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Abstract

Standard estimators of risk premia are biased if the estimation model omits some priced factors.

We propose a three-pass method to estimate the risk premia of observable factors in a linear asset

pricing model, which is valid even when not all factors in the model are specified and observed.

We show that the risk premium of a factor can be identified regardless of the rotation of the other

control factors, as long as they together span the true factor space. Motivated by this rotation

invariance result, our approach uses principal components of test assets to recover the factor space

and additional cross-sectional and time-series regressions to obtain the risk premium of each observed

factor. Our estimator is also equivalent to the average excess return of an appropriately-regularized

mimicking portfolio maximally correlated with the observed factor. Our methodology also accounts

for potential measurement error in the observed factors and detects when such factors are spurious or

even useless. The methodology exploits the blessings of dimensionality, and we therefore apply it to

a large panel of equity portfolios to estimate risk premia for several workhorse factors. The estimates

are robust to the choice of test portfolios within equities as well as across many asset classes.
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1 Introduction

One of the central predictions of asset pricing models is that some risk factors – for example, intermediary

capital or aggregate liquidity – should command a risk premium: investors should be compensated for

their exposure to those factors, holding constant their exposure to all other sources of risk.

Sometimes, this prediction is easy to test in the data: when the factor predicted by theory is itself

a portfolio (what we refer to as a tradable factor), the risk premium can be computed as the average

excess return of the factor. This is for example the case for the CAPM, where the theory-predicted

factor is the market portfolio.

Most theoretical models, however, predict that investors are concerned about nontradable risks:

risks that are not themselves portfolios, like consumption, inflation, liquidity, and so on. Estimating the

risk premium of a nontradable factor requires constructing a tradable portfolio that isolates that risk,

holding all other risks constant. While different estimators have been proposed to estimate risk premia

(most prominently, two-step cross-sectional regressions like Fama-MacBeth and mimicking-portfolio

projections), they are all affected by one common potential issue: omitted variable bias.

Omitted variable bias arises in standard risk premia estimators whenever the model used in the

estimation does not fully account for all priced sources of risk in the economy, and some of these

omitted risks are correlated with the factor of interest. This is a fundamental concern when testing

asset pricing theories, because theoretical models are usually very stylized and cannot possibly explicitly

account for all sources of risk in the economy.1 While the possibility of omitted variable bias is known

in the literature (see, for example, Jagannathan and Wang (1998)), no systematic solution has been

proposed so far; rather, this problem is typically addressed in ad-hoc ways that differ from paper to

paper. Papers using the two-pass cross-sectional regression approach typically add arbitrarily chosen

factors or characteristics as controls, like the Fama-French three factors; papers using the mimicking-

portfolio approach usually select a small set of portfolios (for example, portfolios sorted by size and

book-to-market) on which to project the factor of interest. There is, however, no theoretical guarantee

that the controls or the spanning portfolios are adequate to correct the omitted variable bias.

In this paper we propose a general solution for the omitted variable bias in linear factor models. We

introduce a new three-pass methodology that exploits the large dimensionality of available test assets

and a rotation invariance result to correctly recover the risk premium of any observable factor, even

when not all true risk factors are observed and included in the model.

The premise of our procedure is a simple but general rotation invariance result that holds for risk

premia in linear factor models. Suppose that returns follow a linear model with p factors and we wish

to determine the risk premium of one of them (call it gt). We show that the risk premium of gt is

invariant to how all other p−1 factors are rotated; the only requirement needed for correctly recovering

the risk premium of gt is that the model used in the estimation includes factors that, together with

gt, span the same space as the true factors in the model, no matter how they are rotated.2 Naturally,

1A symptom of this omission is the fact that the pricing ability of the models is often poor, when tested using only
the factors explicitly predicted by the theory. This suggests that other factors may be present in the data that are not
accounted for by the model.

2The invariance result we derive is distinct from similar results the literature has explored in the past (e.g., Roll and
Ross (1980), Huberman et al. (1987), Cochrane (2009)). This literature has explored the conditions under which rotations
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some other components of the model (for example, risk exposures with respect to all factors including

gt) are not invariant to the rotation, so they cannot be recovered unless all factors in the model are

specified. Needless to say, this rotation invariance result does not hold in a standard regression setting

for coefficient on any specific regressor.3

This invariance result implies that knowing the identities of all true p factors is not necessary to

estimate the risk premium of one of them (gt). As long as the entire factor space can be recovered, the

risk premium of gt can be identified even when the other factors are neither observed nor known. This

is because the factor space can be recovered from the test asset themselves. A natural way to recover

the factor space in this scenario is to extract principal components (PCs) of the test asset returns.

Our methodology therefore combines the rotation invariance result with principal component analysis

(PCA) to provide consistent estimates of the risk premium for any observed factor.

Our methodology proceeds in three steps. First, we use PCA to extract factors and their loadings

from a large panel of test asset returns, thus recovering the factor space. Second, we run a cross-sectional

regression using only the PCs (without the factor of interest gt) to find their risk premia. Third, we

estimate a time-series regression of gt onto the PCs, that uncovers the relation between gt and the latent

factors, and in addition removes potential measurement error from gt. The risk premium of gt is then

estimated as the product of the loadings of gt on the PCs (estimated in the third step) and their risk

premia (estimated in the second step). The invariance result discussed above is what guarantees that

the risk premium estimate for gt is consistent, regardless of the rotation of the true factors that occurs

when extracting PCs.

Our three-pass procedure can be interpreted in light of the two standard methods for risk premium

estimation. First, it can be viewed as a principal-component-augmented two-pass cross-sectional regres-

sion. Rather than selecting the control factors arbitrarily, the PCs of the test asset returns are used

as controls; these stand in for the omitted factors and, thanks to the rotation invariance result, fully

correct the omitted variable bias. Second, our procedure can be interpreted as a regularized version

of the mimicking-portfolio approach. The factor gt is projected onto the PCs of returns (the PCs are

themselves portfolios) rather than onto an arbitrarily chosen set of portfolios, which would lead to a bias,

or onto the entire set of test assets, which would be inefficient or even infeasible when the dimension of

the space of test assets is larger than the sample size.

The fact that our procedure can be interpreted equivalently as an extension of both methods is

particularly surprising because in standard settings (when the number of test assets is fixed) the two

estimators differ even in large samples, because the risk premium of a factor (in population) is not the

same as the expected excess return of its mimicking portfolio, unless the factor itself is tradable. The

former is a constant parameter that does not depend on the test assets, whereas the latter depends on

the the test assets onto which the factor of interest is projected. Our theoretical analysis, however, sheds

of a factor model retain the pricing ability of the original model. It has not, however, explored the invariance properties
for individual factors within the model. Indeed, our invariance result for the risk premium of an individual factor gt builds
on the existing results to show that a particular invariance property holds not only for the pricing ability of the entire
model, but for the risk premia of each individual factor as well. This additional step is crucial when trying to understand
the economic importance of a specific factor gt in the presence of omitted factors.

3For example, a regression of Y on two variables X and Z will yield a different coefficient for X than a regression on
X and (X + Z), despite the fact that the two variables X and (X + Z) span the same space as X and Z.
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light on the convergence of the two as the dimension of test assets increases. Our three-pass procedure

reveals the numerical equivalence in this scenario between the extensions of the two procedures, as long

as PCA is used to span the entire factor space and avoid the curse of dimensionality.

We apply our methodology to a large set of 202 equity portfolios, sorted by different characteristics.

We estimate and test the significance of the risk premia of tradable and non-tradable factors from

a number of different models. We show that the conclusions about the magnitude and significance

of the risk premia often depend dramatically on whether we account for omitted factors (using our

estimator) or ignore them (using standard methods). In contrast with the existing literature, we find a

risk premium of the market portfolio that is positive, significant, and close to the time-series average of

market excess returns, even when we allow for an unrestricted zero-beta rate following the Black (1972)

version of the CAPM. We also decompose the variance of each observed factor into the components

due to exposures to the latent factors, as well as the component due to measurement error. We find

that several macroeconomic factors are dominated by noise, and after correcting for it and for exposure

to unobservable factors, they command a risk premium of essentially zero. We do, however, find some

empirical support for the consumption growth of stockholders from Malloy et al. (2009), as well as for

factors related to financial frictions (like the liquidity factor of Pástor and Stambaugh (2003)).

We also show that our risk premia estimates remain similar when using 100 non-equity portfolios

(options, bonds, currencies, commodities) in addition to, or instead of, equity portfolios. We show that

once the unobservable factors that drive these different asset classes are accounted for, the risk premia

for many factors are quite consistent with those estimated just using the cross-section of equities. This

result suggests that indeed several common factors are priced in a consistent way across various asset

classes. This consistency is hard to detect without properly controlling for the unobservable factors to

which various groups of assets are exposed.

Our paper derives several important econometric properties of the estimator. We establish the

consistency and derive the asymptotic distribution when both the number of test portfolios n and the

number of observations T are large. Our asymptotic theory allows for heteroscedasticity and correla-

tion across both the time-series and the cross-sectional dimensions, while explicitly accounting for the

propagation of estimation errors through the multiple estimation steps.

Moreover, the increasing dimensionality simplifies the asymptotic variance of the risk-premium esti-

mates, for which we also provide an estimator. In addition, we construct a consistent estimator for the

number of latent factors, while also showing that even without it, the risk-premium estimates remain

consistent. Finally, a notable advantage of our procedure is that inference remains valid even when any

of the observable factors gt is spurious or even useless (that is, totally uncorrelated with asset returns).

In the paper, we also provide a test of the null that the observed factor gt is weak. Our methodology

therefore provides a novel approach to inference in the presence of weak observable factors.

1.1 Literature review

This paper sits at the confluence of several strands of literature, combining empirical asset pricing with

high-dimensional factor analysis.

Using two-pass regressions to estimate asset pricing models dates back to Black et al. (1972) and
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Fama and Macbeth (1973). Over the years, the econometric methodologies have been refined and

extended; see for example Ferson and Harvey (1991), Shanken (1992), Jagannathan and Wang (1998),

Welch (2008), and Lewellen et al. (2010). These papers, along with the majority of the literature, rely

on large T and fixed n asymptotic analysis for statistical inference and only deal with models where

all factors are specified and observable. Bai and Zhou (2015) and Gagliardini et al. (2016) extend the

inferential theory to the large n and large T setting, which delivers better small-sample performance

when n is large relative to T . Connor et al. (2012) use semiparametric methods to model time variation

in the risk exposures as function of observable characteristics, again allowing for large n and T . Our

asymptotic theory relies on a similar large n and large T analysis, yet we do not impose a fully specified

model.

Our paper relates to the literature that has pointed out pitfalls in estimating and testing linear

factor models. For instance, ignoring model misspecification and identification-failure leads to an overly

positive assessment of the pricing performance of spurious (Kleibergen (2009)) or even useless factors

(Kan and Zhang (1999a,b); Jagannathan and Wang (1998)), and biased risk premia estimates of true

factors in the model. It is therefore more reliable to use inference methods that are robust to model

misspecification (Shanken and Zhou (2007); Kan and Robotti (2008); Kleibergen (2009); Kan and

Robotti (2009); Kan et al. (2013); Gospodinov et al. (2013); Kleibergen and Zhan (2014); Gospodinov

et al. (2016); Bryzgalova (2015); Burnside (2016)). We study and correct the biases due to omitted

variables and measurement error. Gagliardini et al. (2017) propose a diagnostic criterion to detect

potentially omitted factors from the residuals of an observable factor model. Hou and Kimmel (2006)

argue that in the case of omitted factors, the definition of risk premia can be ambiguous. Relying

on a large number of test assets, our approach can provide consistent estimates of the risk premia

without ambiguity, and detect spurious and useless factors. Lewellen et al. (2010) highlight the danger

of focusing on a small cross section of assets with a strongly low-dimensional factor structure and suggest

increasing the number of assets used to test the model. We point to an additional reason to use a large

number of assets: to control properly for the missing factors in the two-pass cross-sectional regressions.

Our paper is also related to the literature that advocates the use of mimicking portfolios in factor

pricing models. Huberman et al. (1987) show that mimicking portfolios can be used in place of non-

tradable factors in asset pricing models and provide three choices of mimicking portfolios, one of which

is the maximally-correlated portfolio. Balduzzi and Robotti (2008) and more recently, Kleibergen and

Zhan (2018), estimate and test asset pricing models using mimicking portfolios as the factors. In the

empirical literature, the use of mimicking portfolios dates back at least to Breeden et al. (1989), who use

this approach to test the CCAPM model. Lamont (2001) also advocates the use of mimicking portfolios

to analyze other economic factors. Ang et al. (2006) and Adrian et al. (2014) construct aggregate

volatility and intermediary leverage factor-mimicking portfolios, respectively. One particular advantage

of mimicking portfolios is that such portfolios are available at higher frequencies or over longer time

spans than the original economic risk factors.

The literature on factor models has expanded dramatically since the seminal paper by Ross (1976)

on arbitrage pricing theory (APT). Chamberlain and Rothschild (1983) extend this framework to ap-

proximate factor models. Connor and Korajczyk (1986, 1988) and Lehmann and Modest (1988) tackle
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estimation and testing in the APT setting by extracting principal components of returns, without having

to specify the factors explicitly. More recently, Kozak et al. (2017) show how few principal components

capture a large fraction of the cross-section of expected returns, which we will also show in our data.

Overall, one of the downsides of latent factor models is precisely the difficulty in interpreting the esti-

mated risk premia. In our paper, we start from the same statistical intuition that we can use PCA to

extract latent factors, but exploit it to estimate (interpretable) risk premia for the observable factors.

Bai and Ng (2002) and Bai (2003) introduce asymptotic inferential theory on factor structures. In

addition, Bai and Ng (2006) propose a test for whether a set of observable factors spans the space of

factors present in a large panel of returns. In contrast, our paper exploits statistically the spanning of

the latent factors in time series, and their ability to explain the cross-sectional variation of expected

returns.

Section 2 discusses biases due to omitted variables and measurement error in the standard risk

premia estimators. Section 3 introduces our three-pass estimation procedure and discusses how it can be

interpreted as an extension of both the cross-sectional regression approach and the mimicking-portfolio

approach. Section 4 provides the asymptotic theory on inference with our estimator, followed by an

empirical study in Section 5. The appendix provides technical details and Monte Carlo simulations.

Throughout the paper, we use (A : B) to denote the concatenation (by columns) of two matrices A

and B. ei is a vector with 1 in the ith entry and 0 elsewhere, whose dimension depends on the context.

ιk denotes a k-dimensional vector with all entries being 1. For any time series of vectors {at}Tt=1, we

denote ā = 1
T

∑T
t=1 at. In addition, we write āt = at − ā. We use the capital letter A to denote the

matrix (a1 : a2 : . . . : aT ), and write Ā = A− āιᵀT correspondingly. We denote PA = A(AᵀA)−1Aᵀ and

MA = I− PA.

2 Biases in Standard Risk Premia Estimators

In this section we illustrate how the standard risk premia estimators – the two-pass regression approach

(like Fama-MacBeth) and the mimicking-portfolio approach – suffer from potential biases induced by

omitted factors and measurement error. For illustration purposes, we show these results in a simple

two-factor model, but all the results easily extend to more general specifications.

Suppose that vt = (v1t : v2t)
ᵀ is a vector of two potentially correlated factors. We assume that both

have been demeaned, so we interpret v1t and v2t as factor innovations.4 Assuming that the risk-free

rate is observed, we express the model in terms of excess returns:

rt = βγ + βvt + ut,

where ut is idiosyncratic risk, β = (β1 : β2) is a matrix of risk exposures, and γ = (γ1 : γ2)ᵀ is the vector

of risk premia for the two factors.

4As discussed in the introduction, the focus of this paper is on nontradable factors, for which the means have no direct
relevance for the factors’ risk premia. This is why we write the model directly in terms of factor innovations. Of course, if
the factors are instead tradable, the mean of the factor itself is the risk premium – in which case, the methods we discuss
here are still valid as an alternative estimator of the risk premium.

6



In what follows, we estimate the risk premium of a proxy for the first factor v1t, denoted as gt; its

risk premium is therefore γ1 in this simple setting. We begin with a review of the two estimators, then

consider two potential sources of bias that can affect each estimator.

2.1 A Review

Two-pass regressions estimate the factor risk premia as follows. First, time series regressions of each

test asset’s excess return rt onto the factors vt estimate the assets’ risk exposures, β1 and β2. Second,

a cross-sectional regression of average returns onto the estimated β1 and β2 yields the risk premia

estimators of γ1 and γ2.

The mimicking-portfolio approach instead estimates the risk premium of gt by projecting that factor

onto a set of tradable asset returns, therefore constructing a tradable portfolio that is maximally cor-

related with gt (which is why it is also referred to as the “maximally-correlated mimicking portfolio”).

The risk premium of gt is then estimated as the average excess return of its mimicking portfolio.

2.2 Omitted Variable Bias

Consider first estimating the risk premium of gt = v1t using a two-pass cross-sectional regression that

omits v2t. It is easy to see that this omission can induce a bias in each of the two steps of the procedure.

The time-series step yields a biased estimate of β1, as long as the omitted factor v2t is potentially

correlated with v1t (a standard omitted variable bias problem). The magnitude of this bias depends on

the time-series correlation of the factors. In the cross-sectional step of the procedure, a second omitted

variable bias occurs: rather than regressing average returns onto the estimated β, only part of it (β̂1)

would be used, since the factor v2t is omitted. The magnitude of this second bias depends on the

cross-sectional correlation of risk exposures, β1 and β2. Eventually, both biases (omission of v2t in the

first step and omission of β2 in the second step) affect the estimated risk premium for gt.

Whereas in the two-pass approach the bias stems from the omission of some factors (v2t in our

example) in the regressions of returns onto the factors, in the mimicking-portfolio approach a related

omitted-variable bias can arise from the omission of assets onto which gt is projected.

To see the potential for omitted variable bias, it is useful to write down explicitly the formula for

the mimicking-portfolio estimator. Consider the projection of gt onto the excess returns of a chosen

set of test assets, r̆t.
5 This projection yields coefficients wg = Var(r̆t)

−1Cov(r̆t, gt); these are the

weights of the mimicking portfolio for gt, whose excess return is then rgt = (wg)ᵀr̆t. Therefore, we

can write the expected excess return of the mimicking portfolio as: γMP
g = (wg)ᵀE(r̆t). Since the

test assets r̆t follow the same pricing model, we can write r̆t = β̆γ + β̆vt + ŭt. Substituting, we can

write the formula for the mimicking-portfolio estimator of the risk premium of the first factor as:

γMP
g =

{
(β̆Σvβ̆ᵀ + Σ̆u)−1(β̆Σve1)

}ᵀ
β̆γ, where e1 is a column vector (1 : 0)ᵀ, Σv is the covariance

matrix of the factors, and Σ̆u is the covariance matrix of the idiosyncratic risk of the assets used in the

projection.

5We deliberately use r̆t instead of rt, which we reserve for the universe of available test assets. The choice of assets for
projection could be the entire test assets rt or some portfolios of rt.
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The formula above shows that, in general, not all choices of the assets on which to project gt will

result in a consistent estimator of γ1; that is, it is not guaranteed that γMP
g = γ1. There is one case in

which the estimator will clearly be consistent: if the assets are chosen to be p portfolios that 1) are well

diversified (so that Σ̆u ≈ 0), and 2) fully span the true factors vt, so that β̆ is invertible and vt = β̆−1r̆t;

if both conditions hold, we indeed have γMP
g = γ1.

When these conditions are not satisfied, however, the mimicking-portfolio estimator will in general

be biased, in particular if the set of assets used in the projection omits some portfolios that help span all

risk factors in vt. The existing literature that has used the mimicking-portfolio approach has typically

ignored this bias. For example, when constructing a mimicking portfolio for consumption growth, Malloy

et al. (2009) project it onto four portfolios sorted by size and book to market. But naturally there are

other risks in the economy in addition to size and value, that may be correlated to consumption growth

and that may not be captured by those four portfolios. In that case, the estimator may be affected by

omitted variable bias.

2.3 Measurement Error Bias

Suppose now that the factor of interest may be observed with error; the econometrician can only observe

gt = v1t + zt, where zt is measurement error orthogonal to the factors, but potentially correlated with

ut.

Measurement error in gt adds another source of bias to these estimators. Consider first the two-pass

regression approach. Independently of whether v2t is observed or not, measurement error in gt will

induce an attenuation bias in the estimated β1 in the time-series regression (since the regressor gt is

measured with error). In turn, this first-stage bias affects the second-step estimate, leading to a biased

estimate of γ1.

Measurement error affects the mimicking portfolio as well. In the presence of measurement error

zt, the formula for γMP
g has an additional term: γMP

g =
{

(β̆Σvβ̆ᵀ + Σ̆u)−1(β̆Σve1 + Σ̆z,u)
}ᵀ
β̆γ 6= γ1,

where Σ̆z,u = Cov(zt, ŭt). Thus, measurement error zt introduces a bias in the mimicking-portfolio esti-

mator, unless idiosyncratic errors ŭt in the spanning assets are fully diversified away, or are completely

uncorrelated with idiosyncratic errors.

3 Methodology

In this section we present our three-pass estimator, which tackles both the omitted variable and mea-

surement error biases in estimating risk premia.

3.1 Model Setup

We begin by introducing our baseline specification. Suppose vt is a p × 1 vector of factor innovations

(i.e., mean-zero factors), and let rt denote an n × 1 vector of asset excess returns. The pricing model

satisfies:

rt = βγ + βvt + ut, E(vt) = E(ut) = 0, and Cov(ut, vt) = 0, (1)
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where ut is an n× 1 vector of idiosyncratic errors, β is an n× p factor loading matrix, and γ is a p× 1

risk premia vector.

A few notes on the model. First, the model assumes constant loadings and risk premia. These

assumptions are restrictive for individual stocks but applicable to characteristic-sorted portfolios, which

we will use in our empirical study. Our analysis is still applicable to certain conditional models that

allow for time-varying risk premia and risk exposures, by taking a stand on appropriate conditioning

information, e.g., characteristics or state variables, at the cost of greater statistical complexity. We

discuss such extensions in greater detail in Section 5.6.4. Second, we impose weak assumptions on the

structure of the errors. Most of our results hold for non-stationary processes with heteroscedasticity

and dependence in both the time series and the cross-sectional dimensions. For ease of presentation, we

defer the technical details to Appendix A. Third, this baseline model imposes that the zero-beta rate

is equal to the observed T-bill rate. Later, we will examine a more general version of the model which

allows the zero-beta rate to be different and to be estimated.

The objective of this paper is to estimate the risk premia of specific factors gt without necessarily

observing all true factors vt. In the simple two-factor model of the previous section, we assumed that

gt was a proxy of the first factor v1t. Here we introduce a more general specification for gt, that nests

this case and also allows for measurement error.

More specifically, call gt a set of d observable (tradable or nontradable) factors whose risk premia

we want to estimate. gt is related to the factors vt as follows:

gt = ξ + ηvt + zt, E(zt) = 0, and Cov(zt, vt) = 0, (2)

where η, the loading of g on v, is a d×p matrix, ξ is a d×1 constant, and zt is a d×1 measurement-error

vector. The risk premium of a factor gt is defined as the expected excess return of a portfolio with beta

of 1 with respect to gt and beta of 0 with respect to all other factors (including the unobservable ones),

and in this model it corresponds to γg = ηγ.

We also allow for measurement error in gt (captured by zt) because this is often plausible in practice.

For nontradable factors, which are the primary focus of this paper, there are often many choices the

researcher needs to make to construct the empirical counterpart of a theory-predicted factor. For

example, there are many ways to construct an “aggregate liquidity” factor in practice. The construction

of the empirical factor is likely to introduce some measurement error, which we allow in our specification.

For tradable factors, zt can capture exposure to unpriced risks, or idiosyncratic risk that is not fully

diversified. For this reason, we allow zt to be correlated with the idiosyncratic risk ut.

3.2 Rotation Invariance of Risk Premia

We now derive a simple rotation-invariance result that holds, generally, in linear asset pricing models,

which is the key to the identification of ηγ when not all factors are observed.

Recall that the risk premium of gt in our setup (equations (1) and (2)) is given by ηγ. We now

consider a rotation of the model where the entire model is expressed as a function of rotated factors

v̂t = Hvt instead of the original factors vt, with any full-rank p × p matrix H. To do so, rewrite the
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model as:

rt =βH−1Hγ + βH−1Hvt + ut,

gt =ξ + ηH−1Hvt + zt.

Defining v̂t ≡ Hvt, η̂ ≡ ηH−1 and β̂ ≡ βH−1, we can write the model entirely in terms of the rotated

factors v̂t:

rt =β̂γ̂ + β̂v̂t + ut, (3)

gt =ξ + η̂v̂t + zt. (4)

We say that a parameter or quantity in the model is rotation-invariant if it is identical in the original

model (equations (1) and (2)) or in any rotated model (equations (3) and (4)), for any invertible H.

Some parameters of this model are clearly not rotation invariant. For example, risk exposures of assets

to the factors are different between the two representations:

β̂ = βH−1 6= β.

In other words, if one estimates risk exposures β̂ from a rotation of the original model, one cannot

recover the original β without knowing the transformation H.

The main result that we will use in this paper is that the risk premium of gt, ηγ, is rotation invariant.

While neither η nor γ by itself is rotation invariant (because η̂ ≡ ηH−1 6= η and γ̂ ≡ Hγ 6=γ), their

product is indeed independent of the rotation H:

γg = ηγ = ηH−1Hγ = η̂γ̂.

This result guarantees that any consistent estimator of η̂γ̂, no matter how the underlying factors are

rotated, will consistently estimate the risk premium γg.

3.3 The Three-Pass Estimator

We now present our three-pass estimator. We start by writing the model in matrix form for notational

convenience. We denote R as the n× T matrix of excess returns, V the p× T matrix of factors, G the

d× T matrix of observable factors, U the n× T matrix of idiosyncratic errors and Z the d× T matrix

of measurement error. Our model (equations (1) and (2)) can then be written in matrix terms as

R = βγ + βV + U.

Writing (R̄, V̄ , Ḡ, Ū , Z̄) as the matrices of the demeaned variables, this equation then becomes:

R̄ = βV̄ + Ū . (5)
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Next, we write the equation for gt in matrix form. Given that for nontradable factors (like inflation or

liquidity) the mean of gt, ξ, does not have a meaningful interpretation or relevance for the purpose of

estimating the risk premium, we only need the demeaned version of equation (2):

Ḡ = ηV̄ + Z̄. (6)

Our estimator only makes use of excess returns R and the factors of interest G. We assume that

the true factors V are latent. The procedure exploits an important result from Bai and Ng (2002) and

Bai (2003), that guarantees that by applying PCA to the panel of observed return innovations R̄, we

can recover β and V̄ up to some invertible matrix H, as long as n, T → ∞. While H itself cannot be

recovered from the data, the invariance result guarantees that we can still consistently estimate γg.

The three-pass estimator. Given observable returns R and the factors of interest G, our estimator

γ̂g of γg ≡ ηγ proceeds as follows:

(i) PCA step. Extract the PCs of returns, by conducting the PCA of the matrix n−1T−1R̄ᵀR̄.

Define the estimator for the factors and their loadings as:

V̂ = T 1/2(ξ1 : ξ2 : . . . : ξp̂)
ᵀ, and β̂ = T−1R̄V̂ ᵀ, (7)

where ξ1, ξ2, . . . , ξp̂ are the eigenvectors corresponding to the largest p̂ eigenvalues of the matrix

n−1T−1R̄ᵀR̄. p̂ is an estimator of the number of factors; we propose using the following estimator:

p̂ = arg min
1≤j≤pmax

(
n−1T−1λj(R̄

ᵀR̄) + j × φ(n, T )
)
− 1,

where pmax is some upper bound of p and φ(n, T ) is some penalty function.

(ii) Cross-sectional regression step. Run a cross-sectional ordinary least square (OLS) regression

of average returns, r̄, onto the estimated factor loadings β̂ to obtain the risk premia of the estimated

latent factors:

γ̂ = (β̂ᵀβ̂)−1β̂ᵀr̄.

(iii) Time-series regression step. Run a time-series regression of gt onto the factors extracted from

the PCA in step (i), and then obtain the estimator η̂ and the fitted value of the observable factor

after removing measurement error, Ĝ:

η̂ = ḠV̂ ᵀ(V̂ V̂ ᵀ)−1, and Ĝ = η̂V̂ .

The estimator of the risk premium for the observable factor gt is then obtained by combining the

estimates of the second and third steps:

γ̂g = η̂γ̂.

11



Our three-pass estimator also has a more compact form:

γ̂g = ḠV̂ ᵀ(V̂ V̂ ᵀ)−1(β̂ᵀβ̂)−1β̂ᵀr̄. (8)

The estimator can be easily extended to the case in which the zero-beta rate is allowed to be different

from the observed risk-free rate. In that case, returns can be written as: rt = γ0ιn + βγ + βvt + ut, and

step (ii) of the procedure can be modified to yield an estimate for γg together with the zero-beta rate

γ0. In compact forms, the estimators are given by

γ̂0 =
(
ιᵀnMβ̂

ιn

)−1
ιᵀnMβ̂

r̄, γ̃g = ḠV̂ ᵀ(V̂ V̂ ᵀ)−1
(
β̂ᵀMιn β̂

)−1
β̂ᵀMιn r̄, (9)

where M
β̂

= I− β̂(β̂ᵀβ̂)−1β̂ᵀ and Mιn = I− ιn(ιᵀnιn)−1ιᵀn.

The first step of the three-pass procedure recovers the factors (up to a rotation: V̂ → HV̄ for some

unobserved invertible matrix H), by extracting the PCs of returns and selecting the first p̂ of them. The

number of factors p̂ to use is itself estimated, and we will show in the next section that our proposed

estimator is consistent for the true number of factors p. This estimator is based on a penalty function,

similar to the one Bai and Ng (2002) propose. However, it takes on a different form, because we will

work under weaker assumptions than Bai and Ng (2002). pmax is an economically reasonable upper

bound for the number of factors, imposed only to improve the finite sample performance. It is not

needed in asymptotic analysis.6

Note that we propose to extract PCs from the T×T matrix n−1T−1R̄ᵀR̄, and normalize the estimated

factors such that V̂ V̂ ᵀ = Ip̂. Alternatively, one could consider extracting PCs from the n × n matrix

n−1T−1R̄R̄ᵀ, and normalizing β̂ᵀβ̂ = Ip̂. The two ways of normalization yield identical risk premia

estimates, though the former estimator is easier to analyze when also estimating the zero-beta rate.

Once the PCs are extracted in the first stage, the second stage estimates their risk premia. Given

that the PCs capture a rotation of the true factors, their risk premia correspond to a rotation of the true

risk premia (Hγ). The estimation of risk premia in the second step can be done in different ways. We

suggest using an OLS regression for its simplicity. Either a generalized least squares (GLS) regression or

a weighted least squares (WLS) regression is possible, but either of the two would require estimating a

large number of parameters (e.g., the covariance matrix of ut in GLS or its diagonal elements in WLS).

As it turns out, these estimators will not improve the asymptotic efficiency of the OLS to the first order.

This is different from the standard large T and fixed n case because in our setting the covariance matrix

of ut only matters at the order of Op(n
−1 + T−1), whereas the leading term of γ̂g is Op(n

−1/2 + T−1/2).

The third step is a new addition to the standard two-pass procedure. It is critical because it

translates the uninterpretable risk premia of latent factors to those of factors the economic theory

predicts. This step also removes the effect of measurement error, which the standard approaches cannot

accomplish. Even though gt can be multi-dimensional, the estimation for each observable factor is

6Other estimators for the number of factors could be applied instead, including but not limited to those proposed by
Onatski (2010) and Ahn and Horenstein (2013). However, these alternative estimators require stronger assumptions than
ours.
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separate. Estimating the risk premium for one factor does not affect the estimation for the others at

all, another important property of our estimator.

To sum up, our estimator uses PCA to recover factors vt up to a rotation H; it estimates their risk

premia (Hγ) in the second step; it estimates the loading of gt onto the rotated factors (ηH−1) in the

third step; finally, it combines the two to produce a consistent estimator for ηH−1Hγ = γg, where this

last equality is a consequence of the invariance result we derived above.

3.4 Alternative Interpretations

In Section 2 we have discussed how, in general, the two-pass regressions and the mimicking-portfolio

estimators tend to give different estimates, even when the model is correctly specified. As it turns out,

our three-pass estimator can be interpreted both as an extension of the two-pass regressions and as an

extension of the mimicking-portfolio estimator. In this section, we discuss how our estimator brings

together these two different approaches.

Two-pass regression interpretation. The two-pass interpretation of our results derives directly

from the rotation-invariance of risk premia. To begin, suppose that we know the entire model, equations

(1) and (2). Also, suppose for simplicity that gt is only one factor (d = 1; the results extend to any d),

and there is no measurement error.

We now construct a specific rotation of this model in which the factor gt appears as the first of the

p factors, together with p− 1 additional “control” factors. To do so, construct a matrix H in which the

first row is η, and the remaining p− 1 rows are arbitrary (with the only condition that the resulting H

is full rank). The factors of the rotated model are Hvt; since η is the first row of H, the first factor in

this rotation is ηvt, which is just gt (see equation (2), and recall that we are assuming no measurement

error for now). Similarly, the risk premia of the rotated factors are Hγ, and the risk premium of the

first factor, gt, is ηγ, again because the first row of H is η.

Consider now applying a two-pass cross-sectional regression in this particular rotation, assuming

that all the rotated factors Hvt are observed. Given that the model is correctly specified, the two-pass

regression will recover all the risk premia Hγ: therefore, it will also recover ηγ as the risk premium for

gt. But this result holds for any matrix H where the first row is η, independently of the other rows

of H. This implies that a two-pass estimation of a model where gt appears with p− 1 arbitrary linear

combinations of vt will deliver the correct estimate for the risk premium of gt independently of how the

remaining p − 1 “controls” are rotated. The only requirement is that H is invertible: that is, that gt

together with the controls spans the same space as the original factors vt.

Given this result, we can interpret our three-pass estimator as a factor-augmented cross-sectional

regression estimator. Step (i) uses PCA to extract a rotation of the original factors vt. Step (iii) removes

measurement error from gt and identifies η̂: this tells us how to rotate the estimated model so that gt

appears as the first factor. We can then construct a rotated model with gt together with p − 1 PCs

as controls. Risk premia for this model are estimated via cross-sectional regressions (step (ii)), that

will then deliver a risk premium of ηγ for gt. While this cross-sectional regression interpretation of

the estimator inverts the ordering of steps (ii) and (iii) of our procedure, it gives numerically identical
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results.

Mimicking-portfolio interpretation. Our three-pass procedure can be also interpreted as a

mimicking-portfolio estimator, in which the principal components themselves are the portfolios on which

gt is projected. This represents an optimal choice of portfolios that ensures that the estimator is con-

sistent.

Suppose that, out of the universe of test assets, we construct p̆ portfolios on which we project gt.

We refer to w as the n × p̆ matrix of portfolio weights that are used to construct these portfolios: so

r̆t = wᵀrt. In Section 2.2 we showed that in general the mimicking-portfolio estimator is not consistent,

unless the returns of the portfolios on which gt is projected (r̆t) satisfy particular requirements. In turn,

that means that w needs to be chosen carefully so that the mimicking-portfolio estimator that uses

these p̆ portfolios,

γMP
g = ηΣvβ̆ᵀ(Σ̆r)−1β̆γ + Σ̆z,u(Σ̆r)−1β̆γ (10)

actually converges to γg = ηγ.

We now derive a novel property of mimicking-portfolio estimators (not studied in the existing litera-

ture, to the best of our knowledge) that helps us choose w appropriately when the number of test assets

n is large. In particular, we prove in Proposition 1 of Appendix B.1 that the bias of the mimicking-

portfolio estimator (equation 10) disappears as n→∞, as long as the portfolios on which to project gt

are constructed by choosing w equal to β or some full-rank rotation of it.

Intuitively, this choice of w is guaranteed to achieve asymptotically the two criteria highlighted

in Section 2.2: these portfolios manage to average out idiosyncratic errors, while maintaining their

exposure to the factors. The second part is important. Many portfolios can average out idiosyncratic

errors, but they might also average out exposures to certain factors, in which case the omitted variable

bias discussed in this paper would affect the estimates.

Our three-pass method corresponds exactly to a mimicking-portfolio estimator where the portfolios

onto which gt is projected are constructed using a particular choice for w: β̂(β̂ᵀβ̂)−1, that is, a full-rank

rotation of the estimated β. The resulting portfolio returns are exactly the PCs in step (i) of our

procedure, i.e., V̂ = (β̂ᵀβ̂)−1β̂ᵀR̄. In addition, these portfolios are (when n is large) free of idiosyncratic

error. Step (iii) projects gt onto these portfolios, thus identifying the weights of the mimicking portfolio,

η̂. Our estimator of the risk premium of gt is then obtained by multiplying the portfolio weights η̂ by

the risk premia of these portfolios (γ̂) obtained in Step (ii).

Interestingly, Proposition 1 also suggests that another valid choice of w would be the identity matrix.

Therefore, the mimicking-portfolio estimator would also be unbiased if the factor is projected onto the

entire universe of potential test assets rt, as opposed to a subset r̆t, again as long as n→∞. Intuitively,

when gt is projected onto a larger and larger set of test assets, the mimicking portfolio will diversify the

idiosyncratic errors while at the same time spanning the factor space, thus reducing the bias. However,

as n → ∞, the mimicking-portfolio estimator becomes increasingly inefficient, as the number of right-

hand-side regressors increases; when n is larger than T , it actually becomes infeasible. Our three-pass

procedure can therefore be interpreted as a regularized mimicking-portfolio estimator that exploits the
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benefits in terms of bias reduction that occur when n→∞, but preserves feasibility and efficiency via

principal component regressions.

To sum up, in standard cases with fixed n, the two-pass cross-sectional regression and mimicking-

portfolio approaches tend to give different answers about the risk premium of a factor gt. Our three-pass

estimator represents the convergence of these two approaches that occurs when PCs are used to span

the space of a large number of test assets.

4 Asymptotic Theory

In this section, we present the large sample distribution of our estimator as n, T → ∞. Our results

hold under the same or even weaker assumptions compared to those in Bai (2003). This is because our

goals are different. Our main target is ηγ, instead of the asymptotic distributions of factors and their

loadings.

4.1 Determining the Number of Factors

Theorem 1. Under Assumptions A.4 – A.7, and suppose that as n, T → ∞, φ(n, T ) → 0, and

φ(n, T )/(n−1/2 + T−1/2)→∞, we have p̂
p−→ p.

By a simple conditioning argument, we can assume that p̂ = p when developing the limiting dis-

tributions of the estimators, see Bai (2003). In the remainder of the section, we assume p̂ = p. Even

though consistency cannot guarantee the recovery of the true number of factors in any finite sample,

our derivation in Section 4.5 shows that as long as p ≤ p̂ ≤ K for some finite K, we can estimate the

parameters Γ consistently.

A notable assumption behind is the so-called pervasive condition for a factor model, i.e., Assumption

A.6. It requires the factors to be sufficiently strong that most assets have non-negligible exposures.

This is a key identification condition, which dictates that the eigenvalues corresponding to the factor

components of the return covariance matrix grow rapidly at a rate n, so that as n increases they can be

separated from the idiosyncratic component whose eigenvalues grow at a lower rate. The pervasiveness

assumption precludes weak but priced latent factors. We defer a more detailed discussion of this to

Section 5.6.3.

4.2 Limiting Distribution of the Risk Premia Estimator

We now present the main theorem of the paper – the asymptotic distribution of the estimator γ̂g, which

naturally needs more assumptions reported in detail in Appendix A.

Theorem 2. Under Assumptions A.4 – A.11, and suppose p̂
p−→ p, then as n, T →∞, we have

γ̂ −Hγ = Hv̄ +Op(n
−1 + T−1), η̂ − ηH−1 = T−1Z̄V̄ ᵀHᵀ +Op(n

−1 + T−1),
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for some matrix H that is invertible with probability approaching 1. Moreover, if T 1/2n−1 → 0,

T 1/2 (γ̂g − ηγ)
L−→ N (0,Φ) ,

where Φ is given by

Φ =
(
γᵀ (Σv)−1 ⊗ Id

)
Π11

(
(Σv)−1 γ ⊗ Id

)
+
(
γᵀ (Σv)−1 ⊗ Id

)
Π12η

ᵀ

+ ηΠ21

(
(Σv)−1 γ ⊗ Id

)
+ ηΠ22η

ᵀ. (11)

Remarkably, the asymptotic covariance matrix does not depend on the covariance matrix of the

residual ut or the estimation error of β. Their impact on the asymptotic variance is of higher orders.

Therefore, for the inference on the risk premium of gt, there is no need to estimate the large covariance

matrix of ut. This also implies that the usual GLS or WLS estimator would not improve the efficiency

of the OLS estimator to the first order.7

4.3 Allowing for Pricing Errors and Zero-beta Rate

Now we extend the above results to a more general setting, in which the zero-beta rate is unrestricted,

and in which mispricing is allowed for in the model. This case represents the most general setting in

which our estimator is consistent.

Suppose the cross-section of asset returns rt follows

rt = α+ ιnγ0 + βγ + βvt + ut, (12)

where the cross-sectional pricing error α is i.i.d., independent of β, u and v, with mean 0, standard

deviation σα > 0, and a finite fourth moment.

There is a large body of literature on testing the APT by exploring the deviation of α from 0,

including Connor and Korajczyk (1988), Gibbons et al. (1989), MacKinlay and Richardson (1991), and

more recently, Pesaran and Yamagata (2012) and Fan et al. (2015). This is, however, not the focus

of this paper. Empirically, the pricing errors may exist for many reasons such as limits to arbitrage,

transaction costs, market inefficiency, and so on, so that it is important to allow for a misspecified

linear factor model. Gospodinov et al. (2014) and Kan et al. (2013) also consider this type of model

misspecification in their two-pass cross-sectional regression setting.

In this case, we employ the alternative estimator (9).

Theorem 3. Under Assumptions A.2, A.4 – A.14, and suppose p̂
p−→ p, then as n, T →∞, we have

n1/2 (γ̂0 − γ0)
L−→ N

(
0,
(

1− βᵀ0(Σβ)−1β0

)−1
(σα)2

)
,(

T−1Φ + n−1Υ
)−1/2

(γ̃g − ηγ)
L−→ N (0, Id) ,

7Indeed, we can show that our estimator is asymptotically equivalent to the infeasible GLS.
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where the asymptotic covariance matrices Φ is given by (11), and Υ is defined by

Υ =(σα)2η
(

Σβ − β0β
ᵀ
0

)−1
ηᵀ.

Unlike the CLT in Theorem 2, the result of Theorem 3 does not impose any restrictions on the

relative rates of n and T . Also, the above analysis assumes that the factor loading β is uncorrelated

with the pricing error α. In fact, if they are correlated, then our estimator would instead converge to

the “pseudo-true” parameter η
(
γ + plimn→∞(βᵀMιnβ)−1βᵀα

)
, which is difficult to interpret, see, e.g.,

Kan et al. (2013).

4.4 Goodness-of-Fit Measures

To measure the goodness-of-fit in the cross-section of expected returns, we define the usual (population)

cross-sectional R2 for the latent factors in (12):

R2
v =

γᵀ(Σβ − β0β
ᵀ
0)γ

(σα)2 + γᵀ(Σβ − β0β
ᵀ
0)γ

.

To measure the signal-to-noise ratio of each observable factor, we define the time-series R2 for each

observable factor g (1× T ), for the time-series regression of gt on the latent factors:

R2
g =

ηΣvηᵀ

ηΣvηᵀ + Σz
, where η is a 1× p vector.

To calculate these measures in sample, we use

R̂2
v =

r̄ᵀMιn β̂(β̂ᵀMιn β̂)−1β̂ᵀMιn r̄

r̄ᵀMιn r̄
and R̂2

g =
η̂V̂ V̂ ᵀη̂ᵀ

ḠḠᵀ
, respectively,

where Ḡ = g − ḡ is a 1 × T vector. We can consistently estimate the cross-sectional R2 for the latent

factors as well as the time-series R2 for each observable factor.

Theorem 4. Under Assumptions A.2, and A.4 – A.14, and suppose p̂
p−→ p, then as n, T → ∞, we

have

R̂2
v

p−→ R2
v and R̂2

g
p−→ R2

g.

4.5 Robustness to the Choice of p

Although p̂ is a consistent estimator of p, it is possible that in a finite sample p̂ 6= p. In fact, without

a consistent estimator of p̂, as long as our choice, denoted by p̆, is greater than or equal to p, the

estimators based on p̆, denoted by γ̆0 and γ̆g, are consistent, as the next theorem shows.

Theorem 5. Suppose Assumptions A.2, and A.4 – A.14 hold. In addition, assume that ut is i.i.d.

N
(
0, (σu)2In

)
, independent of zt and vt. If p̆ ≥ p and p̆ ≤ K as n/T → c ∈ (0,∞), then γ̆0 and γ̆g are
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consistent estimators of γ0 and ηγ, and it holds that

γ̆0 − γ̂0 = Op(n
−1/2), γ̆g − γ̃g = Op(n

−1/2).

The above theorem establishes the desired robustness to the inclusion of “noise” factors.8 While we

cannot establish its asymptotic distribution, simulation exercises suggest that the differences between

the asymptotic variances of γ̆g and γ̃g are tiny. This is also the case for our empirical study.

4.6 Asymptotic Variances Estimation

We develop consistent estimators of the asymptotic covariances in Theorem 8. The case for estimator

(8) in Theorem 2 is simpler. We can estimate them for inference on risk premia using:

Φ̂ =
(
γ̃ᵀ(Σ̂v)−1 ⊗ Id

)
Π̂11

(
(Σ̂v)−1γ̃ ⊗ Id

)
+
(
γ̃ᵀ(Σ̂v)−1 ⊗ Id

)
Π̂12η̂

ᵀ + η̂Π̂21

(
(Σ̂v)−1γ̃ ⊗ Id

)
+ η̂Π̂22η̂

ᵀ,

Υ̂ =σ̂α
2
η̂
(

Σ̂β − β̂0β̂
ᵀ
0

)−1
η̂ᵀ,

where Π̂11, Π̂12, Π̂22, are the HAC-type estimators of Newey and West (1987), defined as:

Π̂11 =
1

T

T∑
t=1

vec(ẑtv̂
ᵀ
t )vec(ẑtv̂

ᵀ
t )ᵀ

+
1

T

q∑
m=1

T∑
t=m+1

(
1− m

q + 1

)(
vec(ẑt−mv̂

ᵀ
t−m)vec(ẑtv̂

ᵀ
t )ᵀ + vec(ẑtv̂

ᵀ
t )vec(ẑt−mv̂

ᵀ
t−m)ᵀ

)
,

Π̂12 =
1

T

T∑
t=1

vec(ẑtv̂
ᵀ
t )v̂ᵀt +

1

T

q∑
m=1

T∑
t=m+1

(
1− m

q + 1

)(
vec(ẑt−mv̂

ᵀ
t−m)v̂ᵀt + vec(ẑtv̂

ᵀ
t )v̂ᵀt−m

)
,

Π̂22 =
1

T

T∑
t=1

v̂tv̂
ᵀ
t +

1

T

q∑
m=1

T∑
t=m+1

(
1− m

q + 1

)(
v̂t−mv̂

ᵀ
t + v̂tv̂

ᵀ
t−m

)
,

and

Ẑ =Ḡ− η̂V̂ , Σ̂β = n−1β̂ᵀβ̂, Σ̂v = T−1V̂ V̂ ᵀ, β̂0 = n−1β̂ᵀιn, σ̂α
2

= n−1
∥∥∥r̄ − (ιn : β̂)Γ̃

∥∥∥2

F
,

γ̃ =
(
β̂ᵀMιn β̂

)−1
β̂ᵀMιn r̄, Γ̃ = (γ̂0 : γ̃ᵀ)ᵀ,

with q →∞, q(T−1/4 + n−1/4)→ 0, as n, T →∞.

To prove the validity of these estimators, we need additional assumptions, because the estimands

are more complicated than the parameters we estimate.

Theorem 6. Under Assumptions A.2, and A.4 – A.16, and suppose that p̂
p−→ p, then as n, T →∞,

n−3T → 0, q(T−1/4 + n−1/4)→ 0, Φ̂
p−→ Φ and Υ̂

p−→ Υ.

8To prove this result, we need much stronger assumptions on ut. This is because the proof relies on the use of random
matrix theory to analyze the eigenvalues and eigenvectors of large sample covariance matrices. The i.i.d. assumption is
typically imposed in most scenarios.
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4.7 Testing the Strength of an Observed Factor

As discussed in the introduction, a recent literature has explored the potential biases associated with

the presence of weak factors (factors that are only weakly reflected in the cross-section of test assets).

Our methodology is in fact robust to the case in which observable factors gt are weak. In particular,

whether gt is strong or weak can be captured by the signal-to-noise ratio of its relationship with the

underlying factors vt (from equation (2)). If either η = 0 (gt is not a priced factor) or the factor is very

noisy (measurement error zt dominates the gt variation) then gt will be weak, and returns exposures to

gt will be small.

Our procedure estimates equation (2) in the third pass and is therefore able to detect whether an

observable proxy gt has zero or low exposures to the fundamental factors (η is small) or whether it is

noisy (zt is large), and corrects for it when estimating the risk premium. The R2 of that regression

reveals how noisy g is, which, as we report in our empirical analysis, varies substantially across factor

proxies. In this section, we provide a Wald test for the null hypothesis that a factor g is weak.

Without loss of generality, it is sufficient to consider the d = 1 case. To do so, we formulate the

hypotheses H0 : η = 0 vs H1 : η 6= 0, and construct a Wald Test. Our test statistic is given by

Ŵ = T η̂
(

Σ̂−1
v Π̂11Σ̂−1

v

)−1
η̂ᵀ,

where Π̂11 and Σ̂v are constructed in Section 4.6.

The next theorem establishes the desired size control and the consistency of the test.

Theorem 7. Suppose d = 1 and p̂
p−→ p. Under Assumptions A.2, and A.4 – A.16, and as n, T →∞,

n−2T → 0, q(T−1/4 + n−1/4)→ 0, we have

lim
n,T→∞

P
(
Ŵ > χ2

p̂(1− α0)|H0

)
= α0, and lim

n,T→∞
P
(
Ŵ > χ2

p̂(1− α0)|H1

)
= 1,

where χ2
p̂(1− α0) is the (1− α0)-quantile of the chi-squared distribution with p̂ degree of freedom.

Our assumptions that the latent factors are pervasive, while observable factors can potentially be

weak, are not in conflict with existing empirical evidence. It is known from the literature (e.g., Bernanke

and Kuttner (2005) and Lucca and Moench (2015)) that the stock market and the bond market strongly

react to Federal Reserve and Government policies and that macroeconomic risks affect equity premia;

fundamental macroeconomic shocks seem to be pervasive. At the same time, we do not observe all

fundamental economic shocks directly, and have instead to rely on observable proxies; these are well

known to be weak in some cases, like for example industrial production (see for example Gospodinov

et al. (2014) and Bryzgalova (2015)).

5 Empirical Analysis

In this section we apply our three-pass methodology to the data. We estimate the risk premia of several

factors, both traded and not traded, and show how our results differ from those obtained using standard

two-pass cross-sectional regressions and mimicking portfolios.
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5.1 Data

We conduct our empirical analysis on a large set of standard portfolios of U.S. equities, testing several

asset pricing models that have focused on risk premia in equity markets. We target U.S. equities

because of their better data quality and because they are available for a long time period. However,

our methodology could be applied to any country or asset class.

We include in our analysis 202 portfolios: 25 portfolios sorted by size and book-to-market ratio, 17

industry portfolios, 25 portfolios sorted by operating profitability and investment, 25 portfolios sorted

by size and variance, 35 portfolios sorted by size and net issuance, 25 portfolios sorted by size and

accruals, 25 portfolios sorted by size and beta, and 25 portfolio sorted by size and momentum. This set

of portfolios captures a vast cross section of anomalies and exposures to different factors; at the same

time, they are easily available on Kenneth French’s website, and therefore represent a natural starting

point to illustrate our methodology.9

Although some of these portfolio returns have been available since 1926, we conduct most of our

analysis on the period from July of 1963 to December of 2015 (630 months), for which all of the returns

are available. We perform the analysis at the monthly frequency, and work with factors that are available

at the monthly frequency.

Although the asset-pricing literature has proposed an extremely large number of factors (McLean

and Pontiff (2015); Harvey et al. (2016)), we focus here on a few representative ones. Recall that

the observable factors gt in the three-pass methodology can be either an individual factor or groups

of factors. We consider here both cases to illustrate the methodology; importantly, the risk premia

estimates for any factors using our three-pass methodology do not depend on whether other factors are

included in gt (though this does matter for the two-pass cross-sectional estimator). Here is a list of

models and corresponding observable factors gt we include in our analysis:10

1. Capital Asset Pricing Model (CAPM ): the value-weighted market return, constructed from the

Center for Research in Security Prices (CRSP) for all stocks listed on the NYSE, AMEX, or

NASDAQ.

2. Fama-French three factors (FF3 ): in addition to the market return, the model includes SMB

(size) and HML (value).

3. Carhart’s four-factor model (FF4 ) that adds a momentum factor (MOM) to FF3.

4. Fama-French five-factor model (FF5 ), from Fama and French (2015). The model adds to FF3

RMW (operating profitability) and CMA (investment).11

5. Betting-against-beta factor (BAB) from Frazzini and Pedersen (2014).

9See the description of all portfolio construction on Kenneth French’s website: http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html.
10Factor time series for models 1-4 are obtained from Kenneth French’s website; for models 5-6, from AQR’s website;

for model 7, from the Federal Reserve Bank of St. Louis; for model 8, from Sydney Ludvigson’s website; for model 9,
from Lubos Pastor’s website; for model 10, from Bryan Kelly’s website; for model 11, from the various sources indicated
in Novy-Marx (2014); for model 12, from Toby Moskowitz’s website.

11We have also explored the four-factor model of Hou et al. (2015), which includes the market return, ME (size), IA
(investment), ROE (profitability). Results are qualitatively and quantitatively similar to the FF5.

20

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


6. Quality-minus-junk factor (QMJ ) from Asness et al. (2013).

7. Industrial production growth (IP). Industrial production is a macroeconomic factor available for

the entire sample period at the monthly frequency. We use AR(1) innovations as the factor.

8. The first three principal components of 279 macro-finance variables constructed by Ludvigson and

Ng (2009) (LN ), also available at the monthly frequency. We estimate a VAR(1) with those three

principal components, and use innovations as factors.

9. The liquidity factor from Pástor and Stambaugh (2003).

10. Two intermediary capital factors, one from He et al. (2016) and one from Adrian et al. (2014).

11. Four factors from Novy-Marx (2014): high monthly temperature in Manhattan, global land sur-

face temperature anomaly, quasiperiodic Pacific Ocean temperature anomaly (El Niño), and the

number of sunspots.12

12. Two consumption-based factors from Malloy et al. (2009). They include both an aggregate con-

sumption series and a stockholder’s consumption series.

5.2 Factors from the Large Panel of Returns

The first step for estimating the observable factor risk premia is to determine the dimension of the

latent factor model, p. Figure 1 (left panel) reports the first eight eigenvalues of the covariance matrix

of returns for our panel of 202 portfolios. As typical for large panels, the first eigenvalue tends to be

much larger than the others, so on the right panel we plot the eigenvalues excluding the first one. We

observe a noticeable decrease in the eigenvalues up to four factors, suggesting p̆ = 4. This is also the

number suggested by our estimator. As discussed in Section 4, our analysis is consistent as long as the

number of factors p̆ is at least as large as the true dimension p; to show the robustness of our results,

we report the estimates separately using four, five, and six factors. The analysis is robust to using more

factors.

The model with four PCs has a cross-sectional R2 of 65%, indicating that it accounts for a significant

fraction of the cross-sectional variation in expected returns for the 202 test portfolios, but leaving some

unexplained variation. This number is comparable with the 73% cross-sectional R2 one obtains using

the FF3 model on the cross-section of 25 portfolios sorted by size and book-to-market, yet, we obtain it

for a cross-section eight times as large, and using a model with just one more factor. We report in Figure

2 the actual and predicted expected excess returns for the model. Each panel of the figure highlights

one of the eight test-asset groups that comprise our total of 202 portfolios. The fit is better for some

groups of assets than others, but overall the factor model performs relatively well. These results change

little when using returns in excess of T-bill rate instead of estimating the zero-beta rate.

12These time series have been proposed by Novy-Marx (2014) as examples of variables that appear to predict returns
in standard predictive regressions, but whose economic link to the stock market seems weak. We use AR(1) innovations
in these series as factors and test whether our procedure identifies the weak link to the economy, and reveals the series as
weak or unpriced in the cross-section of returns.
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5.3 Risk Premia Estimates

We now present the estimates for the risk premia of observable factors using excess returns, under the

assumption that the zero-beta rate is equal to the observed risk-free (T-bill) rate. In this case, we can

compare our three-pass procedure with both Fama-MacBeth cross-sectional regressions and with the

mimicking portfolio approach.

For each factor (or group of factors) gt that we consider, Table 1 reports risk premia estimated using

these different methodologies. The first column reports the time-series average excess return of the

factor, when the factor is tradable. This represents a model-free estimator of the factor risk premium,

that is however possible only for tradable factors.

The rest of the table considers three implementations of the two-pass cross-sectional estimator, three

implementations of the mimicking-portfolio estimator, and our three-pass estimator. For each set of

results, we report the risk premium estimate and its standard error.

Using the two-pass cross-sectional regression, we estimate the risk premium of each observable factor

gt without any additional control factors (first set of results), controlling for the market return (second

set of results) and controlling for the Fama-French three factors (Market, SMB, HML; third set of

results).

Next, using the mimicking-portfolio approach, we project the factor gt onto the market portfolio

alone (first set of results), onto the Fama-French 3 factors (second set of results), and onto all 202 test

assets (third set of results). Note that the latter version of the approach (that projects onto all the

available assets) is rarely applied in the literature, as it is inefficient or even infeasible when n > T ; in

our case, however, we have n = 202 and T = 630, so this projection is feasible and we therefore report

it for comparison.13

Finally, we report our three-pass estimator at the end, using four principal components. We explore

robustness with respect to the number of factors in the next table, for reasons of space.

To help with the interpretation of the table, we first examine one example in detail. Consider the

profitability factor proposed by Fama and French (2015), RMW. The time-series average excess return

is 25bp per month. Estimating the RMW risk premium in a two-pass cross-sectional regression with

no controls yields an estimate of -16bp. Adding the market gives −4bp, and further adding SMB and

HML gives 32bp. The results clearly depend on which controls are used in the estimation. Similarly,

consider the three implementations of the mimicking-portfolio approach. When we project RMW onto

the market alone or onto the Fama-French three factors (the latter being a typical choice of portfolios

for the projection in the empirical literature), we obtain negative and significant risk premia estimates;

when we project it on all 202 portfolios, we obtain a positive and significant estimate. Therefore, the

results also vary dramatically with the choice of portfolios on which the factor is projected. Finally, our

estimator provides a statistically significant 15bp estimate for the risk premium of this factor.

We now summarize the main patterns of results obtained using different estimators in this table.

13If the factor is tradable and is itself included in the set of assets on which it is projected, the mimicking portfolio
approach will yield an estimate equal to the average time-series excess return of the factor. We consider here the case in
which the factor is not added to the set of test assets for the projection, to show how the estimator depends on the choice
of projection portfolios. This sensitivity to the choice of assets is crucial for the case of nontradable factors, in which case
the factor itself cannot be added to the space of returns on which the projection is applied.
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Two-pass cross-sectional estimator. Both potential sources of bias described in this paper for

two-pass cross-sectional regressions are visible in the table. First, for most factors, there are significant

differences in the estimates obtained using different control factors (namely: no controls, market alone,

FF3). This shows the potential for quantitatively meaningful biases that could arise if the wrong set of

controls is specified. At the same time, it highlights how the standard procedure of arbitrarily selecting

controls in these regressions can influence the resulting risk premia estimates.

The second potential source of bias is due to measurement error. As discussed above, measurement

error induces a bias in risk premia estimates. In addition, two-pass cross-sectional regressions have

well-known biases due to the presence of weak factors in the model (factors that are dominated by

noise). This appears to be the reason for the often extreme risk premia estimates obtained using the

two-pass regression, for what appear to be weak factors (for example, the Novy-Marx (2014) factors).

As described in Section 4.7, our three-pass procedure is immune to the problem of weak observable

factors – in fact, the next table will report the results of our test to detect such factors.

Mimicking-portfolio estimator. The mimicking-portfolio estimator is similarly sensitive to the

choice of portfolios on which factors are projected. It is not uncommon to see opposite signs across

the different set of results for this estimator. For example, MOM is estimated to have a negative and

significant risk premium when projected onto the market or onto the FF3 portfolios, but a positive risk

premium when projected on the entire set of 202 portfolios. The first macro factor from Ludvigson and

Ng (2009), instead, appears statistically significant when projected onto the FF3 portfolios, but not the

market alone or all portfolios. These results highlight a quantitatively meaningful bias that could arise

when important portfolios are omitted from the projection.

Three-pass estimator. The last column of the table reports the results using our three-pass estima-

tor, using four principal components. For the case of tradable factors, the estimator produces results

that are mostly close to the average excess returns of the factors. In all cases, the sign of the estimated

risk premium is the same as the average return of the factor, which does not hold generally for the other

estimators. For example, it estimates a market risk premium of around 50bp (exactly in line with the

average market excess return) and a momentum risk premium of 77bp.

The three-pass procedure finds several nontradable factor risk premia economically and statistically

significant: the liquidity factor of Pástor and Stambaugh (2003), both intermediary factors of He et al.

(2016) and Adrian et al. (2014), the first macro PC from Ludvigson and Ng (2009), and also stockholders’

consumption growth from Malloy et al. (2009). Nonetheless, several other nontradable factors do not

appear to have statistically significant risk premia, for example the Novy-Marx (2014) factors or IP

growth.

To conclude, for the tradable factors we study, the three-pass estimator produces results that are

broadly consistent with the time-series average returns of those factors; for the nontradable factors,

they produce estimates that have economically reasonable magnitudes. The results are often noticeably

different from those produced by the other estimators, which vary substantially across implementations.
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Allowing for a unconstrained zero-beta rate. Table 2 shows the results produced by our more

general estimator (9), that allows the zero-beta rate to be different from the T-bill rate.14 We do

not report the mimicking portfolio results here because that estimation approach does not allow for

an unconstrained zero-beta rate. Instead, we report in this table our three-pass results for different

numbers of PCs, from 4 to 6. Also, we do not report the estimates for the zero-beta rate for reasons

of space. For the three-pass procedure, they are consistently around 0.55% per month (close to the

average T-bill return of 0.4% per month).15 For the two-pass regressions, they are in the vast majority

of cases significantly above 1% per month.

The results with the unconstrained zero-beta rate are mostly similar to those presented in the

previous table, but there are some additional noteworthy results. First, the table shows that risk

premia estimates using the three-pass method are very robust to the number of PCs used (from 4 to

6). For example, for the liquidity factor we estimate a risk premium of 26bp with 4 and 5 factors, and

25bp with 6 factors. Similar results hold for all factors, both tradable and nontradable.

Second, the table also reports the R2 of the time-series regression of each observed factor gt onto the

p̆ latent factors; we refer to this as R2
g. R2

g will be lower than 100% when measurement error is present

in the factor gt. In the data, we find great heterogeneity among factors in terms of their measurement

error. For some of them (like the market or SMB) this R2 is extremely high, suggesting that the factor

is measured essentially without error. For many other factors, and especially so for nontradable factors,

the R2
g is much lower (for IP, for example, it is below 1%), indicating that these factors are dominated

by noise. We highlight this point in Figure 3, which shows the time series of cumulated innovations

in the original and cleaned (i.e., fitted) factors, for a few of them. The figures provide a graphical

representation of the extent to which the PCs of returns capture the variation in each factor. While

for many of the tradable factors the original and cleaned factors track each other closely, for others the

cleaned factor displays much lower variation than the original factor: the difference is the measurement

error that our procedure has eliminated.

Finally, the last column of the table also reports the p-value for the test of the null that each factor

gt is weak, described in Section 4.7.16 A rejection of the null indicates that gt is a strong factor for the

cross-section of test portfolios. For several – but not all – of the nontradable factors we fail to reject

that the factor is weak.

The zero-beta rate and the sign of the market risk premium. A well-known result in the

empirical asset pricing literature is that market risk premia are estimated to be negative in standard

two-pass regressions with an unrestricted zero-beta rate. This happens in our dataset as well. The

two-pass estimators of the market risk premium yield a zero-beta rate estimate of around 125bp per

month (not reported in the table) and a market risk premium of -20bp to -57bp per month, depending

on the specification (first row of Table 2).

14The inference based on Theorem 3 in this case is also robust to the presence of pricing errors (alphas) that satisfy
certain conditions.

15Recall that in the case of the three-pass procedure, the estimate of the zero-beta rate, obtained at step (ii), does not
depend on the factor gt.

16To be more conservative, we use p̆ = 6 for this test, corresponding to the rightmost set of results in the table, but
results are similar for all values of p̆.
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If this puzzling result is due to the omission of important controls (measurement error bias is

unlikely because of the large R2
g), we expect our three-pass estimator to correct for it. Indeed the

three-pass procedure lowers the estimated zero-beta rate (to 55bp per month) and produces a positive

and significant estimate of the market risk premium (37bp), as the right side of the first row shows.

We can further investigate the relationship between market beta and expected returns after control-

ling for the explanatory power of the omitted factors using a residual regression approach.17 Figure 4

plots the expected return vs. market beta, after partialing out the component explained by the other

factors. The left panel uses the standard two-pass estimator for the market risk premium in the FF3

model, whereas the right panel uses our three-pass methodology. The solid red line in each graph corre-

sponds to the slope estimated from the historical average return of the market, whereas the dashed line

corresponds to the fitted line, using the cross-sectional estimate of the slope. Given that the market is

a tradable factor, if the model is correctly specified, the two lines should overlap.

This is clearly not the case for the two-pass cross-sectional regression (left panel). However, the

right panel of the figure shows that indeed, once the omitted factors are accounted for, there is a clear

positive relationship between market beta and expected returns, and the slope is close to the average

excess return of the market portfolio. Overall, the fact that the market risk premium significantly

changes sign depending on whether we control for omitted factors serves as a strong warning that

omitting factors could have important effects on our statistical and economic conclusions about the

pricing of risks.

5.4 Observable and Unobservable Factors

The core of our estimation methodology is the link between the observable factors gt and the unobserv-

able factors vt, through Equation (2). In particular, η represents the loadings of gt onto the p PCs, and

therefore reveals the exposures of the observable factors to the latent factors extracted by PCA.

In Table 3 we decompose the variance of gt explained by the set of PC factors into the parts at-

tributable to exposure to each individual PC factor (which is possible because PC factors are orthogonal

to each other). Each row of the table sums up to 100%. This allows us to highlight which latent factors

are most responsible for the variation of each observable factor. Note that the PC factors are ordered

by their eigenvalues (largest to smallest).

The first row shows that the market return loads mostly onto the first PC (i.e., on the factor with

the largest eigenvalue). This is expected because the market represents the largest source of common

variation across assets. The other observable factors show interesting variation in their exposure to the

PCs. For example, SMB loads on both the first and second factors, HML mostly on the third one, and

MOM mostly on the fourth one. RMW loads substantially on at least four factors (including the sixth

17Recall that the estimate of the market risk premium using cross-sectional methods is the slope of a multivariate
regression of average returns onto the betas of returns with respect to the market and the control factors. It is well known
that the slope of any multivariate regression with respect to a specific variable (in this case, the market beta) can be also
obtained by first separately regressing the outcome variable (average returns) and the regressor of interest (market beta)
on the remaining regressors (the betas with respect to the other factors), and in a second stage regressing the residuals of
the two regressions against each other. In this way, we can first partial out the component of the cross-section of expected
returns and of market betas explained by the control factors, and then study the univariate relation between the residuals.
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one), and CMA loads mostly on the same factor as HML. However, CMA and HML are still strongly

distinguished by a differential exposure to the other factors.

Macro factors load onto the PCs in nontrivial ways. IP is mostly exposed to the fourth and sixth

factors. The consumption factor loads mostly on the first two latent factors, whereas the stockholder

consumption factor loads most strongly on the fifth one. The Novy-Marx (2014) factors and the Lud-

vigson and Ng (2009) factors are exposed to many risk sources.

Finally, both the liquidity factor of Pástor and Stambaugh (2003) and the intermediary factor of He

et al. (2016) are strongly exposed to the first latent factor.

A caveat about these results is that the PCs cannot be interpreted as “fundamental” factors, but

rather as an unknown rotation of them. So this decomposition cannot be viewed as linking the observable

factors to any interpretable latent factors. Rather, it simply shows similarities and differences in the

source of common variation different observable factors are related to.

5.5 Risk Premia across Asset Classes

The main analysis presented in the previous sections has focused on a large cross-section of equity

portfolios, for which a long time series is available. In this section we explore risk premia for the same

factors discussed above as we look instead at non-equity portfolios.

We obtain from Asaf Manela’s website the time series of non-equity portfolio returns used in He

et al. (2016), which in turn collects portfolio data from various sources. The data includes ten maturity-

sorted government bond portfolios, ten corporate bond portfolios sorted on yield spread, six sovereign

bond portfolios, 18 S&P 500 option portfolios sorted on moneyness and maturity, six currency portfolios

sorted on interest rate differentials, six currency portfolios sorted on currency momentum, 24 commodity

futures returns, and 20 CDS portfolios sorted by spread, for a total of 100 non-equity portfolios. Due

to data availability for the non-equity portfolios, the sample covers the period 1970-2012. In addition,

since not all portfolios are available for the entire time period, we estimate the variance and pairwise

covariances separately with all available data. While the resulting covariance matrix is not necessarily

positive-definite, it leads to consistent estimates for PCs.

Table 4 reports the results of the risk premia estimation with our three-pass procedure using equity

and non-equity assets. The left panel of the table shows the results using the 202 equity portfolios (as in

our main analysis) over this sample period. The results are qualitatively and quantitatively similar to

our baseline results that use a longer sample. The middle panel of the table uses as test assets the 100

non-equity portfolios together with some equity portfolios (the Fama-French 25 portfolios), whereas the

right panel uses only the non-equity portfolios. We use five principal components in the first two panels

and six in the third (consistent with our estimator for p in this sample), achieving a cross-sectional R2

of 58%, 57%, and 54% respectively.

For many (but not all) factors, the estimates of risk premia over these different groups of test

portfolios are surprisingly stable. For example, the market risk premium is estimated to be positive and

large in the cross-section of non-equity portfolios; similarly, the liquidity factor displays a risk premium

of around 20bp per month in all of these samples, and the same goes for the intermediary capital factors

(significance is a bit reduced in this table relative to the previous tables, because the sample is shorter).

26



Finally, IP is estimated to have a zero risk premium in every case. So while the risk premia associated

with some factors (like equity momentum or profitability) do not seem to be stable across markets, the

analysis does uncover factors that seem to display consistent risk premia in all markets we study.

These results suggest the existence of common risk factors across different markets. While some

degree of segmentation surely exists across these markets, these results indicate that at least some

aggregate risk factors may be pervasive across many markets and their risk premia are consistent across

them. Unlike FF3 or FF5 for equity markets, there are no well-established models or factors that serve

as a good benchmark across markets. In this case, key to correctly uncovering the risk premium of these

factors is to properly control for the non-observable factors specific to each market, something that our

approach can achieve.

5.6 Robustness and Extensions

In this section we explore the robustness of our main results to the choice of test portfolios, sample

period, and choice of the method to recover the factor space, particularly as it relates to the potential

weakness of factors. We also discuss how to handle time variation in risk premia and risk exposures.

5.6.1 Robustness to the Choice of Test Portfolios

Our main empirical results are obtained using a large set of 202 portfolios, and our methodology is

specifically designed to be used with as many assets as possible, so that all relevant dimensions of risk

will be expressed in the cross section. It is natural, however, to wonder to what extent the results are

affected by the particular selection of test assets.

To investigate this question systematically, we perform the following robustness exercise. From the

202 test portfolios we use in our empirical exercise, we randomly select (without replacement) half of

them, and we re-estimate the risk premia of all observable factors in this subsample. We repeat this

exercise 10,000 times, thus obtaining a distribution of risk premia estimates across subsamples of 101

portfolios each, randomly selected.

Figure 5 shows the results for several factors. Note that all panels of the figure report the same

range of risk premia (x axis, between -20bp and 100bp), so that the histograms are easily comparable

across panels. The results are quite heterogeneous across factors. In the top left panel, we see that the

risk premium for the market return is clearly positive in the vast majority of cases (it is below zero only

in a small set of subsamples). At the same time, its exact magnitude varies across subsamples. The top

right panel shows that instead the risk premia of SMB and HML are much more precisely estimated

using our three-pass regression method, and similarly for MOM (middle left panel).

The last three panels show interesting results for non-tradable factors. Confirming the results of

Table 2 and Figure 3, IP is a useless factor, with a risk premium of effectively zero across all subsamples.

On the contrary, liquidity and intermediary capital factors all appear positively priced across subsamples.

Overall, our subsample results show that the conclusions of our empirical analysis are robust to the

selection of the test assets.
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5.6.2 Robustness to the Choice of Time Period

A potential concern when working with PCs is the stability of the estimated loadings and factors over

time. The extent to which our risk premia estimates are consistent across time periods is an empirical

question that we explore in this section.

Similarly to the robustness with respect to the test assets, we perform our robustness check with

respect to the sample period by resampling half of the time periods randomly without replacement, and

looking at the variability of the risk premia estimates. Simple resampling in the time series is possible

in our context because of the low serial correlation of returns and factor innovations over time.

Figure 6 shows the results. Both quantitatively and qualitatively, the results are very similar to the

ones in the previous section (where we randomly resampled the cross-section as opposed to the time

series). The results show that all of the main conclusions of our main analysis hold when looking across

subsamples.

While the stability across subsamples may seem surprising, it is useful to note that our risk premia

estimator is not only based on PCA. Instead, a key step is the projection of the factor of interest gt

onto the extracted PCs. So any rotation that makes the extracted factors differ across subsamples will

be entirely offset by a corresponding rotation of the loading of gt onto those factors – resulting in stable

risk premia estimates for the observable factors.

5.6.3 Robustness to the Presence of Weak Latent Factors

For the invariance result to hold, it is essential that the control factors, together with gt, span the

entire factor space. The first step of our three-pass procedure involves using PCA to recover the factor

space. As we discuss in the paper, our procedure works even if the observable factor gt is weak (in fact,

we propose a test for whether gt is weak); however, PCA will not necessarily recover the entire factor

space if the underlying latent factors are weak. In this section we summarize our main theoretical and

empirical arguments for using PCA in practice, and propose an additional robustness test to mitigate

the concern that the presence of weak factors may distort our results.

In theory, weak latent factors – unobservable factors for which the dispersion of risk exposures is

small in the cross-section – can affect our estimator because they have low eigenvalues, and PCA might

fail to separate them from noise. However, for weak factors to bias our estimates of risk premia for

observable factors, they also need to have themselves high risk premia, which allows them to explain

a significant portion of the cross-section of average returns. But large risk premia for factors with low

eigenvalues imply high Sharpe ratios. A first theoretical argument in favor of focusing on the PCs with

largest eigenvalues are good-deal bounds, which impose a theoretical upper bound on the potential bias

from weak factors (Kozak et al. (2017) make precisely this argument to support using PCA in this

context).

A second, empirical, argument is that we can easily add additional PCs with lower and lower

eigenvalues, and verify that the risk premia estimates are stable. For example, in Tables 1 and 2, we

explore the robustness of the results using 4, 5 and 6 factors. These robustness exercises are theoretically

motivated by Theorem 5, which guarantees that adding “too many” PCs does not affect the consistency
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of our estimator.

A third way to verify that weak latent factors are not driving our empirical results is the comparison

of the risk premia estimated for tradable factors using our three-pass procedure with those obtained

as time-series average of the portfolios’ excess returns. As discussed in previous sections, the two

should be the same if the factor model is correctly specified. Biases due to the presence of weak latent

factors should produce significant differences between the estimates using cross-sectional methods and

the time-series averages.

Finally, we propose here an additional robustness test with respect to the possibility of weak factors,

based on changing the objective function when extracting the statistical factors from the panel of returns.

Recall that the first step towards PCA is to calculate eigenvalues of the covariance matrix of returns,

which equal the variances of the corresponding PCs, and that the constructed factors are eigenvectors

associated with the largest few eigenvalues.

Since weak factors are factors with low eigenvalues, which however explain the cross-section of

returns, we can modify the objective function to account for the contribution to the cross-sectional

variation. That is, rather than finding factors that best explain the time-series comovement of stock

returns, we find factors that strike a balance between explaining the time-series comovement of stock

returns and the cross-sectional variation of expected returns. This alternative objective function was

first proposed by Connor and Korajczyk (1986). It is a convenient reference point because it puts

equal weight on the two components of the objective function – the time-series and the cross-sectional

variation.

As shown in Bai and Ng (2002), our PCA formula given in (7) is the solution to the following

optimization problem:

min
β,V̄

n−1T−1
∥∥R̄− βV̄ ∥∥2

F
, subject to T−1V̄ V̄ ᵀ = Ip̂,

where ‖·‖F is the Frobenius norm of a matrix. By our rotation invariance result, it would give the

same risk premia estimates if we were to use an alternative normalization n−1βᵀβ = In. Connor and

Korajczyk (1986) suggest another optimization problem (henceforce CK):

min
β,V̄ ,γ

n−1T−1
∥∥R̄− βV̄ ∥∥2

F
+ wn−1 ‖r̄ − βγ‖2F , subject to n−1βᵀβ = In,

where they choose w = 1. The solution turns out to be

β̃ = n1/2(ς̃1 : ς̃2 : . . . : ς̃p̂), and Ṽ = (β̃ᵀβ̃)−1β̃ᵀR̄,

where ς̃1, ς̃2, . . . , ς̃p̂ are the eigenvectors associated with the largest eigenvalues of the matrix n−1T−1R̄R̄ᵀ+

wn−1r̄r̄ᵀ. Note that starting from CK’s formulation, setting w = 0 (thus focusing entirely on time-series

comovement) is equivalent to PCA.

The CK approach can be used instead of the standard PCA in step (i) of our three-step procedure.

Since the second term of the objective function is the cross-sectional R2, it may help select latent factors

that have large risk premia but are weak. We can then continue steps (ii) and (iii) as in Section 3 using
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the estimated latent factors together with gt to estimate risk premia. Note that the CK approach does

not allow for an unrestricted zero-beta rate or pricing errors.

In Table 5, we show how the risk premia estimates differ between the baseline PCA (left panel,

w = 0) and the CK approach (right panel, w = 1). The fact that there is virtually no difference in

the risk premia estimates suggests that weak factors are either not present in this dataset we consider,

or if they are, they have small enough risk premia that ignoring them has little consequence for our

estimates.

Taken together, these considerations lead us to conclude that for the purposes of estimating risk

premia, using PCA to recover the factor space represents a simple yet robust solution.

5.6.4 Individual Assets vs. Portfolios

In this paper, we recommend using characteristic-sorted portfolios instead of individual stocks. The

main advantage of using portfolios is that their risk exposures are more stable over time, as discussed at

length in the asset pricing literature. This is particularly important in our setting, because we assume

the betas of the test assets are constant.

To see this intuition more formally, call r̃t is the vector of time-t returns for m individual stocks,

and ct a m × n matrix of characteristics (or their functions) observed at time t for the m stocks. The

typical procedure to construct characteristic-sorted portfolios in asset pricing categorizes stocks at each

time t − 1 into groups based on one or more observed characteristics, and then obtains the portfolio

return at time t using equal or market-value weights for stocks in each group.

The sorting procedure can be represented mathematically by constructing the matrix ct−1 stacking

side-by-side the n dummy variables corresponding to each characteristic-sorted group. For example, to

construct 10 size-based portfolios, ct−1 would be an m×10 matrix containing 10 dummy variables, each

indicating the size group to which each stock belongs at time t−1. The n characteristic-sorted portfolio

returns from t − 1 to t are simply the coefficients of a cross-sectional regression of r̃t onto ct−1, since

ct−1 contains only dummies.

More generally, given any matrix ct−1 (that could include dummies or continuous variables), the

characteristics-sorted portfolio returns at time t are:

rt = (cᵀt−1ct−1)−1cᵀt−1r̃t, (13)

where the term (cᵀt−1ct−1)−1ct−1 therefore represents the time-(t− 1) portfolio weights.

Using this expression that links rt and r̃t, it is immediate to find that if individual factor exposures

are linear functions of ct−1 (e.g., Rosenberg (1974)), then the sorted portfolios have constant factor

exposures. Specifically, extending our setup (1) to include time-varying factor exposures for individual

asset returns, we have:

r̃t = βt−1γt−1 + βt−1ṽt + ũt,
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where r̃t and ũt are m× 1 vectors, βt−1 is an m× n matrix of time varying exposures, following

βt−1 = ct−1β + εt−1, (14)

for some n × p matrix β, m × n matrix of observable characteristics ct−1, and some n × p matrix of

residuals εt−1.

Prior to applying our three-pass estimation procedure, we construct characteristics-sorted portfolios:

rt = (cᵀt−1ct−1)−1cᵀt−1r̃t = βγ + βvt + ut,

where

γ = E(γt−1), vt = ṽt + γt−1 − E(γt−1), ut = (cᵀt−1ct−1)−1cᵀt−1 (ũt + εt−1(γt−1 + ṽt)) .

Therefore, our methodology to estimate risk premia can be applied even if individual stock risk exposures

are time-varying, as long as characteristic-sorted portfolios that have constant factor exposures are used

as test assets. Also, we can interpret the estimated risk premia as estimates of their time-series average.

In this paper, we take the portfolio-formation step as given, and use characteristic-sorted portfolios

that have been proposed in the literature. In contrast, Kelly et al. (2017) construct such portfolios using

characteristics and individual stocks for a model specification test. Their results show that PCs based

on such portfolios explain more cross-sectional variations than those based on individual stocks, which

is consistent with the formal result shown above that characteristic-sorted portfolios will have constant

betas if the characteristics are chosen appropriately.

6 Conclusion

We propose a three-pass methodology to estimate the risk premium of observable factors in a linear asset

pricing model, that is consistent even when not all factors in the model are specified and observed. The

methodology relies on a simple invariance result that states that to correct the omitted variable problem

in cases where not all factors are observed, it is sufficient to control for enough factors to span the entire

factor space. In this case, the risk premia for observable factors are consistently estimated even though

the risk exposures cannot be identified. We propose to employ PCA to recover the factor space and

effectively use the PCs as controls in the cross-sectional regressions together with the observable factors.

Our three-pass procedure can be viewed as an extension of both the standard two-pass cross-sectional

regression approach and the mimicking-portfolio estimator of risk premia. In particular, it can be

thought of as a factor-augmented two-pass cross-sectional estimator, where the model adds principal

components of returns as controls in the two-pass regressions, completing the factor space. It can also

be thought as a regularized mimicking-portfolio estimator, in which the factor of interest is projected

onto the PCs of returns (themselves portfolios). As we discuss in the paper, our method represents the

convergence of the two methods, that occurs as n→∞.

Equally important to what we can recover is what we cannot recover if some factors are omitted:
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how the pricing kernel loads onto the observed factors, as well as the set of true risk exposures to each

factor. These can only be pinned down under much stronger assumptions – by identifying all the factors

that drive the pricing kernel, and explicitly specifying how they enter the pricing kernel. Instead, a

notable property of factor risk premia is precisely that they can be recovered even without specifying

the identities of all factors, and this is what we focus on in this paper.

The main advantage of our methodology is that it provides a systematic way to tackle the concern

that the model predicted by theory is misspecified because of omitted factors. Rather than relying on

arbitrarily chosen “control” factors or computing risk premia only on subsets of the test assets, our

methodology utilizes the large dimension of testing assets available to span the space of the omitted

factors. It also explicitly takes into account the possibility of measurement error in any observed factor.

The application of the methodology to workhorse factor models using equity test assets yields sev-

eral compelling results. Contrary to most existing estimates, we find that the risk premium estimate

associated with market risk exposure is positive and significant even when the zero-beta rate is left un-

restricted, and close to the time-series average excess return of the market portfolio. This confirms that

our methodology correctly recovers the risk premium of the market (and similar results hold for other

tradable factors), thus mitigating misspecification concerns. The most interesting results appear for

non-tradable factors. Many standard macroeconomic factors appear insignificant, whereas non-tradable

factors related to various market frictions (like liquidity and intermediary leverage) appear strongly

significant even when considered as part of richer linear pricing models that include additional factors.

Similar results hold when looking across asset classes; the stability of the risk premia estimates for sev-

eral factors across markets suggests the presence of pervasive aggregate risks that can be detected once

factors specific to the various asset classes are properly accounted for – which in this case is achieved

using the three-pass methodology we propose.
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7 Figures and Tables

Figure 1: First Eight Eigenvalues of the Covariance Matrix of 202 Equity Portfolios
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Note: The left panel reports the first eight eigenvalues of the covariance matrix of our 202 test portfolios. The right
panel zooms in to the eigenvalues two through eight.
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Figure 2: Predicted and Realized Average Excess Returns in a Six-Factor Model
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(a) ME and BE/ME-sorted
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(b) Industry-sorted
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(c) OP and INV-sorted
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(d) ME and Variance-sorted
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(e) ME and Net Issuance-sorted
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(f) ME and Beta-sorted
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(g) ME and Accruals-sorted
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(h) ME and Momentum-sorted

Note: This figure reports the predicted average excess returns of the 202 test portfolios against the realized average
excess returns. Each panel highlights a different set of test assets. The solid line is the 45-degree line.
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Figure 3: Cumulative Factor Time Series with and without Measurement Error
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Note: This figure reports the time series of cumulative factor innovations for RmRf, SMB, HML, and IP (thin line)
together with the time series obtained from removing measurement error from the factor (thick line).

39



Figure 4: Market Beta and Expected Return
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(a) Fama-MacBeth
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(b) Three-pass estimator

Note: This figure plots expected returns against market beta after partialing out the components explained by the
other factors (using residual regression approach). The left panel uses standard two-pass regression with the Fama-
French three-factor model. The right panel uses our three-pass regression approach. In each graph, the solid red line
corresponds to the market risk premium estimate obtained from the time-series average return of the market portfolio;
the dashed line is the two-pass regression slope. If the model is correctly specified, the two lines should coincide.
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Figure 5: Robustness to the Set of Test Portfolios: Resampling Exercise
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Note: This figure reports the histograms of risk premia estimated using the three-pass estimator across subsamples of
the set of 202 test portfolios. We generate 10,000 subsamples by randomly drawing (without replacement) half of the
portfolios from the baseline set of 202 portfolios. In each sample we estimate the risk premium of each factor using the
three-pass estimator, setting p̆ = 6. The histogram reports the frequency of the risk premia estimates across samples.
All figures report the same range for the risk premia, between -20bp and 100bp per month.
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Figure 6: Robustness to the Time Period: Resampling Exercise
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Note: This figure reports the histograms of risk premia estimated using the three-pass estimator across subsamples
of the time period. We generate 10,000 subsamples by randomly drawing (without replacement) half of the available
time periods (using all of the portfolios available in the selected periods). In each sample we estimate the risk premium
of each factor using the three-pass estimator, setting p̆ = 6. The histogram reports the frequency of the risk premia
estimates across samples. All figures report the same range for the risk premia, between -20bp and 100bp per month.
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Table 3: Loading of Observable Factors onto Latent Factors (% of Variation Explained)

Factors Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

Market 91.0 6.3 1.7 0.1 0.8 0.2

SMB 31.0 64.0 0.6 0.9 1.0 2.4

HML 7.0 1.3 75.5 4.9 1.4 9.9

MOM 3.1 0.3 2.0 93.5 0.4 0.7

RMW 17.2 37.4 15.4 4.1 7.6 18.3
CMA 19.8 0.0 60.6 0.1 2.0 17.5

BAB 0.9 3.6 72.7 15.4 0.9 6.4

QMJ 57.3 15.9 2.4 9.0 5.0 10.4

Liquidity 95.0 2.8 1.8 0.2 0.2 0.0

Interm. (He et al) 81.2 12.5 0.1 2.9 3.2 0.1
Interm. (Adrian et al) 20.3 6.8 52.0 16.4 0.0 4.5

NY temp. 21.7 8.6 46.5 19.7 1.1 2.4
Global temp. 0.5 85.9 5.8 0.9 5.4 1.4
El Niño 58.8 2.0 9.0 25.8 4.1 0.3
Sunspots 41.9 2.4 2.4 34.8 2.5 16.0

IP growth 11.9 3.5 2.3 39.4 8.2 34.7

Macro PC 1 58.0 2.9 24.4 0.0 13.9 0.8
Macro PC 2 81.9 13.0 2.3 0.6 1.0 1.2
Macro PC 3 23.7 1.0 16.3 3.0 30.4 25.6

Cons. growth 26.5 54.4 5.0 0.1 0.5 13.5

Stockholder cons. 17.9 23.2 2.6 6.5 49.2 0.6

Note: The table reports the decomposition of the variance of the observable factors gt explained by the six latent
factors. Each row adds up to 100%.
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Table 4: Risk Premia across Asset Classes

202 equity FF25 + 100 non-equity 100 non-equity

Factors Avg ret γ stderr R2
g γ stderr R2

g γ stderr R2
g

Market 0.47 0.26 (0.24) 98.85 0.73∗∗∗ (0.23) 89.84 0.68∗∗∗ (0.22) 52.37

SMB 0.18 0.17 (0.14) 94.71 0.22∗ (0.12) 31.13 0.15∗∗ (0.06) 2.08

HML 0.41 0.25∗ (0.13) 74.33 0.16∗∗ (0.07) 10.43 0.07 (0.07) 4.44

MOM 0.67 0.59∗∗∗ (0.20) 79.32 −0.30 (0.18) 6.49 −0.27 (0.18) 6.55

RMW 0.29 0.15∗ (0.08) 48.06 −0.17∗∗∗ (0.05) 11.27 −0.16∗∗∗ (0.05) 7.10

CMA 0.40 0.17∗ (0.09) 49.03 −0.04 (0.06) 14.17 −0.10 (0.06) 9.35

BAB 0.87 0.55∗∗∗ (0.12) 43.90 0.22∗∗ (0.09) 7.05 0.16 (0.12) 9.68

QMJ 0.38 0.09 (0.10) 68.82 −0.44∗∗∗ (0.11) 45.15 −0.41∗∗∗ (0.11) 26.95

Liquidity 0.21 (0.13) 11.76 0.24 (0.18) 11.45 0.21 (0.18) 5.88

Interm. (He et al) 0.25 (0.28) 62.21 1.03∗∗∗ (0.30) 52.14 0.94∗∗∗ (0.31) 34.95

Interm. (Adrian et al) 0.69∗∗∗ (0.16) 46.42 0.50∗∗∗ (0.11) 14.91 0.35∗∗∗ (0.09) 6.93

NY temp. 0.11 (10.81) 0.63 6.84 (22.41) 1.26 −2.39 (23.40) 1.91

Global temp. −0.04 (0.17) 1.92 −0.18 (0.37) 0.58 −0.19 (0.42) 0.59

El Niño 0.02 (0.64) 1.48 1.75 (1.18) 1.14 1.79 (1.21) 0.95

Sunspots 26.37 (29.80) 0.90 −10.38 (46.08) 0.86 −6.54 (48.91) 0.88

IP growth −0.00 (0.00) 0.79 0.00 (0.01) 0.96 −0.01 (0.01) 3.43

Macro PC 1 1.66 (1.27) 1.57 0.02 (2.82) 2.24 0.84 (2.69) 1.92

Macro PC 2 −0.81 (0.90) 1.49 −1.95 (1.69) 2.64 −1.70 (1.79) 2.32

Macro PC 3 −0.55 (1.14) 4.96 −3.80∗∗ (1.55) 7.36 −3.68∗∗ (1.87) 7.09

Cons. growth 0.00 (0.01) 3.30 0.03 (0.03) 3.69 0.04∗ (0.03) 2.31

Stockholder cons. 0.05 (0.06) 2.46 0.12 (0.20) 2.50 0.13 (0.23) 3.11

Note: The table reports the results of risk premia estimation for various models using our three-pass procedure. The
left side of the panel uses 202 equity portfolios as test assets. The center panel uses the 25 Fama-French portfolios
plus 100 non-equity assets. The right panel uses only the 100 non-equity assets. Sample period covers 1970-2012. The
number of factors p̆ used is 5 for the left and middle panel and 6 for the right panel.
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Table 5: Alternative Objective Function for Latent Factor Estimation

PCA (w = 0) CK (w = 1)

Factors p̆ = 4 p̆ = 5 p̆ = 6 p̆ = 4 p̆ = 5 p̆ = 6

Market 0.51 0.52 0.52 0.51 0.52 0.52

SMB 0.24 0.23 0.23 0.24 0.24 0.23

HML 0.21 0.21 0.22 0.22 0.22 0.22

MOM 0.77 0.76 0.76 0.81 0.80 0.81

RMW 0.15 0.15 0.15 0.15 0.16 0.15

CMA 0.13 0.13 0.13 0.14 0.14 0.14

BAB 0.59 0.60 0.60 0.61 0.62 0.62

QMJ 0.05 0.06 0.05 0.06 0.07 0.06

Liquidity 0.33 0.33 0.33 0.34 0.34 0.34

Interm. (He et al) 0.50 0.51 0.51 0.49 0.51 0.51

Interm. (Adrian et al) 0.89 0.89 0.90 0.92 0.92 0.93

NY temp. -5.15 -5.66 -5.70 -5.07 -5.53 -5.58

Global temp. -0.10 -0.05 -0.05 -0.09 -0.05 -0.05

El Niño 0.32 0.39 0.39 0.31 0.38 0.38

Sunspots 16.72 13.74 13.29 18.31 15.16 14.72

IP growth -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

Macro PC 1 2.33 2.38 2.38 2.37 2.42 2.42

Macro PC 2 -1.57 -1.58 -1.58 -1.59 -1.60 -1.60

Macro PC 3 -0.15 -0.07 -0.06 -0.13 -0.05 -0.05

Cons. growth 0.01 0.01 0.01 0.01 0.01 0.01

Stockholder cons. 0.12 0.17 0.17 0.13 0.18 0.18

Note: The table reports the results of risk premia estimation for various models using our three-pass procedure, using
different penalty functions to extract the latent factors. We report results for p̆ = 4, 5, 6. The left panel uses standard
PCA as in our baseline case. The right panel extracts factors using the Connor and Korajczyk (1986, 1988) approach,
which gives weight to the cross-sectional R2. Following Connor and Korajczyk (1986, 1988), the zero-beta rate is imposed
to be equal to the risk-free rate. Sample period covers 1970-2012.
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Appendix

A Assumptions and Technical Details

We need more notation. We use λj(A), λmin(A), and λmax(A) to denote the jth, the minimum, and

the maximum eigenvalues of a matrix A. By convention, λ1(A) = λmax(A). In addition, we use ‖A‖1,

‖A‖∞, ‖A‖, and ‖A‖F to denote the L1 norm, the L∞ norm, the operator norm (or L2 norm), and

the Frobenius norm of a matrix A = (aij), that is, maxj
∑

i |aij |, maxi
∑

j |aij |,
√
λmax(AᵀA), and√

Tr(AᵀA), respectively. We also use ‖A‖MAX = maxi,j |aij | to denote the L∞ norm of A on the vector

space.

Let (P,Ω,F) be the probability space. K is a generic constant that may change from line to line.

We say a sequence of centered multivariate random variables {yt}t≥1 satisfy the exponential-type tail

condition, if there exist some constants a and b, such that P (|yit| > y) ≤ exp{−(y/b)a}, for all i and

t. We say a sequence of random variables satisfy the strong mixing condition if the mixing coefficients

satisfy αm ≤ exp(−Kmc), for m = 1, 2, . . ., and some constants c > 0 and K > 0.

For clarity, we restate the assumptions on the dynamics of returns and factors, i.e., (1) and (2),

introduced in the main text:

Assumption A.1. Suppose that ft is a p × 1 vector of asset pricing factors, and that rt denotes an

n× 1 vector of excess returns of the testing assets. The pricing model satisfies:

rt = βγ + βvt + ut, ft = µ+ vt, E(vt) = E(ut) = 0, and Cov(ut, vt) = 0,

where vt is a p× 1 vector of innovations of ft, ut is a n× 1 vector of idiosyncratic components, β is an

n× p factor loading matrix, and γ is the p× 1 risk premia vector.

Assumption A.2. There is an observable d× 1 vector, gt, of factor proxies, which satisfies:

gt = ξ + ηvt + zt, E(zt) = 0, and Cov(zt, vt) = 0,

where η, the loading of g on v, is a d×p matrix, ξ is a d×1 constant, and zt is a d×1 measurement-error

vector.

Next, we impose some restrictive assumptions, which are only used in Proposition 1 and Section

3.4 to illustrate the intuition of our result and the connection between the two-pass cross-sectionals

regression and the factor mimicking portfolios. Our asymptotic analysis below does not rely on this

assumption.

Assumption A.3. Suppose that vt, zt, and ut in (1) are stationary time series independent of β,

respectively, and that the weights of the spanning portfolios, r̆t, are given by the n × p̆ matrix w with

p̆ ≥ p. The covariance matrices of vt and ut, i.e., Σv and Σu, and the loading of zt on ŭt := wᵀrt, i.e.,

β̆z,u, satisfy the following conditions: λ−1
min(Σv) = Op(1),

∥∥∥β̆z,uβ̆∥∥∥
MAX

= Op(1), λ−1
min(β̆ᵀβ̆) = Op(1),

λmax(Σ̆u) = Op(snn
−1), where β̆ := wᵀβ, sn = op(n).
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The condition on λmin(Σv) requires the set of factors in (1) to have a full rank covariance matrix;

the second condition on β̆z,uβ̆ restricts the exposure of gt to the idiosyncratic errors ŭt; the condition

on β̆ᵀβ̆ resembles the usual pervasiveness assumption that guarantees nontrivial exposure of spanning

portfolios to factors; the last restriction on Σ̆u ensures that the idiosyncratic errors are diversifiable.

These conditions turn out sufficient for the difference between the risk premium of gt and that of its

factor-mimicking portfolios to diminish as shown in Proposition 1.

There are two notable choices of w that are relevant for our study. The first case sets w = n−1/2In,

that is, gt is projected onto the entire set of test assets rt. In this case, the conditions in Assumption

A.3 are similar to the identification conditions of the approximate factor models. In particular, the

last condition is more general than the bounded eigenvalue assumption introduced in Chamberlain and

Rothschild (1983). The second choice sets w = n−1βH, for any invertible matrix H. That is, the base

portfolios are constructed using weights proportional to the exposure of the test assets. Because β is

unknown, this case is not feasible. However, it is precisely what motivates the (feasible) construction

of the three-pass estimator: w = β̂(β̂ᵀβ̂)−1.

The following assumptions are more general, which we rely on to derive the asymptotic results in

the paper. These high-level assumptions can be justified using stronger and more primitive conditions

such as those in Assumption A.3.

We proceed with the idiosyncratic component ut, and define, for any t, t′ ≤ T :

γn,tt′ = E

(
n−1

n∑
i=1

uituit′

)
.

Assumption A.4. There exists a positive constant K, such that for all n and T ,

(i) T−1
T∑
t=1

T∑
t′=1

|γn,tt′ | ≤ K, max
1≤t≤T

γn,tt ≤ K.

(ii) T−2
T∑
s=1

T∑
t=1

E

 n∑
j=1

(ujsujt − E(ujsujt))

2

≤ Kn.

Assumption A.4 is similar to part of Assumption C in Bai (2003), which imposes restrictions on the

cross-sectional dependence and heteroskedasticity of ut.

Assumption A.5. The factor innovation V satisfies:

‖v̄‖MAX = Op(T
−1/2),

∥∥T−1V V ᵀ − Σv
∥∥

MAX
= Op(T

−1/2),

where Σv is a p× p positive-definite matrix and 0 < K1 < λmin(Σv) ≤ λmax(Σv) < K2 <∞.

Assumption A.5 imposes rather weak conditions on the time series behavior of the factors. It

certainly holds if factors are stationary and satisfy the exponential-type tail condition and the strong

mixing condition, see, Fan et al. (2013).
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Assumption A.6. The factor loadings matrix β satisfies∥∥∥n−1βᵀβ − Σβ
∥∥∥ = op(1), as n→∞,

where Σβ is a p× p positive-definite matrix and 0 < K1 < λmin(Σβ) ≤ λmax(Σβ) < K2 <∞.

This is the key identifying assumption that imposes all factors to be pervasive and hence excludes

weaker ones. Onatski (2012) develops the inference methodology in a framework that allows for weak

factors using a Pitman-drift-like asymptotic device.

Assumption A.7. The factor loadings matrix β and the idiosyncratic error ut satisfy the following

moment conditions, for all 1 ≤ j ≤ p and for all n and T :

(i) E

T∑
t=1

(
n∑
i=1

βijuit

)2

≤ KnT.

(ii) E

(
T∑
t=1

n∑
i=1

βijuit

)2

≤ KnT.

This assumption can be shown from the stronger cross-sectional independence assumption between

β and ut as well as some moment conditions on β, which are imposed by Bai (2003).

Assumption A.8. The residual innovation Z satisfies:

‖z̄‖MAX = Op(T
−1/2),

∥∥T−1ZZᵀ − Σz
∥∥

MAX
= Op(T

−1/2),

where Σz is positive-definite and 0 < K1 < λmin(Σz) ≤ λmax(Σz) < K2 <∞. In addition,

‖ZV ᵀ‖MAX = Op(T
1/2).

Similar to Assumption A.5, Assumption A.8 holds if zt is stationary, and satisfies the exponential-

type tail condition and some strong mixing condition. It is more general than the i.i.d. assumption on

zt, which also applies to non-tradable factor proxies in the empirical applications.

Assumption A.9. For all n and T , and i, j ≤ p, l ≤ d, the following moment conditions hold:

(i) E

n∑
k=1

(
T∑
t=1

vjtukt

)2

≤ KnT.

(ii) E

(
T∑
t=1

n∑
k=1

vituktβkj

)2

≤ KnT.

Assumption A.9 resembles Assumption D in Bai (2003). The variables in each summation have zero

means, so that the required rate can be justified under more primitive assumptions. In fact, it holds

trivially if vt and ut are independent.
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Assumption A.10. For all n and T , and l ≤ d, j ≤ p, the following moment conditions hold:

(i) E

n∑
k=1

(
T∑
t=1

zltukt

)2

≤ KnT.

(ii) E

(
T∑
t=1

n∑
k=1

zltuktβkj

)2

≤ KnT.

Similar to Assumption A.9, Assumption A.10 restricts the dependence between the idiosyncratic

component ut and the projection residual zt. If zt, ut, and β are independent, (i) - (ii) are easy to

verify. For a tradable portfolio factor in gt, we can interpret its corresponding zt as certain undiversified

idiosyncratic risk, since zt is a portfolio of ut as implied from Assumptions A.1 and A.2. It is thereby

reasonable to allow for dependence between zt and ut. For non-tradable factors, zts can also be correlated

with ut in general.

Assumption A.11. As T →∞, the following joint central limit theorem holds:

T 1/2

(
T−1vec(ZV ᵀ)

v̄

)
L−→ N

((
0

0

)
,

(
Π11 Π12

Πᵀ
12 Π22

))
,

where Π11, Π12, and Π22 are dp× dp, dp× p, and p× p matrices, respectively, defined as:

Π11 = lim
T→∞

1

T
E (vec(ZV ᵀ)vec(ZV ᵀ)ᵀ) ,

Π12 = lim
T→∞

1

T
E
(
vec(ZV ᵀ)ιᵀTV

ᵀ) ,
Π22 = lim

T→∞

1

T
E
(
V ιT ι

ᵀ
TV

ᵀ) .
Assumption A.11 describes the joint asymptotic distribution of ZV ᵀ and V ιT . Because the dimen-

sions of these random processes are finite, this assumption is a fairly standard result of some central

limit theorem for mixing processes, (e.g., Theorem 5.20 of White (2000)). Needless to say, it is stronger

than Assumption A.5, which is sufficient for identification and consistency.

Assumption A.12 restates the assumptions on the dynamics of (12) in the main text.

Assumption A.12. Suppose the cross-section of asset returns rt follows

rt = α+ ιnγ0 + βγ + βvt + ut,

where the cross-sectional pricing error α is i.i.d., independent of β, u and v, with mean 0, standard

deviation σα > 0, and a finite fourth moment.

Assumption A.13. There exists a p× 1 vector β0, such that
∥∥n−1βᵀιn − β0

∥∥
MAX

= op(1). Moreover,

the matrix (
1 βᵀ0
β0 Σβ

)
is of full rank.
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This assumption is imposed only in the case when we allow for and estimate the zero-beta rate. The

rank condition ensures that in the limit the factor loadings and ιn are not perfectly correlated in the

cross section, and in particular, that the zero-beta rate γ0 is identifiable.

Assumption A.14. Define, for any i, i′ ≤ n, t, t′ ≤ T ,

E(uitui′t) = σii′,t, and E(uitui′t′) = σii′,tt′ .

The following moment conditions hold, for all n and T , and i, j ≤ p, l ≤ d,

(i) max
1≤t≤T

|σii′,t| ≤ |σii′ |, for some σii′ . In addition, n−1
n∑
i=1

n∑
i′=1

|σii′ | ≤ K.

(ii) n−1T−1
n∑
i=1

n∑
i′=1

T∑
t=1

T∑
t′=1

|σii′,tt′ | ≤ K.

(iii) E

(
T∑
t=1

n∑
k=1

vjtukt

)2

≤ KnT.

Assumption A.14 imposes restrictions on the time series dependence of ut. Stationarity of ut is

not required. Eigenvalues of the residual covariance matrices E(utu
ᵀ
t ) are not necessarily bounded.

Assumption A.14 is similar to part of Assumption C in Bai (2003). We only need it when we allow for

a zero-beta rate.

Assumption A.15. The following conditions hold:

(i)
T∑
t′=1

|γn,tt′ | ≤ K, for all t.

(ii)
n∑

i′=1

|σii′ | ≤ K, for all i.

This assumption is identical to Assumption E in Bai (2003). It restricts the eigenvalues of E(utu
ᵀ
t )

and E(uᵀtut) to be bounded as the dimension increases, because the L∞-norm is stronger than the

operator norm for symmetric matrices. We need this to bound the estimation error of factors uniformly

over t, which in turn leads to the consistency of the asymptotic variance estimation.

For the same reason, we also need Assumption A.16, which Fan et al. (2011) and Fan et al. (2015)

also adopt:

Assumption A.16. The sequence of {ut, vt, zt}t≥1 is jointly strong mixing, and satisfies the exponential-

type tail condition. Moreover, for all t′, t ≤ T ,

E (uᵀtut′ − Euᵀtut′)
4 ≤ Kn2, E ‖βᵀut‖4 ≤ Kn2.
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B Additional Results

B.1 Mimicking Portfolios

Proposition 1. Suppose Assumptions A.1 - A.3 hold. The risk premium of the mimicking portfolio

that is maximally correlated with gt, γ
MP
g , satisfies: γMP

g − ηγ = op(1), as n→∞.

B.2 Limiting Distribution of the Denoised Factors

As discussed above, our framework allows for measurement error in the observable factor proxies g.

Theorem 4 in the main text indicates that we can separate the error from the factors using the extracted

PCs. Moreover, we can conduct inference on ĝt, provided an additional assumption:

Assumption B.17. For each t, as n→∞,

n−1/2βᵀut
L−→ N (0,Ωt) ,

where, writing β = (β1 : β2 : . . . : βn)ᵀ,

Ωt = lim
n→∞

1

n

n∑
i=1

n∑
i′=1

βiβ
ᵀ
i′E(uitui′t). (B.1)

Assumption B.17 is identical to Assumption F3 in Bai (2003), which is used to describe the asymp-

totic distribution of the estimated factors at each point in time.

Theorem 8. Under Assumptions A.2, and A.4 –A.12, A.15, A.16, and B.17, and suppose that p̂
p−→ p,

then as n, T →∞, we have

Ψ
−1/2
t (ĝt − ηvt)

L−→N (0, Id),

where Ψt = T−1Ψ1t + n−1Ψ2t,

Ψ1t =
{(

vᵀt (Σv)−1 ⊗ Id
)

Π11

(
(Σv)−1 vt ⊗ Id

)
−
(
vᵀt (Σv)−1 ⊗ Id

)
Π12η

ᵀ

− ηΠᵀ
12

(
(Σv)−1 vt ⊗ Id

)
+ ηΠ22η

ᵀ
}
, and

Ψ2t =η
(

Σβ
)−1

Ωt

(
Σβ
)−1

ηᵀ.

In Bai (2003), the latent factors can be estimated at the n−1/2-rate, provided that n1/2T−1 → 0. In

our setting, the estimation error consists of the errors in estimating η̂ and v̂t. Because η̂ is estimated

up to a T−1/2-rate error which dominates T−1 terms, the convergence rate of ĝt does not rely on any

relationship between n and T .
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B.3 Asymptotic Covariance Matrix

To estimate the asymptotic covariance matrices Ψ1t and Ψ2t in Theorem 8, we can simply replace vt,

Σv, Π11, Π12, Π22, η, Σβ by their sample analogues, v̂t, Σ̂v, Π̂11, Π̂12, Π̂22, η̂, Σ̂β, in the Ψ̂1t and Ψ̂2t

constructions. With respect to Ωt, we need an additional assumption:

Assumption B.18. The innovation uit is stationary, and its covariance matrix Σu is sparse, i.e., there

exists some h ∈ [0, 1/2), with ωT = (log n)1/2T−1/2 + n−1/2, such that

sn = max
1≤i≤n

n∑
i′=1

|Σu
ii′ |h, where sn = op

((
ω1−h
T + n−1 + T−1

)−1
)
.

Given this assumption, (B.1) and its estimator can be rewritten as

Ω = lim
n→∞

1

n
βᵀΣuβ, and Ω̂t = Ω̂ =

1

n
β̂ᵀΣ̂uβ̂, (B.2)

where, for 1 ≤ i, i′ ≤ n,

Σ̂u
ii′ =

{
Σ̃u
ii, i = i′

sii′(Σ
u
ii′), i 6= i′

, Σ̃u =
1

T

T∑
t=1

ûtû
ᵀ
t ,

and sii′(z) : R→ R is a general thresholding function with an entry dependent threshold τii′ such that

(i) sii′(z) = 0 if |z| < τii′ ; (ii) |sii′(z) − z| ≤ τii′ ; and (iii) |sii′(z) − z| ≤ aτ2
ii′ , if |z| > bτii′ , with some

a > 0 and b > 1. τii′ can be chosen as:

τii′ = c(Σ̂iiΣ̂i′i′)
1/2ωT , for some constant c > 0.

Bai and Liao (2013) adopt a similar estimator of Σu for efficient estimation of factor models.

With estimators of their components constructed, our estimators for Ψ1t and Ψ2t are defined as:

Ψ̂1t =T−1
{(

v̂ᵀt (Σ̂v)−1 ⊗ Id
)

Π̂11

(
(Σ̂v)−1v̂t ⊗ Id

)
−
(
v̂ᵀt (Σ̂v)−1 ⊗ Id

)
Π̂12η̂

ᵀ − η̂Π̂ᵀ
12

(
(Σ̂v)−1v̂t ⊗ Id

)
+ η̂Π̂22η̂

ᵀ
}
,

Ψ̂2t =n−1η̂
(

Σ̂β
)−1

Ω̂t

(
Σ̂β
)−1

η̂ᵀ,

where Ω̂t is given by (B.2). The next theorem establishes the desired consistency of Ψ̂1t and Ψ̂2t:

Theorem 9. Under Assumptions A.2, A.3 – A.16, B.17, B.18, we have

Ψ̂1t −Ψ1t
p−→ 0, and Ψ̂2t −Ψ2t

p−→ 0.
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C Simulations

In this section, we study the finite sample performance of our inference procedure using Monte Carlo

simulations. We consider a five-factor data-generating process, where the latent factors are calibrated to

match the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, CMA, see Fama and French

(2015)) from our empirical study in the next section. Suppose that we do not observe all five factors,

but instead some noisy version of the three Fama-French factors (RmRf, SMB, HML, see Fama and

French (1993)), plus a potentially spurious macro factor calibrated to industrial production growth (IP)

in our empirical study. Our simulations, therefore, include both the issue of omitted factors and that

of a spurious factor. We calibrate the parameters γ0, γ, η, Σv, Σz, Σu, (σα)2, β0, and Σβ to exactly

match their counterparts in the data (in our estimation of the Fama-French five-factor model). We then

generate the realizations of vt, zt, ut, α, and β from a multivariate normal using the calibrated means

and covariances.

We report in Tables C1, C2, and C3 the bias and the root-mean-square error of the estimates using

standard two-pass regressions and our three-pass approach. We choose different numbers of factors to

estimate the model, p̆ = 4, 5, and 6, whereas the true value is 5. The five rows in each panel provide

the results for the zero-beta rate, RmRf, SMB, HML, and IP, respectively. Throughout these tables,

we find that the three-pass estimators with p̆ = 5 or 6 outperform the other estimators, in particular

when n and T are large. By comparison, the two-pass estimates have substantial biases. Moreover, the

biases for the market factor premium are substantial and negative even when n and T are large. The

three-pass estimator with p̆ = 4 has an obvious bias, compared to the cases with p̆ = 5 and 6, because

an omitted-factor problem still affects it (4 factors do not span the entire factor space).

We then plot in Figure C1 the histograms of the standardized risk premia estimates using Fama-

MacBeth standard errors for the two-pass estimator (right column) and the estimated asymptotic stan-

dard errors for the three-pass method with p̆ = 5 (left column).18 The histograms on the right deviate

substantially from the standard normal distribution, whereas those on the left match the normal dis-

tribution very well, which verifies our central limit results despite a small sample size T = 240 and a

moderate dimension n = 200. There exist some small higher order biases for γ0, which would disappear

with a larger n and T in simulations not included here.

Next, we report in Table C4 the estimated number of factors. We choose φ(n, T ) = K(log n +

log T )(n−1/2 + T−1/2), where K = 0.5× λ̂, λ̂ is the median of the first pmax eigenvalues of n−1T−1R̄ᵀR̄.

The median eigenvalue helps adjust the magnitude of the penalty function for better finite sample

accuracy. Although the estimator is consistent, it cannot give the true number of factors without error,

in particular when n or T is small, potentially due to the ad-hoc choice of tuning parameters.19 In the

empirical study, we apply this estimator of p and select slightly more factors to ensure the robustness

of the estimates, as suggested by Theorem 5.

18We have also implemented the standard errors of the two-pass estimators using the formula given by Bai and Zhou
(2015), which provides desirable performance when both n and T are large. However, we do not find substantial differences
compared to the Fama-MacBeth method, so we omit those histograms.

19The eigenvalue ratio-based test by Ahn and Horenstein (2013) does not work well in our simulation setting because
the first eigenvalue dominates the rest by a wide margin, so that their test often suggests 1 factor.
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Then we evaluate the size and power properties of the proposed test in Section 4.7. To check the size

control, we create a purely noisy factor with η = 0 and variance calibrated to be the average variance

of the four factors we consider. The left panel of Figure C2 plots the histogram of the test statistic

under the null against the density of a χ2-distribution with 5 degrees of freedom. The distributions

match reasonably well given T = 240. To evaluate the power, we plot on the right panel of Figure C2

the average rejection probabilities against the signal-to-noise strength measured by R2
g for a sequence

of factors. These factors only load on the market factor, and share the same total variance calibrated

to be the average variance as above, with different R2
gs ranging from 0 to 10%. As expected, we observe

the rejection probability elevates to 1 as R2
g increases.

Finally, we compare the performance of these estimators with the mimicking portfolio estimators

under more restrictive dynamics in which γ0 is known and α = 0. So we estimate the model using (8)

and excess returns. We consider two sets of mimicking portfolios: one set (MP3) uses three portfolios

as spanning assets to project factors, where portfolio weights are exactly proportional to the market,

SMB, and HML beta. Using three base assets clearly leads to an omitted variable problem because

these three assets cannot span the space of five factors. The second set of mimicking portfolios (MP)

uses all assets as basis assets for projection. There is no omitted variable bias in this case as we prove

in Proposition 1, but these estimators are not as efficient as the three-pass estimators. They become

infeasible when n > T . Figure C3 verifies these statements. Indeed, the deviation from normality is

clearly visible for all estimators but ours. MP3 and two-pass estimates show visible biases whereas MP

estimates display distortion due to the curse of dimensionality (n is of a similar scale to T ). Tables C5 -

C7 further illustrate that the RMSEs of the mimicking portfolio estimators are often larger than those

of the three-pass estimators, due to large biases of MP3 and large variances of MP.

Overall, the three-pass estimators outperform the two-pass and mimicking portfolio estimators by

a large margin in many cases. The MP estimator using all assets ranks the second, despite being

infeasible when n is greater than T . The biases in the two-pass and MP3 are substantial, yet they are

unfortunately the most common choices in the empirical literature.
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Table C1: Simulation Results for n = 50

Two-Pass Estimator Three-Pass Estimators
p̆ = 4 p̆ = 5 p̆ = 6

T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

γ0 0.546 0.092 0.201 -0.002 0.177 0.012 0.170 0.021 0.168
RmRf 0.372 -0.097 0.440 -0.009 0.420 -0.010 0.418 -0.015 0.419

120 SMB 0.229 -0.092 0.311 -0.040 0.268 -0.042 0.269 -0.042 0.270
HML 0.209 0.198 0.397 0.008 0.207 -0.009 0.209 -0.012 0.211
IP -0.003 -0.008 0.106 0.001 0.009 0.001 0.010 0.001 0.010

γ0 0.546 0.186 0.227 0.102 0.161 0.047 0.130 0.041 0.127
RmRf 0.372 -0.186 0.361 -0.074 0.308 -0.038 0.300 -0.033 0.299

240 SMB 0.229 -0.084 0.233 -0.066 0.204 -0.023 0.195 -0.020 0.195
HML 0.209 0.089 0.284 -0.065 0.158 -0.044 0.153 -0.042 0.154
IP -0.003 -0.031 0.141 0.000 0.006 0.000 0.007 0.000 0.007

γ0 0.546 0.144 0.175 0.043 0.104 0.037 0.101 0.035 0.101
RmRf 0.372 -0.118 0.248 -0.045 0.216 -0.040 0.215 -0.037 0.214

480 SMB 0.229 -0.090 0.184 -0.021 0.143 -0.018 0.143 -0.018 0.143
HML 0.209 0.080 0.227 -0.030 0.117 -0.027 0.116 -0.026 0.116
IP -0.003 -0.036 0.174 0.001 0.004 0.001 0.004 0.001 0.005

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
zero-beta rate and risk premia estimates using two-pass and three-pass estimators with p̆ = 4, 5, and 6, for n = 50,
and T = 120, 240, and 480, respectively. The true data-generating process has five factors, and the parameters are
calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and CMA). The true zero-beta
rate is 0.546, and the true risk premia of four noisy yet observed factors (RmRf, SMB, HML, and IP) are provided in
the “True” column. All numbers are in percentages.

Table C2: Simulation Results for n = 100

Two-Pass Estimator Three-Pass Estimators
p̆ = 4 p̆ = 5 p̆ = 6

T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

γ0 0.546 0.215 0.255 0.051 0.120 0.037 0.109 0.034 0.107
RmRf 0.372 -0.184 0.457 -0.020 0.404 -0.019 0.405 -0.017 0.405

120 SMB 0.229 -0.088 0.309 -0.033 0.272 -0.019 0.272 -0.017 0.272
HML 0.209 0.011 0.330 -0.055 0.213 -0.038 0.211 -0.036 0.212
IP -0.003 -0.015 0.102 0.000 0.010 0.000 0.010 0.000 0.011

γ0 0.546 0.219 0.242 0.010 0.080 0.012 0.080 0.015 0.080
RmRf 0.372 -0.198 0.363 0.004 0.292 -0.008 0.293 -0.011 0.293

240 SMB 0.229 -0.088 0.229 -0.016 0.193 -0.009 0.192 -0.008 0.192
HML 0.209 0.112 0.278 -0.035 0.157 -0.018 0.157 -0.014 0.157
IP -0.003 -0.029 0.137 0.000 0.007 0.000 0.007 0.000 0.007

γ0 0.546 0.191 0.207 0.014 0.068 0.011 0.067 0.008 0.067
RmRf 0.372 -0.155 0.263 -0.006 0.204 -0.012 0.205 -0.010 0.205

480 SMB 0.229 -0.167 0.230 -0.022 0.142 -0.014 0.141 -0.013 0.141
HML 0.209 0.085 0.222 -0.019 0.112 -0.012 0.112 -0.010 0.112
IP -0.003 -0.056 0.193 0.000 0.005 0.000 0.005 0.000 0.005

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
zero-beta rate and risk premia estimates using two-pass and three-pass estimators with p̆ = 4, 5, and 6, for n = 100,
and T = 120, 240, and 480, respectively. The true data-generating process has five factors, and the parameters are
calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and CMA). The true zero-beta
rate is 0.546, and the true risk premia of four noisy yet observed factors (RmRf, SMB, HML, and IP) are provided in
the “True” column. All numbers are in percentages.
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Table C3: Simulation Results for n = 200

Two-Pass Estimator Three-Pass Estimators
p̆ = 4 p̆ = 5 p̆ = 6

T Param True Bias RMSE Bias RMSE Bias RMSE Bias RMSE

γ0 0.546 0.203 0.227 0.037 0.085 0.028 0.069 0.028 0.069
RmRf 0.372 -0.181 0.458 -0.022 0.409 -0.016 0.407 -0.016 0.407

120 SMB 0.229 -0.078 0.298 -0.010 0.268 -0.004 0.269 -0.003 0.269
HML 0.209 0.119 0.343 -0.017 0.214 -0.017 0.216 -0.016 0.216
IP -0.003 -0.013 0.097 0.000 0.010 0.000 0.011 0.000 0.011

γ0 0.546 0.167 0.181 0.016 0.053 0.011 0.049 0.010 0.049
RmRf 0.372 -0.154 0.338 0.006 0.291 -0.004 0.292 -0.003 0.292

240 SMB 0.229 -0.102 0.237 -0.025 0.198 -0.004 0.198 -0.004 0.198
HML 0.209 0.135 0.283 -0.017 0.154 -0.013 0.154 -0.013 0.154
IP -0.003 -0.033 0.142 0.000 0.007 0.000 0.007 0.000 0.007

γ0 0.546 0.178 0.189 0.011 0.045 0.007 0.044 0.006 0.043
RmRf 0.372 -0.148 0.255 0.007 0.201 -0.008 0.202 -0.008 0.202

480 SMB 0.229 -0.146 0.213 -0.031 0.143 -0.008 0.140 -0.008 0.140
HML 0.209 0.196 0.286 -0.017 0.114 -0.002 0.113 -0.002 0.114
IP -0.003 -0.076 0.203 0.000 0.005 0.000 0.005 0.000 0.005

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
zero-beta rate and risk premia estimates using two-pass and three-pass estimators with p̆ = 4, 5, and 6, for n = 200,
and T = 120, 240, and 480, respectively. The true data-generating process has five factors, and the parameters are
calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and CMA). The true zero-beta
rate is 0.546, and the true risk premia of four noisy yet observed factors (RmRf, SMB, HML, and IP) are provided in
the “True” column. All numbers are in percentages.

Table C4: Simulation Results for the Number of Factors

n = 50 n = 100 n = 200
T Median Stderr Median Stderr Median Stderr

120 3 0.35 4 0.62 5 0.08
240 4 0.52 5 0.53 5 0.20
480 3 0.31 5 0.25 5 0.39

Note: In this table, we report the median (Column “Median”) and the standard error (Column “Stderr”) of the
estimates for the number of factors. The true number of factors in the data generating process is five.
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Table C5: Simulation Results for n = 50

Two-Pass Estimator Mimicking Portfolios Mimicking Portfolios
using three assets using all assets

T Param True Bias RMSE Bias RMSE Bias RMSE

RmRf 0.372 -0.001 0.419 0.015 0.398 0.003 0.406
120 SMB 0.229 -0.067 0.304 0.162 0.302 -0.002 0.282

HML 0.209 0.148 0.370 -0.308 0.322 -0.018 0.254
IP -0.003 -0.008 0.091 0.002 0.008 0.000 0.027

RmRf 0.372 -0.172 0.345 -0.019 0.275 -0.012 0.282
240 SMB 0.229 -0.052 0.224 0.119 0.214 0.005 0.191

HML 0.209 0.282 0.379 -0.273 0.279 -0.007 0.159
IP -0.003 -0.011 0.123 0.002 0.006 0.001 0.013

RmRf 0.372 -0.220 0.309 -0.041 0.206 -0.019 0.205
480 SMB 0.229 -0.091 0.178 0.071 0.151 -0.010 0.139

HML 0.209 0.307 0.366 -0.262 0.266 0.004 0.110
IP -0.003 -0.020 0.140 0.003 0.004 0.000 0.007

Three-Pass Estimators
p̆ = 4 p̆ = 5 p̆ = 6

T Param True Bias RMSE Bias RMSE Bias RMSE

RmRf 0.372 0.019 0.401 0.018 0.402 0.015 0.402
120 SMB 0.229 -0.018 0.261 -0.014 0.262 -0.008 0.264

HML 0.209 -0.056 0.195 -0.053 0.198 -0.050 0.200
IP -0.003 0.001 0.008 0.001 0.009 0.001 0.010

RmRf 0.372 -0.079 0.288 -0.056 0.284 -0.043 0.281
240 SMB 0.229 0.029 0.184 0.030 0.186 0.022 0.186

HML 0.209 0.044 0.142 0.013 0.139 0.004 0.139
IP -0.003 0.001 0.006 0.001 0.006 0.001 0.007

RmRf 0.372 -0.088 0.221 -0.068 0.215 -0.043 0.208
480 SMB 0.229 -0.016 0.137 -0.020 0.138 -0.025 0.139

HML 0.209 0.090 0.133 0.070 0.125 0.044 0.111
IP -0.003 0.001 0.004 0.001 0.004 0.001 0.004

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
risk premia estimates using mimicking portfolios with three assets or all assets, two-pass and three-pass estimators with
p̆ = 4, 5, and 6, for n = 50, and T = 120, 240, and 480, respectively. The true data-generating process has five factors,
and the parameters are calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and
CMA). In this setting, there is no α. The true zero-beta rate is 0, and the true risk premia of four noisy yet observed
factors (RmRf, SMB, HML, and IP) are provided in the “True” column. All numbers are in percentages.
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Table C6: Simulation Results for n = 100

Two-Pass Estimator Mimicking Portfolios Mimicking Portfolios
using three assets using all assets

T Param True Bias RMSE Bias RMSE Bias RMSE

RmRf 0.372 -0.180 0.443 0.087 0.395 0.008 0.410
120 SMB 0.229 -0.165 0.338 0.046 0.267 -0.001 0.324

HML 0.209 0.086 0.333 -0.374 0.387 -0.013 0.427
IP -0.003 -0.011 0.090 0.002 0.009 0.000 0.074

RmRf 0.372 -0.215 0.372 0.036 0.286 0.000 0.288
240 SMB 0.229 -0.158 0.266 0.099 0.213 -0.004 0.201

HML 0.209 0.232 0.340 -0.341 0.347 -0.001 0.180
IP -0.003 -0.028 0.144 0.002 0.006 0.000 0.020

RmRf 0.372 -0.240 0.321 -0.009 0.199 -0.004 0.203
480 SMB 0.229 -0.087 0.174 0.127 0.182 -0.002 0.139

HML 0.209 0.183 0.269 -0.307 0.310 -0.005 0.116
IP -0.003 -0.062 0.180 0.002 0.004 0.000 0.009

Three-Pass Estimators
p̆ = 4 p̆ = 5 p̆ = 6

T Param True Bias RMSE Bias RMSE Bias RMSE

RmRf 0.372 0.017 0.393 0.013 0.393 0.013 0.393
120 SMB 0.229 -0.028 0.270 -0.018 0.270 -0.017 0.270

HML 0.209 -0.010 0.210 -0.013 0.212 -0.014 0.213
IP -0.003 0.000 0.010 0.000 0.010 0.000 0.011

RmRf 0.372 0.001 0.286 0.001 0.286 0.001 0.286
240 SMB 0.229 -0.015 0.193 -0.013 0.193 -0.012 0.194

HML 0.209 -0.002 0.147 -0.003 0.148 -0.001 0.149
IP -0.003 0.000 0.007 0.000 0.007 0.000 0.007

RmRf 0.372 -0.010 0.202 -0.005 0.202 -0.005 0.202
480 SMB 0.229 0.001 0.137 -0.003 0.137 -0.003 0.137

HML 0.209 -0.004 0.107 -0.008 0.107 -0.008 0.107
IP -0.003 0.000 0.005 0.000 0.005 0.000 0.005

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
risk premia estimates using mimicking portfolios with three assets or all assets, two-pass and three-pass estimators with
p̆ = 4, 5, and 6, for n = 100, and T = 120, 240, and 480, respectively. The true data-generating process has five factors,
and the parameters are calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and
CMA). In this setting, there is no α. The true zero-beta rate is 0, and the true risk premia of four noisy yet observed
factors (RmRf, SMB, HML, and IP) are provided in the “True” column. All numbers are in percentages.
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Table C7: Simulation Results for n = 200

Two-Pass Estimator Mimicking Portfolios Mimicking Portfolios
using three assets using all assets

T Param True Bias RMSE Bias RMSE Bias RMSE

RmRf 0.372 -0.201 0.462 0.064 0.402 NA NA
120 SMB 0.229 -0.064 0.297 0.064 0.267 NA NA

HML 0.209 0.031 0.324 -0.422 0.437 NA NA
IP -0.003 -0.017 0.110 0.002 0.008 NA NA

RmRf 0.372 -0.179 0.344 -0.018 0.281 -0.003 0.294
240 SMB 0.229 -0.092 0.223 0.121 0.220 -0.002 0.222

HML 0.209 0.247 0.347 -0.316 0.323 0.004 0.298
IP -0.003 -0.027 0.134 0.002 0.006 0.000 0.050

RmRf 0.372 -0.174 0.273 0.027 0.200 -0.001 0.202
480 SMB 0.229 -0.070 0.164 0.115 0.175 -0.001 0.140

HML 0.209 0.155 0.248 -0.374 0.377 0.001 0.129
IP -0.003 -0.056 0.183 0.002 0.004 0.000 0.014

Three-Pass Estimators
p̆ = 4 p̆ = 5 p̆ = 6

T Param True Bias RMSE Bias RMSE Bias RMSE

RmRf 0.372 0.010 0.406 -0.001 0.407 -0.001 0.407
120 SMB 0.229 -0.022 0.270 -0.007 0.269 -0.007 0.270

HML 0.209 -0.018 0.212 -0.019 0.214 -0.018 0.214
IP -0.003 0.000 0.010 0.000 0.011 0.000 0.011

RmRf 0.372 -0.035 0.285 -0.003 0.284 -0.003 0.284
240 SMB 0.229 0.003 0.188 -0.009 0.189 -0.007 0.189

HML 0.209 0.042 0.155 0.000 0.150 0.000 0.151
IP -0.003 0.001 0.007 0.000 0.007 0.000 0.007

RmRf 0.372 -0.012 0.201 -0.001 0.201 -0.001 0.201
480 SMB 0.229 0.004 0.137 -0.002 0.137 -0.002 0.137

HML 0.209 0.010 0.110 0.000 0.109 0.000 0.109
IP -0.003 0.000 0.005 0.000 0.005 0.000 0.005

Note: In this table, we report the bias (Column “Bias”) and the root-mean-square error (Column “RMSE”) of the
risk premia estimates using mimicking portfolios with three assets or all assets, two-pass and three-pass estimators with
p̆ = 4, 5, and 6, for n = 200, and T = 120, 240, and 480, respectively. The true data-generating process has five factors,
and the parameters are calibrated based on the de-noised five Fama-French factors (RmRf, SMB, HML, RMW, and
CMA). In this setting, there is no α. The true zero-beta rate is 0, and the true risk premia of four noisy yet observed
factors (RmRf, SMB, HML, and IP) are provided in the “True” column. All numbers are in percentages. NA means
the estimates are “infeasible.”
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Figure C1: Histograms of the Standardized Estimates in Simulations
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Note: The right panels provide the histograms of the standardized two-pass risk premia estimates using the Fama-
MacBeth approach for standard error estimation, whereas the left panels provide the histograms of the standardized
three-pass estimates using asymptotic standard errors. We simulate the models with n = 200 and T = 240.

Figure C2: Size and Power of the Test Statistic
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Note: The left panel provides the histogram of the standardized test statistic under the null hypothesis η = 0 along
with the density of the chi-squared distribution with 5 degrees of freedom, whereas the right panel plots the rejection
probability (y-axis) against R2

g (x-axis). We fix n = 200 and T = 240.
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Figure C3: Histograms of the Standardized Estimates in Simulations
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Note: The left panels provide the histograms of the standardized mimicking portfolio estimators for four parameters,
using three (bottom left) or all assets (bottom right), respectively, as well as those of the two-pass estimates (top right),
and three-pass estimates (top left). We simulate the models with n = 200 and T = 240.
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D Mathematical Proofs

D.1 Proofs of Main Theorems

Proof of Proposition 1. Given the weights of the mimicking portfolios, and by Assumptions A.1 and

A.2, these portfolio returns, i.e., r̆t = wᵀrt, satisfy the following factor model:

r̆t = β̆γ + β̆vt + ŭt, (D.3)

where β̆ = wᵀβ, ŭt = wᵀut. Conditioning on β, the bias of the factor mimicking-portfolio estimator is:

γMP
g − ηγ = ηΣvβ̆ᵀ(Σ̆r)−1β̆γ − ηγ + Σ̆z,u(Σ̆r)−1β̆γ,

where Σ̆z,u = Σz,uw and Σ̆r = wᵀΣrw.

Because of (D.3), we have Σ̆r = β̆Σvβ̆ᵀ + Σ̆u, so that by Woodbury matrix identity

(Σ̆r)−1 =(Σ̆u)−1 − (Σ̆u)−1β̆
(
β̆ᵀ(Σ̆u)−1β̆ + (Σv)−1

)−1
β̆ᵀ(Σ̆u)−1,

β̆ᵀ(Σ̆r)−1β̆ =β̆ᵀ(Σ̆u)−1β̆ − β̆ᵀ(Σ̆u)−1β̆
(
β̆ᵀ(Σ̆u)−1β̆ + (Σv)−1

)−1
β̆ᵀ(Σ̆u)−1β̆.

This further implies that (
β̆ᵀ(Σ̆r)−1β̆

)−1
=
(
β̆ᵀ(Σ̆u)−1β̆

)−1
+ Σv,

where we use the fact that p̆ ≥ p.
Using this equation and by direct calculations, we obtain that

ηΣvβ̆ᵀ(Σ̆r)−1β̆γ − ηγ =η

((
Ip +

(
β̆ᵀ(Σ̆u)−1β̆

)−1
(Σv)−1

)−1

− Ip

)
γ = −η (Ip +A)−1Aγ,

where A =
(
β̆ᵀ(Σ̆u)−1β̆

)−1
(Σv)−1. We can then show that the maximum eigenvalue of A goes to zero

as n→∞, so the bias disappears asymptotically.

In fact, under Assumption A.3, λmax(Σ̆u) = Op(snn
−1), then

λmax(A) = λ−1
min(Σvβ̆ᵀ(Σ̆u)−1β̆) ≤ λ−1

min(Σv)λ−1
min(β̆ᵀβ̆)λmax(Σ̆u) = Op(snn

−1).

By Weyl’s inequality, for any fixed ε > 0, with probability approaching 1

λmin(Ip +A) ≥ λmin(Ip) + λmin(A) > 1− ε.

It then follows that

‖ηΣvβ̆ᵀ(Σ̆r)−1β̆γ − ηγ‖ ≤ ‖η‖‖γ‖λmax(A)λ−1
min(Ip +A) = Op(snn

−1).
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On the other hand, we have

Σ̆z,u(Σ̆r)−1β̆ =Σ̆z,u(Σ̆u)−1β̆ − Σ̆z,u(Σ̆u)−1β̆
(
β̆ᵀ(Σ̆u)−1β̆ + (Σv)−1

)−1
β̆ᵀ(Σ̆u)−1β̆

=Σ̆z,u(Σ̆u)−1β̆ (Ip +A)−1A.

Using similar analysis as above, we have∥∥∥Σ̆z,u(Σ̆r)−1β̆γ
∥∥∥ ≤ K ∥∥∥β̆z,uβ̆∥∥∥

MAX
‖γ‖λmax(A)λ−1

min(Ip +A) = Op(snn
−1),

which concludes the proof.

Proof of Theorem 1. We take two steps to prove it.

Step 1: Since

R̄ᵀR̄− V̄ ᵀβᵀβV̄ = ŪᵀβV̄ + V̄ ᵀβᵀŪ + ŪᵀŪ ,

then by Weyl’s inequality, we have, for 1 ≤ j ≤ p,

∣∣λj(R̄ᵀR̄)− λj(V̄ ᵀβᵀβV̄ )
∣∣ ≤ ∥∥ŪᵀŪ

∥∥+
∥∥ŪᵀβV̄

∥∥+
∥∥V̄ ᵀβᵀŪ

∥∥ .
We analyze the terms on the right-hand side one by one.

(i) To begin with, write Γu = (γn,tt′). Note that

∥∥ŪᵀŪ − nΓu
∥∥ ≤ ‖UᵀU − nΓu‖F + 2 ‖ιT ūᵀU‖F +

∥∥ιT ūᵀūιᵀT∥∥F
.

By Assumption A.4(ii),

E ‖UᵀU − nΓu‖2F =
T∑
s=1

T∑
t=1

E

 n∑
j=1

(ujsujt − E(ujsujt))

2

≤ KnT 2, (D.4)

and by Assumption A.4(i),

E ‖ū‖2F = T−2E

n∑
i=1

T∑
t=1

T∑
t′=1

uituit′ ≤ nT−2
T∑
t=1

T∑
t′=1

|γn,tt′ | ≤ KnT−1, (D.5)

E ‖U‖2F =

n∑
i=1

T∑
t=1

Eu2
it ≤ n

T∑
t=1

γn,tt ≤ KnT, (D.6)

it follows that

‖ιT ūᵀU‖F ≤ ‖ιT ‖F ‖ū
ᵀ‖F ‖U‖F = Op(nT

1/2),
∥∥ιT ūᵀūιᵀT∥∥F

≤ ‖ιT ‖2F ‖ū
ᵀ‖2F = Op(n),
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and hence that

∥∥ŪᵀŪ − nΓu
∥∥ = Op(n

1/2T ) +Op(nT
1/2). (D.7)

Next, writing ρn,st = γn,st/
√
γn,ssγn,tt, by Assumption A.4(i) and the fact that |ρn,st| ≤ 1,

‖Γu‖2F =

T∑
s=1

T∑
t=1

γ2
n,st =

T∑
s=1

T∑
t=1

γn,ssγn,ttρ
2
n,st

≤K
T∑
s=1

T∑
t=1

|γn,ssγn,tt|1/2|ρn,st| ≤ K
T∑
s=1

T∑
t=1

|γn,st| ≤ KT, (D.8)

so we have n ‖Γu‖ = Op(nT
1/2). Therefore, we obtain

∥∥ŪᵀŪ
∥∥ ≤ ∥∥ŪᵀŪ − nΓu

∥∥+ n ‖Γu‖ = Op(nT
1/2) +Op(n

1/2T ). (D.9)

(ii) By Assumption A.7, we have

E ‖Uᵀβ‖2F =E

p∑
j=1

T∑
t=1

(
n∑
i=1

βijuit

)2

≤ KnT, (D.10)

E ‖ūᵀβ‖2F =E

p∑
k=1

(
n∑
i=1

ūiβik

)2

≤ KnT−1, (D.11)

it follows that

∥∥Ūᵀβ
∥∥

F
≤ ‖Uᵀβ‖F + ‖ιT ‖F ‖ū

ᵀβ‖F = Op(n
1/2T 1/2). (D.12)

Also, by Assumption A.5,

T−1
∥∥V̄ V̄ ᵀ

∥∥
MAX

≤
∥∥T−1V V ᵀ − Σv

∥∥
MAX

+ ‖Σv‖MAX + ‖v̄v̄ᵀ‖MAX ≤ K, (D.13)

we have

∥∥V̄ ∥∥ ≤ ∥∥V̄ V̄ ᵀ
∥∥1/2 ≤ K

∥∥V̄ V̄ ᵀ
∥∥1/2

MAX
= Op(T

1/2). (D.14)

Therefore, we have

∥∥V̄ ᵀβᵀŪ
∥∥ =

∥∥ŪᵀβV̄
∥∥ ≤ ∥∥Ūᵀβ

∥∥
F

∥∥V̄ ∥∥ = Op(n
1/2T ).

Combining (i) and (ii), we have for 1 ≤ j ≤ p,

n−1T−1
∣∣λj(R̄ᵀR̄)− λj(V̄ ᵀβᵀβV̄ )

∣∣ = Op(n
−1/2 + T−1/2) = op(1). (D.15)
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(iii) Moreover, by Assumption A.6, (D.14), and Weyl’s inequality again,∣∣∣n−1T−1λj(V̄
ᵀβᵀβV̄ )− T−1λj(V̄

ᵀΣβV̄ )
∣∣∣ ≤ ∥∥∥n−1βᵀβ − Σβ

∥∥∥T−1
∥∥V̄ ᵀ

∥∥∥∥V̄ ∥∥ = op(1),

and combined with Assumption A.5, and the fact that ‖v̄‖ ≤ K ‖v̄‖MAX = Op(T
−1/2),∣∣∣∣T−1λj(V̄

ᵀΣβV̄ )− λj
((

Σβ
)1/2

Σv
(

Σβ
)1/2

)∣∣∣∣
≤
∥∥T−1V̄ V̄ ᵀ − Σv

∥∥∥∥∥Σβ
∥∥∥ ≤ (∥∥T−1V V ᵀ − Σv

∥∥+ ‖v̄v̄ᵀ‖
) ∥∥∥Σβ

∥∥∥ = op(1),

where we also use the fact that the non-zero eigenvalues of V̄ ᵀΣβV̄ are identical to the non-zero eigen-

values of
(
Σβ
)1/2

V̄ V̄ ᵀ
(
Σβ
)1/2

. Therefore, for 1 ≤ j ≤ p,∣∣∣∣n−1T−1λj(R̄
ᵀR̄)− λj

((
Σβ
)1/2

Σv
(

Σβ
)1/2

)∣∣∣∣ = op(1). (D.16)

Step 2: By Assumptions A.5 and A.6, there exists 0 < K1,K2 <∞, such that

K1 < λmin(Σv)λmin(Σβ) ≤ λmin(ΣvΣβ) ≤ λmax(ΣvΣβ) ≤ λmax(Σv)λmax(Σβ) < K2.

Therefore the eigenvalues of (Σβ)1/2Σv(Σβ)1/2 are bounded away from 0 and ∞, we have by (D.16), for

1 ≤ j ≤ p,

K1 < n−1T−1λj(R̄
ᵀR̄) < K2. (D.17)

On the other hand, we can write

R̄R̄ᵀ = β̃V̄ V̄ ᵀβ̃ᵀ + Ū
(
IT − V̄ ᵀ(V̄ V̄ ᵀ)−1V̄

)
Ūᵀ, (D.18)

where β̃ = β+UV̄ ᵀ(V̄ V̄ ᵀ)−1. By (4.3.2a) of Theorem 4.3.1 and (4.3.14) of Corollary 4.3.12 in Horn and

Johnson (2013), for p+ 1 ≤ j ≤ n, we have

λj(R̄R̄
ᵀ) ≤ λj−p

(
Ū(IT − V̄ ᵀ(V̄ V̄ ᵀ)−1V̄ )Ūᵀ)+ λp+1(β̃V̄ V̄ ᵀβ̃) ≤ λj−p(Ū Ūᵀ) ≤ λ1(Ū Ūᵀ).

Moreover, by (D.9), we have

λ1(Ū Ūᵀ) =
∥∥ŪᵀŪ

∥∥ = Op(nT
1/2) +Op(n

1/2T ),

hence for p+ 1 ≤ j ≤ n, there exists some K > 0, such that

n−1T−1λj(R̄
ᵀR̄) ≤ K(n−1/2 + T−1/2). (D.19)
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Now we define, for 1 ≤ j ≤ n,

f(j) = n−1T−1λj(R̄
ᵀR̄) + j × φ(n, T ).

(D.17) and (D.19) together imply that for 1 ≤ j ≤ p,

f(j)− f(p+ 1) =n−1T−1
(
λj(R̄

ᵀR̄)− λp+1(R̄ᵀR̄)
)

+ (j − p− 1)φ(n, T )

>λj

((
Σβ
)1/2

Σv
(

Σβ
)1/2

)
+ op(1) > K,

for some K > 0; and for p+ 1 < j ≤ n, we have

P(f(j) < f(p+ 1)) = P
(
(j − p− 1)φ(n, T ) < n−1T−1

(
λp+1(R̄ᵀR̄)− λj(R̄ᵀR̄)

))
→ 0.

Therefore, p+ 1 = arg min1≤j≤p f(j) holds with probability approaching 1, and hence p̂
p−→ p.

Proof of Theorem 2. Let Λ̂ be the p × p diagonal matrix of the p largest eigenvalues of n−1T−1R̄ᵀR̄.

We define a p× p matrix:

H = n−1T−1Λ̂−1V̂ V̄ ᵀβᵀβ. (D.20)

We have the following decomposition:

γ̂ −Hγ =
(
β̂ᵀβ̂

)−1
β̂ᵀ
((
β − β̂H

)
γ + βv̄ + ū

)
=Hv̄ + n

(
β̂ᵀβ̂

)−1
n−1

(
H−ᵀβᵀū+H−ᵀβᵀ(β − β̂H)γ

+(β̂ − βH−1)ᵀū+H−ᵀβᵀ(β − β̂H)v̄ + (β̂ᵀ −H−ᵀβᵀ)(β − β̂H)(γ + v̄)
)
.

On the one hand, by Lemmas 4(b) and 4(e) we have

n−1
∥∥∥β̂ᵀβ̂ −H−ᵀβᵀβH−1

∥∥∥
MAX

≤
∥∥∥n−1

(
β̂ᵀ −H−ᵀβᵀ

)(
β̂ − βH−1

)∥∥∥
MAX

+ n−1
∥∥∥H−ᵀβᵀ (β̂ − βH−1

)∥∥∥
MAX

+ n−1
∥∥∥(β̂ − βH−1

)ᵀ
βH−1

∥∥∥
MAX

=Op(n
−1 + T−1). (D.21)

Therefore, by Assumption A.6 and Lemma 4(a), (c), and (d), we have

γ̂ −Hγ =Hv̄ +Op(n
−1 + T−1). (D.22)

On the other hand, we note that

η̂ − ηH−1 = ηH−1
(
HV̄ − V̂

)
V̂ ᵀ(V̂ V̂ ᵀ)−1 + Z̄V̂ ᵀ(V̂ V̂ ᵀ)−1,
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and by Lemma 5(a) and (b), we have

η̂ − ηH−1 = T−1Z̄V̄ ᵀHᵀ +Op(n
−1 + T−1). (D.23)

Moreover, by Lemma 5(c), it follows that

∥∥η̂ − ηH−1
∥∥ = Op(n

−1 + T−1/2). (D.24)

Combining (D.22), (D.23), and Lemma 2, we obtain

γ̂g − ηγ = ηv̄ + T−1Z̄V̄ ᵀ(Σv)−1γ +Op(n
−1 + T−1).

Since

vec
(
T−1Z̄V̄ ᵀ (Σv)−1 γ

)
=
(
γᵀ (Σv)−1 ⊗ Id

) (
vec(T−1ZV ᵀ) + vec(z̄v̄ᵀ)

)
=
(
γᵀ (Σv)−1 ⊗ Id

)
vec(T−1ZV ᵀ) +Op(T

−1),

it follows from Assumption A.11 that

T 1/2

(
T−1Z̄V̄ ᵀ (Σv)−1 γ

ηv̄

)

L−→N

((
0

0

)
,

( (
γᵀ (Σv)−1 ⊗ Id

)
Π11

(
(Σv)−1 γ ⊗ Id

) (
γᵀ (Σv)−1 ⊗ Id

)
Π12η

ᵀ

· ηΠ22η
ᵀ

))
.

Therefore, by the Delta method, and imposing T 1/2n−1 → 0, we obtain:

T 1/2
(
T−1Z̄V̄ ᵀ (Σv)−1 γ + ηv̄

)
L−→ N (0,Φ) ,

where Φ is given in the main text. This concludes the proof.

Proof of Theorem 3. We summarize the parameters of interest in Γ = (γ0 : (ηγ)ᵀ)ᵀ, and denote

Γ̃ := (γ̃0, γ̃
ᵀ)ᵀ =

(
(ιn : β̂)ᵀ(ιn : β̂)

)−1
(ιn : β̂)ᵀr̄, Γ̂ :=

(
γ̂0

γ̃g

)
:=

(
1 0

0 η̂

)
Γ̃ =

(
γ̃0

η̂γ̃

)
.

Because β̂ and η̂ only rely on R̄ and Ḡ, which do not depend on γ0ιn and α, we can recycle the estimates

derived in Lemmas 1 – 5, despite that the DGP is given by Assumption A.12 instead of Assumption

A.1.

We use the following decomposition:

Γ̃−

(
γ0

Hγ

)
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=
(

(ιn : β̂)ᵀ(ιn : β̂)
)−1

(ιn : β̂)ᵀ
((
β − β̂H

)
γ + βv̄ + α+ ū

)
=

(
0

Hv̄

)
+

{
1

n

(
ιᵀnιn ιᵀnβ̂

β̂ᵀιn β̂ᵀβ̂

)}−1{
1

n

(
ιᵀnα

H−ᵀβᵀα

)
+

1

n

(
ιᵀnū+ ιᵀn(β − β̂H)γ

H−ᵀβᵀū+H−ᵀβᵀ(β − β̂H)γ

)

+
1

n

(
ιᵀn(β − β̂H)v̄

(β̂ − βH−1)ᵀ(α+ ū) +H−ᵀβᵀ(β − β̂H)v̄ + (β̂ᵀ −H−ᵀβᵀ)(β − β̂H)(γ + v̄)

)}
. (D.25)

By Lemma 6(b), we have

n−1
∥∥∥ιᵀn(β̂ − βH−1)

∥∥∥
MAX

= Op(n
−1 + T−1).

Therefore, we have

1

n

(
ιᵀnιn ιᵀnβ̂

β̂ᵀιn β̂ᵀβ̂

)
=

1

n

(
ιᵀnιn ιᵀnβH−1

H−ᵀβᵀιn H−ᵀβᵀβH−1

)
+Op(n

−1 + T−1). (D.26)

Using this, and by Lemmas 2, 4, 5, 6, and 7, we have

Γ̂−

(
γ0

ηγ

)
=

(
0

T−1Z̄V̄ ᵀ(Σv)−1γ + ηv̄

)

+

(
1 0

0 η

){
1

n

(
ιᵀnιn ιᵀnβ

βᵀιn βᵀβ

)
+ op(1)

}−1

×

{
1

n

(
ιᵀnα

βᵀα

)
+ op(n

−1/2 + T−1/2)

}
.

Moreover, by Cramér-Wold theorem and Lyapunov’s central limit theorem, we can obtain

n−1/2

(
ιᵀnα

βᵀα

)
L−→ N

((
0

0

)
,

(
1 βᵀ0
β0 Σβ

)
(σα)2

)
, (D.27)

where we use
∥∥n−1βᵀιn − β0

∥∥
MAX

= o(1) and
∥∥n−1βᵀβ − Σβ

∥∥
MAX

= o(1). Also, Assumptions A.6 and

A.13 ensure that (1− βᵀ0(Σβ)−1β0) and (Σβ − β0β
ᵀ
0) are invertible. Therefore, by the Delta method, we

have

n1/2 (γ̂0 − γ0)
L−→ N

(
0,
(

1− βᵀ0(Σβ)−1β0

)−1
(σα)2

)
,

Similarly, we have

n1/2
(

0 η
){ 1

n

(
ιᵀnιn ιᵀnβ

βᵀιn βᵀβ

)
+ op(1)

}−1

× 1

n

(
ιᵀnα

βᵀα

)
L−→ N (0,Υ) ,

where

Υ = (σα)2η
(

Σβ − β0β
ᵀ
0

)−1
ηᵀ.
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By the same asymptotic independence argument as in the proof of Theorem 3 in Bai (2003), we establish

the desired result:

(
T−1Φ + n−1Υ

)−1/2
(γ̃g − ηγ)

L−→ N (0, Id).

Proof of Theorem 4. By Assumptions A.5, A.6, and A.13, Lemma 4, (D.11), and (D.27), we have

n−1ιᵀnr̄ = γ0 + βᵀ0γ +Op(n
−1/2 + T−1/2),

n−1r̄ᵀr̄ = γᵀΣβγ + γ2
0 + (σα)2 + γᵀβ0γ0 + βᵀ0γγ0 +Op(n

−1/2 + T−1/2),

it then follows that

n−1r̄ᵀMιn r̄ = n−1r̄ᵀr̄ − (n−1ιᵀnr̄)
2 = γᵀ(Σβ − β0β

ᵀ
0)γ + (σα)2 + op(1).

On the other hand, by Assumption A.5, Lemma 3, (D.5), we have

n−1
∥∥∥Hᵀβ̂ᵀMιn r̄ − βᵀMιn r̄

∥∥∥
MAX

=
∥∥∥(Hᵀβ̂ᵀ − βᵀ)Mιn(α+ βγ + βv̄ + ū)

∥∥∥
MAX

≤n−1
∥∥∥Hᵀβ̂ᵀ − βᵀ

∥∥∥
F
‖α+ βγ + βv̄ + ū‖F = Op(n

−1/2 + T−1/2).

Similarly, we have

n−1βᵀMιn r̄ =
(

Σβ − β0β
ᵀ
0

)
γ + op(1),

n−1βᵀMιnβ = Σβ − β0β
ᵀ
0 + op(1),

therefore, we obtain

(n−1βᵀMιn r̄)
ᵀ (n−1βᵀMιnβ

)−1 (
n−1βᵀMιn r̄

)
= γᵀ

(
Σβ − β0β

ᵀ
0

)
γ + op(1),

which establishes R̂2
v

p−→ R2
v.

By Lemma 2, (D.48), (D.24) and the fact that ‖η‖MAX ≤ K, we have∥∥∥T−1η̂V̂ V̂ ᵀηᵀ − ηΣvηᵀ
∥∥∥

MAX

≤
∥∥(η̂ − ηH−1)(η̂ − ηH−1)ᵀ

∥∥
MAX

+
∥∥(η̂ − ηH−1)H−ᵀηᵀ

∥∥
MAX

+
∥∥ηH−1(η̂ − ηH−1)ᵀ

∥∥
MAX

+
∥∥η(H−1H−ᵀ − Σv)ηᵀ

∥∥
MAX

=Op(n
−1/2 + T−1/2).

Also, by Assumptions A.5, A.8, and A.11, we have

T−1ḠḠᵀ = T−1(ηV̄ + Z̄)(ηV̄ + Z̄)ᵀ
p−→ ηΣvηᵀ + Σz,
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hence it follows that R̂2
g

p−→ R2
g.

Proof of Theorem 5. We denote the estimators of V̄ and β based on p̆ as V̆ and β̆ respectively. Without

loss of generality, we can assume p̂ = p.

Consider the singular value decomposition of n−1/2T−1/2R̄ by scaling (D.63), we have

n−1/2T−1/2ςᵀp+1:p̆R̄ = Λ
1/2
p+1:p̆ξ

ᵀ
p+1:p̆ and n−1/2T−1/2R̄ξp+1:p̆ = ςp+1:p̆Λ

1/2
p+1:p̆, (D.28)

where Λp+1:p̆ is a (p̆−p)×(p̆−p) diagonal matrix with the ith entry on the diagonal being n−1T−1λi(R̄
ᵀR̄),

ξp+1:p̆ = (ξp+1 : ξp+2 : · · · : ξp̆) is T × (p̆− p), and ςp+1:p̆ = (ςp+1 : ςp+2 : . . . : ςp̆) is n× (p̆− p). It is also

easy to observe that

V̆ ᵀ =
(
V̂ ᵀ : T 1/2ξp+1:p̆

)
, β̆ =

(
β̂ : n1/2ςp+1:p̆Λ

1/2
p+1:p̆

)
, V̂ ξp+1:p̆ = 0, and ςᵀp+1:p̆β̂ = 0.

Using the formula of block-diagonal matrix inversion, we can decompose

Γ̆− Γ̂ =

(
1

η̂

){
1

n

(
ιᵀnιn ιᵀnβ̂

β̂ᵀιn β̂ᵀβ̂

)}−1

×

(
−n−1ιᵀnςp+1:p̆Λ

1/2
p+1:p̆∆

−1Λ
1/2
p+1:p̆ς

ᵀ
p+1:p̆

(
In − ιn(ιᵀnMβ̂

ιn)−1ιᵀnMβ̂

)
r̄

0

)

+

(
0

T−1/2n−1/2Ḡξp+1:p̆∆
−1Λ

1/2
p+1:p̆ς

ᵀ
p+1:p̆

(
In − ιn(ιᵀnMβ̂

ιn)−1ιᵀnMβ̂

)
r̄

)
,

where ∆ = Λ
1/2
p+1:p̆

(
Ip̆−p − ςᵀp+1:p̆ιn(ιᵀnMβ̂

ιn)−1ιᵀnςp+1:p̆

)
Λ

1/2
p+1:p̆.

We analyze the right-hand side terms in the following. First, since M
β̂
β̂ = 0 and ςᵀp+1:p̆β̂ = 0, we

have

ςᵀp+1:p̆

(
In − ιn(ιᵀnMβ̂

ιn)−1ιᵀnMβ̂

)
r̄ = ςᵀp+1:p̆

(
In − ιn(ιᵀnMβ̂

ιn)−1ιᵀnMβ̂

)
(α+ (β − β̂H)(v̄ + γ) + ū).

Since α is independent of ςp+1:p̆, we have

E
∥∥∥ςᵀp+1:p̆α

∥∥∥2

F
=

p̆−p∑
j=1

E

(
n∑
i=1

ςp+1:p̆,ijαi

)2

= E ‖ςp+1:p̆‖2F (σα)2 ≤ K,

hence
∥∥∥ςᵀp+1:p̆α

∥∥∥
F

= Op(1). By Lemma 3(b) and (D.5), we have

∥∥∥ςᵀp+1:p̆(β − β̂H)
∥∥∥ = Op(1 + n1/2T−1/2),

∥∥∥ςᵀp+1:p̆ū
∥∥∥ = Op(n

1/2T−1/2).

On the other hand, since by Lemma 7, (D.26), and (D.27), we have∥∥∥ιᵀnMβ̂
α
∥∥∥ = Op(n

1/2), (ιᵀnMβ̂
ιn)−1 = Op(n

−1).
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By Lemmas 4 and 6, we have∥∥∥ιᵀnMβ̂
ū
∥∥∥ = Op(1 + nT−1),

∥∥∥ιᵀnMβ̂
(β − β̂H)

∥∥∥ = Op(1 + nT−1).

Combined with Lemma 8, it implies that∥∥∥ςᵀp+1:p̆ιn(ιᵀnMβ̂
ιn)−1

(
ιᵀnMβ̂

(α+ (β − β̂H)(v̄ + γ) + ū)
)∥∥∥ = op(1 + n1/2T−1).

With the above estimates, we obtain∥∥∥ςᵀp+1:p̆

(
In − ιn(ιᵀnMβ̂

ιn)−1ιᵀnMβ̂

)
r̄
∥∥∥

≤
∥∥∥ςᵀp+1:p̆(α+ (β − β̂H)(v̄ + γ) + ū)

∥∥∥+
∥∥∥ςᵀp+1:p̆ιn(ιᵀnMβ̂

ιn)−1
(
ιᵀnMβ̂

(α+ (β − β̂H)(v̄ + γ) + ū)
)∥∥∥

=Op(1 + n1/2T−1/2). (D.29)

Next, by Sherman-Morrison-Woodbury formula, we have∥∥∥Λ
1/2
p+1:p̆∆

−1Λ
1/2
p+1:p̆

∥∥∥ =

∥∥∥∥Ip̆−p + ςᵀp+1:p̆ιnι
ᵀ
nςp+1:p̆

(
ιᵀnMβ̂

ιn − ιᵀnςp+1:p̆ς
ᵀ
p+1:p̆ιn

)−1
∥∥∥∥

=

∥∥∥∥Ip̆−p + n−1ςᵀp+1:p̆ιnι
ᵀ
nςp+1:p̆

(
1− n−1ιᵀnς1:p̆ς

ᵀ
1:p̆ιn

)−1
∥∥∥∥ ,

where we use the fact that

n−1ιᵀnMβ̂
ιn = 1− n−1ιᵀnβ̂(β̂ᵀβ̂)−1β̂ᵀιn = 1− n−1ιᵀnς1:pς

ᵀ
1:pιn.

By Lemma 8, for any p̆ ≤ K, we have(
1− n−1ιᵀnς1:p̆ς

ᵀ
1:p̆ιn

)−1
=
(

1− n−1ιᵀnς1:pς
ᵀ
1:pιn + op(1)

)−1
=
(

1− βᵀ0(Σβ)−1β0

)−1
+ op(1).

Also,
∥∥∥n−1ςᵀp+1:p̆ιnι

ᵀ
nςp+1:p̆

∥∥∥ = op(1), which in turn leads to

∥∥∥Λ
1/2
p+1:p̆∆

−1Λ
1/2
p+1:p̆

∥∥∥ = Op(1). (D.30)

Combining (D.29), (D.30), and using Lemma 8 again, we have∥∥∥n−1ιᵀnςp+1:p̆Λ
1/2
p+1:p̆∆

−1Λ
1/2
p+1:p̆ς

ᵀ
p+1:p̆

(
In − ιn(ιᵀnMβ̂

ιn)−1ιᵀnMβ̂

)
r̄
∥∥∥ = op(n

−1/2 + T−1/2).

Next, by Lemmas 1 and 2,

∥∥ηV̄ ξp+1:p̆

∥∥ =
∥∥∥η(V̄ −H−1V̂ )ξp+1:p̆

∥∥∥ = Op(1 + n−1/2T 1/2).

By the independence of Z̄ and ξp+1:p̆, we also have
∥∥Z̄ξp+1:p̆

∥∥ = Op(1). On the other hand, it follows
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from (D.18) that

R̄R̄ᵀ + Ū V̄ ᵀ(V̄ V̄ ᵀ)−1V̄ Ūᵀ = Ū Ūᵀ + β̃V̄ V̄ ᵀβ̃ᵀ,

where β̃ = β + UV̄ ᵀ(V̄ V̄ ᵀ)−1. By (4.3.2a) and (4.3.2b) of Theorem 4.3.1 in Horn and Johnson (2013),

for p+ 1 ≤ j ≤ p̆,

λj+p(Ū Ū
ᵀ) + λn−1(β̃V̄ V̄ ᵀβ̃ᵀ) ≤ λj+p(R̄R̄ᵀ + Ū V̄ ᵀ(V̄ V̄ ᵀ)−1V̄ Ūᵀ) ≤ λj(R̄R̄ᵀ) + λp+1(Ū V̄ ᵀ(V̄ V̄ ᵀ)−1V̄ Ūᵀ).

Since rank(β̃V̄ V̄ ᵀβ̃ᵀ) ≤ p and rank(Ū V̄ ᵀ(V̄ V̄ ᵀ)−1V̄ Ūᵀ) ≤ p, we obtain,

λp̆+p(Ū Ū
ᵀ) ≤ λj+p(Ū Ūᵀ) ≤ λj(R̄R̄ᵀ) ≤ λj−p(Ū Ūᵀ) ≤ λ1(Ū Ūᵀ).

Since the empirical distribution of eigenvalues of T−1Ū Ūᵀ follows the Marc̆enko-Pastur law (see, e.g.,

Theorem 3.6 in Bai and Silverstein (2009)), as n/T → c ∈ (0,∞), and this limiting law has a bounded

support, then there exist upper and lower bounds for finitely many largest eigenvalues

0 < K ′ ≤ T−1λj(R̄R̄
ᵀ) ≤ K, p+ 1 ≤ j ≤ p̆,

so that
∥∥∥Λ
−1/2
p+1:p̆

∥∥∥ = Op(n
1/2). We therefore obtain that

∥∥∥T−1/2n−1/2Ḡξp+1:p̆∆
−1Λ

1/2
p+1:p̆ς

ᵀ
p+1:p̆

(
In − ιn(ιᵀnMβ̂

ιn)−1ιᵀnMβ̂

)
r̄
∥∥∥

≤
∥∥∥T−1/2n−1/2Ḡξp+1:p̆

∥∥∥∥∥∥Λ
−1/2
p+1:p̆

∥∥∥∥∥∥Λ
1/2
p+1:p̆∆

−1Λ
1/2
p+1:p̆

∥∥∥∥∥∥ςᵀp+1:p̆

(
In − ιn(ιᵀnMβ̂

ιn)−1ιᵀnMβ̂

)
r̄
∥∥∥

=Op(n
−1/2),

which concludes the proof.

Proof of Theorem 6. Again, we assume p̂ = p. To prove the consistency of Φ̂, without loss of generality,

we focus on the case of Π12, and show that

(γ̃ᵀ ⊗ Id) Π̂12η̂
ᵀ p−→

(
γᵀ (Σv)−1 ⊗ Id

)
Π12η

ᵀ. (D.31)

The proof for the other two terms in Φ̂ is similar and hence is omitted.

Note that by (D.56), Lemma 2, Lemma 3(a), and Assumption A.5, we have∥∥∥T−1H−1V̂ V̂ ᵀH−ᵀ − Σv
∥∥∥

MAX

=
∥∥∥T−1H−1(V̂ −HV̄ )V̂ ᵀH−ᵀ + T−1V̄ (V̂ ᵀ − V̄ ᵀHᵀ)H−ᵀ + T−1V V ᵀ − Σv − v̄v̄ᵀ

∥∥∥
MAX

=Op(n
−1 + T−1/2).
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By (D.24), Lemma 2, and the proof of Theorem 2, we have

‖η̂H − η‖MAX = Op(n
−1 + T−1/2),

∥∥H−1γ̃ − γ
∥∥

MAX
= Op(n

−1/2 + T−1/2). (D.32)

Therefore, to prove (D.31), we only need to show that

Π̃12 := (H−1 ⊗ Id)Π̂12H
−ᵀ p−→ Π12, (D.33)

with which, and by the continuous mapping theorem, we have(
γ̃ᵀ
(

Σ̂v
)−1
⊗ Id

)
Π̂12η̂

ᵀ =

(
(H−1γ̃)ᵀ

(
H−1Σ̂vH−ᵀ

)−1
⊗ Id

)
(H−1 ⊗ Id)Π̂12H

−ᵀ(η̂H)ᵀ

p−→
(
γᵀ (Σv)−1 ⊗ Id

)
Π12η

ᵀ.

Writing Ṽ = H−1V̂ , we have

Π̃12,(i−1)d+j,i′ = vec(eje
ᵀ
i )

ᵀ(H−1 ⊗ Id)Π̂12H
−ᵀei′ = vec(eje

ᵀ
iH
−1)ᵀΠ̂12H

−ᵀei′ = T−1
T∑
t=1

T∑
s=1

ẑjtṽitQtsṽi′s,

where Qst =
(

1− |s−t|q+1

)
1|s−t|≤q.

In fact, to show (D.33), by Lemma 2 we only need to prove for any fixed 1 ≤ i, i′ ≤ p, and

1 ≤ j, j′ ≤ d,

Π̃12,(i−1)d+j,i′ − T−1
T∑
t=1

T∑
s=1

zjtvitQtsvi′s
p−→ 0, (D.34)

since by the identical proof of Theorem 2 in Newey and West (1987), we have

T−1
T∑
t=1

T∑
s=1

zjtvitQtsvi′s −Π12,(i−1)d+j,i′
p−→ 0.

Note that

the left-hand side of (D.34)

=T−1
T∑
t=1

T∑
s=1

{
(ẑjt − zjt)(ṽit − vit)Qts(ṽi′s − vi′s) + (ẑjt − zjt)(ṽit − vit)Qtsvi′s

+ (ẑjt − zjt)vitQtsṽi′s + zjt(ṽit − vit)Qtsṽi′s + zjtṽitQts(ṽi′s − vi′s)
}
.

We analyze these terms one by one. Since we have

Ẑ − Z̄ = ηV̄ − η̂V̂ = (ηH−1 − η̂)HV̄ − (η̂ − ηH−1)(V̂ −HV̄ )− ηH−1(V̂ −HV̄ ), (D.35)
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it follows from (D.24), (D.44), and Lemmas 1 and 2 that

T−1
∥∥∥Ẑ − Z̄∥∥∥

F

≤KT−1
(∥∥ηH−1 − η̂

∥∥
MAX

‖H‖
∥∥V̄ ∥∥

F
+
∥∥η̂ − ηH−1

∥∥
F

∥∥∥V̂ −HV̄ ∥∥∥
F

+
∥∥ηH−1

∥∥∥∥∥V̂ −HV̄ ∥∥∥
F

)
=Op(n

−1/2T−1/2 + T−1).

Moreover, by Lemma 9, Assumption A.16, (D.35), and (D.32), we have∥∥∥Ẑ − Z̄∥∥∥
MAX

≤
∥∥ηH−1 − η̂

∥∥
MAX

‖H‖
∥∥V̄ ∥∥

MAX
+
∥∥η̂ − ηH−1

∥∥
MAX

∥∥∥V̂ −HV̄ ∥∥∥
MAX

+
∥∥ηH−1

∥∥∥∥∥V̂ −HV̄ ∥∥∥
MAX

=Op((log T )1/aT−1/2 + n−1/2T 1/4).

By Cauchy-Schwartz inequality, Lemmas 1, 9, and using the fact that |Qts| ≤ 1|t−s|≤q and
∥∥v̄ιᵀT∥∥F

=

‖v̄‖F
∥∥ιᵀT∥∥F

≤ KT 1/2 ‖v̄‖MAX = Op(1), we have∣∣∣∣∣T−1
T∑
t=1

T∑
s=1

(ẑjt − zjt)(ṽit − vit)Qts(ṽi′s − vi′s)

∣∣∣∣∣
≤KqT−1

(∥∥∥Ṽ − V̄ ∥∥∥
MAX

+
∥∥v̄ιᵀT∥∥MAX

)(∥∥∥Ṽ − V̄ ∥∥∥
F

+
∥∥v̄ιᵀT∥∥F

)(∥∥∥Ẑ − Z̄∥∥∥
F

+
∥∥z̄ιᵀT∥∥F

)
=Op

(
q(T−1 + n−1)(T 1/4n−1/2 + T−1)

)
.

Similarly, because of
∥∥∥Ṽ ∥∥∥

F
≤ Op(T

1/2) implied by (D.45), ‖Z‖MAX = Op((log T )1/a) by Assumption

A.16 and Lemma 2, and by Assumptions A.5 and A.8, we have∣∣∣∣∣T−1
T∑
t=1

T∑
s=1

(ẑjt − zjt)(ṽit − vit)Qtsvi′s

∣∣∣∣∣
≤KqT−1 ‖V ‖MAX

(∥∥∥Ṽ − V̄ ∥∥∥
F

+
∥∥v̄ιᵀT∥∥F

)(∥∥∥Ẑ − Z̄∥∥∥
F

+
∥∥z̄ιᵀT∥∥F

)
= Op

(
q(log T )1/a(n−1 + T−1)

)
,∣∣∣∣∣T−1

T∑
t=1

T∑
s=1

(ẑjt − zjt)vitQtsṽi′s

∣∣∣∣∣
≤KqT−1 ‖V ‖MAX

∥∥∥Ṽ ∥∥∥
F

(∥∥∥Ẑ − Z̄∥∥∥
F

+
∥∥z̄ιᵀT∥∥F

)
= Op

(
q(log T )1/a

(
n−1/2 + T−1/2

))
,∣∣∣∣∣T−1

T∑
t=1

T∑
s=1

zjt(ṽit − vit)Qtsṽi′s

∣∣∣∣∣
≤KqT−1 ‖Z‖MAX

∥∥∥Ṽ ∥∥∥
F

(∥∥∥H−1V̂ − V̄
∥∥∥

F
+
∥∥v̄ιᵀT∥∥F

)
= Op

(
q(log T )1/a

(
n−1/2 + T−1/2

))
,∣∣∣∣∣T−1

T∑
t=1

T∑
s=1

zjtṽitQts(ṽi′s − vi′s)

∣∣∣∣∣
≤KqT−1 ‖Z‖MAX

∥∥∥Ṽ ∥∥∥
F

(∥∥∥H−1V̂ − V̄
∥∥∥

F
+
∥∥v̄ιᵀT∥∥F

)
= Op

(
q(log T )1/a

(
n−1/2 + T−1/2

))
.
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All the above terms converge to 0, as T, n → ∞, with qT−1/4 + qn−1/4 → 0 and n−3T → 0, which

establishes (D.34).

Finally, to show the consistency of Υ̂, we first note∥∥∥Hᵀ
(

Σ̂β − β̂0β̂
ᵀ
0

)
H −

(
Σβ − β0β

ᵀ
0

)∥∥∥
MAX

≤
∥∥∥HᵀΣ̂βH − Σβ

∥∥∥
MAX

+
∥∥∥Hᵀβ̂0β̂

ᵀ
0H − β0β

ᵀ
0

∥∥∥
MAX

.

By Lemmas 2, 4(b), (e), and Assumption A.6,∥∥∥HᵀΣ̂βH − Σβ
∥∥∥

MAX

≤
∥∥∥n−1Hᵀβ̂ᵀβ̂H − n−1βᵀβ

∥∥∥
MAX

+
∥∥∥n−1βᵀβ − Σβ

∥∥∥
MAX

≤
∥∥∥n−1

(
Hᵀβ̂ᵀ − βᵀ

)
(β̂H − β) + n−1

(
Hᵀβ̂ᵀ − βᵀ

)
β − n−1βᵀ(β − β̂H)

∥∥∥
MAX

+ op(1)

=op(1). (D.36)∥∥∥Hᵀβ̂0β̂
ᵀ
0H − β0β

ᵀ
0

∥∥∥
MAX

≤
∥∥∥(Hᵀβ̂0 − β0

)(
β̂ᵀ0H − β

ᵀ
0

)
+ β0

(
β̂ᵀ0H − β

ᵀ
0

)
+
(
Hᵀβ̂0 − β0

)
βᵀ0

∥∥∥
MAX

=op(1),

where we also use Lemma 6(b):∥∥∥Hᵀβ̂0 − β0

∥∥∥
MAX

= n−1
∥∥∥(Hᵀβ̂ᵀ − βᵀ

)
ιn

∥∥∥
MAX

= op(1).

Next, by Lemma 3(b) and (D.32), we have

σ̂α
2 − (σα)2 =n−1

∥∥∥r̄ − ιnγ̃0 − β̂γ̃
∥∥∥2

F
− (σα)2

=n−1
∥∥∥ιn(γ0 − γ̃0) + βγ − β̂γ̃ + βv̄ + ū

∥∥∥2

F
+ n−1 ‖α‖2F − (σα)2

≤n−1 ‖ιn‖2F ‖γ0 − γ̃0‖2F + n−1 ‖β‖2F ‖v̄‖
2
F + n−1 ‖ū‖2F + n−1

∥∥∥(β̂H − β)γ
∥∥∥2

F

+ n−1
∥∥∥(β̂H − β)(H−1γ̃ − γ)

∥∥∥2

F
+ n−1

∥∥β(H−1γ̃ − γ)
∥∥2

F
+ op(1).

Therefore, by (D.24) and the continuous mapping theorem,

σ̂α
2
η̂HH−1

(
Σ̂β − β̂0β̂

ᵀ
0

)−1
H−ᵀHᵀη̂ᵀ

p−→ Υ,

which concludes the proof.

Proof of Theorem 7. By the conditioning argument, we assume p̂ = p. By (D.23), we have

η̂ − ηH−1 = T−1Z̄V̄ ᵀHᵀ +Op(n
−1 + T−1).
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Therefore, when n−2T = o(1), we can rewrite:

Ŵ = T
(
ηH−1 + T−1Z̄V̄ ᵀHᵀ) (Σ̂−1

v Π̂11Σ̂−1
v

)−1 (
ηH−1 + T−1Z̄V̄ ᵀHᵀ)ᵀ + op(1).

Under H0 : η = 0, we have

Ŵ =
(
T−1/2Z̄V̄ ᵀ

)(
H−1Σ̂−1

v Π̂11Σ̂−1
v H−ᵀ

)−1 (
T−1/2Z̄V̄ ᵀ

)ᵀ
+ op(1).

By Assumption A.11, to show Ŵ
L−→ χ2

p under H0, it is sufficient to establish that

H−1Σ̂−1
v Π̂11Σ̂−1

v H−ᵀ
p−→ Π11.

By the same argument as in the proof of (D.33) and the fact that Σ̂v = Id, we have

H−1Π̂11H
−ᵀ p−→ Π11,

which leads to the first claim. The second claim is straightforward because H is invertible with proba-

bility approaching 1, ‖H‖ = Op(1) by Lemma 2, and T−1Z̄V̄ ᵀ = Op(T
−1/2) by Assumption A.8.

Proof of Theorem 8. For any 1 ≤ t ≤ T , we have

ĝt − ηvt = (η̂ − ηH−1)(v̂t −Hv̄t) + (η̂ − ηH−1)Hv̄t + ηH−1(v̂t −Hv̄t)− ηv̄ (D.37)

By (D.43), we have

v̂t −Hv̄t =n−1T−1Λ̂−1(V̂ −HV̄ )
(
Ūᵀβv̄t + Ūᵀūt

)
+ n−1T−1Λ̂−1

(
HV̄ Ūᵀβv̄t +HV̄ Ūᵀūt

)
+ n−1T−1Λ̂−1V̂ V̄ ᵀβᵀūt. (D.38)

By Assumption B.17, we have ‖βᵀut‖ = Op(n
1/2), so that using (D.11),

‖βᵀūt‖F ≤ ‖β
ᵀut‖F + ‖βᵀū‖F = Op(n

1/2). (D.39)

By Assumption A.4(i), Assumptions A.15 and A.16, using the fact that |ρn,st| ≤ 1, we have

E ‖Uᵀut‖2F =E

T∑
s=1

(
nγn,st +

n∑
k=1

(uksukt − E(uksukt))

)2

≤Kn2
T∑
s=1

γ2
n,st +KnT ≤ n2

T∑
s=1

|γn,st|+KnT = Kn2 +KnT,

E ‖ut‖2F ≤
n∑
k=1

Eu2
kt ≤

n∑
k=1

|σkk′ | ≤ K. (D.40)
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Then from (D.5) and (D.57), it follows that

∥∥Ūᵀūt
∥∥

F
≤
∥∥Ūᵀū

∥∥
F

+ ‖Uᵀut‖F + ‖ιT ‖F ‖ū
ᵀ‖F ‖ut‖F = Op(n+ n1/2T 1/2).

The above estimates, along with (D.12), Lemma 1, and ‖v̄t‖ = Op(1), lead to∥∥∥n−1T−1Λ̂−1(V̂ −HV̄ )
(
Ūᵀβv̄t + Ūᵀūt

)∥∥∥
MAX

≤n−1T−1
∥∥∥Λ̂−1

∥∥∥
MAX

∥∥∥V̂ −HV̄ ∥∥∥
F

(∥∥Ūᵀβ
∥∥

F
‖v̄t‖+

∥∥Ūᵀūt
∥∥

F

)
= Op(n

−1 + T−1).

Moreover, it follows from (D.5), (D.50), and (D.55) that∥∥∥n−1T−1Λ̂−1
(
HV̄ Ūᵀβv̄t +HV̄ Ūᵀūt

)∥∥∥
MAX

≤Kn−1T−1
∥∥∥Λ̂−1

∥∥∥
MAX

‖H‖
(∥∥V̄ Ūᵀβ

∥∥
MAX

‖v̄t‖+
∥∥V̄ Ūᵀ

∥∥
F

(‖ut‖F + ‖u‖F)
)

=Op(n
−1/2T−1/2 + T−1).

We thereby focus on the remaining term, which by Lemma 1, (D.14) and (D.39), satisfies

n−1T−1
∥∥∥Λ̂−1V̂ V̄ ᵀβᵀūt

∥∥∥
MAX

≤ Kn−1T−1
∥∥∥Λ̂−1

∥∥∥
MAX

∥∥∥V̂ ∥∥∥
F

∥∥V̄ ᵀ
∥∥

F
‖βᵀūt‖MAX = Op(n

−1/2).

Therefore, we have

‖v̂t −Hv̄t‖MAX = Op(n
−1/2 + T−1). (D.41)

Then by (D.37), (D.38), and (D.23), we have∥∥∥ĝt − ηvt − (T−1Z̄V̄ ᵀHᵀHvt + n−1T−1ηH−1Λ̂−1V̂ V̄ ᵀβᵀut − ηv̄
)∥∥∥

MAX
= op(n

−1/2 + T−1/2).

Next, we note that by Assumption A.11 and Lemma 2,

T 1/2

(
T−1vec

(
Z̄V̄ ᵀHᵀHvt

)
ηv̄

)
= T 1/2

(
(vᵀtH

ᵀH ⊗ Id)vec(Z̄V̄ ᵀ)

ηv̄

)

L−→N

(
0,

( (
vᵀt (Σv)−1 ⊗ Id

)
Π11

(
(Σv)−1 vt ⊗ Id

) (
vᵀt (Σv)−1 ⊗ Id

)
Π12η

ᵀ

· ηΠ22η
ᵀ

))
.

By (D.20) and Assumptions A.6 and B.17, we have

n−1/2T−1ηH−1Λ̂−1V̂ V̄ ᵀβᵀut =n1/2η(βᵀβ)−1βᵀut
L−→ N

(
0, η

(
Σβ
)−1

Ωt

(
Σβ
)−1

ηᵀ
)
.

The desired result follows from the same asymptotic independence argument as in Bai (2003).

Proof of Theorem 9. For Ψ̂1t, we can follow exactly the same proof as that of Theorem 6, since, similar
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to (D.32) for γ̃, we have the same estimate for v̂t by (D.41).

As to Ψ̂2t, similarly, we only need to show∥∥∥HᵀΩ̂H − Ω
∥∥∥

MAX
= op(1).

Then by the continuous mapping theorem, along with (D.32) and (D.36), we have

Ψ̂2t = η̂H
(
HᵀΣ̂βH

)−1
HᵀΩ̂tH

(
HᵀΣ̂βH

)−1
Hᵀη̂ᵀ

p−→ Ψ2t.

Note that by Fan et al. (2013), we have∥∥∥Σ̂u − Σu
∥∥∥ = Op(snω

1−h
T ). (D.42)

Then by (D.42) and Lemmas 3(b), 4(b), and using the fact that ‖β‖F = Op(n
1/2) and ‖Σu‖ ≤ ‖Σu‖1 =

Op(sn), writing β̃ = β̂H, we have

1

n

∥∥∥(β̃ − β)ᵀ(Σ̂u − Σu)(β̃ − β)
∥∥∥

MAX
≤ 1

n

∥∥∥β̃ − β∥∥∥2

F

∥∥∥Σ̂u − Σu
∥∥∥ = Op

(
snω

1−h
T (n−1 + T−1)

)
,

1

n

∥∥∥(β̃ − β)ᵀΣu(β̃ − β)
∥∥∥

MAX
≤ 1

n

∥∥∥β̃ − β∥∥∥2

F
‖Σu‖ = Op

(
sn(n−1 + T−1)

)
,

1

n

∥∥∥βᵀ(Σ̂u − Σu)β
∥∥∥

MAX
≤ 1

n
‖β‖2F

∥∥∥Σ̂u − Σu
∥∥∥ = Op

(
snω

1−h
T

)
,

1

n

∥∥∥βᵀ(Σ̂u − Σu)(β̃ − β)
∥∥∥

MAX
≤ 1

n

∥∥∥(Σ̂u − Σu)(β̃ − β)βᵀ
∥∥∥ ≤ 1

n

∥∥∥Σ̂u − Σu
∥∥∥∥∥∥βᵀ(β̃ − β)

∥∥∥
≤K
n

∥∥∥βᵀ(β̃ − β)
∥∥∥

MAX

∥∥∥Σ̂u − Σu
∥∥∥ = Op

(
snω

1−h
T (n−1 + T−1)

)
,

1

n

∥∥∥βᵀΣu(β̃ − β)
∥∥∥

MAX
≤K
n

∥∥∥βᵀ(β̃ − β)
∥∥∥

MAX
‖Σu‖ = Op

(
sn(n−1 + T−1)

)
.

Therefore,∥∥∥HᵀΩ̂H − Ω
∥∥∥

MAX
=

1

n

∥∥∥Hᵀβ̂ᵀΣ̂uβ̂H − βᵀΣuβ
∥∥∥

MAX

≤ 1

n

∥∥∥(β̃ − β)ᵀ(Σ̂u − Σu)(β̃ − β) + (β̃ − β)ᵀΣu(β̃ − β)
∥∥∥

MAX
+

1

n

∥∥∥βᵀ(Σ̂u − Σu)β
∥∥∥

MAX

+
1

n

∥∥∥βᵀ(Σ̂u − Σu)(β̃ − β) + (β̃ − β)ᵀ(Σ̂u − Σu)β
∥∥∥

MAX
+

1

n

∥∥∥βᵀΣu(β̃ − β) + (β̃ − β)ᵀΣuβ
∥∥∥

MAX

=Op

(
sn

(
ω1−h
T + n−1 + T−1

))
= op(1),

which concludes the proof.
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