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1 Additional Tables

In this section, we provide tables that verify the robustness of some of our empirical

results in the paper.
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Table IA.1: Variable description

N(quotes)i,t Total number of quote updates in stock i over period t. (Source: TAQ)

N(trades)i,t Total number of trade executions in stock i over period t. (Source: TAQ)

QT i,t =
N(quotes)i,t
N(trades)i,t

Quote to trade ratio for stock i over period t. (Source: TAQ)

Rf,t Risk free rate, one month Treasury bill rate. (Source: WRDS/Kenneth French
Webpage)

Rm,t Value weighted return on the market portfolio. (Source: WRDS/Kenneth
French Webpage)

Ri,t, Rp,t Return on stock i or portfolio p. (Source: WRDS/CRSP)

rp,t = Rp,t −Rf,t Excess return on portfolio p. (Source: WRDS/TAQ)

rai,t Risk-adjusted return on stock (or portfolio) i. (Source: WRDS/TAQ)

rhml,t Value factor constructed by Kenneth French. (Source: WRDS/Kenneth
French Webpage)

rsmb,t Size factor constructed by Kenneth French. (Source: WRDS/Kenneth French
Webpage)

rumd,t Momentum factor (up-minus-down) constructed by Kenneth French. (Source:
WRDS/Kenneth French Webpage)

rliq,t Liquidity factor constructed by Pástor and Stambaugh (2003). (Source:
WRDS)

rpin,t PIN factor constructed by Easley et al. (2002). (Source: Sören Hvidkjaer
Webpage)

QSPREAD i,t Quoted spread. Difference between best ask quote and best bid quote (mea-
sured in USD). (Source: TAQ)

SPREAD i,t Relative spread. The quoted spread divided by the mid-quote price (measured
in %). (Source: TAQ)

PRC i,t Price in USD. (Source: WRDS/TAQ)

USDVOLi,t Trading volume in USD. (Source: WRDS/TAQ)

VOLUME i,t Share volume (measured in mill.). (Source: WRDS/TAQ)

ILRi,t Amihud (2002) illiquidity ratio for stock i over period t calculated as ILRi,t =
[
∑

(USDVOLi,t)/|ri,t|] · 106. (Source: WRDS/TAQ)

R1 Previous month return (Source: WRDS)

R212 Cumulative return from month t− 2 to t− 12. (Source: WRDS)

VOLAT i,t Return volatility for stock i calculated as absolute return over period t.
(Source: WRDS/TAQ)

IDIOVOLi,t Idiosyncratic volatility for stock i measured as the standard deviation of the
residual from a three-factor Fama/French model on daily data as in Ang et al.
(2009). (Source: WRDS/TAQ)

MCAP i,t Market Capitalization of a stock, calculated as the number of outstanding
shares multiplied by price. (measured in mill. USD)

BM i,t Book-to-Market value for stock i calculated as the log of the book value of
equity divided by the market value of equity measured for the previous fiscal
year.

ANF i The number of analysts following firm i. (Source: IBES)

INST i Holdings of institutions in the equity of firm i at the end of the year constructed
from 13F files. (Source: WRDS)

3



Table IA.2: Sample stock descriptives

The table presents the monthly time-series averages of the cross-sectional 25th percentiles, means,
medians, 75th percentiles, and standard deviations of the variables for the sample stocks. The sample
period is June 1994 through October 2012, and only NYSE/AMEX and NASDAQ listed stocks are
included in the sample. Stocks with a price less than USD 2, above USD 1000, or with less than 100
trades in month t-1 are removed. Stocks that change listings exchange, CUSIP or ticker symbol are
removed. The description of variables is in Table IA.1.

p25 Mean Median p75 Std.dev
Number of sample stocks 2859 3126 3051 3367 390
MCAP (in mill. USD) 70 2569 252 1047 13417
PRC (Price in USD) 8 22 17 29 24
USDVOL (in mill. USD) 2 392 19 140 2261
VOLUME (in 1000 shares) 237 12330 1307 6390 69836
N(quotes) (in 1000) 1 166 9 110 504
N(trades) (in 1000) 0 28 2 16 111
QT (proxy for algorithmic trading) 0.80 25.03 3.13 9.88 162.90
SPREAD (%) 0.26 2.19 1.19 2.93 3.03
QSPREAD 0.04 0.28 0.18 0.39 0.48
ILR (%) 0.036 8.331 3.402 2.389 121.071
VOLA 0.006 0.027 0.012 0.029 0.066
BM (log) 0.32 0.74 0.56 0.89 1.03
ri (indiv. stock midpoint excess returns, delist adj.) -0.060 0.013 0.005 0.072 0.146
INST 0.198 0.456 0.435 0.692 0.297
R1 (lagged 1 month return in month t-1) -0.058 0.014 0.003 0.071 0.153
R212 (cumulative returns month t-12 through t-2) -0.129 0.129 0.094 0.334 0.489
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Table IA.3: Additional determinants of the quote-to-trade ratio

The table shows panel regressions of the quote-to-trade ratio (QT) on different characteristics. The

dependent variable is the monthly QT. The independent variables are: annual number of analysts

following the stock (ANF ), quarterly institutional ownership (INST ), log-book-to-market as of the

previous year end (BM ); previous month return (R1); as well as contemporaneous (monthly) variables:

log-market capitalization (MCAP), price (PRC ), U.S. dollar trading volume (VOLUME ), Amihud

illiquidity ratio (ILR), relative bid-ask spread (SPREAD), volatility (VOLAT ), number of NASDAQ

market makers (MM ), AQ is a dummy variable that takes the value one after the staggered introduction

of Autoquote and zero otherwise, and SSBAN is a dummy variable that takes the value one during the

2008 U.S. short-selling ban and zero otherwise. Standard errors are double-clustered at the stock and

month level.

(1) (2) (3)
ANF -0.03 -0.30∗∗∗ -0.83∗∗∗

(-0.17) (-3.98) (-4.83)
INST -61.45∗∗∗ -29.25∗∗∗ -41.00∗∗∗

(-9.84) (-4.44) (-6.23)
BM -5.72 -2.26 -5.64

(-1.56) (-0.89) (-1.54)
R1 -1.78 -6.49∗∗ -7.91∗∗∗

(-0.83) (-2.58) (-2.82)
MCAP -4.10 -2.60∗ -7.74∗∗∗

(-1.59) (-1.71) (-2.73)
PRC 0.53∗∗∗ 0.38∗∗∗ 0.62∗∗∗

(3.01) (4.32) (3.24)
USDVOL -1.18e-09∗∗∗ -1.49e-09∗∗∗ -1.24e-09∗∗∗

(-2.81) (-6.53) (-3.22)
ILR 0.20 -1.38 0.61

(0.07) (-0.60) (0.20)
SPREAD -255.24∗∗∗ -148.28∗∗∗ -281.92∗∗∗

(-3.78) (-3.93) (-4.43)
VOLAT -2.85 -12.47∗∗∗ -8.02∗∗

(-0.93) (-2.94) (-2.06)
MM -1.53∗∗∗ 0.08

(-9.11) (0.31)
AQ 48.30∗∗∗ 71.08∗∗∗

(13.05) (10.38)
SSBAN -21.87∗∗∗ -32.46∗∗∗

(-3.88) (-3.96)
Stock FE YES YES YES
Time FE YES NO NO

N 385,098 672,888 385,100
Adj. R2 0.226 0.182 0.205
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Table IA.4: Risk-adjusted returns for quote-to-trade ratio portfolios

The table shows risk-adjusted monthly returns for various portfolios sorted on the quote-to-trade ratio

(QT). The alphas reported in the table are the intercepts (risk-adjusted returns) of regressions of

portfolio returns on risk factors. The monthly returns of the QT portfolios are risk-adjusted using several

asset pricing models: CAPM, Fama and French (1993) model (FF3), a model that adds the Pástor and

Stambaugh (2003) traded liquidity factor (FF3+PS), a five factor model that adds a momentum factor

(FF3+PS+MOM), the Fama and French (2015) five factor model (FF5), and a model that adds the

PIN factor for the period June 1994 to December 2002 (FF3+PS+MOM+PIN). We show the alpha

for the lowest and highest QT portfolios and the alpha for the difference in returns between the low

and high portfolios. In Panel A, stocks are assigned to 25 portfolios based on their QT level in month

t. Then returns are calculated for each portfolio for month t + 1. Panel B shows stocks assigned to

50 portfolios. ∗∗∗, ∗∗, and ∗ indicate rejection of the null hypothesis that the risk-adjusted portfolio

returns are significantly different from zero at the 1%, 5%, and 10% level, respectively.

Risk-adjusted returns (%)

FF3+PS FF3+PS

CAPM FF3 FF3+PS +MOM FF5 +MOM+PIN

(1) (2) (3) (4) (5) (6)

Panel A: 25 QT portfolios

α1 0.89 1.10∗∗ 1.10∗∗ 1.88∗∗∗ 1.19∗∗∗ 1.91∗∗∗

α25 0.22 -0.22 -0.21 -0.03 -0.26∗ -0.04
α1−25 0.67 1.31∗∗∗ 1.31∗∗ 1.91∗∗∗ 1.45∗∗∗ 1.95∗∗∗

Panel B: 50 QT portfolios

α1 0.60 0.82∗ 0.81∗ 1.56∗∗∗ 1.21∗∗∗ 1.57∗∗∗

α50 0.08 -0.33 -0.34 -0.18 -0.33∗∗ -0.19
α1−50 0.52 1.15∗∗ 1.15∗∗ 1.74∗∗∗ 1.54∗∗∗ 1.76∗∗∗
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Table IA.5: FMB regressions using t− 2 information

The table reports the Fama and MacBeth (1973) coefficients from a regression of risk-adjusted returns
using the lagged quote-to-trade ratio (QT). The firm characteristics are measured in month t−2, except
R1 and R212. The variables included are: relative bid/ask spread (SPREAD), Amihud illiquidity ratio
(ILR), market value of equity (MCAP), book to market ratio (BM ) calculated as the log of the book
value of equity divided by the market value of equity measured for the previous fiscal year, previous
month return (R1), and the cumulative return from month t−2 to t−12 (R212), idiosyncratic volatility
(IDIOVOL) measured as the standard deviation of the residuals from a Fama and French (1993) three
factor model regressed on daily raw returns within each month as in Ang et al. (2009), dollar volume
(USDVOL), and price (PRC ). All characteristics apart from returns are logged and all coefficients are
multiplied by 100. The standard errors are corrected by using the Newey-West method with 12 lags.
∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level, respectively. Panel A presents the
results for information delay and Panel B presents the results on liquidity.

(1) (2) (3) (4) (5)

Const. 0.004∗∗∗ 0.012∗∗∗ 0.009∗∗∗ 0.027∗∗∗ 0.030∗∗∗

QT i,t−2 -0.200∗∗∗ -0.240∗∗∗ -0.248∗∗∗ -0.145∗∗∗ -0.148∗∗∗

SPREAD i,t−2 0.132∗∗∗ 0.072∗ 0.034
ILRi,t−2 0.088∗∗∗ 0.057∗ -0.047∗

MCAP i,t−2 -0.060 -0.073
BM i,t−2 0.063 0.063
R1i,t−2 -5.111∗∗∗ -5.111∗∗∗

R212i,t−2 0.100 0.129
IDIOVOLi,t−2 -9.254∗∗∗ -11.167∗∗∗

USDVOLi,t−2 0.034 0.004
PRC i,t−2 -0.473∗∗∗ -0.439∗∗∗

R2 0.01 0.01 0.01 0.03 0.04
Time series (months) 216 216 216 216 216
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Table IA.6: Stock risk-adjusted returns and quote-to-trade ratio subsample

The table reports the Fama and MacBeth (1973) coefficients from regressions of risk-adjusted returns

for single stocks, given by rai,t = ri,t −
∑J
j=1 βi,j,t−1Fj,t for two subsamples, before and after the

introduction of algorithmic trading in 2002. Pre-2002 refer to the period from June 1994 to December
2002 and Post-2002 refers to the period from January 2003 to October 2013. The firm characteristics
are measured in month t− 1. The variables included are: relative bid/ask spread (SPREAD), Amihud
illiquidity ratio (ILR), market value of equity (MCAP), book to market ratio (BM ) calculated as the
log of the book value of equity divided by the market value of equity measured for the previous fiscal
year, previous month return (R1), and the cumulative return from month t − 2 to t − 12 (R212),
idiosyncratic volatility (IDIOVOL) measured as the standard deviation of the residuals from a Fama
and French (1993) three factor model regressed on daily raw returns within each month as in Ang et al.
(2009), dollar volume (USDVOL), and price (PRC ). All characteristics apart from returns are logged
and all coefficients are multiplied by 100. The standard errors are corrected by using the Newey-West
method with 12 lags. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%, and 10% level, respectively.

Pre-2002 Post-2002

Const. 0.030∗∗ 0.041∗∗

QT i,t−1 -0.156∗∗ -0.088∗

SPREAD i,t−1 0.068∗∗ 0.007
ILRi,t−1 0.031 -0.033
MCAP i,t−1 -0.351∗∗∗ -0.115
BM i,t−1 0.302∗∗∗ -0.123∗

R1i,t−1 -4.144∗∗∗ -4.643∗∗∗

R212i,t−1 0.566 -0.369
IDIOVOLi,t−1 -17.318∗∗∗ -8.464∗∗

USDVOLi,t−1 0.390∗∗∗ -0.031
PRC i,t−1 -0.516∗∗∗ -0.361∗∗∗

R2 0.04 0.04
Time series (months) 100 116
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Table IA.7: Stock risk-adjusted returns and quote-to-trade ratio and market makers

The table reports the Fama and MacBeth (1973) coefficients from regressions of risk-adjusted returns

for single stocks, given by rai,t = ri,t−
∑J
j=1 βi,j,t−1Fj,t for the subsample with only market makers. The

firm characteristics are measured in month t − 1. The variables included are: relative bid/ask spread
(SPREAD), Amihud illiquidity ratio (ILR), market value of equity (MCAP), book to market ratio
(BM ) calculated as the log of the book value of equity divided by the market value of equity measured
for the previous fiscal year, previous month return (R1), and the cumulative return from month t−2 to
t− 12 (R212), idiosyncratic volatility (IDIOVOL) measured as the standard deviation of the residuals
from a Fama and French (1993) three factor model regressed on daily raw returns within each month
as in Ang et al. (2009), dollar volume (USDVOL), price (PRC ) and the number of NASDAQ market
makers (MM ). All characteristics apart from returns are logged and all coefficients are multiplied by
100. The standard errors are corrected by using the Newey-West method with 12 lags. ∗∗∗, ∗∗, and ∗

indicate significance at the 1%, 5%, and 10% level, respectively.

Const. 0.027∗

QT i,t−1 -0.048∗

SPREAD i,t−1 0.066
ILRi,t−1 0.045
MCAP i,t−1 -0.280∗∗∗

BM i,t−1 0.099
R1i,t−1 -4.727∗∗∗

R212i,t−1 0.108
IDIOVOLi,t−1 -16.649∗∗∗

USDVOLi,t−1 0.355∗∗∗

PRC i,t−1 -0.723∗∗∗

MM i,t−1 0.000
R2 0.04
Time series (months) 216
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2 Random Trader Arrivals

In this section we consider the same setup as in the paper, but we no longer assume

aggregate demands of the form

Qb =
k

2
(v − a) + `−m+ εb, with εb

IID∼ N (0,ΣL/2) ,

Qs =
k

2
(b− v) + `+m+ εs, with εs

IID∼ N (0,ΣL/2) .

(IA.1)

Instead, we allow traders to be selected at random from the population, in the spirit of

Glosten and Milgrom (1985). Thus, at trading time τ a trader is randomly selected from

the population described in Appendix B in the paper. The proofs are in Section 2.3 of

this Internet Appendix.

2.1 Environment

At trading time τ a trader is selected at random and with equal probability he is an

investor or a liquidity trader. If a liquidity trader is selected, he submits either a buy

order or a sell order with equal probability, and the quantity is randomly chosen from

the normal distribution N (`L,ΣL/2). If an investor is selected, his initial endowment

is randomly chosen from the normal distribution N (M,σ2
M), where M is the supply of

the risky asset. Investors have CARA utility with coefficient A. Investors observe the

asset value v before trading, and then trade on the exchange at the quotes set by the

dealer: the ask quote a and the bid quote b. The asset liquidates at v + u, where u has

a normal distribution N (0, σ2
u). Finally, the dealer maximizes1

Eτ
(
x0 v +

(
(v − b)Qs + (a− v)Qb

)
− γ x2

∞

)
, (IA.2)

where Qs is the random quantity sold by the trader, Qb is the random quantity bought

by the trader, and x∞ is the final inventory of the dealer:

x∞ = x0 −Qb +Qs. (IA.3)

1We ignore the dealer’s monitoring costs in this analysis. Also, recall that for simplicity of presen-
tation in Appendix B we have assumed that the asset liquidates at v + u, while the investors observe
the signal v. Since, however, u appears linearly in the objective function, it can be ignored.
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2.2 Equilibrium

The investor’s equilibrium behavior is the same as in Appendix B of the paper: his

optimal trade depends on how his initial endowment is positioned relative to the lower

target X and the upper target X defined by

X =
v − a
Aσ2

u

, X =
v − b
Aσ2

u

. (IA.4)

The investor trades only when his initial endowment in the risky asset is outside of the

target interval [X,X]. In that case, he trades exactly so that his final inventory is equal

to the closest target. For instance, if the investor’s initial endowment x is below X, then

the investor submits a buy order for X − x. Ex ante, an initial endowment x occurs

with probability density

φM(x) =
1

σM
φ
(x−M

σM

)
, (IA.5)

where φ is the standard normal density.

The next result describes an approximation for the equilibrium behavior of the dealer

when the volatility σM of the investors’ initial endowment is large. For simplicity, we

consider only the particular case when the dealer’s initial inventory is x0 is zero. Define

k =
1

Aσ2
u

, ` =
`L + 2φ(0)γkσM

6(1 + γk)
, m =

M

2
, (IA.6)

where φ(0) = 1/
√

2π.

Proposition IA.1. Suppose the dealer has initial inventory x0 = 0 and forecast w.

Then the dealer’s optimal quotes are

a = w + h− δ +O
( 1

σM

)
, b = w − h− δ +O

( 1

σM

)
, (IA.7)

where h and δ are given by

h =
`

k
, δ =

m

k

1 + 2γk

1 + γk
, (IA.8)

and k, `, m are as in (IA.6).
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Proposition IA.1 shows that the behavior of the dealer is the same as in the baseline

model (see Proposition 1 in the paper). The only difference lies in the formulas for

the coefficients k, `, m. Recall that in Appendix B in the paper, we provide micro-

foundations for the aggregate demand equations (IA.1). In that context, the coefficients

are

k =
2ρ1

Aσ2
u

, ` = `L + ρ0σM , m = ρ1M,

ρ0 =
1√
8π
≈ 0.1995, ρ1 =

1

2π
+

1

4
≈ 0.4092

(IA.9)

(see equation (B4) in the paper). Note that the formulas in (IA.9) are similar to the

formulas in (IA.6), indicating that the random arrival model in this section produces

similar results to our baseline model in the paper.

2.3 Proofs of Results

Proof of Proposition IA.1. The dealer’s choice variables are the quotes a and b, or

equivalently the half spread h = (a− b)/2 and pricing discount δ = w − (a+ b)/2. The

dealer’s forecast error is e = v−w, which has a normal distribution e ∼ N (0, G), where

G = 1/F > 0 is the dealer’s inverse precision function (given by monitoring). As in the

baseline model, one can show that G does not influence the optimal choice of h and δ,

and hence we can set from the beginning G = 1. Thus, we assume that the dealer’s

forecast error has a standard normal distribution

e = v − w ∼ N (0, 1). (IA.10)

At time τ a trader arrives, which can be an investor with probability 1/2, or a liq-

uidity trader with probability 1/2. Let x be the investor’s initial endowment. Then,

Lemma B.1 in Appendix B of the paper shows that the trader submits the following
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quantities Qb and Qs:

Qb = `L + εb, Qs = 0, with probability 1/2,

Qb = 0, Qs = `L + εs, with probability 1/2,

Qb = X − x, Qs = 0, with probability 1
2

∫ X
−∞ φM(x)dx,

Qb = 0, Qs = 0, with probability 1
2

∫ X
X
φM(x)dx,

Qb = 0, Qs = x−X, with probability 1
2

∫∞
X
φM(x)dx,

(IA.11)

where εb and εs are IID with normal distribution N (0,ΣL/2), and φM(x) is the density

function in (IA.5). Substituting the formulas for e, h and δ in (IA.2) and setting x0 = 0,

it follows that the dealer maximizes

Ee,x
((

(h+ δ + e)Qs + (h− δ − e)Qb
)
− γ (Qs −Qb)2

)
, (IA.12)

where e ∼ N (0, G) and x ∼ N (M,σ2
M). Using the formulas in (IA.11), we recompute

the dealer’s objective function after multiplying by 2 and removing the terms that do

not involve h or δ. Hence, the dealer maximizes

V = h`L +

∫ +∞

−∞

∫ X

−∞

(
(h− δ − e)(X − x)− γ(x−X)2

)
φM(x)dx φ(e)de

+

∫ +∞

−∞

∫ +∞

X

(
(h+ δ + e)(x−X)− γ(x−X)2

)
φM(x)dx φ(e)de

(IA.13)

where

X = k(δ − h+ e), X = k(δ + h+ e), k =
1

Aσ2
u

. (IA.14)

By computing first the inner integral (with respect to x), we obtain a linear combination

of terms of the form φ
(
X−M
σM

)
, Φ
(
X−M
σM

)
, φ
(
M−X
σM

)
and Φ

(
M−X
σM

)
, with coefficients which

are polynomial in e and the choice variables h and δ. Write

X −M
σM

= α1e+ β1,
M −X
σM

= α2e+ β2,

α1 =
k

σM
, β1 =

k(δ − h)−M
σM

, α2 = − k

σM
, β2 =

M − k(δ + h)

σM
.

(IA.15)
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Thus, to comput the outer integral (with respect to e), we need to be able to compute

In =

∫ +∞

−∞
unφ(αu+ β)φ(u)du, Jn =

∫ +∞

−∞
unΦ(αu+ β)φ(u)du. (IA.16)

Note that φ′(u) = −uφ(u). We now perform (i) direct computation for n = 1, and

(ii) integration by parts to obtain recursive formulas for In and Jn.2 We get

I0 =
1√

α2 + 1
φ

(
β√

α2 + 1

)
, In =

(n− 1)In−2 − αβIn−1

α2 + 1
,

J0 = Φ

(
β√

α2 + 1

)
, Jn = (n− 1)Jn−2 + αIn−1,

(IA.17)

where I−1 = J−1 = 0. The formulas above imply

I1 = − αβ

α2 + 1
I0, J1 = αI0, J2 = J0 −

α2β

α2 + 1
I0. (IA.18)

Using the formulas above, we compute the dealer’s objective function. Up to terms

that do not depend on h and δ, this is equal to

V1 =
(
2φ(0)γkσM + `L

)
h− 3k(1 + γk)

(
h2 + δ2

)
+ 3M(1 + 2γk)δ+O(1/σM). (IA.19)

This is a linear-quadratic problem in h and δ, therefore up to terms of the order of

1/σM , the unique solution is

h =
`L + 2φ(0)γkσM

6k(1 + γk)
, δ =

M(1 + 2γk)

2k(1 + γk)
. (IA.20)

Using the notations in (IA.6), we obtain the formulas in (IA.8), which finishes the

proof.

3 Model with Multiple Dealers

In this section we provide an extension of our baseline model (see Section 4 of the paper)

to multiple dealers. The proofs are in Section 3.4 of this Internet Appendix.

2The formula for I0 is computed by noticing that φ(u) and φ(αu+ β) are log-quadratic in u. The
formula for J0 is obtained by noticing that I0 is the differential of J0 with respect to β.
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3.1 Environment

The market is composed of one risk-free asset and one risky asset. Trading in the

risky asset takes place in a market exchange based on the mechanism described below.

There are two types of market participants: (a) N ≥ 1 market makers called dealers

(individually referred to as “she”) who monitor the market and set ask and bid quotes

at which others trade, and (b) traders, who submit market orders.

Assets. The risk-free asset is used as a numeraire and has a return of zero. The

risky asset has a net supply of M > 0. After trading, the risky asset liquidates at a

fundamental value equal to v, which has a normal distribution v ∼ N (v0, σ
2
v), where σv

is the fundamental volatility.

Trading. Trading occurs at at the first arrival τ in a Poisson process with frequency

parameter normalized to one. If dealer i = 1, . . . , N submits an ask quote qi and a bid

quote bi, traders submit aggregate buy market order Qb and sell market order Qs, which

depend on the average quotes

a =
N∑
i=1

ai, b =
N∑
i=1

bi. (IA.21)

The quantity Qb is the buy demand and Qs the sell demand. Together, Qb and Qs are

called the liquidity demand, or the traders’ order flow. Thus, upon observing the ask

quote a and the bid quote b, traders submit at τ the following order flow:

Qb =
k

2
(v − a) + `−m+ εb, with εb

IID∼ N (0,ΣL/2) ,

Qs =
k

2
(b− v) + `+m+ εs, with εs

IID∼ N (0,ΣL/2) ,

(IA.22)

The numbers k, `, m and ΣL are exogenous constants. The parameter k is the investor

elasticity, ` is the inelasticity parameter, and m is the imbalance parameter. Micro-

foundations for the liquidity demand are provided in Appendix B in the paper.

Allocation Mechanism. Given the aggregate quantities in (IA.22), dealer i =

15



1, . . . , N trades the quantities

Qb
i =

1

N

(
k

2

(
(v − a) + µ(a− ai)

)
+ `−m+ εb

)
,

Qs
i =

1

N

(
k

2

(
(b− v) + µ(bi − b)

)
+ `+m+ εs

)
,

(IA.23)

at the prices

ae,i = a+ ν(ai − a), be,i = b+ ν(bi − b), (IA.24)

respectively, where µ, ν ∈ [0, 1]. Both µ and ν as left as free parameters to allow for

many possible allocation mechanisms.3 Note that the quantities Qb
i and Qs

i indeed sum

up to Qb and Qs, respectively.

Dealer Monitoring. Dealer i = 1, . . . , N monitors the fundamental value according

to mutually independent Poisson processes with frequency qi > 0 called the monitoring

frequency (or monitoring rate). We assume that each dealer reveals her signal to the

other dealers.4 Thus, each dealer receives signals according to a Poisson process with

frequency

q =
N∑
i=1

qi. (IA.25)

Using Corollary 2 in the paper, we take a reduced form approach and replace the signals

obtained from monitoring at the frequency q with a unique signal with precision

F (q) =
1

Var(v − w)
, (IA.26)

where w is the dealer’s forecast after observing the signal. We assume that F (q) is

increasing in q. Intuitively, an increase in the aggregate monitoring rate produces more

precise forecasts for the dealers. The cost for dealer i of monitoring at the rate qi is

C(qi), and is paid only once at t = 0, before monitoring begins.

To simplify the equilibrium formulas, we assume that the precision function F and

3If µ is higher, the marginal effect of dealer i’s quotes on the quantity traded is larger. If ν is higher,
the marginal effect of dealer i’s quotes on the trading price is larger.

4We do not specify the mechanism by which these signals become known by the other dealers. One
possibility is that in equilibrium each dealer’s quotes are in one-to-one correspondence to her last signal,
which can therefore be inferred by the others. However, deviations from equilibrium could make the
other dealers infer a different signal. We avoid this type of complication by simply assuming it away.
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the monitoring cost C are linear increasing functions,

F (q) = f q, C(qi) = c qi, (IA.27)

where f and c are positive constants.

Dealers’ Quotes and Objective. Each time dealer i monitors, she sets the ask

and bid quotes. We therefore interpret the monitoring rate qi as dealer i’s quote rate.

Because monitoring is considered here in reduced form, we are interested only in the

quotes (ai, bi) that are prevalent when trading occurs at τ . Thus, a quoting strategy

for dealer i is a pair (ai, bi) where ai is the ask quote and bi is the bid quote. Each

dealer starts with an initial inventory in the risky asset equal to x0.5 Let Qb
i and Qs

i be

the buy and sell quantities, respectively, that dealer i trades according to the allocation

mechanism described above. Then dealer i’s inventory after trading is

xi,end = x0 −Qb
i +Qs

i . (IA.28)

Then, given a quoting strategy (ai, bi) and a monitoring rate qi, dealer’ i’s expected

utility before trading at τ is equal to the expected profit minus the quadratic penalty

in the inventory and minus the monitoring costs:

Eτ
(
x0 v +

(
(v − be,i)Qs + (ae,i − v)Qb

)
− γ x2

i,end − C(qi)
)
, (IA.29)

where the parameter γ > 0 is dealer i’s inventory aversion, and ae,i, be,i are the effective

quotes at which dealer i trades, as in (IA.24).

Equilibrium Concept. The structure of the game is as follow: First, each dealer

i = 1, . . . , N chooses a constant monitoring rate qi. Second, in the trading game dealer

i chooses the ask quote ai and the bid quote bi such that objective function (IA.29) is

maximized. After observing the dealers’ quotes, the traders submit their order flow,

which is then allocated to the dealers according to the mechanism described above.

5As in the paper, we first let the initial inventory x0 as a free parameter, and later we set it equal
to a particular value called the neutral (or preferred) inventory.
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3.2 Equilibrium

We now describe the equilibrium behavior of the N dealers. As in the baseline model,

the description of the equilibrium depends on the parameters of the order flow in (IA.22),

and the dealers’ forecast w of the fundamental value, which is the same for all dealers.

Proposition IA.2. In the model with N dealers, suppose all dealers have the same ini-

tial inventory x0. Then there exists a symmetric equilibrium in which dealer i’s optimal

quotes are

ai = w + h− δ, bi = w − h− δ, (IA.30)

and the half spread h, pricing discount δ, and total monitoring rate q satisfy

h =
`

k

2 + 2(N − 1)ν

2 + (N − 1)(µ+ ν)
,

δ =
2

k

m
(

1 + (N − 1)ν + 2γk
(
1 + (N − 1)µ

)
/N
)

+ γk
(
1 + (N − 1)µ

)
x0

2 + (N − 1)(µ+ ν) + 2γk(1 + (N − 1)µ)/N
,

q =

√
k

N

(
1 +

kγ

N

)
1

fc
.

(IA.31)

To simplify presentation, we present the equilibrium for the neutral inventory x0,neutral

at which dealers balance the order flow, i.e., they expect the buy and sell demands to be

equal. Define the neutral discount to be the equilibrium discount δneutral corresponding

to the case in which all dealers start with the neutral inventory.

Corollary IA.1. In the model with N dealers, the neutral inventory, neutral pricing

discount and neutral mid-quote price are given, respectively, by

x0,neutral =
m

γk
, δneutral =

2m

k
, pneutral = w − 2m

k
. (IA.32)

By visual inspection, we obtain the following corollary which provides comparative

statics for the neutral discount δ, which is in one-to-one correspondence with the cost

of capital

r =
Eτ (v)− pneutral

pneutral

=
2m/k

w − 2m/k
. (IA.33)
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Corollary IA.2. In the model with N dealers, the cost of capital is increasing in the

elasticity parameter k, and is not affected by the inventory aversion γ.

When the elasticity parameter k is higher, investors trade more aggressively on their

information. Then, the dealers have an incentive to set a small risk premium δ (the

difference between their forecast w and the mid-quote price), to reduce their expected

inventory.

The fact that the neutral discount does not depend on inventory aversion has the

same intuition as in the baseline model: this discount depends only on the properties of

the order flow, and not on the dealers’ inventory aversion.

3.3 Representative Dealer

We now compare the equilibrium for N ≥ 1 dealers, each having inventory aversion γ,

with the equilibrium for one dealer with inventory aversion

γ
(1)

=
γ

N
. (IA.34)

Intuitively, we verify whether we can replace N dealers with a representative dealer with

proportionally smaller inventory aversion.

Corollary IA.3. Let the superscript (N) describe variables in the equilibrium with N

dealers. Then the equilibrium half spread, monitoring rate, neutral inventory and neutral

discount satisfy, respectively,

h
(N)

=
2 + 2(N − 1)ν

2 + (N − 1)(µ+ ν)
h

(1)

, q
(N)

=
q
(1)

√
N

x
(N)

0,neutral =
x

(1)

0,neutral

N
, δ

(N)

neutral = δ
(1)

neutral.

(IA.35)

One implication of Corollary IA.3 is that the neutral inventory of a representative

dealer is N times larger than the neutral inventory of each dealer in the N -dealer equi-

librium. This implies that the aggregate neutral inventory is the same in the two models,

which justifies our choice of the representative dealer inventory aversion in (IA.34).
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The first equation in (IA.35) implies that the equilibrium bid-ask spread in the two

models depends on the market allocation policy, that is, on the allocation coefficients µ

and ν. If the allocation coefficients are equal, then the equilibrium spread is the same

in the two models.

From (IA.35) we also see that the neutral discount, and therefore the cost of capital,

does not depend on the number of dealers, but only on the properties of the order flow,

and in particular on the ratio between the imbalance parameter m and the investor

elasticity k. This is in line with Prediction 3 in Section 4.5 of the paper: the number of

market makers in a stock does not affect its cost of capital.

The only important difference between the two model arises for the total monitoring

rate. The monitoring rate in the N -dealer model is lower than in the representative

dealer model by the square root of N . Intuitively, this is because each dealer exerts a

positive externality on the other dealers: when she monitors, she reveals her signal via

her quotes and thus improves every dealer’s estimate of the fundamental value. Because

of this externality, each dealer under-monitors the market in equilibrium.

This last result justifies Prediction 1 in Section 4.5 of the paper: a large number of

market makers in a stock is associated to a low quote-to-trade ratio. In that section,

a large number of market makers is interpreted as a low value of the parameter γ

(the inventory aversion of the representative market maker), which implies that the

representative dealer can afford to monitor less often and thus set a lower QT ratio.

In this Internet Appendix, we have an additional interpretation for Prediction 1: each

market maker’s public quotes exert a positive externality on the other market makers

and therefore reduce everyone’s incentive to monitor the market.

3.4 Proofs of Results

Proof of Proposition IA.2. Fix the monitoring rates qi, i = 1, . . . , N . Let I1 be

the dealers’ information set just before trading at t, and by E1 the expectation operator

conditional on I1. Let w = E1(v) be the dealers’ forecast of the fundamental value, and

G the variance of the forecast error:

G = Var(v − w). (IA.36)
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We now compute dealer i’s expected utility coming from a quoting strategy (ai, bi).

Recall that if a and b are the average quotes, the total liquidity demand is given by

(Qb, Qs), where

Qb =
k

2
(v − a) + `−m+ εb, Qs =

k

2
(b− v) + `+m+ εs, (IA.37)

εb and εs are independent and normally distributed by N
(
0,ΣL/2

)
. Recall that the

allocation mechanism requires that dealer i trades the quantities

Qb
i =

1

N

(
k

2

(
(v − a) + µ(a− ai)

)
+ `−m+ εb

)
,

Qs
i =

1

N

(
k

2

(
(b− v) + µ(bi − b)

)
+ `+m+ εs

)
,

(IA.38)

at the prices

ae,i = a+ ν(ai − a), be,i = b+ ν(bi − b), (IA.39)

respectively, where µ, ν ∈ [0, 1]. Denote the sum of the other traders’ quotes as

a−i =
∑
j 6=i

aj, b−i =
∑
j 6=i

bj. (IA.40)

To further simplify notation, let

ãi =
ai
N
, ã−i =

a−i
N
, b̃i =

ai
N
, b̃−i =

a−i
N
,

k̃ =
k

N
, ˜̀ =

`

N
, m̃ =

m

N
, Σ̃L =

ΣL

N2
,

hi =
ai − bi

2
, δi = w − ai + bi

2
, e = v − w.

(IA.41)

With this notation, the liquidity demand satisfies

Qb
i =

k̃

2

(
(v − a) + µ(a− ai)

)
+ ˜̀− m̃+

εb

N
,

Qs
i =

k̃

2

(
(b− v) + µ(bi − b)

)
+ ˜̀+ m̃+

εs

N
.

(IA.42)

where

a = ãi + ã−i, b = b̃i + b̃−i, (IA.43)
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and dealer i’s inventory at liquidation is xi,end = x0 −Qb
i +Qs

i . Dealer i solves

max
ai,bi

Eτ
(
x0v +

(
v − be,i

)
Qs
i +
(
ae,i − v

)
Qb
i − γx2

i,end

)
, (IA.44)

where ae,i and be,i are the effective quotes at which dealer i trades (see equation (IA.24)).

We also require that the equilibrium is symmetric, i.e., we impose that the equi-

librium quotes satisfy a−i = (N − 1)ai and b−i = (N − 1)bi. We note that the quot-

ing strategy (ai, bi) is equivalent to choosing (hi, δi). It is straightforward (although

computationally tedious) to obtain the optimal strategy of dealer i in the symmetric

equilibrium:

hi =
`

k

2 + 2(N − 1)ν

2 + (N − 1)(µ+ ν)
,

δi =
2

k

m
(

1 + (N − 1)ν + 2γk
(
1 + (N − 1)µ

)
/N
)

+ γk
(
1 + (N − 1)µ

)
x0

2 + (N − 1)(µ+ ν) + 2γk(1 + (N − 1)µ)/N
.

(IA.45)

This proves the first two formulas in (IA.31).

Regardless of the initial inventory, dealer i’s maximum expected utility (not account-

ing for monitoring costs) is of the form

Umax = D − k

N

(
1 +

kγ

N

)
G, (IA.46)

where D is a constant that does not depend on the dealer i’s monitoring rate qi. With

the usual notation, we assume the other dealers choose the monitoring rates qj which

sum to q−i. Then we have

G = Var(v − w) =
1

f(qi + q−i)
. (IA.47)

If we account for the monitoring costs C(qi) = cqi, equation (IA.46) implies that dealer

i’s maximum expected utility is

Umax = D − k

N

(
1 +

kγ

N

) 1

f(qi + q−i)
− cqi. (IA.48)

The first order condition in qi implies that the optimum qi satisfies (qi + q−i)
2 = k

N

(
1 +
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kγ
N

)
1
fc

. Because the total monitoring rate is q = qi + q−i, we obtain q2 = k
N

(
1 + kγ

N

)
1
fc

,

which proves the last formula in (IA.31).

Proof of Corollary IA.1. We use the notation from the proof of Proposition IA.2.

Note that the symmetry of the equilibrium implies a = ai and b = bi. From (IA.42) it

follows that in equilibrium Qb
i −Qs

i = k̃
(
v − ai+bi

2

)
− 2m̃ + εb−εs

N
. Since Eτ (v) = w and

w − ai+bi
2

= δi, we obtain

Eτ (Q
b
i −Qs

i ) = k̃δi − 2m̃. (IA.49)

We now compute the neutral inventory x0,neutral at which Eτ (Q
b
i) = Eτ (Q

s
i ). Equa-

tion (IA.49) implies that δi = δneutral satisfies

δneutral =
2m

k
, (IA.50)

which also proves the formula pneutral = w − δneutral = w − 2m
k

. Substituting the neutral

discount in (IA.45), we compute

x0,neutral =
m

γk
. (IA.51)

Proof of Corollary IA.3. The proof follows from equations (IA.31) and (IA.32).

4 Model with Multiple Trading Rounds

This section builds an extension with multiple trading rounds of the baseline model

in Section 4 of the paper. One notable difference from the baseline model is that in

the multi-trade extension we assume that trading takes place at deterministic times (in

event time) rather than at random times.6 This extension is closely related to the price

pressures model of Hendershott and Menkveld (2014, henceforth HM2014). The proofs

of the results are given in Section 4.6 of this Internet Appendix.

6See Section 5 of this Internet Appendix for more discussion regarding this choice.
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4.1 Environment

The market is composed of one risk-free asset and one risky asset. Trading in the risky

asset takes place in a market exchange, at discrete dates t = 0, 1, 2, . . . such that the

trading frequency is normalized to one. There are two types of market participants:

(a) one monopolistic market maker called the dealer (“she”) who monitors the market

and sets the quotes at which others trade, and (b) traders, who submit market orders.

Note that here the trading times are deterministic rather than follow a Poisson

process with frequency equal to one (as in the model with a single trading round in

the paper). To justify this choice, note that Corollary 2 in the paper shows that the

baseline model with Poisson monitoring is essentially the same as in a static model where

the dealer receives only one signal (with appropriate precision) at a deterministic time.

Section 5 of this Internet Appendix provides additional justification by considering an

actual monitoring process at fractional deterministic times.

Assets. The risk-free asset is used as a numeraire and has a return of zero. The

risky asset has a net supply of M > 0. It pays a dividend D before each trading date.

The ex-dividend fundamental value vt follows a continuous random walk process for

which the increments have variance per unit of time equal to Σv = σ2
v , where σv is the

fundamental volatility. One possible interpretation for vt is that it is the cash value that

shareholders receive at liquidation, an event which can occur in each trading round with

a fixed probability.7

Trading. At trading date t = 1, 2, . . ., after observing the ask quote at and the bid

quote bt, traders submit the following aggregate market orders:

Qb
t =

k

2
(vt − at) + `−m+ εbt , with εbt

IID∼ N (0,ΣL/2) ,

Qs
t =

k

2
(bt − vt) + `+m+ εst , with εst

IID∼ N (0,ΣL/2) ,

(IA.52)

where Qb
t is the buy demand and Qs

t is the sell demand. The numbers k, `, m and ΣL are

exogenous constants. Together, Qb
t andQs

t are called the liquidity demand, or the traders’

7Suppose there exists π ∈ (0, 1) such that the asset liquidates in each period with probability π, in
which case the shareholders receive vt per share. Then it can be showed that the expected profits of a
trader with quantities bought and sold at t equal to −Qbt and −Qst , respectively, has the form described
in equation (IA.56) with β = 1− π, and γ = C(q) = 0.

24



order flow. The parameter k is the investor elasticity, ` is the inelasticity parameter, and

m is the imbalance parameter. Micro-foundations for the liquidity demand are provided

in Appendix B in the paper.

Dealer Monitoring. The dealer monitors the market according to an independent

Poisson process with frequency parameter q > 0 called the monitoring frequency (or

monitoring rate). In the spirit of Corollary 2 in the paper, we take a reduced form

approach and replace the signals obtained from monitoring at the frequency q with

signals that summarize the dealer’s information just before trading at each t. Denote

by wt the dealer’s forecast of the fundamental value vt just before trading occurs at

t. The forecast is the expected fundamental value of the asset conditional on all the

information available until t. We define the precision function Ft as the inverse variance

of the forecast error vt−wt. We assume that the precision function does not depend on

t, and is an increasing function of the monitoring rate q:8

F (q) =
1

Var(vt − wt)
. (IA.53)

The intuition is that an increase in the monitoring rate produces more precise forecasts

for the dealer. Per unit of time, the cost of monitoring at the rate q is C(q), which is

an increasing function of q.

To simplify the equilibrium formulas, we assume that the precision function F (q)

and the monitoring cost C(q) are linear increasing functions,

F (q) = f q, C(q) = c q, (IA.54)

where f and c are positive constants.9

Dealer’s Quotes and Objective. As in the baseline model in the paper, we

interpret the monitoring rate q as the quote rate. Because monitoring is considered here

in reduced form, we are interested only in the quotes (at, bt) that are prevalent when

trading occurs at integer times t.

8In Section 5 of this Internet Appendix we show how to generate F (q) using a specific signal
structure obtained by monitoring at fractional times 1/q.

9In the proof of Proposition IA.4, we describe equilibrium conditions for more general F and C.
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Thus, a quoting strategy for the dealer is a set of processes at (the ask quote) and

bt (the bid quote) which are measurable with respect to the dealer’s information set.

Let xt be the dealer’s inventory in the risky asset just before trading at t.10 If Qb
t is

the aggregate buy market order at t, and Qs is the aggregate sell market order at t, the

dealer’s inventory evolves according to

xt+1 = xt −Qb
t +Qs

t . (IA.55)

Then, for a given quoting strategy, the dealer’s expected utility at τ is equal to the

expected profit from date τ onwards, minus the quadratic penalty in the inventory, and

minus the monitoring costs:

Eτ

∞∑
t=τ

βt−τ
(
xtD +

(
(vt − bt)Qs

t + (at − vt)Qb
t

)
− γ x2

t − C(q)
)
, (IA.56)

where β ∈ (0, 1) and γ > 0. Thus, the dealer maximizes expected profit, but at each t

faces a utility loss that is quadratic in the inventory. Note that except for the dividend

payment this utility function is essentially the same as the one specified in HM2014.11

Equilibrium Concept. The structure of the game is as follow: First, before trading

begins (before t = 0), the dealer chooses a constant monitoring rate q. Second, in the

trading game the dealer continuously chooses the quotes (the ask quote at and the bid

quote bt) such that objective function (IA.56) is maximized.

4.2 Optimal Quotes

We solve for the equilibrium in two steps. In the first step (Section 4.2), we take the

dealer’s monitoring rate q as given and describe the optimal quoting behavior. In the

second step (Section 4.3), we determine the optimal monitoring rate q as the rate which

10We let the initial inventory x0 as a free parameter, although later (in Section 4.5) we set it equal
to the parameter x̄ from equation (IA.62), which is the long-term mean of the dealer’s equilibrium
inventory.

11This penalty can be justified either by the dealer facing external funding constraints, or by her
being risk averse. The latter explanation is present in HM2014 (Section 3). There, the dealer max-
imizes quadratic utility over non-storable consumption. To solve the dynamic optimization problem,
HM2014 consider an approximation of the resulting objective function (see their equation (16)). This
approximation coincides with our dealer’s expected utility in (IA.56) when C(q) = 0.
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maximizes the dealer’s expected utility.

We thus start by fixing the monitoring rate q. Consider the game described in

Section 4.1, with positive parameters D, k, `,m,ΣL, γ. Define the following constants:

h =
`

k
, ω =

1− β
βk

, α = β
(γ − ω) +

√
(γ − ω)2 + 4γ

βk

2
,

λ =
α

1 + kα
=
−(γ + ω) +

√
(γ − ω)2 + 4γ

βk

2
,

δ =
1− β + 2kα

k(1− β + kα)
m− β

2(1− β + kα)
D.

(IA.57)

The optimal behavior of the dealer in the trading game is described by the next result.

Proposition IA.3. The dealer’s optimal quotes at t = 0, 1, . . . are

at = wt − λxt + h− δ, bt = wt − λxt − h− δ, (IA.58)

where wt is the dealer’s value forecast, and xt is her inventory. The mid-quote price

pt = (at + bt)/2 satisfies

pt = wt − λxt − δ = wt − λxt −
1− β + 2kα

k(1− β + kα)
m+

β

2(1− β + kα)
D. (IA.59)

To get intuition for this result, suppose the imbalance parameter m and the dividend

D are both zero (hence δ = 0). Consider first the particular case when the dealer is risk-

neutral: γ = 0. In that case, both α and λ are equal to zero, and the dealer’s inventory

xt does not affect her strategy. Equation (IA.58) implies that the dealer sets her quotes

at equal distance around her forecast wt. Hence, the ask quote at t is at = wt + h, and

the bid quote is bt = wt− h, where h is the constant half spread. The equilibrium value

h = `/k reflects two opposite concerns for the dealer: If she sets too large a half spread,

then investors (whose price sensitivity is increasing in k) submit a smaller expected

quantity at the quotes.12 If she sets too small a half spread, this decreases the part of

the profit that comes from the inelastic part ` of traders’ order flow.

12For instance, equation (IA.52) implies that the expected quantity traded at the ask is Et(Q
b
t) =

k
2 (wt − at) + `, which is decreasing in at.
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When the dealer has inventory concerns (γ > 0), her inventory affects the opti-

mal quotes: according to equation (IA.58), the quotes are equally spaced around an

inventory-adjusted forecast (wt − λxt). The effect of the dealer’s inventory on the mid-

quote price is in fact the price pressure mechanism identified by HM2014. To understand

this phenomenon, suppose that before trading at t the dealer has zero inventory, and at

t traders submit a net demand Q. The dealer’s inventory then becomes negative (−Q).

To avoid the inventory penalty, the dealer must bring back the inventory to zero. For

that, the dealer must raise the quotes to convince more sellers to arrive. Quantitatively,

according to (IA.58) the dealer must increase both quotes by λQ, with the coefficient

λ as in equation (IA.57). This makes the corresponding slope coefficient λ essentially a

price impact coefficient, in the spirit of Kyle (1985).13

According to (IA.59), the mid-quote price is decreasing in the imbalance parameter

m, and increasing in the dividend D. To understand why, suppose the imbalance pa-

rameter m is large, yet the dealer sets the mid-quote price equal to her forecast (that

is, pt = wt). The dealer then expects the sell demand to be much larger than the buy

demand. Thus, in order to avoid inventory buildup and to attract more buyers, she must

lower her price well below her forecast. A similar intuition works when the dividend

D is large, but the above argument reverses: because investors prefer getting a large

dividend, to attract more sellers the dealer must set a price higher than the forecast.

4.3 Optimal Monitoring and the QT Ratio

We now discuss the dealer’s optimal monitoring rate q. Because the trading rate is

normalized to one, we identify the quote-to-trade ratio as the monitoring rate q:

q = Quote-to-Trade Ratio. (IA.60)

13We stress that in our model price impact is caused by inventory considerations and not by adverse
selection between the dealer and the traders. Nevertheless, adverse selection occurs as long as the
dealer’s signal precision f is not infinite. The interested reader can separate the effect of inventory and
information by analyzing more carefully the dealer’s signal structure described in Appendix 5.3. There
we see that the informativeness of trading depends on the noise parameter ΣL. The signal structure,
however, is chosen there to justify the reduced-form assumption in (IA.53). Under that structure, the
dealer is only concerned about her forecast just before trading, and not on what effect trading has on
this forecast. But under a different signal structure this fact is no longer true, e.g., if we set Ṽη = Vη
and Ṽψ = Vψ (see the discussion before equation (IA.94)).

28



Thus far, the description of the equilibrium does not depend on a particular spec-

ification for the precision function F (q) or the monitoring function C(q). To provide

explicit formulas, however, we now assume that both functions are linear: F (q) = fq

and C(q) = cq. In the proof of Proposition IA.4, we describe the equilibrium conditions

for more general F and C. Proposition IA.4 shows how to compute the dealer’s optimal

monitoring rate, which as we discussed above is the equilibrium QT ratio.

Proposition IA.4. The dealer’s optimal monitoring rate q satisfies

q2 =
k(1 + kα)

fc
=

kβ

fc

(γ − ω) +
√

(γ − ω)2 + 4γ
βk

−(γ + ω) +
√

(γ − ω)2 + 4γ
βk

. (IA.61)

Using the formula in (IA.61), we provide some comparative statics for q.

Corollary IA.4. The QT ratio q is increasing in investor elasticity k and inventory

aversion γ, and is decreasing in signal precision f and in monitoring cost c.

If the investor elasticity k is larger, investors are more sensitive to the quotes, and

the dealer increases her monitoring rate to prevent both adverse selection and large

fluctuations in inventory. Indeed, there are two reasons for this increase, which can be

understood by writing equation (IA.61) as a sum: q2 = k
fc

+ k2α
fc

. The first term (which

does not depend on the dealer’s inventory aversion γ) simply reflects that by increasing

her monitoring rate, the dealer reduces the adverse selection that comes from trading

with investors with superior information. The second term depends on the parameter

α, which is increasing in the inventory aversion γ (see the proof of the Corollary). If

γ is larger, the dealer is relatively more concerned about her inventory than about her

profit. She then increases her monitoring rate to stay closer to the fundamental value,

such that her inventory is not expected to vary too much.

If the signal precision parameter f is smaller, the dealer gets noisier signals each

time she monitors, hence she must monitor the market more often in order to avoid

getting a large inventory. As a result, in neglected stocks where we expect dealer’s

signals to be noisier, the QT ratio q should be larger. This result is consistent with the

stylized empirical fact SF1 in the paper, that the QT ratio is larger in neglected stocks,
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i.e., stocks with low market capitalization, institutional ownership, analyst coverage,

trading volume, and volatility.

Similarly, if the monitoring cost parameter c is smaller, the dealer can afford to

monitor more often in order to maintain the same precision, which increases the QT

ratio. There is much evidence that the costs of monitoring have decreased dramatically

in recent times (see Hendershott, Jones, and Menkveld, 2011). Accordingly, our stylized

empirical fact SF2 documents a sharp rise in the QT ratio, especially in the second part

of our sample (2003–2012).

4.4 Neutral Inventory and Pricing Discount

In this section, we study the equilibrium evolution of the dealer’s inventory. As we see in

Proposition IA.3, the dealer’s inventory is an important state variable. Corollary IA.5

computes its long-term mean and describes the equilibrium quotes by considering devi-

ations of the dealer’s inventory from its long-term mean.

Corollary IA.5. The dealer’s inventory is an AR(1) process:

xt+1 − x̄ =
1

1 + kα

(
xt − x̄

)
+ εt, x̄ =

1 + kα

kα

(1− β)m+ βkD/2

1− β + kα
. (IA.62)

where εt is IID with mean zero and variance k2

fq
+ ΣL. The mid-quote price satisfies

pt = wt − λ
(
xt − x̄

)
− δ̄, δ̄ =

2m

k
. (IA.63)

The mean inventory x̄ represents the dealer’s bias in holding the risky asset. In

HM2014 both m and D are zero, and therefore the mean inventory x̄ is also zero. In

our case both m and D are positive, hence x̄ is also positive. Intuitively, the case when

m is positive corresponds to the case when investors are risk averse and the risky asset

is in positive net supply (see the micro-foundations in Appendix B). But the dealer

also behaves approximately as a risk averse investor because of the quadratic penalty

in inventory (see Footnote 11). Therefore, our model becomes essentially a risk sharing

problem, in which the dealer holds a positive inventory on average.14

14Even if m = 0, the dealer tends to hold inventory when the dividend D is positive. Indeed, in that
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If we write the mid-quote equation (IA.63) at both t and t+ 1, we compute

pt+1 − pt = wt+1 − wt + ψ
(
xt − x̄

)
− λεt+1, ψ =

λkα

1 + kα
. (IA.64)

We define the neutral state the situation in which the dealer’s inventory is at its long-

term mean (xt = x̄). In this state, equation (IA.64) implies that the expected change in

price is zero, which in the language of HM2014 means that there is no price pressure.

In general, we define the pricing discount as the difference between the dealer’s

forecast and the mid-quote price,

δt = wt − pt. (IA.65)

From (IA.63) it follows that the pricing discount in the neutral state is the same as its

long-term average, and is equal to δ̄ = 2m/k. Note that this value is independent on the

characteristics of the dealer, that is, on the inventory aversion γ, the signal precision f ,

or the monitoring cost c. We have thus proved the main result of this section.

Corollary IA.6. The average pricing discount is δ̄ = 2m/k, and does not depend on

dealer characteristics.

In particular, the average pricing discount does not depend on the dealer’s inventory

aversion γ. This is because in the neutral state there is no price pressure and the dealer

just needs to balance the order flow such that the inventory does not accumulate in

either direction. This result is surprising, because one may expect the discount to be

larger if the dealer has a larger inventory aversion γ. But while a larger coefficient γ

just increases the speed of convergence of the pricing discount to its mean, it does not

change the mean itself, which depends only on the properties of the order flow.15

The average pricing discount δ̄ does depend on the properties of the order flow:

the imbalance parameter m and the investor elasticity k. If the imbalance parameter

m is larger, the dealer expects the difference between the sell and buy demands to be

case the dealer must increase her quotes to attract sellers (see equation (IA.59)), which tends to raise
her inventory and thus increase the dividend collected.

15According to (IA.63), the equilibrium discount satisfies δt − δ̄ = λ(xt − x̄), and thus δt and xt
are both AR(1) processes with the same autoregressive coefficient: 1/(1 + kα). From (IA.57), α is
increasing in γ, therefore the speed of mean reversion of both processes is also increasing in γ.
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larger. To compensate, the dealer must lower price to encourage demand, and therefore

increase the discount. If the investor elasticity k is larger, investors are more sensitive

to mispricing and therefore trade more intensely when the price is different from the

fundamental value. To prevent an expected accumulation of inventory, the dealer must

then set the price closer to her forecast, which implies a lower discount.

4.5 Cost of Capital

In this section, we define and analyze the cost of capital in the context of our model.

We consider the point of view of an econometrician that has access to the quote and

trade information, but not necessarily to the dealer’s inventory and forecast (in practice,

dealers’ inventories and forecasts are not public information). The expected return

(including dividends) at date t is then

rt =
Et(pt+1) +D − pt

pt
, (IA.66)

where Et be the expectation operator conditional on the past information, pt is the

mid-quote price, and D is the dividend per share.

To simplify the presentation, we assume that the dealer’s inventory starts at its long-

term mean, that is, we set x0 = x̄. In this neutral state the price does not change in

expectation (see Section 4.4). We define the cost of capital to be the expected return

in the initial state.16 Denote the initial dealer forecast by w0 = w. Then, the cost of

capital is

r =
D

w − δ̄
=

D

w − 2m
k

. (IA.67)

Note that the cost of capital is in one-to-one correspondence with the pricing discount

δ̄ = 2m/k. Thus, the cost of capital does not depend on the dealer characteristics either.

The cost of capital does depend on the characteristics of the order flow: the imbalance

parameter m and the investor elasticity k. The intuition for this dependence is the same

16We define the cost of capital only in the initial (neutral) state, because we want to avoid price
pressures that appear later in other states. Another reason is that in general it is difficult to analyze
risk premia in dynamic microstructure models. Indeed, if the expected return is constant, return com-
pounding implies that the price process grows exponentially on average, and to keep up the fundamental
value should also follow a geometric Brownian motion. But to maintain a tractable model we need the
fundamental value to follow an arithmetic Brownian motion.
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as in the discussion after Corollary IA.6.

The next result connects the cost of capital to the equilibrium QT ratio.

Corollary IA.7 (QT Effect). Holding all parameters constant except for the investor

elasticity k, there is an inverse relation between the cost of capital and the QT ratio.

Thus, the key driver of the QT effect in our model is investor elasticity. When k is

larger, Corollary IA.4 shows that the QT ratio is also larger: because traders are more

sensitive to the quotes, in order to prevent large fluctuations in inventory the dealer must

monitor more often. At the same time, when k is larger, the cost of capital is smaller:

because investors trade more intensely when the price differs from the fundamental

value, in order to prevent an expected accumulation of inventory the dealer must set

the price closer to her forecast, which implies a lower discount and hence a lower cost

of capital.

In Appendix B of the paper we provide micro-foundations for the order flow, and we

show that the investor elasticity k is larger when traders are less risk averse. Therefore,

trader risk aversion drives the QT effect: less risk averse traders cause both a larger QT

ratio and a smaller cost of capital.

4.6 Proofs of Results

Proof of Proposition IA.3. Fix the monitoring rate q > 0. Let It be the dealer’s

information set just before trading at t, and by Et the expectation operator conditional

on It. Let wt = Et(vt) be the dealer’s forecast of the fundamental value, and G the

variance of the forecast error. From (IA.53), we have

G = Var(vt − wt) =
1

fq
. (IA.68)

We now compute the dealer’s expected utility coming from a quoting strategy (at, bt).

If we define

ht =
at − bt

2
, δt = wt −

at + bt
2

, et = vt − wt, (IA.69)

then the quoting strategy is equivalent to choosing (ht, δt). Equation (IA.52) implies that
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traders’ buy and sell demands at t are given, respectively, by Qb
t = k

2
(vt−at)+`−m+εbt

and Qs
t = k

2
(bt−vt)+`+m+εst , with εbt , ε

s
t ∼ N (0,ΣL/2). Let εt = −ket+εst−εbt . This is

uncorrelated with the past information and has a normal distribution N (0, k2G+ΣL). If

xt is the dealer’s inventory before trading at t, equation (IA.55) shows that xt describes

the recursive equation xt+1 = xt −Qb
t +Qs

t , which translates into

xt+1 = xt − kδt + 2m+ εt with εt
IID∼ N

(
0, k2G+ ΣL

)
. (IA.70)

Substituting Qb
t and Qs

t in the dealer’s objective function from (IA.56), and ignoring the

monitoring costs C(q), we get Eτ
∑∞

t=τ β
t−τ Et

(
Dxt − k

2
(at − vt)

2 − k
2
(vt − bt)

2 + (` −

m)(at−vt)+(`+m)(vt−bt)−γx2
t

)
. We decompose Et(vt−bt)2 = Et(vt−wt+wt−bt)2 =

G+(wt− bt)2, and similarly Et(at−vt)2 = G+(at−wt)2. Using the notation in (IA.69),

it follows that the dealer’s maximization problem at τ is

max
(ht,δt)t≥τ

Eτ

∞∑
t=τ

βt−τ
(
Dxt − kG− kδ2

t − kh2
t + 2`ht + 2mδt − γx2

t

)
, (IA.71)

where xt evolves according to (IA.70). Using the Bellman principle of optimization, we

reduce the dynamic optimization in (IA.71) to the following static optimization problem:

V (xt) = max
ht,δt

(
2dxt − kG− kδ2

t − kh2
t + 2`ht + 2mδt − γx2

t + β Et V (xt+1)
)
, (IA.72)

where d = D
2

. We guess that V (x) is a quadratic function of the form

V (x) = W0 − 2W1x−W2x
2 (IA.73)

for some constants W0,W1,W2. Substituting xt+1 from (IA.70), the problem becomes

V (xt) = max
ht,δt

(
2dxt − kG− kδ2

t − kh2
t + 2`ht + 2mδt − γx2

t

+ βW0 − 2βW1(xt − kδt + 2m)− βW2(xt − kδt + 2m)2 − βW2(k2G+ ΣL)
)
.

(IA.74)

The first order condition in (IA.74) with respect to ht implies ht = `
k
, which shows

that the optimal ht = h, the constant defined in (IA.57). The first order condition
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in (IA.74) with respect to δt implies δt = βW2

1+kβW2
xt + m+kβW1+2kmβW2

k(1+kβW2)
, which shows that

the optimal δt = λxt + ∆, where

λ =
α

1 + kα
, ∆ =

m+ kα1 + 2kmα

k(1 + kα)
, α1 = βW1, α = βW2. (IA.75)

Because V (xt) = W0 − 2W1xt −W2x
2
t , we solve for W0,W1,W2:

W0 =
1

1− β

(`2

k
− k(1 + kα)G− αΣL +

(1 + kα)
(
(1− β)m+ βkd

)2

k(1− β + kα)2

)
,

W1 =
α

1− β + kα
m− 1 + kα

1− β + kα
d, W2 =

βW2

1 + kβW2

+ γ.

(IA.76)

For a maximum, we need to have W2 > 0. The quadratic equation for W2 in (IA.76)

has a unique positive solution,

W2 =
γ − ω +

√
(γ − ω)2 + 4 γ

βk

2
, with ω =

1− β
βk

. (IA.77)

This implies that α = βW2 indeed satisfies (IA.57).

If the dealer has an inventory of xt = x, from equation (IA.73) it follows that

the maximum expected utility she can achieve at t is V (x) = W0 − 2W1x −W2x
2 =

1
1−β

(
`2

k
−αΣL− k(1 + kα)G+ (1+kα)((1−β)m+βkd)2

k(1−β+kα)2

)
− 2W1x−W2x

2. Since G = 1
fq

, we get

U(q) =
1

1− β

(
W̃0 −

k(1 + kα)

fq

)
− 2W1x−W2x

2, (IA.78)

where W̃0, W1 and W2 do not depend on q. Also, using α1 = βW1, we compute ∆ =

1−β+2kα
k(1−β+kα)

m− β
1−β+kα

d. Since d = D
2

, this proves that the formula for ∆ in (IA.57).

Proof of Proposition IA.4. Consider a more general function F (q) = 1/Var(vt−wt)

that is increasing in the monitoring rate q. If G(q) = 1/F (q), we have showed in the

proof of Proposition IA.3 that the dealer’s maximum expected utility is of the form

V (xt) = W0 − 2W1xt −W2x
2
t , where W0, W1 and W2 are as in (IA.76). This formula,

however, does not include the monitoring costs per unit of time, C(q). If we include

these costs, the dealer’s maximum utility is W0 − 2W1xt −W2x
2
t −

C(q)
1−β . But up to a

constant that does not depend on q, this utility is equal to −k(1+kα)G(q)−C(q)
1−β . The first
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order condition with respect to q is equivalent to −k(1 + kα)G′(q) − C ′(q) = 0. Thus,

the optimal monitoring rate satisfies

−C
′(q)

G′(q)
=

C ′(q)F 2(q)

F ′(q)
= k(kα + 1). (IA.79)

The second order condition for a maximum is k(kα + 1)G′′(q) + C ′′(q) > 0, which is

satisfied if the functions G and C are convex, with at least one of them strictly convex.

We now use the linear specification C(q) = cq and F (q) = fq, and compute the

optimal monitoring rate q. Since G(q) = 1
fq

, from (IA.79) it follows that q satisfies

fcq2 = k(kα+ 1), which proves the first part of equation (IA.61). Because the function

G is strictly convex, note that the second order condition is satisfied.

The second part of (IA.61) follows by using the expression for α in (IA.57).

Proof of Corollary IA.4. We first prove that α is decreasing in k and increasing

in γ. Equation (IA.76) implies that α = βW2 satisfies the equation α
β
− γ = α

1+kα
.

Differentiating this equation with respect to k, we get ∂α
∂k

= − βα2

(1+kα)2−β < 0. Similarly,

differentiation with respect to γ implies ∂α
∂γ

= β(1+kα)2

(1+kα)2−β > 0.

Equation (IA.61) implies that q and the term Q = k(1 + kα) have the same de-

pendence on the parameters k and γ. Using the formula above for ∂α
∂k

, we compute

∂Q
∂k

= (1+kα)2(1−β+2kα)
(1+kα)2−β > 0. Finally, Q is increasing in α, which (as proved above) is

increasing in γ, hence Q is also increasing in γ.

By visual inspection of equation (IA.61), it is clear that the quote-to-trade ratio q is

decreasing in f and increasing in σv.

Proof of Corollary IA.5. Using equation (IA.70) and the fact that in equilibrium

δt = λxt+∆, it follows that the dealer’s inventory evolves according to xt+1 = (1−kλ)xt−

k∆ + 2m+ εt, with εt ∼ N (0, k2G+ ΣL) and G = 1
F

= 1
fq

. From (IA.57), the coefficient

φ = 1−kλ = 1
1+kα

∈ (0, 1), hence xt+1 = 1
1+kα

xt−k∆+2m+εt. Thus, xt follows anAR(1)

process with auto-regressive coefficient φ, mean x̄ = (2m − k∆)/(1 − φ), and variance

Σx =
(
k2

fq
+ ΣL

)
/(1 − φ2). Using the formula for ∆ in (IA.57), it is straightforwad to

prove the formula for x̄ in (IA.62). One can also show that Σx = kα(2+kα)
(1+kα)2

(
k2

fq
+ ΣL

)
.

Proof of Corollary IA.6. This has already been proved in the discussion that pre-
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cedes the statement of the Corollary. Alternatively, Proposition IA.3 implies that the

pricing discount at t is equal to wt − pt = λxt + ∆, whose average equals λx̄ + ∆.

Using (IA.57), we compute the average discount to be 2m/k, which is the same as

δ̄.

Proof of Corollary IA.7. First, we prove rigorously equation (IA.67). Since the

system is initially in the neutral state (x0 = x̄), according to (IA.64) the expected price

change E0 p1 − p0 is zero. But, if w is the initial forecast, by definition w − p0 is the

pricing discount. Since in the neutral state the pricing discount is δ̄ = 2m/k, it follows

that p0 = w − δ̄, which proves (IA.67). Suppose now we hold all parameters constant

except for k. Clearly, the cost of capital is decreasing in k, as the pricing discount δ̄

is decreasing in k. At the same time, Corollary IA.4 implies that the QT ratio q is

increasing in k. This proves the inverse relation between r and q.

5 Monitoring and Signals

5.1 Preliminaries

The purpose of this section is to provide micro-foundations for the dealer’s precision

function F (q) in the multi-trade model of Section 4 in this Internet Appendix. For sim-

plicity, we assume that both trading and monitoring occur at deterministic times, equal

to the averages of the corresponding random times.17 This is equivalent to timing trades

in event time (at equally spaced intervals of length one), and timing the average number

of monitoring times that occur between subsequent trading rounds. The downside of

this approach is that in principle the monitoring rate q must be an integer. Nevertheless,

the description of the equilibrium remains valid also for non-integer q, and thus we can

think of the equilibrium being valid for all values of the monitoring rate.

Recall that in that model trading takes place at integer times t = 0, 1, 2, . . ., and the

17We already know that in the baseline (single-trade) model in the paper we can replace the signals
obtained from monitoring at the frequency q with signals that summarize the dealer’s information just
before trading at each t. But to extend this result to a multi-trade extension would be very difficult,
because one would have to keep track of the different numbers of monitoring rounds between all the
trading rounds. To avoid this difficulty, we essentially consider only the average outcome of the trading
and monitoring processes.
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monitoring rate is q > 0. We now assume that monitoring takes place at fractional times

0
q
, 1
q
, 2
q
, . . ., where q is a positive integer. To simplify notation, we index monitoring times

by τ = 0, 1, 2, . . . rather than by the corresponding fractional times. With this notation,

trading takes place at τ = 0, q, 2q, . . ., which are integer multiples of the monitoring

rate. By convention, we assume that when a trading date coincides with a monitoring

date, monitoring occurs before trading. Equations (IA.52) imply that traders’ order

flow satisfies

Qb
τ =

k

2
(vτ − aτ ) + `−m+ εbτ , with εbτ

IID∼ N (0,ΣL/2) ,

Qs
τ =

k

2
(bτ − vτ ) + `+m+ εsτ , with εsτ

IID∼ N (0,ΣL/2) ,

(IA.80)

5.2 Uninformative Trading

We first analyze the simpler case when the trading process is uninformative to the dealer.

Formally, this occurs when the trading noise measured by ΣL is sufficiently large (see

equation (IA.96) below). In this case, we ignore the trading process altogether and

focus instead on the monitoring process. Denote by Iτ the dealer’s information set after

monitoring at τ , and by wτ = E(vτ |Iτ ) the dealer’s forecast at τ .

We now show that any positive function F (q), not necessarily linear, can arise as the

dealer’s precision function for a certain set of signals. Define

G = G(q) =
1

F (q)
. (IA.81)

Fix q > 0, and define Vη = Vη(q) > 0 as follows: if F (q) 5 /Σv, choose any Vη > 0; and

if F (q) > q/Σv, choose any Vη ∈
(
0, 1

F (q)−q/Σv

)
. Also, define Vv = Vv(q) and Vψ = Vψ(q)

by

Vv =
Σv

q
, Vψ = G2 Vη + Vv

VηVv
−G. (IA.82)

Clearly, Vv > 0. We show that Vψ > 0 as well. Indeed, from the definition of Vη, we see

that
(
F (q) − q/Σv

)
Vη < 1 for all q > 0. Using the notation above, this is the same as(

1
G
− 1

Vv

)
Vη < 1, which is equivalent to 1

G
< 1

Vv
+ 1

Vη
. Thus, GVη+Vv

VηVv
> 1 or equivalently
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Vψ = G
(
GVη+Vv

VηVv
− 1
)
> 0. Note that equation (IA.82) implies

G2

G+ Vψ
=

VvVη
Vv + Vη

. (IA.83)

We define the signal observed by the dealer at τ = 0. Since we can choose freely

the initial variance Var(v0) = Σv0 , consider Σv0 > G, and suppose that at τ = 0 the

dealer observes s0 = v0 + ν, with ν ∼ N
(
0,

GΣv0
Σv0−G

)
. Then, the dealer’s forecast is

w0 = E(v0|s0) = β0s0, where β0 = G/Σv0 . A direct computation shows that indeed

Var(v0 − w0) = G. Thus, if we define

Gτ = Var(vτ − wτ ), τ ≥ 0, (IA.84)

we have G0 = G.

At each τ = 1, 2, . . ., the dealer observes two signals: rτ = (vτ−1 − wτ−1) + ψτ , with ψτ
IID∼ N (0, Vψ), and

sτ = (vτ − vτ−1) + ητ with ητ
IID∼ N (0, Vη).

(IA.85)

Since the forecast is wτ = E(vτ |rτ , sτ , rτ−1, sτ−1, . . .), its increment is ∆wτ = wτ−wτ−1 =

E(vτ − wτ−1|rτ , sτ ) = E(vτ − vτ−1|sτ ) + E(vτ−1 − wτ−1|rτ ). Then,

∆wτ =
Vv

Vv + Vη
sτ +

Gτ−1

Gτ−1 + Vψ
rτ . (IA.86)

We compute vτ −wτ = vτ−1−wτ−1 +∆vτ −∆wτ =
Vψ

Gτ−1+Vψ
(vτ−1−wτ−1)− Gτ−1

Gτ−1+Vψ
ψτ +

Vη
Vv+Vη

∆vτ − Vv
Vv+Vη

ητ . Taking variance on both sides, we obtain the recursive equation

Gτ =
Gτ−1Vψ
Gτ−1 + Vψ

+
VvVη
Vv + Vη

. (IA.87)

From (IA.83), we substitute VvVη
Vv+Vη

by G2

G+Vψ
, and the recursive equation (IA.87) becomes

Gτ −Gτ−1 =

(
1−

V 2
ψ

(G+ Vψ)(Gτ−1 + Vψ)

)
(G−Gτ−1). (IA.88)
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Because G0 = G, equation (IA.88) implies that Gτ is constant and equal to G for all

τ .18 Since G = 1
F (q)

, this finishes the proof.

For future reference, we use equation (IA.86) to compute Var(∆wτ ) = V 2
v

Vv+Vη
+ G2

G+Vψ
.

Equation (IA.83) then implies that Var(∆wτ ) = V 2
v

Vv+Vη
+ VvVη

Vv+Vη
= Vv. Thus, we have

proved that

Var(∆wτ ) = Var(∆vτ ) = Vv =
Σv

q
. (IA.89)

5.3 Informative Trading

We now analyze the general case when the trading process is informative, meaning that

the noise parameter ΣL can be any positive real number. Thus, beside the monitoring

times, we also need to analyze the dealer’s inference at the trading times τ = 0, q, 2q, . . .,

where q is the monitoring rate and is a positive integer. (Recall that on the these dates

monitoring occurs before trading.)

We now show that any linear function F (q) = fq that satisfies a mild condition (see

equation (IA.93) below) can arise as the dealer’s precision function for a set of signals.

As before, given F (q) we define G = G(q) = 1
F (q)

= 1
fq

. Denote by Iτ the dealer’s

information set after monitoring at τ , by wτ = E(vτ |Iτ ) the dealer’s forecast at τ , and

by eτ = vτ − wτ her forecast error. Then, equations (IA.80) become

Qb
τ =

k

2
eτ − (aτ − wτ ) + `+ εbτ , with εbτ

IID∼ N (0,ΣL/2) ,

Qs
τ = −k

2
eτ − (wτ − bτ ) + `+ εsτ , with εsτ

IID∼ N (0,ΣL/2) ,

(IA.90)

At trading time t = 0, q, 2q, . . ., define also

wτ+ = E(vτ | Iτ , Qb
τ , Q

s
τ ), Gτ+ = Var(vτ − wτ+). (IA.91)

As in the informative case, we look for a stationary equilibrium, which here means

that we want the dealer to have a periodic signal precision with periodicity equal to the

18Note that the coefficient in front of G−Gτ−1 in equation (IA.88) is a number in the interval (0, 1).
It is then straightforward to show that Gτ converges monotonically to the constant G regardless of the
initial value G0.
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monitoring rate q. Thus, the signal precision follows a periodic sequence of the form

G0 , G0+ , G1 , · · · , Gq = G0 , Gq+ , Gq+1 , · · · (IA.92)

We show that there is a simple solution for which Gτ are equal to G = 1
fq

, as long as

the following condition is satisfied:

f >
1

Σv

or
ΣLf

2

k2
>

1

Σv

− f. (IA.93)

To understand intuitively the role played by this condition, suppose (IA.93) fails to hold.

This means that the noise component of trading, measured by ΣL, is small. Then, the

increase in precision (1/G0−1/G0+) that comes from the information content of trading

is also small. By contrast, the decrease in precision (1/G0+−1/G1) that comes from the

diffusion in fundamental value during the interval [0, 1] is large, and thus the equation

G0 = G1 cannot hold when (IA.93) fails. Note that the condition (IA.93) also translates

into the requirement that the dealer’s monitoring precision f is sufficiently high.

Suppose now condition (IA.93) is satisfied. We then assume that the dealer receives

the same signals rτ and sτ as in the uninformative case, except for the monitoring times

that come just after trading: τ = 1, q + 1, 2q + 1, . . .. At those times, we modify the

variance of rτ and sτ , by defining new values for Vψ and Vη. To see how this is done,

consider the following cases:

� If f > 1/Σv, we multiply by q to obtain fq = F = 1/G > 1/Vv, where Vv = Σv/q.

In this case, we choose 1
Ṽη

in the positive interval
(

1
G
− 1

Vv
, ΣL
k2G2 + 1

G
− 1

Vv

)
.

� If f ≤ 1/Σv, we have 1/G ≤ 1/Vv. Because q is a positive integer, condition (IA.93)

implies ΣLf
2

k2
q2 >

(
1

Σv
− f

)
q, which is equivalent to ΣL

k2G2 >
1
Vv
− 1

G
. In this case,

we choose 1
Ṽη

in the interval
(
0, ΣL

k2G2 + 1
G
− 1

Vv

)
. Since 1/G− 1/Vv ≤ 0, it follows

that 1
Ṽη

also belongs to the larger interval
(

1
G
− 1

Vv
, ΣL
k2G2 + 1

G
− 1

Vv

)
.

Thus, in both cases 1
Ṽη

lies in the interval
(

1
G
− 1

Vv
, ΣL
k2G2 + 1

G
− 1

Vv

)
, or equivalently
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1
Ṽη

+ 1
Vv
− 1

G
lies in the interval

(
0, ΣL

k2G2

)
. Now define

Ṽψ =
ΣL

k2

(
ΣL
k2G2 + 1

G
− 1

Vv

)
− 1

Ṽη

Ṽη −
(

1
G
− 1

Vv

) . (IA.94)

From the above discussion, it follows that both Ṽη and Ṽψ are positive, and hence when

τ = 1, q + 1, 2q + 1, . . ., the modified signals rτ and sτ are well defined.

We show Gτ = G for all τ ≥ 0. Because the only difference between the informative

and the uninformative case occurs at τ = 1, q + 1, 2q + 1, . . ., without loss of generality

we only need to prove that G1 = G. Since trading at τ = 0 is informative for the

dealer, her forecast after trading is w0+ = E(v0|I0, Q
b
0, Q

s
0) = w0 + E(e0|Qb

0, Q
s
0), where

e0 = v0 − w0 and

E(e0|Qb
0, Q

s
0) =

kG

k2G+ ΣL

(
Qb

0 −Qs
0

)
, Var(e0|Qb

0, Q
s
0) =

GΣL

k2G+ ΣL

. (IA.95)

We apply the recursive formula (IA.87) for τ = 1, by replacing (i) Vη with Ṽη, (ii) Vψ

with Ṽψ, and (iii) G0 with G0+ = GΣL
k2G+ΣL

. Then, a direct computation shows that

G1 = G. Since all Gτ are equal to G, it follows that F (q) = fq.

We can now determine when trading is uninformative for the dealer. From the above

analysis, this translates into the update w0+ − w0 being much smaller than a generic

increment wτ −wτ−1 (for τ not of the form 1, q+ 1, 2q+ 1, . . .). This translates into the

condition that the variance ΣL is sufficiently large:

ΣL �
k2

f 2Σv

. (IA.96)

Indeed, using equations (IA.89) and (IA.95), the condition Var(w0+ − w0)� Var(∆wτ )

becomes k2G2

k2G+ΣL
� Σv

q
, which translates to ΣL

k2G2 � q
Σv

, or since G = 1
fq

, to ΣL � k2Σv
qf2Σv

.

But the monitoring rate q is a positive integer, hence the condition is equivalent to

ΣL � k2

f2Σv
.
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