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Abstract

Standard estimators of risk premia are biased if the estimation model omits some priced factors.
We propose a three-pass method to estimate the risk premia of observable factors in a linear asset
pricing model, which is valid even when not all factors in the model are specified and observed.
We show that the risk premium of a factor can be identified regardless of the rotation of the other
control factors, as long as they together span the true factor space. Motivated by this rotation
invariance result, our approach uses principal components of test assets to recover the factor space
and additional cross-sectional and time-series regressions to obtain the risk premium of each observed
factor. Our estimator is also equivalent to the average excess return of an appropriately-regularized
mimicking portfolio maximally correlated with the observed factor. Our methodology also accounts
for potential measurement error in the observed factors and detects when such factors are spurious or
even useless. The methodology exploits the blessings of dimensionality, and we therefore apply it to
a large panel of equity portfolios to estimate risk premia for several workhorse factors. The estimates
are robust to the choice of test portfolios within equities as well as across many asset classes.
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1 Introduction

One of the central predictions of asset pricing models is that some risk factors — for example, intermediary
capital or aggregate liquidity — should command a risk premium: investors should be compensated for
their exposure to those factors, holding constant their exposure to all other sources of risk.

Sometimes, this prediction is easy to test in the data: when the factor predicted by theory is itself
a portfolio (what we refer to as a tradable factor), the risk premium can be computed as the average
excess return of the factor. This is for example the case for the CAPM, where the theory-predicted
factor is the market portfolio.

Most theoretical models, however, predict that investors are concerned about nontradable risks:
risks that are not themselves portfolios, like consumption, inflation, liquidity, and so on. Estimating the
risk premium of a nontradable factor requires constructing a tradable portfolio that isolates that risk,
holding all other risks constant. While different estimators have been proposed to estimate risk premia
(most prominently, two-step cross-sectional regressions like Fama-MacBeth and mimicking-portfolio
projections), they are all affected by one common potential issue: omitted variable bias.

Omitted variable bias arises in standard risk premia estimators whenever the model used in the
estimation does not fully account for all priced sources of risk in the economy, and some of these
omitted risks are correlated with the factor of interest. This is a fundamental concern when testing
asset pricing theories, because theoretical models are usually very stylized and cannot possibly explicitly
account for all sources of risk in the economy.! While the possibility of omitted variable bias is known
in the literature (see, for example, Jagannathan and Wang (1998)), no systematic solution has been
proposed so far; rather, this problem is typically addressed in ad-hoc ways that differ from paper to
paper. Papers using the two-pass cross-sectional regression approach typically add arbitrarily chosen
factors or characteristics as controls, like the Fama-French three factors; papers using the mimicking-
portfolio approach usually select a small set of portfolios (for example, portfolios sorted by size and
book-to-market) on which to project the factor of interest. There is, however, no theoretical guarantee
that the controls or the spanning portfolios are adequate to correct the omitted variable bias.

In this paper we propose a general solution for the omitted variable bias in linear factor models. We
introduce a new three-pass methodology that exploits the large dimensionality of available test assets
and a rotation invariance result to correctly recover the risk premium of any observable factor, even
when not all true risk factors are observed and included in the model.

The premise of our procedure is a simple but general rotation invariance result that holds for risk
premia in linear factor models. Suppose that returns follow a linear model with p factors and we wish
to determine the risk premium of one of them (call it ¢g;). We show that the risk premium of g; is
invariant to how all other p— 1 factors are rotated; the only requirement needed for correctly recovering
the risk premium of ¢; is that the model used in the estimation includes factors that, together with

g:, span the same space as the true factors in the model, no matter how they are rotated.? Naturally,

LA symptom of this omission is the fact that the pricing ability of the models is often poor, when tested using only
the factors explicitly predicted by the theory. This suggests that other factors may be present in the data that are not
accounted for by the model.

2The invariance result we derive is distinct from similar results the literature has explored in the past (e.g., Roll and
Ross (1980), Huberman et al. (1987), Cochrane (2009)). This literature has explored the conditions under which rotations



some other components of the model (for example, risk exposures with respect to all factors including
g¢) are not invariant to the rotation, so they cannot be recovered unless all factors in the model are
specified. Needless to say, this rotation invariance result does not hold in a standard regression setting
for coefficient on any specific regressor.’

This invariance result implies that knowing the identities of all true p factors is not necessary to
estimate the risk premium of one of them (g;). As long as the entire factor space can be recovered, the
risk premium of g; can be identified even when the other factors are neither observed nor known. This
is because the factor space can be recovered from the test asset themselves. A natural way to recover
the factor space in this scenario is to extract principal components (PCs) of the test asset returns.
Our methodology therefore combines the rotation invariance result with principal component analysis
(PCA) to provide consistent estimates of the risk premium for any observed factor.

Our methodology proceeds in three steps. First, we use PCA to extract factors and their loadings
from a large panel of test asset returns, thus recovering the factor space. Second, we run a cross-sectional
regression using only the PCs (without the factor of interest g;) to find their risk premia. Third, we
estimate a time-series regression of g; onto the PCs, that uncovers the relation between g; and the latent
factors, and in addition removes potential measurement error from g;. The risk premium of g; is then
estimated as the product of the loadings of g; on the PCs (estimated in the third step) and their risk
premia (estimated in the second step). The invariance result discussed above is what guarantees that
the risk premium estimate for g; is consistent, regardless of the rotation of the true factors that occurs
when extracting PCs.

Our three-pass procedure can be interpreted in light of the two standard methods for risk premium
estimation. First, it can be viewed as a principal-component-augmented two-pass cross-sectional regres-
sion. Rather than selecting the control factors arbitrarily, the PCs of the test asset returns are used
as controls; these stand in for the omitted factors and, thanks to the rotation invariance result, fully
correct the omitted variable bias. Second, our procedure can be interpreted as a regularized version
of the mimicking-portfolio approach. The factor g; is projected onto the PCs of returns (the PCs are
themselves portfolios) rather than onto an arbitrarily chosen set of portfolios, which would lead to a bias,
or onto the entire set of test assets, which would be inefficient or even infeasible when the dimension of
the space of test assets is larger than the sample size.

The fact that our procedure can be interpreted equivalently as an extension of both methods is
particularly surprising because in standard settings (when the number of test assets is fixed) the two
estimators differ even in large samples, because the risk premium of a factor (in population) is not the
same as the expected excess return of its mimicking portfolio, unless the factor itself is tradable. The
former is a constant parameter that does not depend on the test assets, whereas the latter depends on

the the test assets onto which the factor of interest is projected. Our theoretical analysis, however, sheds

of a factor model retain the pricing ability of the original model. It has not, however, explored the invariance properties
for individual factors within the model. Indeed, our invariance result for the risk premium of an individual factor g; builds
on the existing results to show that a particular invariance property holds not only for the pricing ability of the entire
model, but for the risk premia of each individual factor as well. This additional step is crucial when trying to understand
the economic importance of a specific factor g: in the presence of omitted factors.

3For example, a regression of Y on two variables X and Z will yield a different coefficient for X than a regression on
X and (X + Z), despite the fact that the two variables X and (X + Z) span the same space as X and Z.



light on the convergence of the two as the dimension of test assets increases. Our three-pass procedure
reveals the numerical equivalence in this scenario between the extensions of the two procedures, as long
as PCA is used to span the entire factor space and avoid the curse of dimensionality.

We apply our methodology to a large set of 202 equity portfolios, sorted by different characteristics.
We estimate and test the significance of the risk premia of tradable and non-tradable factors from
a number of different models. We show that the conclusions about the magnitude and significance
of the risk premia often depend dramatically on whether we account for omitted factors (using our
estimator) or ignore them (using standard methods). In contrast with the existing literature, we find a
risk premium of the market portfolio that is positive, significant, and close to the time-series average of
market excess returns, even when we allow for an unrestricted zero-beta rate following the Black (1972)
version of the CAPM. We also decompose the variance of each observed factor into the components
due to exposures to the latent factors, as well as the component due to measurement error. We find
that several macroeconomic factors are dominated by noise, and after correcting for it and for exposure
to unobservable factors, they command a risk premium of essentially zero. We do, however, find some
empirical support for the consumption growth of stockholders from Malloy et al. (2009), as well as for
factors related to financial frictions (like the liquidity factor of Pastor and Stambaugh (2003)).

We also show that our risk premia estimates remain similar when using 100 non-equity portfolios
(options, bonds, currencies, commodities) in addition to, or instead of, equity portfolios. We show that
once the unobservable factors that drive these different asset classes are accounted for, the risk premia
for many factors are quite consistent with those estimated just using the cross-section of equities. This
result suggests that indeed several common factors are priced in a consistent way across various asset
classes. This consistency is hard to detect without properly controlling for the unobservable factors to
which various groups of assets are exposed.

Our paper derives several important econometric properties of the estimator. We establish the
consistency and derive the asymptotic distribution when both the number of test portfolios n and the
number of observations 1" are large. Our asymptotic theory allows for heteroscedasticity and correla-
tion across both the time-series and the cross-sectional dimensions, while explicitly accounting for the
propagation of estimation errors through the multiple estimation steps.

Moreover, the increasing dimensionality simplifies the asymptotic variance of the risk-premium esti-
mates, for which we also provide an estimator. In addition, we construct a consistent estimator for the
number of latent factors, while also showing that even without it, the risk-premium estimates remain
consistent. Finally, a notable advantage of our procedure is that inference remains valid even when any
of the observable factors g; is spurious or even useless (that is, totally uncorrelated with asset returns).
In the paper, we also provide a test of the null that the observed factor g; is weak. Our methodology

therefore provides a novel approach to inference in the presence of weak observable factors.

1.1 Literature review

This paper sits at the confluence of several strands of literature, combining empirical asset pricing with
high-dimensional factor analysis.

Using two-pass regressions to estimate asset pricing models dates back to Black et al. (1972) and



Fama and Macbeth (1973). Over the years, the econometric methodologies have been refined and
extended; see for example Ferson and Harvey (1991), Shanken (1992), Jagannathan and Wang (1998),
Welch (2008), and Lewellen et al. (2010). These papers, along with the majority of the literature, rely
on large T and fixed n asymptotic analysis for statistical inference and only deal with models where
all factors are specified and observable. Bai and Zhou (2015) and Gagliardini et al. (2016) extend the
inferential theory to the large n and large T setting, which delivers better small-sample performance
when n is large relative to T. Connor et al. (2012) use semiparametric methods to model time variation
in the risk exposures as function of observable characteristics, again allowing for large n and 7. Our
asymptotic theory relies on a similar large n and large T analysis, yet we do not impose a fully specified
model.

Our paper relates to the literature that has pointed out pitfalls in estimating and testing linear
factor models. For instance, ignoring model misspecification and identification-failure leads to an overly
positive assessment of the pricing performance of spurious (Kleibergen (2009)) or even useless factors
(Kan and Zhang (1999a,b); Jagannathan and Wang (1998)), and biased risk premia estimates of true
factors in the model. It is therefore more reliable to use inference methods that are robust to model
misspecification (Shanken and Zhou (2007); Kan and Robotti (2008); Kleibergen (2009); Kan and
Robotti (2009); Kan et al. (2013); Gospodinov et al. (2013); Kleibergen and Zhan (2014); Gospodinov
et al. (2016); Bryzgalova (2015); Burnside (2016)). We study and correct the biases due to omitted
variables and measurement error. Gagliardini et al. (2017) propose a diagnostic criterion to detect
potentially omitted factors from the residuals of an observable factor model. Hou and Kimmel (2006)
argue that in the case of omitted factors, the definition of risk premia can be ambiguous. Relying
on a large number of test assets, our approach can provide consistent estimates of the risk premia
without ambiguity, and detect spurious and useless factors. Lewellen et al. (2010) highlight the danger
of focusing on a small cross section of assets with a strongly low-dimensional factor structure and suggest
increasing the number of assets used to test the model. We point to an additional reason to use a large
number of assets: to control properly for the missing factors in the two-pass cross-sectional regressions.

Our paper is also related to the literature that advocates the use of mimicking portfolios in factor
pricing models. Huberman et al. (1987) show that mimicking portfolios can be used in place of non-
tradable factors in asset pricing models and provide three choices of mimicking portfolios, one of which
is the maximally-correlated portfolio. Balduzzi and Robotti (2008) and more recently, Kleibergen and
Zhan (2018), estimate and test asset pricing models using mimicking portfolios as the factors. In the
empirical literature, the use of mimicking portfolios dates back at least to Breeden et al. (1989), who use
this approach to test the CCAPM model. Lamont (2001) also advocates the use of mimicking portfolios
to analyze other economic factors. Ang et al. (2006) and Adrian et al. (2014) construct aggregate
volatility and intermediary leverage factor-mimicking portfolios, respectively. One particular advantage
of mimicking portfolios is that such portfolios are available at higher frequencies or over longer time
spans than the original economic risk factors.

The literature on factor models has expanded dramatically since the seminal paper by Ross (1976)
on arbitrage pricing theory (APT). Chamberlain and Rothschild (1983) extend this framework to ap-
proximate factor models. Connor and Korajczyk (1986, 1988) and Lehmann and Modest (1988) tackle



estimation and testing in the APT setting by extracting principal components of returns, without having
to specify the factors explicitly. More recently, Kozak et al. (2017) show how few principal components
capture a large fraction of the cross-section of expected returns, which we will also show in our data.
Overall, one of the downsides of latent factor models is precisely the difficulty in interpreting the esti-
mated risk premia. In our paper, we start from the same statistical intuition that we can use PCA to
extract latent factors, but exploit it to estimate (interpretable) risk premia for the observable factors.
Bai and Ng (2002) and Bai (2003) introduce asymptotic inferential theory on factor structures. In
addition, Bai and Ng (2006) propose a test for whether a set of observable factors spans the space of
factors present in a large panel of returns. In contrast, our paper exploits statistically the spanning of
the latent factors in time series, and their ability to explain the cross-sectional variation of expected
returns.

Section 2 discusses biases due to omitted variables and measurement error in the standard risk
premia estimators. Section 3 introduces our three-pass estimation procedure and discusses how it can be
interpreted as an extension of both the cross-sectional regression approach and the mimicking-portfolio
approach. Section 4 provides the asymptotic theory on inference with our estimator, followed by an
empirical study in Section 5. The appendix provides technical details and Monte Carlo simulations.

Throughout the paper, we use (A : B) to denote the concatenation (by columns) of two matrices A
and B. e; is a vector with 1 in the ith entry and 0 elsewhere, whose dimension depends on the context.
i, denotes a k-dimensional vector with all entries being 1. For any time series of vectors {at}thl, we
denote a = % 23:1 az. In addition, we write a; = a; — a. We use the capital letter A to denote the
matrix (a1 : az :...:ar), and write A = A — aul. correspondingly. We denote P4 = A(ATA)"1AT and
My =1-Pyu.

2 Biases in Standard Risk Premia Estimators

In this section we illustrate how the standard risk premia estimators — the two-pass regression approach
(like Fama-MacBeth) and the mimicking-portfolio approach — suffer from potential biases induced by
omitted factors and measurement error. For illustration purposes, we show these results in a simple
two-factor model, but all the results easily extend to more general specifications.

Suppose that vy = (v1¢ : v)T is a vector of two potentially correlated factors. We assume that both
have been demeaned, so we interpret vi; and v as factor innovations.* Assuming that the risk-free

rate is observed, we express the model in terms of excess returns:

re = By + Bug + uy,

where u; is idiosyncratic risk, § = (f; : f2) is a matrix of risk exposures, and v = (71 : 72)T is the vector

of risk premia for the two factors.

4As discussed in the introduction, the focus of this paper is on nontradable factors, for which the means have no direct
relevance for the factors’ risk premia. This is why we write the model directly in terms of factor innovations. Of course, if
the factors are instead tradable, the mean of the factor itself is the risk premium — in which case, the methods we discuss
here are still valid as an alternative estimator of the risk premium.



In what follows, we estimate the risk premium of a proxy for the first factor vy, denoted as gy; its
risk premium is therefore 1 in this simple setting. We begin with a review of the two estimators, then

consider two potential sources of bias that can affect each estimator.

2.1 A Review

Two-pass regressions estimate the factor risk premia as follows. First, time series regressions of each
test asset’s excess return r; onto the factors vy estimate the assets’ risk exposures, 51 and 2. Second,
a cross-sectional regression of average returns onto the estimated §; and (2 yields the risk premia
estimators of v and ~».

The mimicking-portfolio approach instead estimates the risk premium of g; by projecting that factor
onto a set of tradable asset returns, therefore constructing a tradable portfolio that is maximally cor-
related with g; (which is why it is also referred to as the “maximally-correlated mimicking portfolio”).

The risk premium of g; is then estimated as the average excess return of its mimicking portfolio.

2.2 Omitted Variable Bias

Consider first estimating the risk premium of g; = v1; using a two-pass cross-sectional regression that
omits vo;. It is easy to see that this omission can induce a bias in each of the two steps of the procedure.
The time-series step yields a biased estimate of (1, as long as the omitted factor vg; is potentially
correlated with vy4 (a standard omitted variable bias problem). The magnitude of this bias depends on
the time-series correlation of the factors. In the cross-sectional step of the procedure, a second omitted
variable bias occurs: rather than regressing average returns onto the estimated (3, only part of it (31)
would be used, since the factor vg; is omitted. The magnitude of this second bias depends on the
cross-sectional correlation of risk exposures, 51 and (2. Eventually, both biases (omission of vg; in the
first step and omission of 3 in the second step) affect the estimated risk premium for g;.

Whereas in the two-pass approach the bias stems from the omission of some factors (vy; in our
example) in the regressions of returns onto the factors, in the mimicking-portfolio approach a related
omitted-variable bias can arise from the omission of assets onto which g; is projected.

To see the potential for omitted variable bias, it is useful to write down explicitly the formula for
the mimicking-portfolio estimator. Consider the projection of g; onto the excess returns of a chosen
set of test assets, #.” This projection yields coefficients w9 = Var(#) 1Cov(#, g;); these are the
weights of the mimicking portfolio for g;, whose excess return is then r{ = (w?)T#. Therefore, we
can write the expected excess return of the mimicking portfolio as: ’yg/IP = (w9)TE(74). Since the
test assets 7 follow the same pricing model, we can write 7y = By + Bvy + 4. Substituting, we can
write the formula for the mimicking-portfolio estimator of the risk premium of the first factor as:
fyévlp = {(BE”BT —i—i]“)*l(ﬁvﬁ”el)}Tﬁufy, where e; is a column vector (1 : 0)T, X" is the covariance
matrix of the factors, and 3% is the covariance matrix of the idiosyncratic risk of the assets used in the

projection.

5We deliberately use #; instead of r;, which we reserve for the universe of available test assets. The choice of assets for
projection could be the entire test assets r: or some portfolios of 7.



The formula above shows that, in general, not all choices of the assets on which to project g; will
result in a consistent estimator of v1; that is, it is not guaranteed that ’yyp = 1. There is one case in
which the estimator will clearly be consistent: if the assets are chosen to be p portfolios that 1) are well
diversified (so that DI 0), and 2) fully span the true factors v, so that A is invertible and v, = B~ 1¥y;
if both conditions hold, we indeed have 7}}“’ = 1.

When these conditions are not satisfied, however, the mimicking-portfolio estimator will in general
be biased, in particular if the set of assets used in the projection omits some portfolios that help span all
risk factors in v;. The existing literature that has used the mimicking-portfolio approach has typically
ignored this bias. For example, when constructing a mimicking portfolio for consumption growth, Malloy
et al. (2009) project it onto four portfolios sorted by size and book to market. But naturally there are
other risks in the economy in addition to size and value, that may be correlated to consumption growth
and that may not be captured by those four portfolios. In that case, the estimator may be affected by

omitted variable bias.

2.3 Measurement Error Bias

Suppose now that the factor of interest may be observed with error; the econometrician can only observe
g+ = v1t + 2, where z; is measurement error orthogonal to the factors, but potentially correlated with
Ug.

Measurement error in g; adds another source of bias to these estimators. Consider first the two-pass
regression approach. Independently of whether vs; is observed or not, measurement error in g; will
induce an attenuation bias in the estimated (; in the time-series regression (since the regressor g; is
measured with error). In turn, this first-stage bias affects the second-step estimate, leading to a biased
estimate of 1.

Measurement error affects the mimicking portfolio as well. In the presence of measurement error
z¢, the formula for 'yg/lp has an additional term: 73@ = {(BE”BT + i“)_l(BZ“el + izu)}Tﬁuy %+ v,
where Y#U = Cov(z, ). Thus, measurement error z; introduces a bias in the mimicking-portfolio esti-
mator, unless idiosyncratic errors 1; in the spanning assets are fully diversified away, or are completely

uncorrelated with idiosyncratic errors.

3 Methodology

In this section we present our three-pass estimator, which tackles both the omitted variable and mea-

surement error biases in estimating risk premia.

3.1 Model Setup

We begin by introducing our baseline specification. Suppose v; is a p x 1 vector of factor innovations
(i.e., mean-zero factors), and let r; denote an n x 1 vector of asset excess returns. The pricing model

satisfies:

re = By + Bug + uy, E(Ut) = E(Ut) =0, and Cov(ut,vt) =0, (1)



where u; is an n x 1 vector of idiosyncratic errors, 8 is an n x p factor loading matrix, and yisap x 1
risk premia vector.

A few notes on the model. First, the model assumes constant loadings and risk premia. These
assumptions are restrictive for individual stocks but applicable to characteristic-sorted portfolios, which
we will use in our empirical study. Our analysis is still applicable to certain conditional models that
allow for time-varying risk premia and risk exposures, by taking a stand on appropriate conditioning
information, e.g., characteristics or state variables, at the cost of greater statistical complexity. We
discuss such extensions in greater detail in Section 5.6.4. Second, we impose weak assumptions on the
structure of the errors. Most of our results hold for non-stationary processes with heteroscedasticity
and dependence in both the time series and the cross-sectional dimensions. For ease of presentation, we
defer the technical details to Appendix A. Third, this baseline model imposes that the zero-beta rate
is equal to the observed T-bill rate. Later, we will examine a more general version of the model which
allows the zero-beta rate to be different and to be estimated.

The objective of this paper is to estimate the risk premia of specific factors g without necessarily
observing all true factors v;. In the simple two-factor model of the previous section, we assumed that
g+ was a proxy of the first factor v1;. Here we introduce a more general specification for g;, that nests
this case and also allows for measurement error.

More specifically, call g; a set of d observable (tradable or nontradable) factors whose risk premia

we want to estimate. gy is related to the factors v; as follows:
g =&+nue+ 2z, E(z)=0, and Cov(z,v) =0, (2)

where 7, the loading of g on v, is a d X p matrix, € is a d x 1 constant, and z; is a d x 1 measurement-error
vector. The risk premium of a factor g; is defined as the expected excess return of a portfolio with beta
of 1 with respect to g; and beta of 0 with respect to all other factors (including the unobservable ones),
and in this model it corresponds to v, = 1.

We also allow for measurement error in g; (captured by z;) because this is often plausible in practice.
For nontradable factors, which are the primary focus of this paper, there are often many choices the
researcher needs to make to construct the empirical counterpart of a theory-predicted factor. For
example, there are many ways to construct an “aggregate liquidity” factor in practice. The construction
of the empirical factor is likely to introduce some measurement error, which we allow in our specification.
For tradable factors, z; can capture exposure to unpriced risks, or idiosyncratic risk that is not fully

diversified. For this reason, we allow z; to be correlated with the idiosyncratic risk u;.

3.2 Rotation Invariance of Risk Premia

We now derive a simple rotation-invariance result that holds, generally, in linear asset pricing models,
which is the key to the identification of 1y when not all factors are observed.

Recall that the risk premium of g; in our setup (equations (1) and (2)) is given by 7y. We now
consider a rotation of the model where the entire model is expressed as a function of rotated factors

0 = Hu, instead of the original factors vy, with any full-rank p x p matrix H. To do so, rewrite the



model as:

re =BH YH~ + BH YHuv, + wy,
gt =€+ TIHleUt + 2.

Defining 9y = Hvy, H = nH ' and B = BH~', we can write the model entirely in terms of the rotated

factors 0;:

re =B + By + uy, (3)
gt =& + N0t + 2. (4)

We say that a parameter or quantity in the model is rotation-invariant if it is identical in the original
model (equations (1) and (2)) or in any rotated model (equations (3) and (4)), for any invertible H.
Some parameters of this model are clearly not rotation invariant. For example, risk exposures of assets

to the factors are different between the two representations:
B=pBH"#B.

In other words, if one estimates risk exposures B from a rotation of the original model, one cannot
recover the original 8 without knowing the transformation H.

The main result that we will use in this paper is that the risk premium of g, 1y, is rotation invariant.
While neither 1 nor v by itself is rotation invariant (because 7 = nH ' # n and 4 = Hvy #7), their

product is indeed independent of the rotation H:
Yo =1y =nH 'Hy=17.

This result guarantees that any consistent estimator of 74, no matter how the underlying factors are

rotated, will consistently estimate the risk premium ~,.

3.3 The Three-Pass Estimator

We now present our three-pass estimator. We start by writing the model in matrix form for notational
convenience. We denote R as the n x T matrix of excess returns, V' the p x T" matrix of factors, G the
d x T matrix of observable factors, U the n x T matrix of idiosyncratic errors and Z the d x T matrix

of measurement error. Our model (equations (1) and (2)) can then be written in matrix terms as

R=py+ sV +U.

Writing (R, V, G, U, Z) as the matrices of the demeaned variables, this equation then becomes:

R=p8V+U. (5)

10



Next, we write the equation for g; in matrix form. Given that for nontradable factors (like inflation or
liquidity) the mean of g, £, does not have a meaningful interpretation or relevance for the purpose of

estimating the risk premium, we only need the demeaned version of equation (2):

G=nV+Z. (6)

Our estimator only makes use of excess returns R and the factors of interest G. We assume that
the true factors V' are latent. The procedure exploits an important result from Bai and Ng (2002) and
Bai (2003), that guarantees that by applying PCA to the panel of observed return innovations R, we
can recover 8 and V up to some invertible matriz H, as long as n,T — oo. While H itself cannot be

recovered from the data, the invariance result guarantees that we can still consistently estimate 7,.
The three-pass estimator.  Given observable returns R and the factors of interest G, our estimator
Ag of 74 = 1y proceeds as follows:

(i) PCA step. Extract the PCs of returns, by conducting the PCA of the matrix n 'T~!RTR.

Define the estimator for the factors and their loadings as:
V=T"2¢ 6. &), and B=T'RVT, (7)

where &1, &2, ..., & are the eigenvectors corresponding to the largest p eigenvalues of the matrix

n~'T~'RTR. p is an estimator of the number of factors; we propose using the following estimator:

~_ . —1p—1y (BT B . _
D arglgjnélpriax(n T7'X(RTR) +j x ¢(n,T)) — 1,

where ppax is some upper bound of p and ¢(n,T') is some penalty function.

(ii) Cross-sectional regression step. Run a cross-sectional ordinary least square (OLS) regression
of average returns, 7, onto the estimated factor loadings B to obtain the risk premia of the estimated

latent factors:
3= (B"B)"'BT.

(ili) Time-series regression step. Run a time-series regression of g; onto the factors extracted from
the PCA in step (i), and then obtain the estimator 7 and the fitted value of the observable factor

after removing measurement error, G:

~

7=GVTI(VVT)™!, and G=nV.

The estimator of the risk premium for the observable factor g; is then obtained by combining the

estimates of the second and third steps:

Vg =M
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Our three-pass estimator also has a more compact form:

Vg = GVT(VVT)~H(BTB) 1 BT, (8)
The estimator can be easily extended to the case in which the zero-beta rate is allowed to be different
from the observed risk-free rate. In that case, returns can be written as: r; = Yot + 8y + Bvs + uz, and

step (ii) of the procedure can be modified to yield an estimate for v, together with the zero-beta rate

Yo. In compact forms, the estimators are given by
-1 EPGRPN ~ PO
o = (M) EMgE, 5, = GVIVVD T (BT, B) BT, 7, 9)
where Mg =1— B(BTB)1BT and M, = I — 1, (thin) L4l

The first step of the three-pass procedure recovers the factors (up to a rotation: V — HV for some
unobserved invertible matrix H), by extracting the PCs of returns and selecting the first p of them. The
number of factors p to use is itself estimated, and we will show in the next section that our proposed
estimator is consistent for the true number of factors p. This estimator is based on a penalty function,
similar to the one Bai and Ng (2002) propose. However, it takes on a different form, because we will
work under weaker assumptions than Bai and Ng (2002). ppmax i an economically reasonable upper
bound for the number of factors, imposed only to improve the finite sample performance. It is not
needed in asymptotic analysis.’

Note that we propose to extract PCs from the T'xT matrix n~ T~ RTR, and normalize the estimated
factors such that VVT = I5. Alternatively, one could consider extracting PCs from the n x n matrix
n~'T~1RRT, and normalizing ETB = I5. The two ways of normalization yield identical risk premia
estimates, though the former estimator is easier to analyze when also estimating the zero-beta rate.

Once the PCs are extracted in the first stage, the second stage estimates their risk premia. Given
that the PCs capture a rotation of the true factors, their risk premia correspond to a rotation of the true
risk premia (H+). The estimation of risk premia in the second step can be done in different ways. We
suggest using an OLS regression for its simplicity. Either a generalized least squares (GLS) regression or
a weighted least squares (WLS) regression is possible, but either of the two would require estimating a
large number of parameters (e.g., the covariance matrix of u; in GLS or its diagonal elements in WLS).
As it turns out, these estimators will not improve the asymptotic efficiency of the OLS to the first order.
This is different from the standard large T" and fixed n case because in our setting the covariance matrix
of u; only matters at the order of O,(n~! +T71), whereas the leading term of 7, is Op(rfl/2 +T-1/2),

The third step is a new addition to the standard two-pass procedure. It is critical because it
translates the uninterpretable risk premia of latent factors to those of factors the economic theory
predicts. This step also removes the effect of measurement error, which the standard approaches cannot

accomplish. Even though g; can be multi-dimensional, the estimation for each observable factor is

50ther estimators for the number of factors could be applied instead, including but not limited to those proposed by
Onatski (2010) and Ahn and Horenstein (2013). However, these alternative estimators require stronger assumptions than
ours.
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separate. Estimating the risk premium for one factor does not affect the estimation for the others at
all, another important property of our estimator.

To sum up, our estimator uses PCA to recover factors v; up to a rotation H; it estimates their risk
premia (H+) in the second step; it estimates the loading of g; onto the rotated factors (nH ') in the
third step; finally, it combines the two to produce a consistent estimator for nH 1 Hvy = g, Where this

last equality is a consequence of the invariance result we derived above.

3.4 Alternative Interpretations

In Section 2 we have discussed how, in general, the two-pass regressions and the mimicking-portfolio
estimators tend to give different estimates, even when the model is correctly specified. As it turns out,
our three-pass estimator can be interpreted both as an extension of the two-pass regressions and as an
extension of the mimicking-portfolio estimator. In this section, we discuss how our estimator brings

together these two different approaches.

Two-pass regression interpretation.  The two-pass interpretation of our results derives directly
from the rotation-invariance of risk premia. To begin, suppose that we know the entire model, equations
(1) and (2). Also, suppose for simplicity that g; is only one factor (d = 1; the results extend to any d),
and there is no measurement error.

We now construct a specific rotation of this model in which the factor g; appears as the first of the
p factors, together with p — 1 additional “control” factors. To do so, construct a matrix H in which the
first row is 7, and the remaining p — 1 rows are arbitrary (with the only condition that the resulting H
is full rank). The factors of the rotated model are Huvy; since 7 is the first row of H, the first factor in
this rotation is nuy, which is just g; (see equation (2), and recall that we are assuming no measurement
error for now). Similarly, the risk premia of the rotated factors are H+~, and the risk premium of the
first factor, g, is 177y, again because the first row of H is .

Consider now applying a two-pass cross-sectional regression in this particular rotation, assuming
that all the rotated factors Hv; are observed. Given that the model is correctly specified, the two-pass
regression will recover all the risk premia H~: therefore, it will also recover 77y as the risk premium for
g¢. But this result holds for any matrix H where the first row is 7, independently of the other rows
of H. This implies that a two-pass estimation of a model where g; appears with p — 1 arbitrary linear
combinations of v; will deliver the correct estimate for the risk premium of g; independently of how the
remaining p — 1 “controls” are rotated. The only requirement is that H is invertible: that is, that g;
together with the controls spans the same space as the original factors v;.

Given this result, we can interpret our three-pass estimator as a factor-augmented cross-sectional
regression estimator. Step (i) uses PCA to extract a rotation of the original factors v;. Step (iii) removes
measurement error from g; and identifies 7: this tells us how to rotate the estimated model so that g;
appears as the first factor. We can then construct a rotated model with g; together with p — 1 PCs
as controls. Risk premia for this model are estimated via cross-sectional regressions (step (ii)), that
will then deliver a risk premium of 5y for g;. While this cross-sectional regression interpretation of

the estimator inverts the ordering of steps (ii) and (iii) of our procedure, it gives numerically identical
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results.

Mimicking-portfolio interpretation. Our three-pass procedure can be also interpreted as a
mimicking-portfolio estimator, in which the principal components themselves are the portfolios on which
g: is projected. This represents an optimal choice of portfolios that ensures that the estimator is con-
sistent.

Suppose that, out of the universe of test assets, we construct p portfolios on which we project g;.
We refer to w as the n x p matrix of portfolio weights that are used to construct these portfolios: so
7+ = wTry. In Section 2.2 we showed that in general the mimicking-portfolio estimator is not consistent,
unless the returns of the portfolios on which g is projected () satisfy particular requirements. In turn,
that means that w needs to be chosen carefully so that the mimicking-portfolio estimator that uses

these p portfolios,
't = St AT(E) T By + E5UET) T By (10)

actually converges to v, = n7.

We now derive a novel property of mimicking-portfolio estimators (not studied in the existing litera-
ture, to the best of our knowledge) that helps us choose w appropriately when the number of test assets
n is large. In particular, we prove in Proposition 1 of Appendix B.1 that the bias of the mimicking-
portfolio estimator (equation 10) disappears as n — 0o, as long as the portfolios on which to project g,
are constructed by choosing w equal to 8 or some full-rank rotation of it.

Intuitively, this choice of w is guaranteed to achieve asymptotically the two criteria highlighted
in Section 2.2: these portfolios manage to average out idiosyncratic errors, while maintaining their
exposure to the factors. The second part is important. Many portfolios can average out idiosyncratic
errors, but they might also average out exposures to certain factors, in which case the omitted variable
bias discussed in this paper would affect the estimates.

Our three-pass method corresponds exactly to a mimicking-portfolio estimator where the portfolios
onto which ¢, is projected are constructed using a particular choice for w: B (BTB)_I, that is, a full-rank
rotation of the estimated f. The resulting portfolio returns are exactly the PCs in step (i) of our
procedure, i.e., V = (BTB)*1 BTR. In addition, these portfolios are (when n is large) free of idiosyncratic
error. Step (iii) projects g; onto these portfolios, thus identifying the weights of the mimicking portfolio,
7. Our estimator of the risk premium of g; is then obtained by multiplying the portfolio weights 1 by
the risk premia of these portfolios (¥) obtained in Step (ii).

Interestingly, Proposition 1 also suggests that another valid choice of w would be the identity matrix.
Therefore, the mimicking-portfolio estimator would also be unbiased if the factor is projected onto the
entire universe of potential test assets r;, as opposed to a subset 7, again as long as n — oo. Intuitively,
when g; is projected onto a larger and larger set of test assets, the mimicking portfolio will diversify the
idiosyncratic errors while at the same time spanning the factor space, thus reducing the bias. However,
as n — oo, the mimicking-portfolio estimator becomes increasingly inefficient, as the number of right-
hand-side regressors increases; when n is larger than T', it actually becomes infeasible. Our three-pass

procedure can therefore be interpreted as a regularized mimicking-portfolio estimator that exploits the
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benefits in terms of bias reduction that occur when n — oo, but preserves feasibility and efficiency via

principal component regressions.

To sum up, in standard cases with fixed n, the two-pass cross-sectional regression and mimicking-
portfolio approaches tend to give different answers about the risk premium of a factor g;. Our three-pass
estimator represents the convergence of these two approaches that occurs when PCs are used to span

the space of a large number of test assets.

4 Asymptotic Theory

In this section, we present the large sample distribution of our estimator as n,T — oo. Our results
hold under the same or even weaker assumptions compared to those in Bai (2003). This is because our
goals are different. Our main target is 77, instead of the asymptotic distributions of factors and their

loadings.

4.1 Determining the Number of Factors

Theorem 1. Under Assumptions A.4 — A.7, and suppose that as n, T — oo, ¢(n,T) — 0, and
d(n, T)/(n~Y? + T~1/?) 5 0o, we have p = p.

By a simple conditioning argument, we can assume that p = p when developing the limiting dis-
tributions of the estimators, see Bai (2003). In the remainder of the section, we assume p = p. Even
though consistency cannot guarantee the recovery of the true number of factors in any finite sample,
our derivation in Section 4.5 shows that as long as p < p < K for some finite K, we can estimate the
parameters I' consistently.

A notable assumption behind is the so-called pervasive condition for a factor model, i.e., Assumption
A.6. It requires the factors to be sufficiently strong that most assets have non-negligible exposures.
This is a key identification condition, which dictates that the eigenvalues corresponding to the factor
components of the return covariance matrix grow rapidly at a rate n, so that as n increases they can be
separated from the idiosyncratic component whose eigenvalues grow at a lower rate. The pervasiveness
assumption precludes weak but priced latent factors. We defer a more detailed discussion of this to
Section 5.6.3.

4.2 Limiting Distribution of the Risk Premia Estimator

We now present the main theorem of the paper — the asymptotic distribution of the estimator 7,, which

naturally needs more assumptions reported in detail in Appendix A.

Theorem 2. Under Assumptions A./ — A.11, and suppose ﬁi> p, then as n, T — oo, we have

A—Hy=Ho+O0pn ' +T7Y, §—nH '=T'ZVTHT +Op(n~ ' +T71),
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for some matriz H that is invertible with probability approaching 1. Moreover, if TY?n=1 — 0,
1/2 (o L
T (g —my) —> N (0, @),
where ® is given by

o=y (@) ek) I () v el) + (77 () @ L) oy
+ nlla ((Ev)fl 7® ]Id) + nllaonT. (11)

Remarkably, the asymptotic covariance matrix does not depend on the covariance matrix of the
residual u; or the estimation error of 3. Their impact on the asymptotic variance is of higher orders.
Therefore, for the inference on the risk premium of g;, there is no need to estimate the large covariance
matrix of u;. This also implies that the usual GLS or WLS estimator would not improve the efficiency
of the OLS estimator to the first order.”

4.3 Allowing for Pricing Errors and Zero-beta Rate

Now we extend the above results to a more general setting, in which the zero-beta rate is unrestricted,
and in which mispricing is allowed for in the model. This case represents the most general setting in
which our estimator is consistent.

Suppose the cross-section of asset returns r; follows
re =+ Yo + By + B+ u, (12)

where the cross-sectional pricing error « is i.i.d., independent of 8, u and v, with mean 0, standard
deviation ¢ > 0, and a finite fourth moment.

There is a large body of literature on testing the APT by exploring the deviation of a from 0,
including Connor and Korajczyk (1988), Gibbons et al. (1989), MacKinlay and Richardson (1991), and
more recently, Pesaran and Yamagata (2012) and Fan et al. (2015). This is, however, not the focus
of this paper. Empirically, the pricing errors may exist for many reasons such as limits to arbitrage,
transaction costs, market inefficiency, and so on, so that it is important to allow for a misspecified
linear factor model. Gospodinov et al. (2014) and Kan et al. (2013) also consider this type of model
misspecification in their two-pass cross-sectional regression setting.

In this case, we employ the alternative estimator (9).

Theorem 3. Under Assumptions A.2, A.J — A.14, and suppose ﬁi> p, then as n, T — oo, we have

2 Go =) £ 7 (0, (1 (7)) (%)

(T7'0 +n27) 2 (5, — y) =5 N (0,1,),

"Indeed, we can show that our estimator is asymptotically equivalent to the infeasible GLS.

16



where the asymptotic covariance matrices ® is given by (11), and Y is defined by

T =(0°)n (27— oy)

Unlike the CLT in Theorem 2, the result of Theorem 3 does not impose any restrictions on the
relative rates of n and T'. Also, the above analysis assumes that the factor loading § is uncorrelated
with the pricing error «. In fact, if they are correlated, then our estimator would instead converge to
the “pseudo-true” parameter 7 (’y + plim,, , . (BTM,,, 3)~* BTa), which is difficult to interpret, see, e.g.,
Kan et al. (2013).

4.4 Goodness-of-Fit Measures

To measure the goodness-of-fit in the cross-section of expected returns, we define the usual (population)

cross-sectional R? for the latent factors in (12):

Rz — V(= BeB)y
Y (o) AT(EE = BoB )y

To measure the signal-to-noise ratio of each observable factor, we define the time-series R? for each

observable factor g (1 x T'), for the time-series regression of g; on the latent factors:

o =T :
Ry = ST+ 5 where 7 is a 1 X p vector.

To calculate these measures in sample, we use

so  FTM,, B(™™,, B) ' BTM,, 7 sy VYT
Ry = FTM,, 7 and Ry = "aar

respectively,
where G = g — g is a 1 x T vector. We can consistently estimate the cross-sectional R? for the latent
factors as well as the time-series R? for each observable factor.

Theorem 4. Under Assumptions A.2, and A./ — A.14, and suppose ﬁi> p, then as n, T — oo, we

have
52 P p2 52 P np2
R; — R; and Rg — Rg.

4.5 Robustness to the Choice of p

Although p is a consistent estimator of p, it is possible that in a finite sample p # p. In fact, without
a consistent estimator of p, as long as our choice, denoted by p, is greater than or equal to p, the

estimators based on p, denoted by %y and ,, are consistent, as the next theorem shows.

Theorem 5. Suppose Assumptions A.2, and A.4 — A.1j hold. In addition, assume that u; s i.i.d.
N (07 (0“)2]In), independent of z; and ve. If p>p and p < K asn/T — c € (0,00), then 5o and 7, are
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consistent estimators of vo and ny, and it holds that

Yo — o = Op(n_1/2)> Vg — %g = Op(n_l/Q)'

The above theorem establishes the desired robustness to the inclusion of “noise” factors.® While we
cannot establish its asymptotic distribution, simulation exercises suggest that the differences between

the asymptotic variances of 7, and 7, are tiny. This is also the case for our empirical study.

4.6 Asymptotic Variances Estimation

We develop consistent estimators of the asymptotic covariances in Theorem 8. The case for estimator

(8) in Theorem 2 is simpler. We can estimate them for inference on risk premia using:

~

® = (Wi”)‘1 ® Hd) I ((i”)—w ® Hd) + (ﬁT(iv)—l ® Hd) 1077 + Al ((iv)—lg ® Hd) 4 7illg7T,
~ _— ~ ~ ~\ —1
T =027 (7 - BoB]) ",

where ﬁn, ﬁlg, ﬁgg, are the HAC-type estimators of Newey and West (1987), defined as:

T
~ 1 N N
T4 =7 tz_; vec(z0] )vec(z0] )T
1 <& T m
+ > <1 - +1> (vec(Zim 0], )vec(Z0])T + vee(Z07 )vee(Zi—mUp_m)T)
m=1t=m+1 q
-1 g 1L & m
Mp = > vec(Z0] o] + T >y (1 - q+1> (vec(Zr—mBy_n)0F + vec(Z07)or_,,) »
t=1 m=1t=m+1
R T 1 q T m
Moo = vy + T Z Z <1 - q+1> (@_m@T + atﬁtT_m) )
=1 m=1t=m+1

and
7 =G — ﬁ‘A/, P = n—léTB, U= T_l\A/VT, B\g = n_lgTLn, ga —p! HF — (tn : BT
5= (Fm,B) " B, T =G,

with ¢ — oo, ¢(T-Y* +n=Y4) =0, as n, T — oo.

To prove the validity of these estimators, we need additional assumptions, because the estimands

are more complicated than the parameters we estimate.

Theorem 6. Under Assumptions A.2, and A.J — A.16, and suppose that p -2 p, then as n, T — oo,
n3T =0, (T V4+n V)50, &5 & and T 2 1.

8To prove this result, we need much stronger assumptions on u;. This is because the proof relies on the use of random
matrix theory to analyze the eigenvalues and eigenvectors of large sample covariance matrices. The i.i.d. assumption is
typically imposed in most scenarios.
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4.7 Testing the Strength of an Observed Factor

As discussed in the introduction, a recent literature has explored the potential biases associated with
the presence of weak factors (factors that are only weakly reflected in the cross-section of test assets).
Our methodology is in fact robust to the case in which observable factors g; are weak. In particular,
