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Abstract

In this paper, we illuminate the origins of the crumbling quote
signal employed by IEX, provide detailed analyses of its performance,
and discuss its continuing evolution.

1 Introduction

In the decentralized US equities market, a change in the National Best Bid
and Offer (NBBO) is not an instantaneous event. Quotes in a stock move
asynchronously across venues, and these movements are observed at dif-
ferent times by different participants. This affects the experience of pegged
orders, which are intended to follow the NBBO as it moves. Midpoint pegged
orders, for example, are intended to trade midway between the current na-
tional best bid and national best offer, and these orders can be an effective
way for institutional investors to obtain price improvement and experience
high execution quality. However, the intent of pegged orders may be system-
atically violated in moments where the NBBO is in transition, as the venue
maintaining the relationship between the price of the pegged order on its
book and the NBBO may not be the first to observe a change in the NBBO,
and hence the order may be temporarily exposed to unfavorable pricing.
Though they may be extremely short-lived, windows of time in which
some market participants know information that others have yet to receive
are ripe for exploitation. One instantiation of this is stale quote arbitrage.
This phenomenon arises out of market fragmentation: since one trading
venue cannot instantaneously know what is happening on another trading
venue, it is possible for a trader to temporarily have an informational edge
over a trading venue and manipulate that edge to the detriment of other
traders. This is perhaps best explained through an example: suppose that
trader A has rested a midpoint-pegged order to buy a particular stock on
venue V. The purpose of such an order is to float with the midpoint of the
NBBO across all of the exchanges, but even this basic statement is a bit
misleading. There is no such thing as “the NBBO” in a technical sense.
The order is actually pegged to the midpoint of the the view of the NBBO
as observed by trading venue V. Suppose at a given point in time, the market
has been stable for awhile (meaning the best bid and offer prices have not



changed for several milliseconds), and trading venue V has an accurate, up-
to-date view of the NBBO in that symbol as $10.00 by $10.02. So the resting
buy order is pegged to the midpoint price of $10.01. Now suppose that the
best bid of $10.00 is not available on trading venue V, but instead is only
available on trading venue W. Now, a seller comes along and trades with
all of the buy interest at $10.00, changing the best available bid to $9.99.
The midpoint of the NBBO is now $10.005, but this information does not
arrive at trading venue V instantaneously. There is a small window of time
in which venue V still believes the midpoint is $10.01, so if a matching sell
order arrives at venue V during this window, it can trade with the resting
buy order at $10.01. This is bad news for the initiator of the resting order,
because the NBBO has already changed in their favor, and this execution at
$10.01 goes against the spirit of what a midpoint pegged order is intended
to accomplish.

We might ask: who is this trader swooping in to take advantage of the
resting order on venue V at this stale midpoint price? It could be a large
seller who has himself taken out all of the buy interest at $10.00 on venue
W, in which case it is no surprise that this seller can anticipate the change
in the NBBO. There is not really anything to do about this case, this is
just something that happens as part of normal, healthy market behavior.
But there is another possibility: perhaps an opportunistic trader observed
the NBBO change before venue V and managed to submit a sell order to
venue V that arrived ahead of the new price information. This is possible
if the method of communication employed by this trader is faster than the
method of communication between the trading venues. This is what we call
stale quote arbitrage, and we believe that its presence is undesirable in the
marketplace.

To prevent this scenario from occurring, IEX created the “speed bump,”
a mechanism for delaying inbound orders by 350 microseconds. Under nor-
mal circumstances, it takes roughly 300 microseconds for IEX to learn about
a price change on another market and update our pegged orders accordingly,
so 350 microseconds is a sufficient buffer to ensure that even if a trader in-
stantly learns of a price change anywhere in the market and immediately
submits an order to IEX, all of the pegged orders on IEX will already be
updated by the time the incoming order is processed.

And yet, even with this speed bump in place, we began to see an increase
in adverse selection experienced by resting orders on IEX. Trades were often
executing at prices just before IEX observed a change in the NBBO that
would have been favorable to the pegged resting order. But how could this
happen? The speed bump was still doing its job - it was preventing someone
from quickly reacting to an NBBO change and picking off a resting order on
TIEX, but it was not preventing someone from anticipating an NBBO change.
We hypothesized that traders were building probabilistic models to predict
price changes far enough in advance to circumvent the protection of the



speed bump. Naturally their predictions would not be perfectly accurate,
but they could likely gain an edge by predicting some price changes say 1
or 2 ms before the actual change solidified. This is made possible by the
fact that changes in the NBBO are not atomic events, but are often the
cumulative result of a sequence of events at different trading venues that
span a small but significant window of time, typically on the order of a
millisecond.

If we return to our example of a stable NBBO that is currently $10.00
by $10.02, we might imagine that the buy interest at $10.00 is spread over
several trading venues. A seller or sellers may arrive at those venues one
by one, first exhausting the buy interest at $10.00 in one place and then
the next. We call this situation a “crumbling quote” - it doesn’t change
all at once, it changes gradually. Nimble observers who are watching these
dominos fall need not wait for the last order at $10.00 in the last venue to be
exhausted. Instead, they can make a reasonable guess earlier in the process
as to what the short term outcome is likely to be. This may allow them to
exploit resting orders probabilistically, even with a speed bump in place.

To combat this situation, a natural impulse is to increase the length of
the speed bump to cover the typical length of a quote change process across
venues. This would require a very large increase: perhaps from 350 mi-
croseconds to a few milliseconds. Such a large speed bump would be a more
difficult pill to swallow, as it is of a higher magnitude than the inadvertent
delays on order receipt and processing that inevitably result from commu-
nicating across significant physical distances and in an environment with
high computational demands. It would also be a rather blunt and inflexible
instrument to address what is a delicate and constantly evolving problem.

Our approach instead is to shape the solution to match the problem: we
can fight math with math! If others are leveraging short term prediction
models to anticipate NBBO changes, than we can build such a model our-
selves and deploy it to protect resting orders. One might worry that this will
devolve into an arms race, with traders furiously constructing better models,
and ITEX similarly racing to improve its own prediction until mere microsec-
onds and nearly imperceptible statistical edges separate the top competing
models. But there are reasons not to expect this. Traders seeking struc-
tural arbitrage opportunities and IEX as an exchange are not symmetrically
positioned in this contest. With the speed bump in place, even if the IEX
model makes a prediction say 100 microseconds later than a fast trader, this
prediction combined with the speed bump is sufficient to protect a resting
order on TEX. Secondly, the cost incurred by the arbitrage-seeking trader
when they make a trade under a wrong prediction of their model may be far
greater than the opportunity cost incurred by a resting order on IEX when
it delays execution for a short window due to a prediction by ITEX’s model.
This may allow TEX to make predictions more aggressively than traders, and
hence provide greater protection. Thirdly, it is not really necessary to stamp



out every last instance of structural arbitrage. Making it more rare and less
profitable on our marketplace will provide a strong disincentive that should
improve our market quality even though our model may be imperfect.

This paper documents the development of the IEX crumbling quote
model, henceforth called “the signal,” a method for detecting moments when
a NBBO change is likely imminent. We detail the origins of the signal, its
behavior on our market, and our continual efforts to improve it.

2 Developing a Model of a Crumbling Quote

As a consumer of market data, IEX maintains a view of the NBBO. More
precisely, IEX observes a series of events, where each event is an update to
the best bid and/or offer in a particular symbol on a particular venue. These
events are time-stamped according to when they are received by TEX.

We can calculate many relevant features from this data. These features
will look more granularly at changes to the National Best Bid (NBB) and
National Best Offer (NBO) that together comprise the NBBO. For instance,
we can determine how many venues are on the NBB and NBO at any given
moment in time (from the viewpoint of IEX). Each time a new market data
update is received, we can evaluate the current state of the NBBO and
compare it to past states in order to form an opinion about whether a quote
is likely to be crumbling. Intuitively, if many venues are deserting the NBB,
we may expect that a downward price change is imminent. Conversely, if
we are observing many venues deserting the NBO, we may expect that an
upward change is imminent.

To make things more rigorous, let’s first define some variables that we will
use to make our prediction. We define bids to be the number of exchanges
currently displaying a quote at the NBB, excluding IEX. This will typically
be a number between 1 and 12. (Note: this model was originally developed
before IEX became an exchange, so we will leave IEX out at this point for
historical accuracy. We will also ignore the rare cases where bids may be 0
due to there being no bids anywhere, etc.) We similarly define asks to be
the number of exchanges currently displaying a quote at the NBO (also a
number typically between 1 and 12). We define bids5 to be the number of
exchanges who were displaying a quote at the NBB 5 ms ago, and asks5 to
be the number of exchanges who were displaying a quote at the NBO 5 ms
ago.

A simplest first attempt at a crumbling quote signal might go something
like this:

If bids5 — bids > 3, predict downward price tick.

If asksd — asks > 3, predict upward price tick.

This attempts to capture the intuition that if enough venues are back-
ing off of one side of the NBBO within a short amount of time, this may



indicate the remaining ones are soon to follow. But this first try is a bit
too simplistic. When there has already been a price change within the last
5 milliseconds, the variables bids, asks, bidsb, asksb are still well-defined,
but comparing bids and bids5 for example does not really make sense. This
comparison is only apples-to-apples if the price level has remained constant
over the preceding 5 milliseconds. This suggests a refinement of our basic
rule, namely that it should be applied only when the price has not moved
in the last 5 milliseconds.

There are a few other reasonable restrictions we might impose on our
predictions. We might require bids < asks, for example, in order to predict a
downward price tick and analogously require asks < bids in order to predict
an upward price tick. We might require that the current spread is not
larger than the average spread (in that particular symbol). In fact, we will
initially be even more restrictive and require that the current spread is one
cent, and the bid price is at least one dollar. To express this slightly more
refined definition of a crumbling quote signal, we will introduce a few more
variables. We let bpr and apzr denote the current NBB and NBO prices,
respectively. We let bpxb and apx5 denote the NBB and NBO prices as of
5 milliseconds ago. We note that the current spread can be then expressed
as apr — bpr. We may then define a potential signal as:

If bpx = bpx5, apx = apxb, bpr — apx = $0.01, bids < asks, bpx > $1,

and bidsd — bids > 3, predict downward price tick.
If bpx = bpx5, apx = apx5, bpr — apx = $0.01, asks < bids, bpx > $1,
and asksb — asks > 3, predict upward price tick.

The careful reader may notice a slight ambiguity here. When we write a
condition like bpx = bpxb, do we intend to merely check that the bid price
5 milliseconds ago was the same as it is now, or to enforce the stronger
condition that the price has remained the same throughout the preceding
5 milliseconds? The answer does not matter all that much. The number
of times where bpx = bpxb, for example, but the bid price has actually
shifted and then shifted back within the previous 5 milliseconds is relatively
small, so our choice on this minor implementation detail does not cause a
significant effect.

The careful reader may still protest, however, that “predict downward
or upward price tick” is not a precise specification. If we suspect a tick
is imminent, when exactly do we expect it to be? Naturally, if we wait
long enough, some tick will eventually occur, and we could declare a rather
meaningless victory. As an initial setting to keep us honest, let us consider
a 10 millisecond interval after each prediction. When a tick is predicted, we
will say the signal has “fired”. For this “firing window” of 10 ms following
the prediction, we will say the signal is “on.” This is a long enough time



window that if the quote is legitimately in transition, the transition should
complete within this window. However, it is not too long, so when we are
incorrect and make a false prediction, the wrong prediction is only in force
for a relatively short span of time.

As an initial benchmark, let’s test the potential of this simple proposal
on a day’s worth of data. We will use market data over the course of Dec.
15, 2016 for this. (A quick technical aside: we will often return to the
same testing day throughout this paper as an example, so that we can make
clear apples-to-apples comparisons. Of course, it is not good statistical
practice to test things on only one day, and while performing this research we
tested everything on many different days to check that the behavior we were
seeing was indeed representative. Also, keep in mind that many of these test
simulations do not correspond to what actually happened on IEX on Dec.
15, 2016, since there was a particular model used in production on that day
and we will simulate the results of many different possible models throughout
this paper.) On that day, our simple signal would produce about 570,000
correct predictions, which we’ll call true positives, and 860,000 incorrect
predictions, which we will call false positives. This actually isn’t too bad:
we can correctly predict about 570,000 crumbling quotes, and the total time
wasted in false positive prediction intervals is only 10 860,000 = 8, 600, 000
milliseconds, which is about 8,600 seconds, or roughly 143 minutes. Note
that this is aggregated over all 8,357 symbols for the day, so the average
time spent in false positive intervals per symbol would be roughly 1 second.
This was actually the original version of the crumbling quote signal that
accompanied the initial deployment of the discretionary peg order type on
IEX in November 2014. It was in production until September 2015.

It turns out that looking back 5 milliseconds is longer than we really
need. Instead, let’s define the variables bidsl and asksl to be analogous
to bidsd and asksb, except only looking back 1 millisecond into the past
instead of 5. In other words, we define bids1 to be the number of exchanges
who were displaying a quote at the NBB 1 ms ago, and asksl to be the
number of exchanges who were displaying a quote at the NBO 1 ms ago.
We similarly define bpx1 and apxl to be the prices 1 ms ago. It also turns
out that the restriction bpxz > $1 does not have a large impact. If we rerun
our simulation on data from Dec. 15, 2016 using the same criterion as above
except replacing all of bpxb, apxh, bidsb, asksb with bpxl, apzl, bidsl, asksl
and removing the restriction that bpz > $1, we get roughly 540,000 true
positives and 711,000 false positives. This seems like a decent tradeoff: we
see a comparatively small decrease in true positives in return for a much
larger decrease in false positives. Going forward, we will stick with looking
only 1 millisecond into the past, as this seems to perform better than 5 mil-
liseconds and the conditions apx = apzl and bpx = bpx1l are less restrictive
than their counterparts apx = apxb and bpxr = bpx5.

To see how we can improve upon this, we’ll start by trying logistic re-



gression over these features of bids, asks, bidsl, asksl. We will walk through
the rationale for this step by step. First, we suspect that our choice of cri-
terion bidsl — bids > 3 (or asksl — asks > 3 respectively) may not be
an optimal choice. We ask, is there some other function of the features
bids, asks, bidsl, asksl that is a better choice? A natural place to look is
linear functions. For example, we could consider a weighted average of the
values bids, asks, bidsl, asksl such as 0.4bids—0.4bids1—0.1asks+0.1lasks1,
in deciding whether or not to predict a downward price tick. But how should
we interpret the number that results from such a calculation, and how should
we choose the coefficients?

Linear functions model continuous, real number outputs, and the thing
we are trying to predict is a binary outcome: either a tick is imminent or it
is not. Logistic regression is a general method for making binary predictions
out of a linear combination of numerical features. The core idea is to model
the probability of the outcome rather than the outcome itself. But this still
leaves a slight disconnect: a probability is always between 0 and 1, while a
linear combination of numerical features can take on values outside of this
range.

For this reason, we would like to use a function that maps an arbitrary
real number to a value that is guaranteed to be in the range from 0 to
1, so that we can always interpret it as a probability. In mathematical
terminology, this is to say that the domain of the function will be R, the
set of all real numbers, while the range of the function will be [0, 1], the
set of real numbers between 0 and 1. There are infinitely many choices of
functions that satisfy this, but logistic regression happens to choose

1

f(ﬁl?):m-

This choice of function has several nice properties. It varies smoothly be-
tween 0 and 1 as = varies between —oo and oco. In this way, larger values of
x correspond to higher probabilities, while lower values of x correspond to
lower probabilities.

In our case, the real value z will be computed as a linear function of
our variables, bids, asks, bidsl,asksl. This means we want to choose real
number coefficients cg, ¢1, ¢, ¢3, ¢4 and compute x as ¢y + c1bids + coasks +
c3bidsl + cqasksl. Plugging this into function f to transform it to a prob-
ability, we can write down our model as:

1
= 1+ ef(coJrclbiderczaskercsbids1+C4asksl)

p:

where p is our estimate of the probability of a downward price movement.
There is a symmetry in our problem that is worth noting: the role of

bids, bidsl in predicting a downward price tick is analogous to the role of

asks, asksl in predicting an upward price tick. So we expect that our same



coefficients cq, ..., cq4 can be used to predict an upward price tick, just with
bids and asks interchanged, and bids1 and asksl interchanged. Experiments
on our historical data corroborate this intuition. For simplicity, we will
always describe our formulas in the form for predicting downward ticks, but
the upward prediction formulas can be inferred analogously.

What remains is to make good choices for the coefficients cy,...,cq.
This process starts by forming a definition of “good.” Given a candidate
setting of values for cg, ..., cq4, we can compare its probability predictions to
ground truth on a training data set pulled from our historical data. More
precisely, we can view each time we received an update to NBBO as a fresh
opportunity to make a prediction, and we also know whether a tick occurred
in the following 10 ms. This means we can measure the magnitude of the
errors produced by our predictions if we were to use these candidate values
of cg,...,cq on this data set. To be conservative, we pruned our data set
to include only moments when apx = apxl, bpr = bpxl, and the current
spread is less than or equal to the average spread in that symbol (calculated
in our system as a moving 30-day average). A typical software package with
logistic regression built in (such as R) can find coefficients that minimize a
particular measure of error on our data set. Employing this, we arrived at
the following coefficients:

co = —2.39515, c1 = —0.76504, c2 = 0.07599, c3 = 0.38374, c4 = 0.14466.

These numbers themselves may seem a bit mysterious, but they do have
some features that are intuitive. The fact that ¢; is negative for instance,
means that all other factors being equal, we are more likely to predict a
downward tick when bids is smaller. It is also intuitive that the far side
variables ask and askl have coefficients that are smaller in magnitude than
the near side variables bids and bids1, meaning they have less impact on the
prediction.

Now that we have a probability estimate, we need to turn it into a binary
decision: do we fire the signal or not? We impose some restrictions in line
with our choice of training data: we only fire to predict a downward tick,
for example, where bpr = bpxl, apxr = apxl, the current spread is less than
or equal to the average spread in that symbol, and bids < asks. To decide
whether or not to fire when all of these conditions are satisfied, we will set a
threshold. If the probability estimate is above this threshold, we will fire. If
it is below this threshold, we will not. If we set the threshold very high, then
we will have a high probability of our signal fires being accurate (meaning
that the predictions are likely to be true), but we will predict only a small
percentage of price movements. If we set the threshold very low, then we will
have a relatively inaccurate signal (meaning that the predictions are unlikely
to be true), but we will predict a large percentage of price movements. A
good choice of threshold will balance accuracy with coverage, so we want to



choose a threshold that predicts as many ticks as possible while maintaining
reasonably good accuracy. We have found experimentally that roughly 50%
accuracy is a sweet spot: if we try to be much more aggressive and allow
significantly more false positives than true positives, we quickly reach a point
of diminishing returns, where the small number of additional true positives
we get is quickly dwarfed by the vastly growing number of false positives.
For this reason, we tune our threshold to achieve an approximate balance
between true positives and false positives.

For these particular coefficients, this happens to result in a threshold of
0.32. One might wonder: why not 0.57 We may wonder, of course, how
far our estimates drift from the true probabilities, and if this is leading to
a weird threshold calculation. But actually, we should expect a threshold
under 0.5. The reason is: if we fire whenever the probability is > 0.5, we
are often firing when the probability is 0.6 or 0.7 for example, resulting in
relatively more true positives. So we can afford to lower the threshold below
0.5 to reach an equal number of true and false positives. In this case, the
balance point appears to be approximately 0.32.

It is important, however, not to ascribe too much meaning to the ex-
act numbers. For instance, we can write the same firing criterion in many
equivalent ways:

1 > (.32,

. 1+67(c0+c1 bids+cgasks+cgbidsl4cgasksl)

2. cp 4 c1bids + caasks + cgbidsl + cqasksl > —0.7537718,
3. 10cg + 10c1bids + 10coasks + 10cgbidsl + 10cyasksl > —7.537718.

We can get from the first representation here to the second by simply re-
arranging and taking the natural logarithm of both sides of the inequality,
whereas we can get from the second to the third by multiplying everything
by 10. This is shown merely to drive home the point that it is really the
ratios between the coefficients and the threshold that matter, not the exact
numbers themselves. It is also natural to guess that the level of precision of
our coeflicients is beyond what’s really necessary. We wouldn’t really notice
the difference on real data if we changed —0.76504 to —0.765, for instance.
But we might as well leave things at the level of precision that R provides.

Since we have a formula and a threshold, we can see how this signal
performs in action! We simulated its behavior again on data for Dec. 15,
2016 to have an apples-to-apples comparison with our simpler initial at-
tempt. On this day, this formula produces about 1 million true positives
and 850,000 false positives. In other words, the signal fires a total of about
1,850,000 times, and in about 1 million of these cases, the predicted tick
actually occurs within the 10ms firing window. We can compare this to our
prior result of 540,000 true positives and 711,000 false positives. Clearly the
formula is an improvement: we are getting many more true positives while



only incurring a slight increase in false positives. This version of the signal
was employed in production at IEX from September 2015 to August 2016.

3 Employing the Signal in an Order Type

Now that we have a basic version of a crumbling quote signal to work with,
we can consider how to deploy it on our market. Historically, we have
embedded it inside our discretionary peg (dpeg) order. This is a dark order
type that rests on the book at the near side, but can exercise “discretion”
to trade at the midpoint of the NBBO when the crumbling quote signal is
not on. In this way, discretionary peg orders behave less aggressively while
the signal is on, seeking to avoid bad trades at the midpoint just before the
NBBO moves in their favor.

In December 2016, for example, discretionary peg orders accounted for
32% of the volume on TEX and 50% of the midpoint volume. This represents
about 1.5 billion shares. As a group, these shares experienced fewer instances
of being “picked off” than standard order types: 7% were picked off, versus
8.5% for standard order types.

Just this month, IEX gained approval from the SEC to release a new
version of our primary peg order type which will also incorporate the signal.
This order type will rest one tick outside the NBBO and exercise discretion
to trade at the NBBO while the signal is off. This is not yet available in
production, but we are optimistic that it will perform well once it is deployed.

4 Refining the Crumbling Quote Model: Part I

When we seek to improve our model of a crumbling quote, there are several
avenues we can consider. The process of selecting a model involves multiple
stages, and the decisions we make at each stage can be revisited as poten-
tial opportunities for improvement. To make this more transparent, let us
summarize the choices we made in designing our model:

1. We defined our prediction target as price moves within the next 10
milliseconds.

2. We defined the features bids, asks, bidsl, asksl to be used in predic-
tion.

3. We defined a class of functions over these features, namely linear func-
tions.

4. We chose a set of training data, imposing some restrictions on our data
points.
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5. We chose a way of measuring how well a particular linear function of
our features does in predicting the log odds of our target variable in
our training set.

6. We chose a way of computing a linear function that performed well
according to this measurement.

Often we do not have to explicitly think through these last two steps, as
standard choices can be made for us in software packages such as R. But it
can nonetheless be helpful to remind ourselves that such choices are present,
and adjusting them is a degree of freedom we have and may someday want
to use. In particular, we may feel that false negatives are worse than false
positives, and we may want to adjust how these two kinds of errors are
treated when we evaluate how well a particular model “fits.” However, all
of the different combinations of choices we could consider jointly for steps
1 through 6 above can quickly become an overwhelming, high-dimensional
mess, and we want to focus in on the steps where we are likely losing the
most ground.

So how do we know where we are losing ground? There are a few ways
we can get a broad sense of this. As an illustrative example, let’s focus
in on step 3. above, where we chose the class of linear functions. If we
keep our feature selection of bids, asks, bidsl, asksl as fixed, we might note
that the number of common value combinations for these features is not too
large. The value of bids, for instance, is between 1 and 12 (since we exclude
IEX itself from our calculations of these variables). The same is true for
asks, bids1, and asksl, making a grand total of 12% = 20, 736 possible value
combinations across the four features (again ignoring very rare events where
one of these might be 0).

To get a sense of how much raw predictive power these features have
before we impose a linear form on our model, we can test a brute force
approach. Going over a portion of historical data, we can simply count how
many times each combination of feature values appeared and how many
times it was followed by a price tick. As long as our data set is sufficiently
large in comparison to our 20,736 possibilities, we will get a pretty good
estimate of the probability of a price tick following each feature combination,
except possibly for very rare combinations, which do not have a large impact
anyway. We can turn this collection of probability estimates into a prediction
model by choosing a probability threshold. We can simulate a signal on
fresh data then by firing whenever we see a combination of features whose
estimated probability of an impending tick is above our chosen threshold.
As with a linear model, as we adjust this threshold we see a spectrum of
tradeoffs between accuracy and the coverage of true positive events.

What we find, in this case, is that the imposition of a linear function is
not costing us much. For this limited feature set at least, the brute force
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model does not give us a considerably better performance than the best
fitting linear function, though this is a step we should revisit whenever we
change earlier choices in the modeling process.

Even though it does not seem to be a big loss in this case, we might still
ask: why consider imposing a linear function in the first place? If we can get
reasonably reliable estimates of the probabilities of ticks following various
feature combinations, why not just use these directly and bypass logistic
regression? For one thing, a table of 20,736 probabilities is an inconvenient
object to include in a rule filing. But more importantly, it does not give
us much human-digestible insight into the structure we are modeling. Some
might not see this as a problem: if the model works well, do we really care
about understanding why and how it works? Well, we will probably care if
it stops working as well. If we cannot succinctly describe and explain our
model, it is going to be hard to fix it and improve it over time. It is a
common sense rule of good statistical practice: never use an overly complex
model when a simpler one will do. Simplicity is a form of protection from
over-fitting to training data and overreaction to minor deviations in live
data on a day-to-day basis. We should not give it up in exchange for meager
returns.

Instead, we will start searching for improvements by revisiting our very
first choice: defining 10 ms as the target prediction range. Let’s take a
closer look at how well that is working for us. For each correct prediction
we make, we can examine the gap in time between the market data update
that triggered the prediction and the time of the predicted tick. Both times
are relative to IEX’s view, so more precisely we mean the gap in time be-
tween IEX’s system processing the market data update that triggered the
prediction and processing the market data update that notified IEX of the
tick. We note that this ignores the time it takes us to compute the prediction
and notify the matching engine, but this is typically quite fast (this could
change if we make our model too complicated, but we are currently very far
away from that concern).

It turns out that nearly 90% of our correct predictions are actually made
in the 2 ms preceding the tick. The following chart illustrates this for a
particular day, which happens to be Dec. 15, 2016 again. For each correct
prediction, we took the amount of time between the prediction and the tick
and rounded it down to the nearest multiple of 100 microseconds. We can
then examine the accumulated percentage of predictions as we increase the
time scale: the horizontal axis here is in units of 100 microseconds, and the
vertical axis is a cumulative percentage of the time gaps between our correct
predictions and the corresponding ticks. For example, the y-value of 48%
corresponding to the x-value of 3 tells us that 48% of our correct predictions
were made less than 400 microseconds before the tick. We can see that the
percentage grows rather slowly between 1 and 2 ms, and when we look at
the remaining time from 2 ms out to 10 ms (which is not pictured here as
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it is too boring), we also see a rather slow growth from 90% to 100%.
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This suggests that 10 milliseconds is not an optimal choice for the amount
of time our signal should stay in force. In comparison to a 2 ms window,
we are leaving it on 5 times longer and only getting a roughly 10% gain in
correct predictions. This does not feel like a very good trade off. Predicting
a tick 10 milliseconds away was a fine aspiration, but since we are falling
well short of this, we might as well embrace the range of predictive power
we do have and not waste too much additional time waiting for ticks beyond
this. For this reason, we changed our signal to be in effect for only 2 ms.
This also changes our predictive target: we are now trying to predict the
event of a tick happening within the next 2 ms, not the next 10 ms.

Let’s see what happens if we keep the same formula and probability
threshold and simply shorten the duration of the signal from 10 ms to 2 ms.
Simulating this behavior over market data for the same day, we see that the
signal would now fire about 1,970,000 times, consisting of approximately
950,000 true positives and 1,020,000 false positives. To understand why the
signal fired a bit more frequently when we shortened the duration, we note
that while the signal is on, we choose not to reevaluate the formula to allow
new predictions. This is why leaving it on for less time can lead to a few
more fires in our implementation. It is important to note here as well that
even though our count of false positives has grown, the total time wasted in
false positives has been dramatically reduced from about 850, 000* 10 ms to
1,020,000 * 2 ms. This is a reduction from about 142 minutes aggregated
across all symbols to about 34 minutes.

This is a worthwhile reduction in the overall cost of false positives,
though it comes at the expense of losing a small number of true positives.
Not to worry though, we can regain those lost true positives and a bit more
by finding some additional features to enhance the fit of our signal.
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In other words, we will consider augmenting our selection of features in
step 2 from our model selection steps listed above. As in our choice of a linear
function, we favor simplicity here in feature selection, but limiting ourselves
to these four basic features is a bit too conservative. For example, we are
currently treating all venues the same, even though desertion of the near side
by certain venues may be more indicative of an impending tick than other
venues. Fitting separate coeflicients for each venue is a bit unwieldy, but it
appears experimentally that giving some additional weight to BATS, EDGX,
and NASDAQ can be useful. For this, we define the following feature:

D :=1[BATS|+1[EDGX] +I[NASDAQ)],

where I[BAT'S] is an indicator variable that equals 1 if BATS was present on
the near side 1 ms ago but is not now, and equals 0 otherwise. [[EDGX] and
I[NASDAQ)] are defined analogously, so the value of D is always between 0
and 3.

Another thing we may consider is the ordering of events. So far, we have
only considered cumulative changes in how many venues are on the best
bid and offer, regardless of the order in which these individual adjustments
occur. The same values of bids, asks, bidsl, asksl may describe significantly
different sequences of events. For example, consider a case where bidsl =
3,asksl = 3. From this point on, the following may happen: BATS leaves
the bid, Arca leaves the bid, NASDAQ joins the ask, NASDAQ joins the
bid, EDGX leaves the bid. At this point, we have bids = 1 and asks = 4.
But there are many other scenarios that yield this same result. For example,
perhaps BATS joins the ask, BATS leaves the bid, EDGX leaves the bid.
We might suspect that if the most recent events have been venues deserting
the near side, than a tick is more likely to occur. For this reason, we define
another feature E, which = 1 if the most recent two events have both been
venues leaving the near side, and = 0 otherwise.

We now have 6 features to include in our logistic regression model to
predict a downward tick: bids, asks, bidsl, asksl, E, and D. We thought
up and tried several other features like these at this stage of our research,
but these six seemed to capture the bulk of the predictive power without
introducing unnecessary levels of complication. So we again used historical
data to find the best choice of coefficients for weighting these factors in our
signal, as well as a threshold to apply on the result. This produced the
following model:

1

>
fire when 1+ ef(coJrclbids+t:2asks+03bidsl+04asksl+05E+CGD) > 0.6

where ¢y = —1.3493, c¢; = —1.1409, co = 0.2671,
c3 = 0.5141, ¢4 = —0.190, c5 =0.1347, cg = 0.6862.
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Again, we note that scaling all coefficients and the threshold 0.6 by the same
constant factor would result in exactly the same criterion, so we shouldn’t
read too much into the particular number of 0.6. This formula overall is
not less aggressive than the previous one. The particular number 0.6 arose
because we calculated our coefficients in R using weights on our training
data that made false positives errors less costly than false negative errors,
which means we should no longer interpret this threshold 0.6 directly as our
probability estimate of the likelihood of a tick. Simulating its behavior on
our test data from Dec. 15, 2016, we see that this new criterion results in
roughly 1,060,000 true positives and 975,000 false positives. This is with a
2 ms firing window, so it should be compared to the 950,000 true positives
and 1,020,000 false positives that we obtained using the prior formula with
a 2 ms firing window. The new formula is a clear win by this metric: we get
more true positives and less false positives. This version of the signal was
employed in production at IEX from August 2016 until March 2017.

5 Behavior on Our Market During the Signal

Let’s take a brief detour from working to improve our signal and pause
to examine how it corresponds to behavior on our market. Note that the
formula we arrived at in the previous section is indeed the version of the
signal that was employed in production at IEX in December 2016, the month
that we will take as an illustrative example here. We look at the data set of
primary peg trades that happened on IEX during that month. We classify
each trade as favorable or unfavorable from the perspective of the resting
order based on a 1 second markout. More precisely, we compare each trade
price to the midpoint of the NBBO 1 second later. If the trade price was
better (from the perspective of the resting order), we call this “favorable”.
If the trade price was worse or the same, we call this “unfavorable.” For
each trade, we also check whether the signal was on in that symbol at that
moment.

For context, we note that the signal typically fires 1.6 to 2 million times
a day, so the total time the signal is on is usually less than 2,000, 000 % 2 ms
= 4,000,000 ms = 4, 000 seconds a day, which is an average of less than half
a second per symbol. Surprisingly, about 21% of the volume of trades in
our data set occur in this very small portion of time while the signal is on.
Less surprisingly, there is a systematic difference in quality between trades
that occur when the signal is on versus when the signal is off. Here is what
the distribution of trades (by volume) looks like from the perspective of the
resting order when they occur during signal off periods:
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Overall, this behavior looks pretty appealing. A strong majority of the
time (about 61% of volume), the 1 second markouts are favorable. However,
if we look at trades that occur while the signal is on, we see a very different
picture:
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Here, only 23% of the trading volume is favorable and the remaining
77% is unfavorable. This clearly demonstrates that the signal provides a
meaningful protection against unfavorable trades, at least at this time hori-
zon. It is important to note that the choice of an appropriate time horizon is
crucial. For example, if we were to choose 2 ms as a time horizon, we would
not get very meaningful results. By design, the trades that occur while the
signal is on are highly likely to be deemed unfavorable by this metric, as
a correct signal prediction means the price will move into the resting order
within 2 ms. But by looking at 1 second markouts here instead, we do learn
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something new, namely that our signal can be leveraged to improve the ex-
perience for resting orders at this greater time horizon. These results give
us promising insight into how our new version of primary peg may perform.

One might also wonder what happens if we divide the trades based on
signal accuracy. The 21% of trading volume in our data set that occurred
in periods where the signal was on breaks down into 14% while the signal
was on and correct (true positives) and 7% while the signal was on and
incorrect (false positives). For trades that occurred during true positive
signals, 12% were favorable (by volume) while 88% were unfavorable. During
false positive signals, 47% were favorable while 53% were unfavorable. There
are likely many contributing factors to why the effect on 1 second markouts
is much stronger during true positive signals. One is that false positives by
definition mean the price didn’t move into the resting order within 2 ms,
so this selection of events will have some lingering correlation with the 1
second markouts. Secondly, traders may be acting less aggressively than
our signal since they may stand to lose more from false predictions, so they
may only act when they are more confident a price change is coming, which
would correlate more with our true positives. Presumably, many of our false
positives occur in times when our prediction probability was fairly near our
threshold, so even if a trader was acting on the same probability estimate,
he or she might choose not to trade in these moments. What is perhaps
most interesting here is that the 1 second markouts of trades during false
positive signals are significantly less favorable than those that occur while
the signal is off. This suggests that even when the signal is wrong, it does
significantly correlate with trading activity. This might suggest that traders
are basing behavior on models that are similar to or at least correlated with
our signal model.

6 Refining the Crumbling Quote Model: Part 11

Though we have seen that our crumbling quote signal performs reasonably
well already, we suspect it can still be dramatically improved. One might
hypothesize, for instance, that the patterns that characterize a crumbling
quote differ substantially based on characteristics of the symbol being traded
and/or the current trading conditions. We might wonder if the model should
vary based on time of day, or average price of a symbol, or average daily
volume of a symbol, etc.

To test the influence of time of day, for instance, we took training data
only from a particular hour of the trading day and performed logistic re-
gression again, recalculating the coefficients to perform well on this more
targeted data set. We then tested the performance compared to the current
model on fresh test data taken from that same hour on a different day. We
did this separately for various hours, such as the first hour of trading, the
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last hour of trading, and several hours in between. We similarly tried many
ways of grouping symbols into a small number of categories, and trained
separate models for these categories, then tested them against our current
model.

It is easy to get lost in the universe of all possible groupings and features
that could be tested, so in designing and executing these tests, we tried
to maintain focus on the forest through the trees. Some basic patterns
did emerge. First, time of day did not appear to be significantly helpful, at
least not at this level of granularity. Second, reasonable ways of grouping the
symbols into a small number of clusters did result in meaningful results, but
perhaps not in as many ways as we expected. The basic shape of the signal
did not seem to meaningfully change when we optimized our coefficients to a
particular class of symbols, but the optimal probability threshold depended
on spread. More precisely, the “sweet spot” of roughly equal true and false
positives moved around a bit in a way that was correlated with the average
spread in a symbol. We found that we could fire at a lower, more aggressive
threshold in high spread symbols (those with average spread above $0.035),
obtaining more true positives without accumulating too many more false
positives.

However, all of the potential gains we discovered in these kind of tests
were fairly modest, all combined amounting to about a 25% increase in
true positives while maintaining approximate equality with false positives.
To go in search of immodest gains, we will now take a look at the basic
anatomy of price ticks throughout a single day and look for clear targets for
improvement. We will classify ticks into a few categories.

We will design our categories to capture a few of the possible explanations
for why we might fail to predict a tick. One obvious case is ticks that occur in
relatively unstable conditions, where our features of bidsl, asksl cannot be
meaningfully calculated. We will classify a tick as “unstable” when: for the
last NBBO update preceding the tick (our last potential chance to predict
it), the price stability condition over the preceding millisecond is unsatisfied.
Another problematic class of ticks are those that occur when a single venue
has been alone at the NBB or NBO for awhile and then suddenly moves.
Trying to predict exactly when such ticks will occur would seem to require
true black magic, and we shouldn’t judge ourselves too harshly for missing
them. To make this precise, we will classify a tick as “lonely” when: for
the last NBBO update preceding the tick, the price has been stable for the
past 1 ms, but the number of venues at the near side has been = 1 for that
interval. It is also helpful to identify classes of ticks that are not as valuable
to predict, like those immediately following a locked or crossed market. Since
IEX already prevents dpeg orders from exercising discretion during a locked
or crossed market, predicting these ticks with our crumbling quote signal is
not necessary.

As an illustrative example, we again consider ticks over the course of the
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trading day for Dec. 15, 2016. There were approximately 11,245,000 times
over this day where either the NBB moved down or the NBO moved up.
This is the total set of ticks we will work with. If we break them down into
our categories, we get the following distribution:

Ticks Over a Day

Lock/Cross

Lonely

We can see here that about 8% of ticks occur immediately after a locked
or crossed market, 47% of ticks occur during unstable conditions, 27% of
ticks occur with one venue alone at the near side for a significant stretch of
time, and 18% of ticks occur outside of these categories. Let’s now look at
how our signal predictions overlap with this:

Current Predictions

Lock/Cross Predicted

Lock/Cross Unpredicted
Unstable Predicted

Other Unpredicted

Other Predicted

Unstable

Lonely = Unpredicted

Unpredicted

Lonely Predicted

In total, we are predicting about 10% of the day’s ticks. In the unstable
and lonely cases, we are predicting essentially no ticks (this is why you
cannot even really see their slices in the pie chart). This is no surprise,
since we do not allow our signal to fire in unstable conditions, and lonely
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ticks are rather unpredictable by nature. In the lock/cross category, we are
predicting a significant fraction of ticks, but this is not very important. We
are predicting about 37% of the ticks in the “other” category, which is where
we expect our useful predictions to fall.

We can hope to improve upon this 37% of course, but we can also see
from this breakdown that imposing our 1 ms price stability condition is very
costly. Right off the bat, we give up on even trying to predict nearly half of
a day’s ticks!

To have a fighting chance at predicting ticks in less stable conditions, we
need to define new features that do not depend upon 1 ms of stability. As
a first attempt, let’s return to basics and consider the form of the market
data we are receiving. What we receive in market data is of course more
granular than mere snapshots of the NBBO at particular moments in time:
it reflects the full sequence of moves that individual venues make as they
update their best quotes. If we are watching the NBBO updates in a certain
symbol and we freeze at a moment in time, we can look back to the most
recent price tick and examine what has happened between then and now.
It may be that many things have happened - someone joined the bid, then
someone left the bid, then someone joined the ask, etc. We can encode this
sequence of events like so: +1bid, —1bid, +1ask, etc.

The length of the sequence of events since the last price change will vary.
Looking at very long sequences is likely to complicate the model more than
it helps - for now we will cap the length of the event sequence to 4, meaning
that when there have been more than 4 events since the last price change,
we only consider the most recent 4. We start by also considering the current
number of bids and asks, as well as the direction of the last price change
(bid up, bid down, ask up, or ask down). This means we associate each
NBBO update with the following data:

e bids: the number of venues currently on the bid
e asks: the number of venues currently on the ask

e direction of last price change: one of (bid up, bid down, ask up, ask
down)

e ordered sequence of < 4 most recent events (within current price level)
encoded as +1bid, +1ask, etc.

These features can form the basis of a new model that attempts to use
this data to predict a price tick within the next 2 ms, potentially even in
moments of relative instability. To get a general sense of how well a model
based on these features might perform, we can start with a brute force
approach. For each possible combination of values for the features above,
we can count how many times it occurred over the course of one day, and
look at how many of those instances were followed by price ticks in each
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direction with the next 2 ms. For example, let’s suppose there were 100
times where the current number of bids = 2, the current number of asks
= 5, and the recent event sequence was: +lask then —1bid then —1bid.
Let’s further suppose that out of these 100 times, 60 of them were followed
by a reduction in the bid price within the next 2 ms. Upon seeing this, we
might reasonably say that our signal should predict a down tick whenever it
sees this particular combination of values. Looking over a full day’s worth
of data across all symbols, we can make a table of all the combinations of
these features that occur, and for each calculate what percentage of the
time is this combination followed by a down tick or up tick within 2 ms. We
can then pull out all of the combinations where this percentage is above a
threshold, and declare these to be times when our signal should fire. We
will use 42% as a threshold for now because it seems to be the sweet spot
roughly equalizing true and false positives.

We should note that we are not advocating using this kind of look up
table as a signal definition in practice. We are merely using this as an
intermediary step to see how much information is contained in these features
before trying to fit a simpler model to them. This way, as we fit the model,
we can understand how much of its success/failure is due to the model fit
as opposed to the feature selection.

We now take this table of feature combinations that represent a rea-
sonable likelihood of impending ticks for our training day, and simulate
what would happen on a fresh day’s worth of data if we fired the signal
exactly when these combinations occur. The training data this time was
from November 18, 2016, while the testing data was from November 16,
2016. Our previous signal formula produced roughly 990,000 true positives
and 870,000 false positives on that day. This new look up table approach
produced roughly 2.6 million true positives and 2.7 million false positives.

As a revealing point of comparison, if we had simply taken the current
formula and lowered it’s firing threshold to 0.2 from 0.6 to make it much
more aggressive, we would have produced 2.1 million true positives and 5
million false positives. So the look up table on these features represents
a far superior fit, at least in terms of counts of true positives versus false
positives.

However, the true positive and false positive numbers don’t tell the full
story. In signal modeling as in life, it is dangerous to focus single-mindedly
on one metric of success. If we do, we are likely to optimize it too far, at the
expense of other important things. In this case, the important thing we’ve
neglected is time.

In an initial search for structure in the subset of event patterns in the ta-
ble that were most commonly followed by ticks, we noticed a simple feature.
Most of them were predicting impending ticks at the very last opportunity.
More precisely, the predictions for downward price movements were largely
coming only when the number of bids had dwindled all the way down to 1,
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and similarly upward price movements were only predicted after the number
of asks had dwindled all the way to 1. To get a rough sense of this effect, we
compared it against the behavior of the current signal formula over one day’s
worth of data (namely Dec. 8. 2016). On that day, the current signal for-
mula made about 1,058,000 true positive predictions, and roughly 608,0000
of those correct predictions came in moments where the crumbling side had
already dwindled down to 1. That left about 450,000 true predictions that
were made at earlier points during the crumbling process. This means about
57% of predictions came very late in the crumbling process, while about 43%
came a bit earlier in the process, giving us more of a head start before the
impending tick. Using the look up table approach previously discussed, we
would have gotten about 3,090,000 true positives for this same day, but a
whopping 2.8 million of these predictions came only when the crumbling
side reached 1. This is not only a vastly higher percentage (92% instead
of 57%) but even the absolute number of earlier predictions has fallen to
about 250,000, so we have lost at least 200,000 opportunities to predict a
tick earlier in the crumbling process.

Now, we might note that predicting a tick at the last possible moment
is better than not predicting it at all (though even this may be false, as
predictions that are unlikely to traverse our system in time really just clog
up our internal processing without serving a purpose). But naturally we
do not want to lose ground on ticks we were already predicting correctly.
Predicting the same tick a bit earlier is a benefit to us that the true positive
count doesn’t capture, since the earlier we can predict a tick, the more bad
trades we can prevent in the time between the signal and the tick. In many
cases, it may be that there simply isn’t enough information to predict a tick
much in advance, but this of course can’t explain lost ground between the
current formula and the lookup table.

So how do we approach the higher true positive count of the lookup table
without losing ground on prediction times? One easy approach would be to
use both methods together. We could fire the signal when either the current
formula OR the table predicts that a tick is imminent. Something like this
is certainly an option, but it’s not ideal for several reasons:

1. If the true positives of the two approaches correlate more than the
false positives, we’ll need to re-tune the parameters to get the true
and false positives to stay roughly equal, and this will likely degrade
the total true positive count we can capture as a result.

2. More importantly, blindly gluing together two models that differ with-
out understanding how and why they differ is unlikely to be the best
long term approach. Nor does it help us demystify the look up table
and distill it into a more palatable computation.

Instead let’s ponder - why might looking at the pattern of the most
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recent events around the NBBO lead to later predictions than looking at
a time slice exactly 1 ms ago? One possibility is that when our current
signal makes early predictions, these predictions are not as accurate as the
probability threshold of 0.42 that we imposed in selecting patterns from our
look up table. But this doesn’t seem to be the case. For the test data, the
current signal had a 45% accuracy on times when it fired without waiting
for the near side to crumble all the way to 1. Also, if we relax our 0.42
probability threshold in selecting patterns from our table to something a
little bit lower like 0.4 or 0.38, it doesn’t seem to resolve the issue.

What this seems to suggest is that time is a relevant feature: lumping in
events that are tightly clustered in time with events that are more spread out
in time into the same pattern loses vital information that can be leveraged to
make earlier predictions. In getting rid of the 1 ms stability condition, we’ve
gotten rid of timing information completely in our approach, and perhaps
have thrown the baby out with the bath water.

This is easily fixed. We can build features that still take time into account
without relying on a fixed window of price stability. Here’s a first attempt:
whenever we receive an NBBO update, we look back over a window of time
that ends either 1 ms ago or at the most recent price tick, whichever we
encounter first. For example, if the last price change was 3 ms ago, we will
look back over the last 1 ms. If the last price change was 0.5 ms ago, we
will look back only over the last 0.5 ms.

Now we face the question, what do we do with the pattern of events
that we observe in that window of time? If the window is cut short by a
recent price change, it doesn’t make much sense to compare the number
of bids now to the number of bids right after the price tick, for instance.
So instead of relying on a feature like bidsl (the number of bids 1 ms ago)
to predict a downward price movement, we define a feature called BL that
represents the current number of bids minus the peak of the number of bids
over the window we are considering (this is a measure of bid loss). We can
analogously define features that capture gain in asks, gain in bids, and loss
in asks. We can also define features like FP (an abbreviation for “Event
Positive”), which = 1 if the most recent event was someone joining the bid,
and = 0 otherwise. Similarly, we can define EN (an abbreviation for “Event
Negative”), which = 1 if the most recent event was someone leaving the bid,
and = 0 otherwise.

To predict a downward price movement for example, we will try exam-
ining the following set of features:

e bids: the current number of venues at the NBB
e asks: the current number of venues at the NBO
e BL: current bids - max number of bids over the window

e AA: current asks - min number of asks over the window
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e EP: = 1 if the most recent event was a venue joining the NBB, = 0
otherwise

e EN: = 1 if the most recent event was a venue leaving the NBB, = 0
otherwise

e EEP: = 1 if the 2nd to most recent event was a venue joining the NBB,
= 0 otherwise

e EEN: = 1 if the 2nd to most recent event was a venue leaving the
NBB, = 0 otherwise.

We will do things analogously for predicting upward ticks, just reversing
the roles of bids/asks in all of the features. Now that we have a candidate
list of features, we can again consider linear models, look up tables, or other
classes of functions over them. We’'ll start with the look up table approach
to get a raw sense of the predictive power of these features. For this, we
can go over a day’s worth of training data, simply counting how many times
each combination of values for the features occurred, and how many of those
occurrences were followed by ticks. We then selected from the table all of
the combinations of values that were followed by a tick more than 40% of
the time.

We can use this as a look up table to decide when to fire a signal and test
its performance on a fresh day of data. For comparison purposes, we test
it on data from Nov. 16. On that day the current signal formula resulted
in roughly 990,000 true positives and roughly 870,000 false positives, while
our previous look up table based on time-insensitive patterns of length <
resulted in 2.6 million true positives and 2.7 million false positives. Our
new look up table produces 2.2 million true positives and 2.3 million false
positives on this day. So this is slightly less than the previous look up table
approach, but again, this does not tell the full story. The hope is that this
new set of features that also incorporates time without requiring stability
can achieve the best of both worlds: a high true positive count without
sacrificing accuracy or the timeliness of predictions.

Here’s a chart that suggests it does pretty well at achieving this goal:
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This chart compares the current signal to this new table look up over a
fresh day’s data, in this case Dec. 20, 2016. The horizontal axis here rep-
resents 100 microsecond buckets. For each correct prediction, the time gap
between the prediction and the tick is measured in microseconds, rounded
up to the nearest multiple of 100, and placed in appropriate bucket. The ver-
tical axis represents a count of how many predictions fall into each bucket.
We can see that the new predictions made by the table based approach are
often made with a slim time margin, but we haven’t lost ground in any of
the time buckets. So at every time range, the number of correct predictions
made by this new table-based approach outnumber the correct predictions
made by the current formula. We can also consider the interesting metric
discussed above, namely how many correct predictions are made before the
near side has crumbled to 1. For the current formula on this day, about
290,000 of the 680,000 true positives were fired when the near side was still
> 1. This is roughly the same 43% we saw before. For the table based
approach, about 280,000 of its 1,570,000 true positives were fired when the
near side was still > 1. This is a much smaller percentage (18%), but at
least the absolute number has not dropped too considerably.

Interestingly, this number 280,000 jumps up to about 370,000 if we re-
place the look up table by a logistic regression trained on the same 8 features
instead. The logistic regression achieves about 1.4 million true positives
(with false positives roughly equal), which is not that far below the look up
table’s 1.6 million for this day (also with false positives roughly equal). If
we throw in this new logistic model to the time gap comparison, we see it
still does quite well:
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This shows that a lot of the true positives we miss by moving from a look
up table to a logistic regression in these new features are not that costly to
miss, because we were only predicting them with an extremely tight time
margin anyway, making those predictions relatively less valuable. Taken all
together, it seems we’ve hit upon a new set of features that can achieve
about twice the true positives of our current model while the false positives
stay roughly in line, and the time gaps for our predictions at least don’t get
worse for the ticks we were already predicting, and we are still getting some
considerable gains even pretty far out on the time margins. This is great
news!

There are still several tweaks we can consider on top of this new set of
features. For one, now that IEX is an exchange, we might consider incor-
porating our own presence or absence at the NBB,NBO into the calculation
of variables like bids and asks. When we tried retraining and testing our
model with this change, we found it made the signal slightly less accurate.
There are several reasons why this may be happening. For one, the speed
bump is doing its job, so IEX quotes may not crumble in the same way that
other quotes do. And of course, the mix of participants on IEX and how
they are using the venue may systematically differ from the compositions
of participants and strategies that inhabit other venues. Whatever the rea-
sons, including IEX in features like bids, asks appears to slightly dilute their
predictive power.

This raises a natural question: are there other venues who inclusion in
variables like bids and asks is either counterproductive or largely pointless?
It turns out the answer is yes. When we limit our features to only considering
eight venues, namely Arca, BATS, BATS BYX, EDGA, EDGX, NASDAQ
BX, NASDAQ), and NYSE, the predictive power of the model is essentially
the same. Interestingly, when we narrow things to these eight venues and
retrain the coefficients, the false positives seem to increase slightly, but the
correct predictions sometimes occur a tiny bit earlier, giving us a bit more
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breathing room between the prediction and the tick. Both effects are barely
noticeable, so it’s a close call. But we prefer to err on the side of leaving
things out of the formula rather than in (a good general rule of thumb for
statistical practice), so we have decided to exclude the venues outside of
these eight for now. Conversely, we find once again that it is helpful to give
a little extra weight to the venues BATS, EDGX, and NASDAQ.

We also previously observed that there may be benefits to tuning our
firing threshold according to spread. To incorporate this cleanly into our
new model, we decided to make the firing threshold a function of the current
spread. This is a bit more robust than clustering symbols by average spread
over a given period, as it eliminates edge cases such as what to do for a new
symbol that does not have a well-defined average spread yet.

To find a good fit between spreads and thresholds, we segmented our
training data roughly according to spread and separately calculated a thresh-
old for each segment that resulted in an equal number of true and false
positives. The overall result of all this tinkering is the following criterion
for firing the signal (this is for predicting a downward tick, the case of an
upward tick is analogous):

1
1+ e—(co+c1bids+czasks+03BL+C4AA+C5EP+cGEN+C7EEP+08EEN+09D) > f(

apr—bpzx)

where ¢y = —1.2867, ¢; = —0.7030, ¢ = 0.0143,¢c3 = —0.2170, ¢4 = 0.1526,
s = —0.ATT1, g = 0.8703, c7 = 0.1830, cg = 0.5122, co = 0.4645,

0.39, if apr — bpr < $0.01;

0.45, else if apx — bpx < $0.02;

0.51, else if apr — bpx < $0.03;

0.39, otherwise.

and f(apxr — bpzx) =

The features bids and asks are now always numbers between 1 and 8§,
as they are calculated only by looking at the eight venues Arca, BATS,
BATS BYX, EDGA, EDGX, NASDAQ BX, NASDAQ, and NYSE. More
precisely, the variables bids and asks are now calculated by counting how
many of these 8 venues are at the best bid/offer among these venues, which
sometimes differs from the true NBBO calculated across all venues. In our
experiments, it seems this is a rare enough occurrence that it’s effect on
performance is negligible. The features BL and AA also consider only these
venues in their calculation. The features EP, EN will be 0 unless the most
recent event among these 8 venues was a join or desertion of the best bid
among these. The features FEP, FEN behave analogously for the 2nd
most recent event among these 8 venues, but with the additional restriction
that they will be 0 if that event occurred outside the time window being
considered. Similarly, D is a count of how many of the three venues BATS,
EDGX, NASDAQ were on the best bid at some point in the window under
consideration and have since left.
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Let’s take a look at how well this new signal candidate performs and
compare it to our current version. On our example day of December 15,
2016, our current formula resulted in about 1 million true positives and
975,000 false positives. This new candidate formula would have produced
about 2 million true positives and 2.1 million false positives. So we are
correctly predicting roughly twice as many ticks, without compromising too
far on the accuracy (our false positives still are not too much greater than
our true positives). In addition, we are making more correct predictions
at every time scale. In the chart below, the y-axis indicates the number
of correct predictions made at each time scale, while the x-axis is indexed
by increments of 100 microseconds. Here we took each time gap between
a correct prediction’s generation and the anticipated tick and rounded this
down to the nearest 100 microseconds:
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We can breakdown the ticks we are predicting into the categories we
considered above, and compare the current signal’s correct predictions to
this new candidate:
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Current Predictions

Lock/Cross Predicted

Lock/Cross Unpredicted

Other Unpredicted
i Unstable Predicted

Other Predicted

" Unstable

Lonely -~ Unpredicted

Unpredicted

Lonely Predicted

New Predictions

Lock/Cross Predicted
ock/Cross Unpredicted
Unstable Predicted

Other Unpredicted

Other Predicted

Lonely =~

Unpredicted * Unstable

Unpredicted

Lonely Predicted

Overall, we are predicting about twice as many ticks, now roughly 17%
of the ticks on this particular day. We can see here the gains we’ve made in
predicting ticks that occur in unstable conditions, as well as in the “other”
category. And if we ignore the lonely ticks that are inherently unpredictable
as well as the ticks following locked or crossed markets which are unnecessary
for us to predict, the gain is even clearer. If we sum the predicted ticks in the
unstable and other categories for the current signal, we get roughly 800,000
on this day. For the new model, we get roughly 1,660,000. There are about
7.3 million ticks in these categories over the day, so we are predicting about
23% of these.

We might wonder: why are we doing better even at predicting ticks in
stable conditions? Our previous variables bidsl and asksl may have been
well-defined in these cases, but that does not mean they were an optimal
choice. Looking at the maximum drop in the number of bids, say, over a 1
ms window of time, may capture more relevant information for predicting
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an impending tick than the more arbitrarily regimented definition of bids1.

This new signal is the culmination of our research so far and has just
been deployed. We are excited to see how it behaves on our market in
practice. Our research into the signal continues as always, and we expect to
keep updating and improving it over time.

7 Conclusion

The market for U.S. equities is a diffuse and constantly shifting landscape.
Participant strategies, technology, and regulation all evolve in complex and
interactive ways, requiring vigilance and providing ceaseless opportunities
for innovation. IEX does not seek to rest on our laurels, but rather to remain
on the forefront of technological innovations that are designed uniquely to
protect investors. Our continuing development of the signal is a key piece of
our larger mission: to bring transparency to the marketplace and empower
ordinary investors to compete on a level playing field with entrenched spe-
cial interests. We have achieved great gains already, and we will continue
to employ our collective financial and scientific expertise in the service of
investors.

(©2017 IEX Group, Inc. and its subsidiaries, including Investors Exchange LLC and
IEX Services LLC. IEX Services LLC, Member FINRA /SIPC. All rights reserved.

30



