distributions of state variables over time. Ad-

ditionally, in a sharp contrast with current regression-based algorithms, our method does

not assume parametric assumptions on unknown functions or conditional expectations and

will obtain a closed-form estimation through a one-step procedure without iterations. We

establish the desired asymptotic properties of the proposed method and examine its finite

sample performance in comparison with popular numerical approximation methods in the

literature.

We represent the Euler equation equivalently as a nonlinear time series regression model,

where the regression function contains the unknown price-dividend ratio function over two

time periods. To overcome the endogeneity, we adopt a two-stage nonparametric instrumen-

tal variable procedure. Nonparametric estimations and identifications with endogeneity have

also been carefully studied in Newey (1997), Newey and Powell (2003), and Andrews (1991),

Chen, Chernozhukov, Lee, and Newey (2014), where most of these models are structured as

Fredholm equations of the first kind (also called the Type I equations). In the context of our

work, we propose to transform the Type I equation into a Type II. Through this, we avoid

the ill-posed inverse problem and potentially unstable inferences.

Our paper further complements the fundamental nonparametric 2SLS (NP2SLS) work
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of Newey (1997) and Newey and Powell (2003) by showing how to optimize the order of

series estimations not only in the second stage but also in the first. We propose to estimate

the unknown P/D ratio function via regression splines and penalized splines respectively.

When regression splines are used, the procedure is similar to other series approximation

procedure, except that we employ B-splines that are more numerical stable compared to

global approximation series. Similar to all series approximation methods, the choice of the

series order, i.e. the number of spline basis K, is extremely crucial. How to choose a

proper order in each stage remains an open question (Newey and Powell, 2003). To reduce

computation burden, we recommend using the same K for each stage. In order to adopt

different smoothing amounts for each stage, we consider using penalized splines, which has

an additional smoothing parameter λ. We let K play the key role of smoothing in the first

stage, while λ play the key role of smoothing in the second stage. Theoretical justifications

show that when K exceeds some minimum bound, a well tuned λ will yield an estimator of

the optimal nonparametric convergence rate.

The theoretical analysis in our paper also sheds lights on practical implementation. In

our two-stage procedure, the minimization criterion is a quadratic function and the solution

enjoys a closed form. As K is not crucial, we could choose a relatively large K and then

use data driven method to select the appropriate λ. We further design a fast generalized

cross-validation (GCV) algorithm, which will further reduce the computation from O(K3) to

O(K) in each iteration when searching the optimal λ. Our simulation studies demonstrate

excellent performance of our estimate even when the sample size is relatively small.

In the empirical analysis, we make use of empirical observations of consumption dynamics

to estimate P/D ratios. We interpret our estimate as the implied P/D ratio in the spirit of

Shiller (2014). We construct a new measure of the present value of future dividends, which

exhibits superior ability to match historical price movements from 1947 to 1970. Its inability

to produce similar magnitudes and fluctuations of price movements in recent years provide

additional evidence that efficiency theory is lacking.
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Based on the estimated implied P/D ratios, we further propose a nonparametric decom-

position of observed dividend yields into rational and beyond-rational components. We find

significant time-varying and heterogeneous predictability ability that rational and beyond-

rational dividend yields exhibit on future excess returns with horizon from 1 quarter to 10

years.

The paper is organized as below. Section 2 is about the methodology, where we establish

the model and estimation method, and we provide the asymptotic results as well as data-

driven implementation procedure. In Section 3 reports simulation results and Section 4 is

the empirical study. Section 5 concludes , while all mathematical proofs and technical details

are collected in Appendix.

2. Literature Review

In the asset pricing literature, since Hansen and Singleton (1982), Gallant and Tauchen

(1989), Hansen and Scheinkman (2012) and Christensen (2017), it has been conventional

to work with stationary Markov state variables. We shall allow serial dependence under

Markov processes. In a general consumption based asset pricing model populated by a

representative agent in such an environment, a recent flourishing of work mainly focuses

on identifications and nonparametric estimations of SDF (Chen et al., 2014; Escanciano,

Hoderlein, Lewbel, Linton, and Srisuma, 2015; Christensen, 2017). However, there are not

well-developed estimations and inferences of P/D ratios given a known or estimated SDF.

Our paper aims to fill this gap by proposing a two-stage penalized B-spline regression method.

Chen, Favilukis, and Ludvigson (2013), Escanciano et al. (2015) and Christensen (2017)

also propose to incorporate empirical data into Euler equations when estimating SDF. How-

ever, their methods do not provide a direct link to either model implied stock returns or

P/D ratios. Most importantly, they do not answer the question of how to choose a proper

order in the first stage to balance the trade-off between unbiasedness and efficiency. Our
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paper provides an alternative solution method that addresses these practical requirements

and theoretical constraints. In addition, we propose a different identification strategy, un-

der which we achieve the optimal rate of convergence with a data-driven GCV method and

establish its asymptotic normality.

In the literature, enormous efforts have been devoted to approximating nonlinear func-

tions in Euler equations (Judd, 1992; Judd, 1998; Fernández-Villaverde and Rubio-Ramı́rez,

2006 and Pohl et al., 2014). Aruoba, Fernández-Villaverde, and Rubio-Ramirez (2006) and

Fernández-Villaverde et al. (2016) provide a comprehensive survey of these widely used

numerical solution methods. Our paper finds that there is a trade-off between solution

accuracy and robustness- the more accurate methods are less robust to DGP misspecifica-

tion. Due to computational convenience, including discretization, projection, perturbation

and regression-based methods, most current numerical solution methods for the P/D ra-

tio function described in Euler equations require auxiliary assumptions on the conditional

distribution of state dynamics. Despite the substantial progress that has been made in

the development of more realistic and reasonable DGPs, there is no assurance that those

pre-specified distributional assumptions made on state variables can capture their true un-

derlying dynamics. Meghir and Pistaferri (2004) show that model misspecification on the

stochastic process of the state variable, income innovations, can lead to incorrect conclusions

about the effect of individual behavior on consumption decisions. In this paper, we show

that model implied P/D ratios are sensitive to distributional assumptions of state variables.

In our simulation study, we find that the skewness and nonlinearity properties of state vari-

ables not only affect the solution accuracy of policy functions but also determine the degree

to which the equity premium puzzle can be explained.

The discretization method is accomplished by exactly solving a finite number of points

within a support and interpolating the areas between grid points. Although various interpo-

lation methods (e.g., linear and cubic interpolations) have been introduced, the discretization

method may still suffer from interpolation biases, which do not disappear when the sample
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size goes to infinity. The perturbation method is popular because of its wide applications

and computational convenience. The essence of this method is Taylor’s theory (Judd, 1998).

A pre-specified functional form is obtained by expanding the P/D ratio function around cer-

tain steady states. However, there is still a heated debate around the judgement of steady

points (Juillard, 2011). Furthermore, the perturbation method is challenged by approxima-

tion errors, regardless of the choice of steady states (Aruoba et al., 2006). Because it needs

extra effort to compute partial derivatives of Euler equations up to a higher order p, a pop-

ular approach is to linearize the model around some steady states. While the linearization

method is computationally fast and can obtain reasonable solutions for simple functions, the

approximation errors become substantially large for complex models. First introduced by

Judd (1992), the projection method is appealing due to its global approximation in the en-

tire domain. It delivers an approximation without additional interpolation techniques. The

issue is that an appropriate polynomial order p must be specified as a priori. Furthermore,

the boundary regions of state variables may become too wide when the dynamics of state

variables have high persistence in absolute value, which may result in a loss of accuracy

(Culham, 2005). Furthermore, Santos (2000) shows how changes in the curvature of the

utility function and the time discount rate can influence the size of Euler equation errors

and therefore bound the approximation errors of numerical solution methods. In contrast,

the novel estimation methodology proposed in this paper enables consistent estimation of

the P/D ratio function for the entire support and whole distribution of state variables, which

also avoids interpolation biases when the sample size grows. The newly proposed nonpara-

metric penalized B-splines series regression method works with both continuous and discrete

state variables and does not involve computations of partial derivatives. As the sample size

grows, the newly proposed method is asymptotically free of approximation errors no matter

how complex the model is.

The PEA method provides an alternative solution method for unknown P/D ratios. By

using either simulated or empirical data, Den Haan and Marcet (1990) propose to approxi-

6



mate the unknown function by parameterizing the conditional expectation in Euler equations

using series expansions. This method is particularly useful and regarded for strong capability

when there are many state variables with unknown dynamics in general equilibrium models.

As an improvement, Judd et al. (2011) suggest non-stochastic quadrature-based PEA, but

this method also requires specifying the conditional distribution of state variables. To allevi-

ate the unstable performance of the original PEA algorithm, Judd et al. (2011) proposes to

incorporate an L1 penalty on the coefficient vector of the parameterized expectation. Both of

these regression-based algorithms can only obtain approximations through iterative ordinary

least squares, leaving the optimal order for series expansions and best penalization levels in

each iteration unsolved. Also, their convergence rates are not known. In addition, the pe-

nalization procedure and choices for the order of series expansion are treated separately and

their connections are not clear.

The numerical solution methods discussed above are all extensively used in the litera-

ture because of their wide scope of application, weaker restrictions and ease of computation.

However, deciding which one performs the best is difficult because pros and cons accom-

pany all of them (Culham, 2005). Taylor and Uhlig (1990) show that even for the simple

growth model, different numerical solution techniques may display various results for the

model. Den Haan and Marcet (1994) reach an important conclusion that numerical solution

methods cannot be used interchangeably in general. In addition, one of the most commonly

used measures for goodness of approximation is the relative error, which is defined as the

approximated Euler equation divided by the approximated P/D ratio function. However,

Calin, Chen, Cosimano, and Himonas (2005) point out that relative errors do not necessarily

reflect the accuracy of P/D ratios.

Based on Euler equations, our newely proposed penalized B-splines approach is also a

regression-based method. However, our paper strongly differs from the PEA algorithms as

follows. First, our reason for imposing penalizations and the method by which we do so are

completely different from PEA algorithms. The ill-conditioned problem is often encountered
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in nonparametric series estimation analysis (Newey, 1997). To reduce approximation errors,

a large number of basis functions have to be incorporated, but singularity issues may arise

as a side effect (Newey and Powell, 2003). Therefore, directly imposed on the coefficient

vector of series expansions, the penalization in PEA algorithms mainly aims to alleviate the

ill-conditioned problem (Judd et al., 2011). In our paper, we instead impose an asymmetric

penalization on the second order differences of coefficient vectors. The role played by our

new penalization is three-fold. It not only helps address the common noninvertible problems

in series estimations (Newey, 1997), but also prevents the overfitting problem. In addition,

our penalized B-splines technique offers an alternative method to achieve identification. As

pointed out by Newey (1997) and Newey and Powell (2003), spline regressions are particu-

larly flexible and can also largely reduce the colinearity problem. For the first time in the

literature, our penalized B-splines estimation method allows us to achieve the optimal rate

of convergence through a newly proposed fast data-driven cross-validation method. Second,

our method is a pure nonparametric method, which does not require parameterizing either

unknown functions or conditional expectations. Third, unlike current PEA algorithms, our

method is a one-step procedure, which does not involve any iterations and numerical inte-

grations. Our examination shows that the small sample performance is satisfactorily stable.

Our method is asymptotically unbiased when the sample size increases. Judd et al. (2011)’s

method, which also involves series expansions, is sensitive to the choice of basis functions and

the order of series expansions as well as the level of penalizations. Our method unifies these

problems. We show that our method is much less invariant to the order of series expansions

when it is large in both stages. In contrast, the level of penalization is proven to be the major

quantity that controls convergence rates and consistency. For the first time in the literature,

we propose a fast-generalized cross-validation (GCV) method in the nonparamteric 2SLS

analysis to offer additional help in enhancing the robust performance of the regression-based

method.

Our newly proposed functional estimation method pushes beyond current methodolog-
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ical constraints. In a different strand of the literature, Woodford (2002) shows that the

use of the log-linear approximation of unknown functions such as equilibrium fluctuations

in consumption, inflation and output will lead to spuriously higher expected utility under

autarchy. Kim and Kim (2003) document a welfare reversal due to approximation errors.

Schmitt-Grohe and Uribe (2004) further confirm that a correct second-order approximation

of the equilibrium welfare function relies on the accuracy of a second-order approximation

to the policy function.

From an econometric perspective, all existing popular numerical approximation approaches

are equivalent to various parametric models for P/D ratios, where an approximating func-

tional form is pre-specified a priori. There is no assurance that a parametric model which

is chosen for analytic or computational convenience will contain the true P/D ratio function

or even a good approximation of it. Therefore, these parametric approximations can cause

misleading inferences about and judgements of model performance due to potential approx-

imation errors. It is important to provide an uniformly accurate numerical solution for the

P/D ratio function ft under various empirically relevant setups.

3. Methodology

3.1. Identification

Our work starts from considering the Euler equation in an exchange economy populated

by a representative agent:

ft = E[m(Xt, Xt+1)(ft+1 + 1)|It], (1)

where Xt is a vector of state variables that summarizes the law of motions, m(Xt, Xt+1) is a

known SDF based on the state variables, It denotes all information available at time t, and

ft is the unknown P/D ratio function. Without loss of generality, we assume that E(·|It) is
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the rational expectation, which coincides with the mathematical conditional expectation 4.

To consistently estimate the recursively specified unknown function ft in the Euler equa-

tion (1), it is essential to establish the existence and uniqueness of the solution f ot . Assume

that Xt follows a Markov process. Using the linearity property of expectations, Equation

(1) can be equivalently expressed as

f(Xt) =

∫
m(Xt+1)f(Xt+1)g(Xt+1|Xt)dXt + πt,

where πt = E[m(Xt+1)|Xt] and g(Xt+1|Xt) is the conditional density of Xt+1 given Xt.

Let K(Xt, Xt+1) = m(Xt+1)g(Xt+1|Xt) be the kernel function associated with the linear

operator A on a normed space X as

(Af)(Xt) ≡
∫
K(Xt, Xt+1)f(Xt+1)dXt+1, (2)

Then we could rewrite the Euler equation as an integral equation of the second kind, i.e.

f(Xt)− (Af)(Xt) = πt, (3)

Correspondingly, we could ensure the existence of a unique solution f given the following

assumptions.

Assumption 3.1. Assume the following:

(A1) There exists nonzero f satisfying equation (3)

(A2) A is a compact operator.

(A3) Af is a positive transformation for nonzero f .

The compactness of A guarantees that f is locally identified. Together with the positive

assumption, A is irreducible. By the second Riesz Theorem, the operator L = I − A

4Irrational expectations occur when subjective expectations differ from objective expectations. We can
convert the subjective expectation back to the mathematical one by the Radyon-Nikodym theory.
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has continuous (bounded) Moore-Penrose pseudoinverse, which frees us from the ill-posed

problem.

As the gross return is positive, (A1) and (A3) hold in our case. There are several ways

to guarantees (A2). For example, if our interest domain G ∈ X has finite dimensional range,

then a bounded operator A could suffice that A is compact. Or alternatively, we could adopt

regularization or penalization method for compactness. More details about how to estimate

f using an two stage nonparametric approach is given below.

3.2. Estimation

Following equation (3), we consider the nonlinear time series regression:

yt+1 = f(Xt)− yt+1f(Xt+1) + εt+1, (4)

where yt+1 = m(Xt+1), and εt+1 is an unobservable martingale difference sequence with

respect to the information set It, namely E(εt+1|It) = 0. Note that {εt+1} can be interpreted

as a sequence of aggregate pricing shocks. The martingale difference sequence property of

{εt+1} is a sufficient and necessary condition which guarantees the equivalence between the

nonlinear time series regression model (4) and the Euler equation.

Compared to the Euler equation, the nonlinear time series regression model does not

require specifying the conditional distribution, and thus could accommodate flexible de-

pendence structure of Xt. However, the transformation from the Euler equation into the

nonlinear time series regression model will cause endogeneity problem, as a result of recur-

sive occurrences of the unknown P/D ratio function f(x) over two time periods. To be

specific, we could choose a set of basis functions {ϕ1, · · · , ϕq} and approximate the unknown

function as f(x) =
∑q

j=1 αjϕj(x). Define the control variable ψj,t = ϕj(Xt)− yt+1ψj(Xt+1).

Since it contains an ingredient yt+1 which leads to correlation between the control variable

and the true regression error, namely E(ψj,tεt+1) 6= 0. As a consequence, the OLS series
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estimation will not be consistent for Equation (4). To eliminate the endogeneity biases, we

need instrumental variables (IV) to conduct the 2SLS, where in the first stage, we regress

the control variables ψj,t on the instrument variables to obtain the fitted values ψ̂j,t; and in

the second stage, we regress yt on ψ̂j,t to obtain the estimate of the P/D ratio.

The above estimation procedure could be summarized using the matrix form. Let (y =

y1, · · · , yT )′, (ε = ε1, · · · , εT )′ and α = (α1, · · · , αq). Define the control variable matrix Ψ =

(Ψ1, · · · ,ΨT )′, where Ψt = (ϕ1,t, · · · , ϕq,T )′. Denote φj′,t = φj′(Xt) for some basis functions

{φj′(z)}q
′

j′=1 which may or may not be the same as {ϕj(x)}qj=1. Note that E(εt+1|Xt) = 0

implies E(εt+1|h(Xt)) = 0 for any transformation function h. Therefore, we could define

Φ = (Φ1, · · · ,ΦT )′, where Φt = (φ1,t, · · · , φq′,t)′, as the instrumental variable matrix. Then

the auxiliary regression in the first stage yields the fitted values Ψ̂ = Φ(Φ′Φ)−1Φ′Ψ, while

the second stage yields that

α̂ = (Ψ̂′Ψ̂)−1Ψ̂′Y.

Then the estimated P/D ratio is f(x) =
∑q

j=1 α̂jϕj(x).

One appealing feature of this 2SLS procedure is its easy implementation. It always has

a data-based closed-form solution. As a nonparametric approach, we do not have to specify

the DGP for state variables {Xt}, nor approximating Euler equations by some parametric

functional form, thus avoiding potential spurious conclusions due to misspecifications. In

general, any series could be used, but the choice might affect the performance of the estimate.

For example, using local series might yield more numerical stable estimate compared to using

global series. Therefore, we use B-splines as our basis functions. Consider real values ci, also

called knots, such that c0 ≤ c1 ≤ cK+p. The pth degree B-splines are the pth degree piecewise

polynomials defined as in Eilers and Marks (1996). The spline basis could well approximate

most smooth function given that max(ci − ci−1) → 0. When the knots are equidistance, it

requires that the number of total knots K + p + 1, or equivalently, K grows as the sample
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size T does. On the other hand, a relatively large K might result in a complicated model

with lots of variability. Therefore, it requires careful tuning in order to well balance between

model complexity and flexibility.

For simplicity, we first consider using the same B-spline basis in both stage, so the total

numbers of spline basis satisfy q = q′ = K + p. Theoretical investigations on the rate of K

are given in subsection 3.3. However, such an approach might be inferior as it conducts the

same amount of smoothing in both stages. A better procedure is to set q′ = o(q) so that

the bias in the first stage become negligible and will not take in effects in the second stage.

Yet this is not the complete story as we also require a practical solution to appropriately

select the smoothing parameter. The computation expense of a data-driven method is worth

consideration if we need to determine q and q′ simultaneously.

This motivates us to consider an approach that could conduct different amounts of

smoothing in the 2 stage procedure, while maintaining small computation costs via using the

same number of spline basis. Our idea comes from introducing a new smoothing parameter

that could replace the number of spline basis to control the roughness of the estimate. Let

∆ be the difference operator that ∆αj = αj − αj−1 and ∆m = ∆(∆m−1) for any positive

integer m. We propose to estimate α by minimizing

T∑
t=1

{yt −
K+p∑
j=1

αjψ̂j,tt}2 + λ∗
K+p∑
k=m+1

{∆m(αk)}2, λ∗ ≥ 0, (5)

where λ∗ is the penalty parameter that controls the roughness measure that is similar as

the total variation of the mth derivative of f(x). In this procedure, K is the smoother in

the first stage, while K and λ together are the smother in the second stage. We recommend

to choose a relatively large K and let λ play the key role of smoothing. Note that there

is no penalty when calculating ψ̂j,t, so the regression in the first stage is undersmoothing,

while the rate of λ in the second stage will ultimately determine the convergence rate of the

estimated function. More justifications are given below.
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3.3. Asymptotics

In this section, we discuss the asymptotics for both the unpenalized and the penalized

estimators. We have the following assumptions. Suppose f o is differentiable up to order

d ≥ 0. Denote a truncated pth degree B-splines series fa(x) =
∑K+p

j=1 αjϕj(x), where K

denotes the number of knots. The first two assumptions are about K and T .

Assumption 3.2. Assume that (i) K →∞, (ii) T
K
→∞.

Assumption 3.3. Assume that T = o(K3+2∗min(d,p)).

Remark: Assumption (3.2) are regularity conditions for consistent estimate of fa. Note

that f o−fa = O(K−(1+min(d,p))). Assumption (3.3) simply guarantees that the approximated

bias is negligible compared to the asymptotic variance which is of the order K/T .

Next we impose some mild conditions on state variables Xt and the unobservable aggre-

gate pricing shock εt+1.

Assumption 3.4. The state variable Xt follows a Markov process and has a positive density

function that is continuous and bounded away from 0 and ∞ on a bounded support X.

Assumption 3.5. For all t and j, there exists some δ > 0 and 0 < ∆ < ∞ such that (i)

{Xt, εt+1} is an α−mixing sequence with mixing coefficients α(j) so that
∑∞

j=1 α(j)
δ

4+δ < ∆;

(ii) KE|φj,t|4+δ < ∆, and KE|εt+1|4+δ < ∆; (iii) KE|ϕj,t|8+δ < ∆, and KE|m(Xt+1)|8+δ <

∆.

Denote M = T/K. Let λmin[E(Φ′Φ
M

)] and λmax[E(Φ′Φ
M

)] denote the minimum and max-

imum eigenvalues of the a (K + p) × (K + p) matrix E(Φ′Φ
M

) respectively, where K → ∞

as T → ∞. We impose some mild conditions on λmin[E(Φ′Φ
M

)] and λmax[E(Φ′Φ
M

)] so that

consistent estimation of the parameters α in the 2SLS series regression can be obtained.

Assumption 3.6. For all M ≥ 1 (i) λmin[E(Φ′Φ
M

)] > 0; (ii) λmax[E(Φ′Φ
M

)] < ∞; (iii)

λmax[E(Φ′εε′Φ
M

)] <∞.
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When the number of regressors is fixed, the well-known necessary and sufficient condition

for consistent estimation of parameters in a linear regression model is λmin[E(Φ′Φ
T

)] > c > 0.

However, the spline basis do not satisfy this assumption. Suppose the density dFt/dXt of

state variables Xt with a compact support is bounded away from below from zero. Then it

is easy to prove that λminE(Φ′Φ
M

) is bounded away from below from zero uniformly.

Theorem 3.1 (Consistency). Suppose Assumptions 3.1-3.6 hold. Then there exists a unique

solution f o(x) to Equation (1), and the nonparametric 2SLS series estimator f̂a(x) satisfies:

∫
[f̂a(x)− f o(x)]2dF (x) = O(K/T ).

Theorem 3.1 is a global consistency result. Theorem 3.1 implies that our procedure

is always free of misspecification for the price-dividend ratio function when the sample size

T →∞,and we do not have to specify the DGP for state variables. This appealing property is

not attainable by existing numerical solution methods in the literature that have to specify a

model for the DGP of state variables, which therefore may suffer from model misspecification.

Theorem 3.1 provides a range of admissible rates forK. In practice, one may like to choose

K via data-driven methods. However, each iteration requires inversion of a (K+p)×(K+p)

matrix, i.e. a calculation of order O(K3). Moreover, the placement of the knots might also

affect the performance of estimator under finite sample case. To make rigorous statistical

inference such as confidence interval estimation and hypothesis testing, we shall derive the

asymptotic distribution of the series estimator f̂a(x). Put ST = E(Φ′εε′Φ
M

), QT = E(Φ′Ψ
M

) and

PT = E(Φ′Φ
M

). Define VT ≡ ϕ(x)′E(Φεε′Φ′

M
)ϕ(x) = ϕ(x)′STϕ(x). Then the variance of the

series estimator f̂a(x) is

DT (x) = ϕ(x)′(Q′TP
−1
T QT )−1Q′TP

−1
T STP

−1
T QT (Q′TP

−1
T QT )−1ϕ(x). (6)
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If there exists conditional homoskedasticity, i.e., E(ε2
t+1|Φq,t) = σ2 for all t, then we have

DT (x) = σ2ϕ(x)′(Q′TP
−1
T QT )−1ϕ(x). (7)

Theorem 3.2 (Asymptotic Normality). Suppose Assumptions 3.1-3.6 hold. Then for any

given x ∈ X, as T →∞,

[f̂a(x)− f o(x)]√
DT (x)

d→ N(0, 1). (8)

Theorem 3.2 imply that the bias of the series estimator f̂a(x) vanishes to zero sufficiently

fast so that it does not affect the asymptotic normal distribution of f̂a(x). However, this is

not the optimal convergence rate as the bias is negligible compared to the standard deviation.

Our method is also applicable to hidden Markov processes. Suppose state variables Xt is

not directly observable, but can be estimated via such methods as Kalman filters. Intuitively,

the estimated state variables x̂ converges in probability to the point x at a parametric rate

T−
1
2 , which is faster than the convergence rate of the nonparametric series estimator f̂a(x)

to f o(x). As a result, the sampling errors of the estimator x̂ of x do not have impact on the

asymptotic distribution of f̂a(x̂).

Finally, we consider the penalized splines case. The following condition is about the

penalty parameter λ.

Assumption 3.7. Define h = λ−1/(2d)/K. Assume that h→ 0 and Th→∞.

Remark: h defined in Assumption (3.7) serves as the equivalent bandwidth in nonpara-

metric smoothing procedure. Assumption (3.7) is used to prove the consistency of the

estimate as it guarantees that the bias and the variance of the estimator shrink to 0. We

could obtain the optimal rate of λ by selecting the optimal rate of h, which is T−1/(4d+1)

when f(x) ∈ W (2d).
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Theorem 3.3 (Consistency). Suppose Assumptions 3.1-3.7 hold. Then there exists a unique

solution f o(x) to Equation (1), and the nonparametric 2SLS series estimator f̂a(x) satisfies:

∫
[f̂a(x)− f o(x)]2dF (x) = O[

1

Th
+ h4d]

Remark: When K grows faster than T 1/(3+2min(d,p)) and λ grows exactly at the rate of

K2d(T−2d/(4d+1)), f̂(x) could reach the optimal convergence rate of T (2d)/(4d+1).

Similar as Theorem (3.2), we have the following results.

Theorem 3.4 (Asymptotic Normality). Suppose Assumptions 3.1-3.7 hold. Then for any

given x ∈ X, as T →∞,

[f̂a(x)− f(x)]√
var(f̂a(x))

d→ N(0, 1); (9)

3.4. Data Driven Implementation

Subsection 3.3 provides the theoretical recommendation on how to choose the smoothing

parameter. In practice, a data-driven procedure might be more useful. Based on the theo-

retical investigation, we shall let the number of knots K grow sufficiently large and then use

GCV method to select λ in order to prevent overfitting. Since K is not the crucial smoothing

parameter, the choice of the degree of the B-spline basis, as well as the placement of the

knots are not important. Unlike regression spline where no penalty is imposed, we do not

need to worry about how to place our knots. We recommend select p from 0, 1, 2, 3, choose

a relatively K and use equi-distance knots.

The penalty order m as well as the penalty parameter are important. Common choices

of m are 1 or 2, though one may further increase m if they expect the estimated function

has higher order derivatives. To reduce computation burden, we propose to use the GCV

approach to determine λ. We have the following results.
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Proposition 1. Let Y , Φ, Ψ and Ψ̂ be defined as in subsection 3.2. Define the penalty

matrix P = D′mDm, where Dm is the (K + p − m) × (K + p) difference matrix. Define

H = Φ(Ψ̂T Ψ̂ + λP )−1Ψ̂ and Σ = Ψ′Φ(Φ′Φ)−1Φ′Ψ. Denote rj as the jth eigenvalues of

Σ−
1
2PΣ−

1
2 . Then the GCV value equals

GCV =
||Y − Ŷ ||2

(trace(I −H))2
=

∑T
i=1 y

2
i − 2

∑K+p
i=1

z1,iz2,i
1+λri

+
∑K+p

i=1

z23,i
1+λr̃i

(T − trλ)2
, (10)

where trλ =
∑K+p

j=1
1

1+λrj
, z1,i, z2,i are provided under equation (22), and r̃i and z3,i are

provided under equation (23).

Remark: Note that we could precalculate
∑T

i=1 y
2
i , all z1,i, z2,i, z3,i, ri and r̃i. Then in

each evaluation, we could calculate GCV (λ) by equation (10). Since we need not calculate

the inverse of a matrix of order (K + p)× (K + p), we reduce the computation from O(K3)

to O(K).

4. Monte Carlo and Simulation Studies

4.1. Monte Carlo Simulations

We now examine the finite sample performance of the proposed B-spline estimation

method in estimating functions with different smoothness under different conditional dis-

tributions of the state variable. For each Monte Carlo study, we generate samples of sizes

of 250 and 500 and implement our new 2SLS B-spline regression with and without penal-

ization. In each study, we also examine the estimation performance under 35 knots and 50

knots using piecewise-linear and piecewise-quadratic B-splines.

DGP F.1 f(Xt) = 3 + 0.5sin(20Xt + 1.2) + cos(10x+ 2).

DGP F.2 f(Xt) = exp(x).

The first designed function DGP F.1 is a periodically non-monotonic function with chang-

ing curvatures. The second designed function DGP F.2 is non-periodically monotone in its
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domain.

To ensure our method works for a wide range of empirically relevant setups, we investigate

the estimation results for the above two classes of functions under the following assumed data

generating processes. Among others, autoregressive processes have been widely employed

in modelling the dynamics of state variables, therefore we first explore the finite sample

performance under a popularly used AR(1) process:

DGP S.1

Xt+1 = ΓXt + εt+1, (11)

where εt ∼ i.i.d.N(0, σ2
s).

Specifically, we further investigate two extreme situations for the above general AR(1)

process. In DGP S.1.1, we assume Γ = 0.1 with σs = 0.1, where the serial dependency fades

out exponentially fast as the time distance between state variables increases. Also, as the

autocorrelation of state variables among two consecutive periods is small, the correlation

between instruments and endogenous variables is also small in this scenario. In DGP S.1.2,

we assume Γ = 0.8 with σs = 0.5. This is a situation where numerical solution methods face

challenges, especially for the projection method. Calin et al. (2005) points out that the pre-

specified order for series expansion must be large enough to ensure reasonable approximation

of the projection method. However, a stronger dependency between two consecutive state

observations is favorable for our method, because it leads to a tightened relationship between

instruments and endogenous variables in the nonparametric two-stage regression procedure.

In the second set of simulation studies, we examine the finite sample performance under

a general autoregressive conditional heteroskedasticity (ARCH) process. Given their ability

to capture volatility clustering and leverage effects, ARCH processes and its extensions have

been proven to be popular. In addition, by studying the performance of our new estimation

method under the ARCH process, we can facilitate future studies that aim to investigate

the role played by time-varying volatility in modelling asset prices. We consider a general
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ARCH(1) process for the DGP of state variables as follows.

DGP S.2 

Xt = εt

εt = zt
√
ht,

ht = ω0 + ω1X
2
t−1,

zt ∼ i.i.d.(0, 1)

(12)

We investigate the finite sample performance under the ARCH DGP with high and low

autocorrelations, namely DGP S.2.1: ω0 = 0.1 and ω1 = 0.2 and DGP S.2.2: ω0 = 0.01

and ω1 = 0.6. Using these two Monte Carlo studies, we can evaluate our newly proposed

estimation method for state variables with large and small volatility clustering effects.

Tables 1 and 2 report the Monte Carlo results for the designed functions DGP F.1 and

DGP F.2 for state variables with the above assumed DGP S.1.1, DGP S.1.2, DGP S.2.1

and DGP S.2.2. For each pair of designed function and DGP, we report estimation results

with different degrees of B-splines and numbers of knots. Integrated mean squared error

(IMSE) has been widely used in nonparametric series estimations to evaluate finite sample

performance (Hansen, 2015). To evaluate the goodness of fit, we calculate IMSE for each

Monte Carlo study by implementing the estimation method 400 times.

The IMSE of the penalized two-stage B-splines estimator f̂(x) is

IMSE =

∫
E[f̂(x)− f(x)]2dF (x), (13)

where F (x) is the cumulative distribution function for the state variable.

Overall, our newly proposed penalized two-stage B-spline estimator works uniformly well

for both AR and ARCH processes with different levels of serial dependencies. From Figures

1-8, comparing true P/D ratio functions, we can visualize the estimation results with and

without penalties. The penalized B-splines will generally enhance the estimation results,

especially when estimating smoother functions. The outstanding accuracy for small sample
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studies of size 250 demonstrates how our method offers significant advantages for current

asset pricing and macroeconomic general equilibrium modelling, where the state variables

are mostly quarterly with an effective sample size around 300 for the postwar period. The

sample size of 500, which amounts to 42 years of monthly observations, will be sufficiently

large to ensure more accurate estimation results using our method.

In addition, we show that the number of knots K and degrees of B-splines are not

crucial in estimation. The mechanism can be clearly seen from Tables 1 and 2. When

a larger number of knots is used, our fast GCV algorithm will automatically generate a

larger penalty to correct for the potential overfitting problem. This further strengthens the

superiority of our new method, which successfully optimizes the function to be estimated via

a single data-driven penalty term λ∗. As the question of how to choose optimal orders for

series expansions in both stages remains an open one, our paper contributes to the literature

by providing a convenient solution via the fast GCV algorithm.

4.2. Comparison with Numerical Solutions

We confine the scope of this section to situations where analytic solutions of the P/D

ratios exist (Burnside, 1998). We provide a detailed comparison of our nonparametric penal-

ized B-spline series regression method with some representative and popularly used numerical

solution methods. For the numerical solution method, we consider perturbation, projection

and discretization methods as well as the PEA and improved PEA algorithms. Except for the

original PEA algorithm, all these numerical solution methods require complete knowledge of

the dynamics of state variables, whereas the true DGP of state variables in the real world

is not completely known by empirical practitioners, possibly due to limited skill, time, or

noisy observations. In practice, a proxy for the dynamics of state variables can be obtained

via various techniques. For example, using simple rules of thumb, investors may obtain an

estimated DGP which actually deviates from the true one in many dimensions (Cecchetti,

Lam, and Mark, 2000). Cecchetti et al. (2000) point out that this discrepancy between the
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true and subjective beliefs in the DGP of state variables is a key ingredient in addressing the

equity premium puzzle. Even though it is common to encounter misspecified DGPs, very

little attention has been paid to examining how asset pricing models can be affected when

DGPs of state variables are misspecified.

Built upon the Mehra and Prescott (1985) model, analytic solutions are obtainable under

special circumstances (Burnside, 1998). In this exchange economy, there is an infinitely-lived

representative agent who wishes to maximize her expected lifetime utility at time zero:

max
{Ct}

E
∞∑
t=0

βt−1 C
1−γ
t

1− γ

s.t.Ct + Pt+1θt+1 +Qtbt+1 = bt + (Dt + Pt)θt,

(14)

where Xt = ln(Ct/Ct−1), Xt+1 − µ = Γ(Xt − µ) + ut+1, and ut+1 ∼ i.i.d.N(0, σ2
u). Ct is the

consumption at time t, Dt is the dividend payment at time t, Pt is the current value that

reflects future dividend payments, Qt is the price of a risk-free asset that pays 1 in period

t+ 1, bt and θt are the holdings of the risky and risk-free asset at time t.

In this simple economy, the dividend payment Dt is equal to the optimal consumption

Ct in equilibrium. Let ft = Pt/Dt, and the Euler equation can be derived as follows:

ft = βE[e(1−γ)Xt+1(ft+1 + 1)|Xt]. (15)

We consider two numerical studies to examine the performance of our newly proposed

estimation method with finite samples and small samples. The first scenario is one where

the DGP of state variable Xt is known and correctly specified. In the second, economists

only have empirical observations of state variables Xt without knowing their conditional

distributions. We first compare solution performance in scenario one.

DGP B.1: We consider the true DGP of state variable is fully acknowledged by public
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and is assumed to follow the following AR(1) process:

Xt+1 − µ = Γ(Xt − µ) + εt+1, (16)

where εt ∼ IIDN(0, σ2). In this section, for ease of comparisons, we set β = 0.96, γ = 2.5,

E(Xt) = 0.0179 and σ = 0.0379. Similar to the Monte Carlo simulation studies, we consider

two sub-scenarios, namely DGP B.1.1: Γ = −0.139 and Γ = 0.8.

In scenario two, we further investigate possible consequences when the dynamics of state

variables are misspecified using Mehra and Prescott’s (1985) model.

DGP B.2: We have a threshold model for the true DGP, which is a nonlinear stationary

process:

Xt+1 =


µ+ Γ1Xt + u∗1,t+1, u

∗
1,t ∼ IIDN(0, σ2

1) if Xt > 0,

µ+ Γ2Xt + u∗2,t+1, u
∗
2,t ∼ IIDN(0, σ2

2) if Xt ≤ 0

(17)

where σ1 = 3.48%, σ2 = 2σ1, β = 0.96, γ = 2.5, Γ1 = 0.8, and Γ2 = −0.139. A misspecified

DGP for such a process is as follows:

X̃t+1 − µ = Γ̄(X̃t − µ) + vt+1, and vt+1 ∼ IIDN(0, σ2
v), (18)

where Γ̄ and σ2
v are chosen so that it can match the autocorrelation with the true DGP.

DGP B.2 explores a threshold structure, whose imporance has been widely acknowledged

in many economic studies (e.g., Hong, Li, and Zhao, 2012). In the true DGP, the state

variable Xt is assumed to enjoy higher persistency level in mean and lower volatility when

the consumption growth rate is positive, and will exhibit a mean-reverting pattern when the

consumption growth rate is negative.

Figures 9-11 compare the approximated P/D ratio function from different solution meth-

ods under DGP B.1 and DGP B.2 with sample sizes of 250 and 1000 respectively. Specifically,

DGP B.1.1 has a small serial correlation of state variables in absolute values and the true
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P/D ratio behaves as a linear function of it. Therefore, as shown in Figure 9, all studied

numerical methods can provide accurate approximations. The performance of our regression-

based nonparametric penalized B-spline method is enhanced dramatically when the sample

size increases. In DGP B.1.2, where the serial dependency is large, we first confirm that

the projection method with low-order serial expansions fails (Calin et al., 2005). The per-

turbation method faces problems when approximating tails. Our penalized B-spline method

always exhibits superior performance compared to the PEA method. It is worth mention-

ing that the discretization and improved PEA methods work well when the DGP of state

variables is correctly specified.

Therefore, in DGP B.2, where the analytic solution does not exist (Burnside, 1998), we

first assume the DGP is given and use discretization methods with sufficiently fine grids

to generate an accurate proxy for the true unknown P/D ratios for comparison purposes.

As can be seen from Figure 11, except for the PEA algorithm, all other numerical solution

methods fail in the presence of a misspecified DGP. A critical issue with the PEA algorithm

is that the optimal order for the parametric series expansion is unknown and a large order

may result in an ill-conditioned problem. Therefore, the PEA algorithm provides improved

but sub-optimal approximations. Using our penalized B-splines regression, we can obtain

consistent, unbiased and efficient estimation of the unknown P/D ratios in the presence of

an unknown DGP.

Tables 3 and 4 further report and compare the number of iterations, real computational

time and mean squared errors for the above simulation studies. Our method is a speedy

one-step procedure with an endogenously optimized level of penalization. It has stable

performance when the state variable has both small and large serial dependencies. We find

that under correctly specified cases, the penalized B-splines regression performs reasonably

well compared with this large set of representative numerical solution methods. Under the

misspecified case, only our new method can provide accurate model solutions because it

does not depend on distributional assumptions and the orders in both stages are optimized
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through a penalization factor, which is itself optimized in the GCV procedure.

Using these two empirically relevant situations, we find that, in the presence of misspec-

ified dynamics of state variables, current numerical solution methods can lead researchers to

incorrectly interpret model implications. Therefore, when the DGP of state variables is not

fully specified, the newly proposed 2SLS series regression method will become an indispens-

able approach for obtaining a consistent estimate of the P/D ratio function, and constructing

the most reliable and accurate model implications.

5. Empirical Applications

5.1. Present Value of Future Dividends

We now compute the present value of future dividend payments using our nonparametric

2SLS penalized B-splines regression procedure for the US from 1947 Q1-2016 Q1. We intend

to provide an alternative way to allow time-varying stochastic discount factors to determine

equilibrium asset prices that reflect full rationality and future dividend payments. Following

the modelling setup in Shiller (2014), under the fundamental work of Mehra and Prescott’s

(1985) CAPM model, we use the marginal rate of substitution between consumptions in

consecutive periods as the discount factor.

Traditionally, the present value of future dividends is constructed as

Pt = Et

∞∑
t=0

Πk
j=0Mt+jDt+k, (19)

where Mt+j = β(Ct+1

Ct
)−γ, Ct is the real per capita consumption at time t, β is the constant

time discount factor and γ is the constant relative risk aversion level.

One practical issue of Equation (19) is the unknown consumption growth rates after the

termination date. The common strategy is to assume a constant growth rate and take it

as the geometric average growth over the last 30 or 10 years. However, as Shiller (2014)
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emphasizes, there is no objective way to forecast dividends out for decades. Fortunately,

using our new penalized B-splines regression, we can obtain the present value of future

dividends Pt without this problem.

In estimating the present value of future dividends through ft in the Euler equation (15),

we use the US quarterly real consumption per capita data from 1947 Q1- 2016 Q1, which

amounts to 277 observations 5. By feeding Euler equation (15) with empirical observations,

we do not need to estimate or assume conditional distributions for Xt.

For simplicity, we estimate f using K(T ) = 50 equidistant knots with piecewise-linear

(w = 1) B-splines. The optimal penalty which ensures efficient estimator will be determined

by the fast GCV procedure. Therefore, we can present the present value Pt alternatively

using P ∗t = ftDt.

We plot the real Standard and Poor’s composite stock price index along with three

present values of subsequent real dividends as used in Shiller (2014) together with our new

measure. In Figure 9, except for the consumption discounted dividends, shown in Equation

(19), we also produce the present price (in an orange dotted line) with dividends discounted

by a constant interest rate, and the present price (in a black dotted line) with dividends

discounted by actual future interest rates.

Compared to the other three present value measures, our new consumption-based present

value P ∗t is able to reproduce most of the magnitudes and fluctuations from 1947 to the

middle of 1970. In recent years, as consumption growth has been very smooth, it is not

surprising to see P ∗t ’s lack of ability to mimic both the magnitude and volatility of the

observed price. However, the present value using our method still reflects the fact that

economic fundamentals, such as the consumption/dividend growth, can explain certain price

changes to some extent.

5The US quarterly real consumption per capita data can be downloaded from the Fred St. Louis
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5.2. A Nonparametric Decomposition of Dividend Yield and Predictability

of Equity Returns

we consider the returns on S&P500 and three-month Treasury bill for market returns and

risk-free returns. The consumption growth rate is obtained from the personal consumption

expenditures on non-durable goods per capita from the U.S. National Income and Prod-

uct Accounts (NIPA). Our data are in quarterly frequency and spans from 1962 to 2015.

The inflation series is constructed using the consumption price deflater. In constructing

observed dividend yields from empirical dataset, dividends are summed over the past one

year to alleviate seasonality effects which are especially pronounced in the dividend payment

process(Ang and Bekaert, 2006).

Built on equilibrium asset prices under full rationality, sharing the same spirit of the

implied volatility (Shiller, 2014), the implied dividend yields, log(1/ft), reflect consumption-

based rational forecasts of future returns and dividend growth. In this section, we will

investigate how this non-parametrically estimated implied dividend yields predict future

excess returns and dividend growth.

We further propose a nonparametric decomposition of stock dividend yields into two or-

thogonal components, namely the data-driven nonparametrically estimated implied dividend

yield under full rationality and the residuals. To achieve such a decomposition, we propose

the following nonparametric series regression model:

dy4
t = F (1/ft) + εt, (20)

where ft is the implied P/D ratios estimated from the Euler equation (1), F (1/ft) is the

component that reflects full rationality and risk averse attitude which will be estimated

nonparametrically via a penalized B-spline regression. dy4
t = D4

t /Pt represents the observed

dividend yields with dividends D4
t =

∑3
j=0Dt−j summed over the past year.

Let diff t = dy4
t − F (ft) denote the difference between the observed and the implied
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dividend yield component. It reflects non-equilibrium or irrational information that might

be possibly caused by bubbles, heterogeneous time effects, etc.. We create a dummy variable,

asymt = It{difft < 0}, to investigate the existence of nonlinear predictive ability that such

residual part may exhibit on future excess returns and dividend growth.

Instead of predicting future cumulative excess returns using observed log dividend yields

alone as the single univariate regressor, Ang and Bekaert (2006) documents the superior

and enhanced predictability ability that dividend yields exhibit on excess returns when an

additional regressor short interest rate is included. Therefore, we consider the main regression

model as

ỹt+j = αj + βj,1log(1/ft) + βj,2dy
4
t + βj,3rt + εt, (21)

where ỹt+j = (4/j)[(yt+1− rt) + (yt− rt−1) + · · ·+ (yt+j − rt+j−1)] is the annualized j−period

excess return for the U.S. aggregate market, yt+1 = log(Pt+1+Dt+1

Pt
) is the log return on equity

and rt is the log return on short interest rate.

Starting with a univariate regressor, observed dividend yields, Table 5 reports the pre-

dictability regression of future excess returns by short interest rate, implied dividend yields,

the observed dividend yields and asymmetric dummy variable for horizon of 1, 4, 12 and 20

quarters. Compared with the regression on the observed dividend yields only, the new regres-

sion maintains better predictability by achieving higher R2. First, the model convinces the

positive predictability that dividend yields exhibit on excess returns, where the predictabil-

ity ability increases significantly when forecasting horizon increases. Second, higher prices

implies lower future excess returns. Additionally, an increase in implied dividend yields pre-

dicts an increase in expected future excess returns. Therefore, implied dividend yields could

serve as an additional predictor when predicting future stock performance.

Figures 13-14 report the predictability ability that nominal short interest rates, the ra-

tional and beyond-rational components of dividend yields exhibit on future excess returns

for horizons of 1 quarter to 10 years. We compute t-statistics based on standard errors

and Newey-West ones. Over 1962 to 1990, real short interest rate has decreasing predictive
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power on future excess returns. Higher observed and implied dividend yields both predict

higher future excess returns. However, during such a period, the predictive marginal effect

of observed dividend yields is significant only during the short and long horizons. We find

significant nonlinear predictability that observed dividend yields exhibit during short and

medium horizons. During 1990 to 2015, we find little forecastablity in future excess returns

using implied dividend yields. But the asymmetric effect of dividend yields is still proven to

be a strong predictor 6.

We also investigate forecasts of long-horizon dividend growth. Table 6 reports forecasting

results for the same exercise for future dividend growth. Dividend yields have been docu-

mented to have little forecastability in dividend yields (Lettau and Ludvigson, 2005). To

capture the consumption-based present-value of future returns and dividends, Lettau and

Ludvigson (2005) propose a proxy through a cointegration linear regression model. They

found reversed forecastability that consumption-based dividend yields on dividend growth:

they find that high dividend payments relative to prices predicts higher dividend growth, not

lower. In our empirical study, we find that observed dividend yields have little predictability

in dividend growth. However, implied dividend yields have strong but time-varying fore-

castability in dividend yields. During 1952-1990, we find that higher dividend payments

predict lower dividend growth in the future, which is consistent with the theory (Campbell

and Shiller, 1988). However, this forecastability is found to be time-varying. During 1990-

2015, we find the opposite effect as that in Lettau and Ludvigson (2005). The asymmetric

effect of dividend yields that does not depend on long-run equilibrium has strong time-

varying forecastability in dividend yields. The asymmetric effect indicator variable exhibits

time-varying and significant predictability on future dividend yields.

6We also conduct a regression analysis by pooling all data from 1952 to 2015 together, which results in clear
differences in the predictability ability for both rational and beyond-ration components. Such a difference is
mainly due to inconsistent estimations of the regression coefficients provided the predictive marginal effects
are time-varying during the two samples. Therefore, it provides further evidence on time-varying predictive
relationship that short interest rate and dividend yields have on future excess returns.
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6. Conclusion

Considerable attempts to enrich the explanatory powers of economic models have been

witnessed in recent years. In modelling dynamic asset prices and enhancing the understand-

ing of well-documented financial anomalies, P/D ratios are one of the central quantities that

must be solved for. Unlike current numerical solution methods, we do not assume any distri-

butional assumptions on the dynamics of state variables, and we propose a 2SLS penalized

B-splines regression method, which has a convenient data-based closed-form solution regard-

less of model complexity, thus making the implementation particularly easy in practice. Our

method is free of endogeneity biases and functional form misspecification when the sample

size increases.

For the first time in the literature, we complement the work of Newey and Powell (2003)

by showing how to optimize the order of series expansion in the nonparametric 2SLS analysis.

Using spline techniques, we show that it is equivalent to set the number of knots large in

both stages and let our newly proposed fast GCV algorithm determine the optimal penalty,

which prevents the overfitting problem. Our method is data-driven and easy to implement.

It does not involve numerical integrations or optimizations.

We also establish new local identification strategies for the integral equation of the first

kind, which helps prevent the ill-posed inverse problem in the nonparametric estimation

literature. Under our identification strategy, for the first time in the literature, we achieve

the optimal rate of convergence using our newly proposed penalized B-splines regression.

It will become an important tool to construct reliable and correct conclusions about model

implications and to evaluate general equilibrium models.

In the empirical application, we apply our method to construct a new measure for the

present value that reflects all future dividend payments. Our approach can be generalized

in several directions. Meghir and Pistaferri (2004) model the conditional variance of the

income shocks as a parsimonious ARCH process. It helps them achieve significant improve-

ment in understanding household counterfactual consumptions by capturing education- and
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time-specific differences in the stochastic process for earnings and for measurement error. By

applying this newly proposed method, we can learn the extent to which income risks affect

equity prices without modelling the stochastic process of income risks. Also, by incorporating

empirical observations of state variables and avoiding model misspecification, we can better

understand how monetary and fiscal policies will actually function in the real economy. In

addition, this method can be extended to DSGE models in the production economy, where

the log linearization method is widely used (Zietz, 2006). Lastly, under a system of multiple

Euler equations, we must solve multiple unknown functions rather than just the P/D ratio

function (Epstein and Zin, 1989). It is important to solve all unknown functions accurately

because possible functional form misspecification from one solution may be amplified and

adversely affect the others, eventually seriously discrediting model implications. Our 2SLS

series regression approach can be extended to this more general and complex setup, elimi-

nating all possible functional form misspecification in large samples. This newly proposed

functional estimation method will facilitate a more reliable understanding of existing DSGE

models that are now widely used in both macroeconomics and finance.

One limitation of the current research is that we have not obtained explicit formula for the

asymptoic bias and variance of the penalized spline estimate. For this direction, a potential

try is to consider more complicated weighted (possibly asymmetric) penalty. Besides, our

approach could also be extended to multivariate D-dimensional state variable Xt, together

with the use of tensor product and d penalty parameters.
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Table 1: IMSE of Penalized B-spline under AR State Variables
Sample Size=250 Sample Size=500

IMSE IMSE λ̄ IMSE IMSE λ̄

B-spline without penalty Penalized B-spline Optimal Penalization B-spline without penalty Penalized B-spline Optimal Penalization

DGP F.1 DGP S.1.1 w=1, K=35 0.01826872 0.0131101 2.532474 0.009258146 0.006898432 2.876585

w=1, K=50 0.02347168 0.01470143 3.527953 0.01183204 0.007528154 4.268646

w=2, K=35 0.0221372 0.01282211 2.199518 0.009463132 0.006621339 2.492744

w=2, K=50 0.03377577 0.01468604 3.251942 0.01202409 0.007283417 3.841638

DGP F.1 DGP S.1.2 w=1, K=35 0.06700802 0.08259431 0.2080672 0.0672485 0.08046206 0.3690953

w=1, K=50 0.06920832 0.06256849 0.2743021 0.02954389 0.039219 0.336305

w=2, K=35 0.08284512 0.06503849 0.09964043 0.07453333 0.06287254 0.1606192

w=2, K=50 0.05617438 0.05465477 0.1984541 0.02482012 0.03087558 0.2225816

DGP F.2 DGP S.1.1 w=1, K=35 0.01334645 0.004341459 70.34631 0.006803884 0.002328368 128.948

w=1, K=50 0.01796366 0.005228453 85.77986 0.009216935 0.00259976 161.8562

w=2, K=35 0.01505069 0.004494111 76.53147 0.007016259 0.002367346 133.0716

w=2, K=50 0.01981698 0.005336624 88.68647 0.009392146 0.002611739 173.6824

DGP F.2 DGP S.1.2 w=1, K=35 0.03262231 0.07321093 2.238989 0.01536193 0.05109586 2.37595

w=1, K=50 0.04434008 0.08083232 3.07003 0.01941035 0.05765428 3.514282

w=2, K=35 0.03506841 0.07144779 2.1535 0.03024117 0.05027726 2.309324

w=2, K=50 0.04347047 0.07851707 2.924002 0.02021131 0.05657635 3.348899

Notes: State variable Xt is assumed to follow AR(1) processes in DGP.S.1.1 and DGP.S.1.2. W is the degree of B-splines and K is the number of knots. Knots are

equally spaced on the entire range of the state variable Xt. w = 1 is piecewise linear B-spline and p = 2 is piecewise quadratic B-spline.

Table 2: IMSE of Penalized B-spline under ARCH State Variables
Sample Size=250 Sample Size=500

IMSE IMSE λ̄ IMSE IMSE λ̄

B-spline without penalty Penalized B-spline Optimal Penalization B-spline without penalty Penalized B-spline Optimal Penalization

DGP F.1 DGP S.2.1 w=1, K=35 0.02464076 0.029118 0.5715628 0.01405926 0.01541851 0.535519

w=1, K=50 0.03249247 0.03360804 0.9272623 0.01582086 0.01751706 0.9680503

w=2, K=35 0.02450054 0.02705671 0.4754202 0.01267992 0.01398112 0.449598

w=2, K=50 0.03207846 0.0321732 0.816137 0.01559074 0.01660778 0.8643913

DGP F.1 DGP S.2.2 w=1, K=35 0.02143143 0.02016245 0.8702906 0.01191423 0.01163581 0.9533953

w=1, K=50 0.02615308 0.02246086 1.342364 0.01357569 0.01227891 1.570881

w=2, K=35 0.02156865 0.01912847 0.7659362 0.01258897 0.010924 0.8547724

w=2, K=50 0.02655386 0.02150427 1.225838 0.01370247 0.01179226 1.42465

DGP F.2 DGP S.2.1 w=1, K=35 0.01790781 0.01011446 25.93743 0.009273527 0.008092244 47.14169

w=1, K=50 0.02795115 0.01050107 30.21588 0.01227992 0.00802897 58.63276

w=2, K=35 0.01841731 0.01026836 26.0214 0.009447733 0.008074038 46.83836

w=2, K=50 0.02707516 0.01068826 30.54362 0.0123547 0.007841711 58.13063

DGP F.2 DGP S.2.2 w=1, K=35 0.0211788 0.006659848 29.98303 0.01400902 0.009780191 45.41252

w=1, K=50 0.02536098 0.007435542 35.83577 0.01614226 0.009880039 53.82317

w=2, K=35 0.02152584 0.006914626 30.02373 0.01442173 0.00971369 44.02125

w=2, K=50 0.02586618 0.007442472 36.81254 0.01637856 0.009929373 55.61419

Notes: State variable Xt is assumed to follow ARCH(1) processes in DGP.S.2.1 and DGP.S.2.2. w is the degree of B-splines and K is the number of knots. Knots are

equally spaced on the entire range of the state variable Xt. w = 1 is piecewise linear and w = 2 is piecewise quadratic B-spline.
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Table 3: Comparisons of Different Solution Methods with Known DGP
Sample Size=250 Sample Size=1000

Iterations Computation Time MSE Iterations Computation Time MSE
DGP B.1.1 Perturbation 1 0.0278 1.4485e− 08 1 0.0012 1.2969e− 08

Projection 1 6.9115 1.0012e− 09 1 7.2853 9.7285e− 10
Discretization 276 4.7639 1.9333e− 14 276 4.72553 1.9331e− 14

PEA 197 0.1124 0.0382 199 0.2375 0.0023
Improved PEA 3169 5.7877 1.9823e− 07 3169 18.5996 1.9902e− 07

Penalized B-splines 1 0.36 0.1270 1 0.61 0.0.005992
DGP B.1.2 Perturbation 1 0.0254 62.6267 1 0.0697 26.9855

Projection 1 6.6360 1.8408e+ 03 1 6.9137 1.4427e+ 03
Discretization 509 9.2022 1.8174e− 06 481 9.1459 8.8945e− 06

PEA 264 0.2357 186.3197 188 0.100 144.7383
Improved PEA 4160 7.380514 0.5174 5303 30.5248 11.5722

Penalized B-splines 1 0.34 60.75646 1 0.45 9.7004

Notes: State variable Xt is assumed to follow AR(1) processes in DGP B.1. In this example, for simplicity, we set w = 2 is
the degree of B-splines and K = 50 is the number of knots. Knots are equally spaced on the entire range of the state variable
Xt. Throughout this simulation study, we set γ = 2.5D, β = 0.96, µ = 0.0179, σ = 0.0348, with Γ = −0.179 and Γ = 0.8
in DGP B.1.1 and DGP B.1.2 respectively. Given the true analytic solution is simple, we report PEA and Improved PEA
based on the following parametric assumptions E(·|x) = exp(a1 + a2x) and f(x) = exp(a1 + a2x). By increasing the order
for PEA and Improved PEA, the number of iterations and amount of computational time increase accordingly. The solution
accuracy does not improve very much. The analytic solution is based on the Burnside (1998)’s algorithm. For analytic,
discretion, PEA and Improved PEA methods, the tolerance level for convergence in each iteration is set to be 1e − 7. The
order for perturbation and projection methods are set to be three. For the perturbation method, increasing the number of
series expansions does not necessarily enhance the approximation results Calin et al. (2005). But the projection methods
will enjoy better approximation with a larger order, especially when Γ is large. Given a misspecificed DGP, increasing the
order for PEA and Improved PEA does not reduce approximation errors.

Table 4: Comparisons of Different Solution Methods with Unknown DGP
Sample Size=250 Sample Size=5000

Iterations Computation Time MSE Iterations Computation Time MSE
DGP B.2 Perturbation 1 0.0251 12.2352 1 0.0035 13.0844

Projection 1 0.7567 11.9826 1 0.7850 12.8628
Discretization 315 5.5417 11.9744 312 5.8937 12.8682

PEA (order=1) 251 0.2132 3.2947 243 0.1859 4.8215
PEA (order=2) 251 0.1618 1.8456 244 0.1790 3.1448
PEA (order=3) 251 0.1709 1.9172 260 0.1756 3.0675

Improved PEA (order=1) 3609 6.3269 11.9783 3564 20.5544 12.8721
Improved PEA (order=2) 3609 16.7417 11.9783 3564 57.2894 12.8721
Improved PEA (order=3) 3609 26.3455 11.9783 3564 98.4927 12.8727

Penalized B-splines 1 0.49 1.7428 1 0.51 0.5564795

Notes: State variable Xt is assumed to follow AR(1) processes in DGP B.1. In this example, for simplicity, we set
w = 2 is the degree of B-splines and K = 50 is the number of knots. Knots are equally spaced on the entire range
of the state variable Xt. Throughout this simulation study, we set γ = 2.5D, β = 0.96, µ = 0.0179, σ = 0.0348, with
Γ = −0.179 and Γ = 0.8 in DGP B.1.1 and DGP B.1.2 respectively. By increasing the order for PEA and Improved
PEA, the number of iterations and amount of computational time increase accordingly. The solution accuracy does not
improve very much. The analytic solution is based on the Burnside (1998)’s algorithm. For analytic, discretion, PEA and
Improved PEA methods, the tolerance level for convergence in each iteration is set to be 1e−7. The order for perturbation
and projection methods are set to be three. For the perturbation method, increasing the number of series expansions
does not necessarily enhance the approximation results Calin et al. (2005). We conducted PEA and Improved PEA under
different orders. The PEA algorithm with order=2 has the best approximation performance. Given misspecified DGP,
increasing the order for Improved PEA does not reduce approximation errors. Therefore, we report PEA and Improved
PEA based on the following parametric assumptions E(·|x) = exp(a1 + a2x+ a3x

2) and f(x) = exp(a1 + a2x).
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Fig. 1. Simulation Study of DGP S.1.1 and F.1, Sample Size=250 and 500, Knots=50

Fig. 2. Simulation Study of DGP S.1.2 and F.1, Sample Size=250 and 500, Knots=50
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Fig. 3. Simulation Study of DGP S.1.1 and F.1, Sample Size=250 and 500, Knots=50

Fig. 4. Simulation Study of DGP S.1.2 and F.1, Sample Size=250 and 500, Knots=50
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Fig. 5. Simulation Study of DGP S.2.1 and F.1, Sample Size=250 and 500, Knots=50

Fig. 6. Simulation Study of DGP S.2.2 and F.1, Sample Size=250 and 500, Knots=50
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Fig. 7. Simulation Study of DGP S.2.1 and F.2, Sample Size=250 and 500, Knots=50

Fig. 8. Simulation Study of DGP S.2.2 and F.2, Size=250 and 500, Knots=50
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Fig. 9. Simulation Study with Known DGP B.1.1 (Γ = −0.139), Sample Size=250 (left) and

1000 (right)
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Fig. 10. Simulation Study with Known DGP B.1.2 (Γ = 0.8), Sample Size=250 (left) and

1000 (right)
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Fig. 11. Simulation Study with Misspecified DGP B.2, Sample Size=250 (left) and 1000

(right)
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Fig. 13. Predictability Analysis: 1962-1990 Nominal Returns
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Fig. 14. Predictability Analysis: 1990-2015 Nominal Returns
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Fig. 15. Predictability Analysis: 1962-1990 Dividend Growth
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Fig. 16. Predictability Analysis: 1990-2015 Dividend Growth
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Appendix

6.1. Appendix A: Mathematical Proofs

Lemma 6.1. Since f ∈ Lp. Then there exists a continuous function f̄ whose support lies in

a bounded interval [−A,A] so that

||f − f̄ ||p < ε.

Proof of Lemma 6.1 This is immediate from the Stone-Weierstrass theorem.

Lemma 6.2. Suppose Assumption 3.4-3.6 hold. Then

(a) ||Φ′Φ
M
− E(Φ′Φ

M
)|| = Op(M

−1/2);

(b) ||Ψ′Φ
M
− E(Ψ′Φ

M
)|| = Op(M

−1/2);

(c) λmin[Φ′Φ
M

]→ λmin[E(Φ′Φ
M

)] a.s.;

(d) λmin(Φ′Φ
M

) > 0 a.s.;

(e) λmax(Φ′Φ
M

) <∞ a.s.

Proof of Lemma 6.2 Since the proof of (b) is analogous to (a), we only prove (a) here.

We have

E[||Φ
′Φ

M
− E(

Φ′Φ

M
)||2] =

K+p∑
j=1

K+p∑
i=1

E{
T−1∑
l=0

φi(Xl)φj(Xl)/M − E[
T−1∑
l=0

φi(Xl)φj(Xl)/M ]}2

≤
K+p∑
j=1

K+p∑
i=1

{ T
M2

sup
Xt∈X

var[φi(Xt)φj(Xt)] + 2
∑

0<k<m<T−1

cov[φi(Xk)φj(Xk), φi(Xm)φj(Xm)]/M2}

= A1 + A2, say.

Because KE||φi(Xt)||4+δ < ∆ <∞ for some δ > 0 by assumption, we have

A1 ≤
K

M

K+p∑
j=1

K+p∑
i=1

E[Kφi(Xt)φj(Xt)]
2

K2
= O(

K

M

K

K2
) = O(

1

M
).
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Given that {Xt} is α mixing with coefficients α(j), by using the Davydov inequality and the

condition on KE||φi(Xt)||4+δ < ∆ <∞ for some δ > 0, we have

A2 =
1

M2

K+p∑
j=1

K+p∑
i=1

T−1∑
τ=1

(1− τ

T
)cov[φi(Xt)φj(Xt), φi(Xt+τ )φj(Xt+τ )]

≤ 2(4+2δ)/(4+δ)(4 + δ)/δ

T 2

K+p∑
j=1

K+p∑
i=1

T−1∑
τ=1

|1− τ

T
|α(τ)

δ
4+δ {E|Kφi(Xt)φj(Xt)|2+δ/2}

4
4+δ = O(

1

M
).

It follows that,

||Φ
′Φ

M
− E(

Φ′Φ

M
)|| = Op(

1√
M

) = op(1).

To obtain an almost sure convergence result for (c), we first establish a similar result under

the convergence in probability. Similar to part (a), using the Markov, Cauchy-Schwarz and

Hölder’s inequalities, we have

P [|λmin(
1

M

T−1∑
t=0

ΦqtΦ
′
qt)− λmin(

1

M

T−1∑
t=0

EΦqtΦ
′
qt)| > ε]

≤ P{
K+p∑
i=1

K+p∑
j=1

| 1

M

T−1∑
t=0

[φi(Xt)φj(Xt)− Eφi(Xt)φj(Xt)]| > ε}

≤ 1

ε

K+p∑
i=1

K+p∑
j=1

E| 1

M

T−1∑
t=0

[φi(Xt)φj(Xt)− Eφi(Xt)φj(Xt)]|

≤ 1

ε

K+p∑
i=1

K+p∑
j=1

{ T

M2
{ sup
X∈X

var[φi(X)φj(X)] + 2
∑

0<k<m<T−1

cov[φi(Xk)φj(Xk), φi(Xm)φj(Xm)]/M2}
} 1

2

= o(1)

Thus we have proved the convergence in probability for part (c). Conclusions under

convergence in probability for (d) and (e) follow analogously. The proof of almost sure

convergence follows Andrews (1991).

Lemma 6.3. For K and T satisfying Assumption 3.5,

(a) {φi,tψj,τ}, {Φp,tεt+1}, {Ψqtεt+1} and {Φp,tΨp,t} are α- mixing sequences with coefficients
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α(j);

(b) KE|φi,tψj,t|2r
′
< ∆′ <∞ for r′ = r + δ > 1,

Proof of Lemma 6.3 {φi,t} is a measurable function of Xt. Because {Xt} is assumed to

be an α-mixing process of size r/(r − 1), {φi,t} is also an α-mixing process of size r/(r − 1)

using the Thereom 3.49 of White (1996). Similarly, {ψi,t} is also an α-mixing process with

size r/(r − 1). Immediately, from proposition 3.50 of White (1996), {φi,tφj,τ}, {φi,tψj,τ},

{Φp,tεt+1} and {Ψq,tεt+1} are mixing sequences of size r/(r − 1).

For part (b), it immediately follows from the definition of ψi,t and Minkowski’s inequality

that

KE|φi,tψj,t|2+δ/2 = KE|φi,tϕj,t − φi,tϕj,t+1m(Xt+1)|2+δ/2

≤ K{[E|φi,tϕj,t|2+δ/2]
1

2+δ/2 + [E|φi,tϕj,t+1m(Xt+1)|2+δ/2]
1

2+δ/2}2+δ/2

≤ K{[E|φ4+δ
i,t |E|ϕ4+δ

i,t |]
1

4+δ + [E|φi,t|4+δE|ϕj,tm(Xt+1)|4+δ]
1

4+δ }2+δ/2 < ∆ <∞.

Lemma 6.4. Define G = E(Ψ′Φ
M

)[E(Φ′Φ
M

)]−1E(ΦΨ′

M
) and GT = Ψ̂′Ψ̂

M
= 1

M
Ψ′Φ(Φ′Φ)−1ΦΨ′.

Suppose Assumptions 3.5-3.7 hold. Then

(a) ||GT −G|| = Op(
1√
M

);

(b) λmax(GT ) = λmax(G) +Op(
1√
M

);

(c) λmin(GT ) ≥ 1
2
λmin(G) with probability approaching 1 as T →∞.

Proof of Lemma 6.4 For part (a), using the triangular inequality, we have

||GT −G|| ≤ ||(
Ψ′Φ

M
− EΨ′Φ

M
)(

Φ′Φ

M
)−1 ΦΨ′

M
||+ ||EΨ′Φ

M
[(

Φ′Φ

M
)−1 − (E

Φ′Φ

M
)−1]

Φ′Ψ

M
||

+ ||EΨ′Φ

M
(E

Φ′Φ

M
)−1[

Φ′Ψ

M
− EΦ′Ψ

M
]|| = A3 + A4 + A5, say.

Using the results from Lemma 6.3, we have

A3 ≤ [λmin(
Φ′Φ

M
)]−1λmax(

Ψ′Φ

M
)||Ψ

′Φ

M
− EΨ′Φ

M
|| = Op(

1√
M

).
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Then, we show that ||(Φ′Φ
M

)−1 − (E Φ′Φ
M

)−1|| ≤ [λmin(Φ′Φ
M

)]−1[λmin(E Φ′Φ
M

)]−1||Φ′Φ
M
− E Φ′Φ

M
|| =

Op(
1√
M

). Thus

A4 ≤ λmax(E
Ψ′Φ

M
)λmax(

Ψ′Φ

M
)||(Φ′Φ

M
)−1 − (E

Φ′Φ

M
)−1|| = Op(

1√
M

).

Therefore, the last term

A5 ≤ λmax(E
Ψ′Φ

M
)(λminE

Φ′Φ

M
)−1||Φ

′Ψ

M
− EΦ′Ψ

M
|| = Op(

1√
M

).

It follows that ||GT −G|| = Op(
1√
M

).

Now we prove part (b):

λmax(GT ) = λmax(G +GT −G) = λmax(G) + ||GT −G|| = λmax(G) +Op(
1√
M

).

Next, we prove part (c). Similarly, we have

λmin(GT ) ≥ λmin(G)− ||GT −G|| ≥ λmin(G)−Op(
1√
M

) ≥ 1

2
λmin(G).

Lemma 6.5. Suppose Assumptions 3.4-3.6 hold. Then there exists c0 > 0 so that

(a) λminG ≥ c0 > 0;

(b) λminGT ≥ c0
2
> 0 a.s.;

(c) |||G−1
T (Ψ′Φ

M
)(Φ′Φ

M
)−1 −G−1EΨ′Φ

M
(E Φ′Φ

M
)−1|| = Op(

1√
M

)

Proof of Lemma 6.5 We first prove part (a). Denote a lead of matrix Φ as Φa =
∑T

t=1 ΦtΦ
′
t

and a diagonal matrix M = diag{m1, · · · ,mT}. Recall the underlying structure of the asset

pricing theory and our model construction. It is helpful to express Ψt = Φt − mtΦt−1.

Under Assumption 3.5, E(y2
t ) < ∞. Let c, b ∈ Rp so that c′(EΨ′Φ

M
)c = λmin(EΨ′Φ

M
), and
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b′(EΨ′Φ
M

)b = λmax(EΨ′Φ
M

). Applying the Cauchy-Schwarz inequality and Lemma 6.3, we have

λmaxE(
Ψ′Φ

M
) = b′E(

Φ′Φ

M
)b− b′E(

T−1∑
t=0

Φt+1Φ′tyt+1

M
)b ≤ λmaxE(

Φ′Φ

M
) + |b′E[ sup

1≤t≤T
|yt|

Φ′aΦ

M
]b|

≤ λmaxE(
Φ′Φ

M
) + (E sup

1≤t≤T
y2
t )

1
2 b′[

1

M2
E(Φ′aΦΦ′Φa)]

1
2 b

= λmaxE(
Φ′Φ

M
) + (E sup

1≤t≤T
m2
t )

1
2 b′[

1

M
E(Φ′aΦ(Φ′Φ)−1(

Φ′Φ

M
)Φ′Φa)]

1
2 b

≤ λmaxE(
Φ′Φ

M
) +

√
λmax(

Φ′Φ

M
)(E sup

1≤t≤T
y2
t )

1
2 b′[

1

M
E(Φ′aΦ(Φ′Φ)−1Φ′Φa)]

1
2 b

≤ λmaxE(
Φ′Φ

M
) +

√
λmax(

Φ′Φ

M
)(E sup

1≤t≤T
y2
t )

1
2λ

1
2
maxE(

Φ′aΦa

M
) <∞.

Therefore, λmaxE(Ψ′Φ
M

) = Op(1). Because Φ(Φ′Φ)−1Φ′ is an idempotent matrix, G is a square

matrix and Ψ′Ψ/M is invertible, we have λminGT ≥ c0 for some constant c0. Using these

facts, we can establish the following result that,

λ(p)λminG ≥ c0/2.

The almost sure convergence theorem in part (b) follows immediately by combining Lemma

6.3 and 6.4 together with Assumption 3.1. Finally, we prove part (c). It is easy to show that

||G−1 −G−1
T || = ||G

−1(G −GT )G−1
T || ≤ [λmin(G)]−1[λmin(GT )]−1||G −GT || = Op

( 1√
M

)
.

Plugging this result into the following inequality, we have

||G−1
T (

Ψ′Φ

M
)(

Φ′Φ

M
)−1 −G−1E

Ψ′Φ

M
(E

Φ′Φ

M
)−1||

≤ ||(G−1
T −G

−1)||λmax(
Ψ′Φ

M
)[λmin(

Φ′Φ

M
)]−1 + ||Ψ

′Φ

M
− (E

Ψ′Φ

M
)||[λmin(G)]−1[λmin(E

Φ′Φ

M
)]−1

+ ||(Φ′Φ

M
)−1 − (E

Φ′Φ

M
)−1||[λmin(G)]−1λmax(E

Ψ′Φ

M
)

= Op(
1√
M

).
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Lemma 6.6. Suppose Assumptions 3.4-3.6 hold. Then

(a) There exists a finite number C > 0 so that E(εε′) ≤ CIT ;

(b) E[||ϕ(x)′Ψ̂′ε/M ||2] = Op(
1
M

).

Proof of Lemma 6.6 First, we prove part (a). Suppose an arbitrary vector b = (b1, b2, · · · , bT )

and a finite number C > 0 so that C ≥ cτ , where cτ = ∆
2

4+δ
∑∞

τ=0
22−2/(4+δ)(4+δ)

2+δ
α(τ)1− 2

4+δ for

some δ > 0, and α(τ) is the mixing coefficients. Then we have

b′(CIT − Eεε′)b = C
T∑
t=1

b2
t −

T∑
t=1

T∑
s=1

btbsE(εtεs)

≥ C
T∑
t=1

b2
t −

1

2

T∑
t=1

T∑
s=1

(b2
t + b2

s)E|εtεs| = C
T∑
t=1

b2
t −

T∑
t=1

b2
t

T∑
s=1

E|εtεs|

≥ C
T∑
t=1

b2
t −

∞∑
τ=0

22−2/(4+δ)(4 + δ)

2 + δ
α(τ)1− 2

4+δ (E|εt|4+δ)
2

4+δ

T∑
t=1

b2
t ≥ (C − cτ )

T∑
t=1

b2
t .

Hence, CIT −E(εε′) is positive semidefinite. Using the result from part (a) and Lemma 6.4,

we are can prove part (b) immediately:

E(||ϕ(x)′Ψ̂′ε/M ||2) =
1

M
E{tr[(Ψ̂′Ψ̂

M
)ϕ(x)′ϕ(x)ε′ε]} ≤ λmax(

Ψ̂′Ψ̂

M
)

1

M
λmax(Eϕ(x)′εε′ϕ(x))

= Op(1)
1

M
λmax(CIT ) = Op(

1

M
).

Proof of theorem 3.1. In our 2SLS series regression procedure, an estimator of fp is

expressed as f̂p(x) = ϕp(x)′α̂p. By the Minkowski inequality,

||f̂p − f || = ||f̂p − fp + fp − f || ≤ ||f̂p − fp||+ ||fp − f || ≤ ||f̂p − fp||+O(K−1+min(d,p))

In the second step, we obtain α̂p = (Ψ̂′Ψ̂)−1Ψ̂Y . Consider the original time series nonlin-

ear regression model, εt+1 = yt+1 − g0(xt, xt+1). Denote G0 = (g0(x0, x1), · · · , g0(xT−1, xT )).
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Under Assumption 3.4 that the variance of εt+1 is finite, thus E(εε′)−σ2I is positive semidef-

inite. We modify the proof of Theorem 1 of Newey (1994), and use the triangular inequality

that ∫
[f̂p(x)− f(x)]2dF (x) =

∫
[f̂p − fp + fp − f ]2dF (x)

=

∫
[ϕp(x)′(α̂p − αp) + ϕp(x)′αp − f ]2dF (x) ≤ ||α̂p − αp||2 +O(K−2(1+min(d,p))).

Thus, we can focus on relevant properties of ||α̂p − αp||. It is immediately follows that,

||(α̂p − αp)|| = ||(Ψ̂′Ψ̂)−1Ψ̂′Y − (Ψ̂′Ψ̂)−1Ψ̂′Ψ̂αp||

≤ ||(Ψ̂′Ψ̂)−1Ψ̂′Y − (Ψ̂′Ψ̂)−1Ψ̂′G0||+ ||(Ψ̂′Ψ̂)−1Ψ̂′G0 − (Ψ̂′Ψ̂)−1Ψ̂′Ψ̂αp||

≤ ||(Ψ̂′Ψ̂)−1Ψ̂′(Y −G0)||+ ||(Ψ̂′Ψ̂)−1Ψ̂′(G0 − Ψ̂αp)||

Using the Cauch-Schwarz inequality, the property of an idempotent matrix, Lemma 6.6 and

Assumption 3.5, we obtain

E[||ε′Ψ̂(Ψ̂′Ψ̂/M)−
1
2/M ||2] = trE[Ψ̂(Ψ̂′Ψ̂)−1Ψ̂εε′]/M = Op(

1

M
).

Therefore, it follows that

||(Ψ̂′Ψ̂)−1Ψ̂′(Y −G0)|| = ||(Ψ̂Ψ̂/M)−1Ψ̂′ε/M || = |ε′Ψ̂(Ψ̂′Ψ̂/M)−1(Ψ̂′Ψ̂/M)−1Ψ̂′ε/M2|
1
2

≤ ||ε′Ψ̂(Ψ̂′Ψ̂/M)−
1
2/M || = Op(

√
1

M
).

Recalling the construction of g0 in Equation (??), we have

E|g0(xt, xt+1)−Ψ′p,tα
p|2 ≤ CE|f(xt)− fp(xt+1)|2 + CE|m(xt+1)[f(xt+1)− fp(xt+1)]|2

= Op(K
−2(1+min(d,p))).
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By the Cauchy-Schwarz inequality and the fact that Ψ̂(Ψ̂ ˆ′Ψ)−1Ψ̂′ is idempotent, we have

||(Ψ̂′Ψ̂)−1Ψ̂′(G0 −Ψαp)|| = ||(G0 −Ψαp)′Ψ̂(Ψ̂ ˆ′Ψ)−1(
Ψ̂ ˆ′Ψ

M
)−1Ψ̂′(G0 −Ψαp)/M |

1
2

= Op(K
−(1+min(d,p))).

Let v̂ ≡ Ψ − Ψ̂, which is the estimated residual from the first stage OLS regression. The

first order condition implies that Φ′v̂ = 0. Given Ψ̂ = Φ(Φ′Φ)−1Φ′Ψ, it is easy to show that

Ψ̂′v̂ = Ψ′Φ(Φ′Φ)−1Φ′v̂ = 0. Then it immediately follows that

(Ψ̂′Ψ̂)−1Ψ̂′(Ψ− Ψ̂)αp = (Ψ̂′Ψ̂)−1Ψ′Φ(Φ′Φ)−1Φ′v̂ = 0.

Therefore, we conclude that

∫
[f̂(x)p − f(x)]2dF (x) = OP [(

1

M
+K−2(1+min(d,p)))] = Op(K/T ).

Lemma 6.7. Define VT (x) = var[ 1√
M
ϕ(x)′Φ′ε] = 1

M
ϕ(x)′E(Φ′εε′Φ)ϕ(x). Then as T →∞,

√
1

VT
ϕ(x)′M− 1

2 Φ′ε
d→ N(0, 1).

Proof of Lemma 6.7 We prove the asymptotic normality by applying the martingale

difference sequence central limit theorem by Brown (1971). First, we prove that for all fixed

x ∈ X, VT is well-defined. There exists c ∈ Rp with ||c|| = 1, we have

VT (x) ≡ ϕ(x)′E[ΦtΦ
′
tε

2
t+1]ϕ(x)/M ≥ ϕt+1(x)′λminE[ΦtΦ

′
tε

2
t+1]ϕt+1(x)/M

= ϕt+1(x)′ϕt+1(x)E[c′Φ′tΦtε
2
t+1c]/M = O(1).

Because E( 1√
VT
ϕ(x)′M− 1

2 Φtεt+1|It) = 0, { 1√
VT
ϕ(x)′M− 1

2 Φtεt+1} is a martingale difference

sequence for all x and t. Second, we want to establish the Lindeberg condition given each
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x. By the Minkowski and triangular inequalities, we have

VT (x)−1

T∑
t=1

E
{

[ϕ(x)′Φtεt+1]2I{[ϕ(x)′Φtεt+1]2 ≥ εVT}
}

≤ VT (x)−1

T∑
t=1

(εVpT )−
δ
2E|ϕ(x)′Φtεt+1]|2+δ = op(1).

The second condition that we need to verify that 1
M

∑T−1
t=0 ϕ(x)′Φtε

2
t+1Φ′tϕ(x)− VT = op(1).

Given the fact that

E||Φ
′εε′Φ

M
− EΦ′εε′Φ

M
||2 =

K+p∑
i=1

K+p∑
j=1

E[
1

M

T−1∑
t=0

φi,tφj,tε
2
t+1 − E

1

M

T−1∑
t=0

φi,tφj,tε
2
t+1]2

=

K+p∑
i=1

K+p∑
j=1

[
1

M
E(φ2

i,tφ
2
j,tε

4
t+1) +

2

M2

∑
1<k<m<T−1

cov(φi,tφj,tε
2
t+1, φi,mφj,mε

2
m+1)]

≤
K+p∑
i=1

K+p∑
j=1

[
1

M

√
E(φ4

i,tφ
4
j,t)
√
E[ε8

t+1|]

+
2(4+2δ)/(4+δ)(4 + δ)/δ

M2

K+p∑
i=1

K+p∑
j=1

T−1∑
τ=1

α(τ)
δ

4+δ [Eφ4+δ
i,t φ

4+δ
j,t ]

2
4+δ [E|εt+1|8+2δ]

2
4+δ

= O(
1

M
).

It immediately follows that

| 1

M

T−1∑
t=0

ϕ(x)′Φtε
2
t+1Φ′tϕ(x)− VT | = |tr{ϕ(x)′(

Φ′εε′Φ

M
− EΦ′εε′Φ

M
)ϕ}|

= |tr(Φ′εε′Φ

M
− EΦ′εε′Φ

M
)ϕ(x)ϕ(x)′| = Op(λmax|

Φ′εε′Φ

M
− EΦ′εε′Φ

M
|) = op(1).

It follows that 1√
VT
ϕ(x)′Φ′ε

d→ N(0, 1) by Brown (1971).

Proof of theorem 3.2.

MDT = A−2
T (x) = ϕ(x)′(Q′TP

−1
T QT )−1Q′TP

−1
T E(Φ′εε′Φ/M)P−1

T QT (Q′TP
−1
T QT )−1ϕ(x).

As T →∞, based on Lemma 6.3, we can drive a useful relationship between AT and VT that
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they are of the same order. Considering results from the 2SLS series regression, we have

√
Mϕ(x)′(α̂− α) =

√
Mϕ(x)′(Ψ′Φ(Φ′Φ)−1Φ′Ψ)−1Ψ′Φ(Φ′Φ)−1Φ′ε.

Hence, by Lemmas 6.5, 6.7, we have

|
√
Mϕ(x)′(α̂− α)− ϕ(x)′(Q′TP

−1
T QT )−1Q′TP

−1
T M− 1

2 Φ′ε|

= |ϕ(x)′{[Ψ
′Φ

M
(
Φ′Φ

M
)−1 Φ′Ψ

M
]−1 Ψ′Φ

M
(
Φ′Φ

M
)−1 − (Q′TP

−1
T QT )−1Q′TP

−1
T }M

− 1
2 Φ′ε|

≤ λmax{[
Ψ′Φ

M
(
Φ′Φ

M
)−1 Φ′Ψ

M
]−1 Ψ′Φ

M
(
Φ′Φ

M
)−1 − (Q′TP

−1
T QT )−1Q′TP

−1
T }|M

− 1
2ϕ(x)′Φ′ε|V −

1
2

T V
1
2
pT

= op(1).

It implies that
√
Mϕ(x)′(α̂− α) and ϕ(x)′(Q′TP

−1
T QT )−1Q′TP

−1
T M− 1

2 Φ′ε have the same lim-

iting distribution. It is sufficient to derive the limiting distribution of the latter.

We apply Brown’s (1971) CLT theorem for martingale difference sequences. It is easy

to show that E(ATϕ(x)′(Q′TP
−1
T QT )−1Q′TP

−1
T Φtεt+1|It) = 0 for all t = 0, · · · , T − 1. Define

λit = ϕ(x)′(Q′TP
−1
T QT )−1Q′TP

−1
T ei where ei ∈ Rp has the i−th element equal to 1 and 0

otherwise. By the Minkowski and Markov inequalities, the properties of trace, we have

DT (x)−1M−1

T∑
t=1

E
{

[

K+p∑
i=1

λiTφi,tεt+1]2I{[
K+p∑
i=1

λiTφi,tεt+1]2 ≥ εMDT (x)}
}

≤ D−1
T (x)M−1

T∑
t=1

(εMDT )−
δ
2E|

p∑
i=1

λitφi,tεt+1|2+δ ≤ D
−1− δ

2
T (x)M− δ

2{
p∑
i=1

λiT [E|φi,tεt+1|2+δ]
1

2+δ }2+δ

= O(1)[DT ]−1− δ
2M− δ

2 |tr[ϕ(x)′(Q′TP
−1
T QT )−1Q′TP

−1
T P−1

T QT (Q′TP
−1
T QT )−1ϕ(x)]|1+ δ

2

= O(1)[DT ]−1− δ
2M− δ

2 [DT ]1+δ/2 = op(1).

It is straightforward to show that var(ATϕ(x)′(Q′TP
−1
T QT )−1Q′TP

−1
T M− 1

2 Φ′ε) = 1. Thus
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using the same reasonings as in Lemma 6.7, we can show that

1

M

T−1∑
t=0

ϕp(x)′(Q′TP
−1
T QT )−1Q′TP

−1
T Φptε

2
t+1Φ′ptP

−1
T QT (Q′TP

−1
T QT )−1ϕp(x)−DpT = op(1).

Thus we have proved that ATϕ(x)′(Q′TP
−1
T QT )−1Q′TP

−1
T M− 1

2 Φ′ε
d→ N(0, 1) as T → ∞.

Because we have proved that AT
√
Mϕ(x)′(α̂ − α) has the same limiting distribution, it

immediately follows that,

AT
√
Mϕ(x)′(α̂− α)

d→ N(0, 1),

By the Slutsky theorem, it is sufficient to show that

AT
√
M [Ef̂(x)− f(x)]→0, as p, T →∞.

Recall that the approximation error of the truncated series is Op(K
−1+min(d,s)). Define

QT ≡ AT
√
M [Ef̂(x)− f(x)]

Under Lemma 6.7, we have

||QT || ≤ λmax|AT
√
M |||Ef̂p(x)− f(x)|| = [λmin(DT )]−

1
2

√
MOp(K

−1+min(d,s))→ 0,

where the last equation holds due to the assumption that the approximation errors will be

asymptotically negligible compared to the asymptotic variance. Therefore, we complete the

proof that AT
√
M [Ep̂(x)− f(x)]→ 0,as T →∞.

Proof of Proposition 1: Recall that Ψ̂ = Φ(Φ′Φ)−1Φ′Ψ. Hence Ψ̂′Ψ̂ = Ψ̂′Ψ = Ψ′Ψ̂ = Σ.

Let IK+p be the (K + p)× (K + p) identity matrix. Let UΓU ′ be the eigendecomposition of
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Σ−1/2PΣ−1/2. Note that ri is the ith diagonal element of Γ. Hence we have

trace(H) = trace(I + λΣ−1/2PΣ−1/2)−1 =

K+p∑
j=1

1

1 + λrj
,

(Ψ̂′Ψ̂ + λP )−1 = Σ−1/2(IK+p + λΣ−1/2PΣ−1/2)−1Σ−1/2 = Σ−1/2U(IK+p + λD̃)−1U ′Σ−1/2.

Define Z1 = U ′Σ−1/2Φ′Y and Z2 = U ′Σ−1/2Ψ̂′Y . Then

Y ′Ŷ = Y ′HY = Y ′ΦΣ−1/2(IK+p + λΣ−1/2PΣ−1/2)−1Σ−1/2Ψ̂′Y =

K+p∑
i=1

1

1 + λri
z1,iz2,i. (22)

where z1,i and z2,i are the ith element of Z1 and Z2 respectively. Moreover,

Ŷ ′Ŷ = Y ′H ′HY = Y ′Ψ̂(Ψ̂′Ψ̂ + λP )−1Φ′Φ(Ψ̂′Ψ̂ + λP )−1Ψ̂′Y

= Y ′Ψ̂(Φ′Φ)−1/2[(Φ′Φ)−1/2Ψ̂′Ψ̂(Φ′Φ)−1/2 + λ(Φ′Φ)−1/2P (Φ′Φ)−1/2]−2(Φ′Φ)−1/2Ψ̂′Y

Using the same techniques as above. Define Σ̃ = (Φ′Φ)−1/2Ψ̂′Ψ̂(Φ′Φ)−1/2. Let Ũ Γ̃Ũ ′ be

the eigendecomposition of the matrix Σ̃−1/2(Φ′Φ)−1/2P (Φ′Φ)−1/2Σ̃−1/2. Then we have

Ŷ ′Ŷ =

K+p∑
i=1

1

(1 + λr̃i)2
z2

3,i, (23)

where r̃i is the ith diagonal element of Γ̃, and z3,i is the ith element of Z3 = Ũ ′Σ̃−1/2(Φ′Φ)−1/2Ψ̂′Y .

Together with equation (22) and (23), we prove that Proposition 1 holds. �
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