Facing the Quadrilemma: Reserve Accumulation, Exchange Rates and Monetary Policy in Large Emerging Markets

Fernando Chertman, Michael Hutchison and David Zink

May 2019

• How do large emerging markets manage the quadrilemma?

- How do large emerging markets manage the quadrilemma?
- Two large EMs– Brazil and India- share characteristics:
 - Flexible but managed exchange rates
 - Active domestic interest rate monetary tool
 - Active fx intervention
 - Large buildup in international reserves
 - Discretionary capital control changes

- How do large emerging markets manage the quadrilemma?
- Two large EMs– Brazil and India- share characteristics:
 - Flexible but managed exchange rates
 - Active domestic interest rate monetary tool
 - Active fx intervention
 - Large buildup in international reserves
 - Discretionary capital control changes

Panel A: India

Panel B: Brazil

- How do large emerging markets manage the quadrilemma?
- Two large EMs– Brazil and India- share characteristics:
 - Flexible but managed exchange rates
 - Active domestic interest rate monetary tool
 - Active fx intervention
 - Large buildup in international reserves
 - Discretionary capital control changes

Panel B: India

Form of Taylor rules? Only domestic or also external objectives?

Panel C: Brazil

- How do large emerging markets manage the quadrilemma?
- Two large EMs– Brazil and India- share characteristics:
 - Flexible but managed exchange rates
 - Active domestic interest rate monetary tool
 - Active fx intervention
 - Large buildup in international reserves
 - Discretionary capital control changes

Why buildup in so many EMs?

Mercantilist (e.g. BW2...Dooley et al.)

Precautionary (e.g. Aizenman et al.)

Hoarding- Mrs Machlup's Wardrobe and the Joneses (e.g. Cheung et al.0

Figure 1a International Reserves (USD Billions)

- How do large emerging markets manage the quadrilemma?
- Two large EMs– Brazil and India- share characteristics:
 - Flexible but managed exchange rates
 - Active domestic interest rate monetary tool
 - Active fx intervention
 - Large buildup in international reserves
 - Discretionary capital control changes

Panel A: India

How do they functionally manage macro policy?

• Facing the quadrilemma

Our approach

- Model
 - Interest rate policy
 - Intervention policy
 - Reserve accumulation identity

• To achieve

- Internal goals: output and inflation
- External goals: exchange rates and reserve accumulation (financial stability)
- Complication or complement to policy control? capital controls

Taylor Rule:

(1)
$$i_t = \alpha_1 + \alpha_2 (y_t - y_*) + \alpha_3 (\pi_t - \pi^*) + \alpha_4 (e_t - e_{t-1}) + \alpha_5 i_{t-1} + \varepsilon_t$$

 i_t is interest rate operating instrument, $(y_t - y *)$ is (log) output less (log) output trend, $(\pi_t - \pi^*)$ is inflation deviation from target, $(e_t - e_{t-1})$ is the (log) nominal exchange rate change. Stabilizing objectives ("leaning against the wind") of output, inflation and the exchange rate suggests that $\alpha_2 > 0$, $\alpha_3 > 0$, and $\alpha_4 > 0$.

Operational interest rates:

Policy rate: 3-mo. Interbank for India

SELIC rate (overnight) for Brazil

Brazil has an IT regime since 1999, 4.5% target 2005-18

4.25 percent in 2019 4.00 percent in 2020,

IPCA Brazil (broad CPI used for IT)

Panel A: India

Panel B: Brazil

Industrial Production

HP filter, cyclical component

Panel A: India

Panel B: Brazil

Intervention Policy Function:

(2)
$$I_t = \beta_1 + \beta_2 (e_t - e_{t-1}) + \beta_3 (R_t - R_t^*) + \mu_t$$

Where I_t is foreign exchange market intervention (USD purchases (purchases of FX positive, sales negative; %last quarter's stock of reserves), (R - R *) is the (log) stock of international reserves less the (log) of reserve adequacy. Foreign exchange sales intervention to slow or reserve exchange rate depreciation $(e_t - e_{t-1} > 0)$ suggests $\beta_2 < 0$. Reserves above the target value suggests foreign exchange sales $\beta_3 < 0$.

What is "adequate" or target reserves?

What is operational target of "mercantilist" or "hoarding"?

Easier to proxy "precautionary"...

Using IMF measure of reserve adequacy

Panel A: India

Panel C: Brazil

Reserve Target? If so, what target?

Reserve Target values are from IMF report "Assessing Reserve Adequacy". The institution's work compares the reserve holdings and alternative metrics of reserve adequacy.

This reserves adequacy measure was initially developed in the IMF Board Paper "Assessing Reserve Adequacy" - RAM1 (February 15, 2011), and adjusted in the latest IMF Board Paper "Assessing Reserve Adequacy- Specific Proposals" (December 19, 2014), in order to reflect the outflows during the Global Financial Crisis which were not addressed in RAM1.

Operationally, IMF defines international reserve adequacy (RA) for emerging market economies with floating exchange rates as RA=5%×Exports+5%×Broad Money+30%×Short Term Debt+15%×Other Liabilities.

Panel A: India

Panel B: Brazil

Reserve Accumulation:

Intervention is linked to international reserves through an accounting identify, i.e. the rise (fall) in international reserves equals foreign exchange intervention purchases (sales) plus interest earnings on foreign reserves and valuation changes:

(3)
$$R_t - R_{t-1} = I_{t-1} + i_{t-1}^* R_{t-1} + VAL_{t-1}$$

Estimation of Taylor Rule and Intervention Policy Equations

- Individual time series
- Quarterly time series 1998q1-2018q4
- IV estimation for reserve gap, HAC Newey-West Ses reported
- Allow for policy shift post-GFC

Full Sample Results

Panel A: Interest Rate Policy	Dependent	Variable: i_t
	India	Brazil
<u>с</u>	1.1277^{***}	1.30*
	(0.3943)	(0.7100)
\hat{Y}	0.1150^{***}	-0.0000
	(0.0342)	(0.0203)
$\pi - \pi^*$	0.0194	0.7307^{***}
	(0.0194)	(0.2300)
Δe	0.0348	0.0377
	(0.0646)	(0.0345)
i_{t-1}	0.8170^{***}	0.9740^{***}
	(0.0498)	(0.0498)
\mathbb{R}^2	0.8321	0.9215
Num. obs.	80	76

Panel B: Spot Intervention	Dependent	Variable: I_t
	India	Brazil
С	3.2275^{***}	2.93**
	(0.7114)	(1.2802)
Δe	-0.4766^{***}	-0.2662^{***}
	(0.1496)	(0.0801)
$R - R^*$	-0.0402^{***}	-0.0311
	(0.0120)	(0.0291)
\mathbb{R}^2	0.1319	0.1368
Num. obs.	83	76
*** $p < 0.01, **p < 0.05, *p < 0.1$		

- India targets output
- Brazil targets inflation
- Little systematic exchange rate targeting using interest rate
- Highly persistent policies

- Both "lean against wind" intervention, India more strongly
- India systematically intervenes to achieve identifiable reserves target

Pre- and Post GFC

Panel A: Interest Rate Policy		Dependent	Variable: i_t	
	In	dia	Br	azil
	Pre-Crisis	Post-Crisis	Pre-Crisis	Post-Crisis
с	1.4799^{***}	0.8609	2.51^{**}	1.07
	(0.4983)	(0.5315)	(1.20)	(0.76)
\hat{Y}	0.1207^{*}	0.1611^{***}	-0.0000	0.0120
	(0.0651)	(0.0225)	(0.0203)	(0.0112)
$\pi - \pi^*$	-0.0236	0.0353^{**}	0.70^{**}	0.48^{**}
	(0.0537)	(0.0145)	(0.34)	(0.22)
Δe	-0.0242	0.0818	0.10^{**}	-0.01
	(0.0334)	(0.0820)	(0.04)	(0.01)
i_{t-1}	0.7863^{***}	0.8555^{***}	0.91^{***}	0.95^{***}
	(0.0528)	(0.0756)	(0.05)	(0.07)
\mathbb{R}^2	0.8486	0.858	0.8515	0.8732
Num. obs.	40	40	36	40

- India: output
- Brazil: inflation

New

 inflation targets in India post-GFC

Confirmation:

- "leaning" both periods
- India targeting reserves

New

- Less leaning post-GFC
- Both reserves target post-GFC
- **UC SANTA CRUZ**

Panel B: Spot Intervention		Dependent	Variable: I_t	
	In	dia	Br	azil
	Pre-Crisis	Post-Crisis	Pre-Crisis	Post-Crisis
<i>c</i>	3.5684^{***}	4.6347^{**}	2.36	3.87^{***}
	(1.1493)	(1.8151)	(2.58)	(0.90)
Δe	-0.6624^{**}	-0.3476^{**}	-0.48^{***}	-0.09^{***}
	(0.2975)	(0.1517)	(0.13)	(0.03)
$R - R^*$	-0.0315^{*}	-0.0969^{**}	-0.04	-0.06^{***}
	(0.0170)	(0.0378)	(0.04)	(0.01)
\mathbb{R}^2	0.1503	0.1437	0.1016	0.4107
Num. obs.	43	40	36	40

***p < 0.01, **p < 0.05, *p < 0.1

How do you pull off target reserves, especially period of buildup of reserves?

Asymmetric intervention test

Asymmetric intervention during period of large reserve buildup pre-GFCbut symmetric fx intervention post-GFC

Panel A: Spot Intervention			Dependent	Variable: I_t		
		India			Brazil	
	Full Sample	Pre-Crisis	Post-Crisis	Full Sample	Pre-Crisis	Post-Crisis
С	2.57^{***}	3.56^{***}	1.70	1.85^{**}	2.33	0.89
	(0.67)	(0.62)	(1.05)	(0.76)	(1.47)	(0.87)
Δe	-0.70^{***}	-1.11^{***}	-0.42^{**}	-0.23^{***}	-0.36^{***}	-0.03
	(0.19)	(0.07)	(0.20)	(0.08)	(0.12)	(0.06)
Appreciated	1.17	2.31	-0.38	4.60^{**}	9.83***	0.35
	(1.48)	(2.20)	(1.21)	(1.91)	(2.76)	(1.13)
$\Delta e imes Appreciated$	1.44^{***}	2.27^{***}	0.61 ?	0.62^{**}	1.24^{***}	-0.05 ?
	(0.37)	(0.45)	(0.41)	(0.28)	(0.39)	(0.14)
\mathbb{R}^2	0.21	0.31	0.17	0.18	0.35	0.06
Num. obs.	83	43	40	79	39	40

 $^{***}p < 0.01, \, ^{**}p < 0.05, \, \, ^*p < 0.1$

 Table 1: Asymmetric Exchange Rate Intervention

Next Up: capital controls and macro policy

- Our angle: how do fluctuations in capital controls influence monetary management?
- Empirically: has net liberalization been accompanied by closer interest rate linkage with U.S. rates, comprising monetary independence?

Side topic (very important!): How to measure capital controls?

- Chinn-Ito
- IMF (Wang-Jahan)
- Pasricha et al.

AREAER-based, level comparison AREAER-based, level comparison Number of net changes (easing measures less restricting measures for aggregate)

Chinn-Ito Index of Capital Openness

Panel A: India

Panel B: Brazil

Panel A: Interest Rate Policy - Pre GFC		Dependent V	Variable: i_t	
	Ir	ndia	Br	azil
	(1)	(2)	(1)	(2)
С	1.987^{***}	3.2289^{***}	6.4176^{*}	8.8692**
	(0.3249)	(0.8176)	(3.4913)	(4.1772)
\hat{Y}	0.1277^{**}	0.2475^{***}	-0.0176	0.0041
	(0.0691)	(0.0578)	(0.0390)	(0.0416)
$(\pi - \pi^*)$	-0.0276	.0909	0.5248	0.5183
	(0.0489)	(.0849)	(0.3105)	(0.3798)
Δe	0.0323	0.0590	0.0089	0.0006
	(0.0336)	(0.0373)	(0.0294)	(0.0279)
i_{t-1}	0.5994^{***}	0.4054^{***}	0.5103^{*}	0.4080
	(0.0455)	(0.1175)	(0.2598)	(0.3249)
i_{US}	0.2474^{***}	0.236***	0.1872	0.2717
	(0.0511)	(0.0473)	(0.2306)	(0.3268)
openness		-0.0809^{***}		-0.6089^{*}
		(0.0284)		(0.3550)
\mathbb{R}^2	0.8908	0.8766	0.8198	0.8369
Num. obs.	40	32	32	32

- Pasricha et al. measure
- Only pre-GFC as U.S. rates didn't move in post-GFC
- Greater openness led to lower rates in both India and Brazil....
 - Much more in Brazil

These tables refer to Brazil

Panel A: Interest Rate Policy	Dependent Variable: i_t	_
	Pre-Crisis	Ţ
	(1) (2)	_
с	2.9856^{**} -1.2779	
	(1.3659) (5.3497)	
\hat{Y}	-0.0739 -0.1179	
	(0.1374) (0.1439)	No
$(\pi - \pi^*)$	0.7912 0.7491	INO
	(0.4855) (0.4430)	systemically
Δe	0.0054 - 0.0018	link using
	(0.0296) (0.0410)	
i_{t-1}	0.8431^{***} 0.8094^{***}	
	(0.1088) (0.1274)	
i_{US}	0.1208 1.1248	Onaoina
	(0.5868) (1.3762)	rosoarch
IMF openness	-1.5933 7.6095	
	(1.6149) (12.1351)	
$i_{US} \times \text{IMF} \text{ openness}$	-1.9265	
	(2.4213)	-
\mathbb{R}^2	0.7933 0.8001	
Num. obs.	32 32	

***p < 0.01, **p < 0.05, *p < 0.1

Takeaways

- Complex policies but facing similar constraints
- Taylor Rules: Brazil committed to IT, and India output stabilization
- Identifiable Policy Shifts:
 - India—
 - inflation more important post-GFC
 - Less weight on exchange rate and more on reserves target post-GFC
 - Brazil
 - IT more important pre-GFC, more discretion post-GFC
 - Reserve accumulation objective pre-GFC, targeting adequate reserves post-GFC
- Capital controls complex to measure and difficult to find stable, identifiable linkages with domestic policy constraints

Capital Account Openness Index (April 2016)

The Wang-Jahan capital account openness index is a de jure index that provides information on the state of openness of the capital account based on 12 types of asset categories for 168 countries, of which 60 are low-income developing countries, over the period 1996 -2013. This index is constructed based on the information contained in the IMF's Annual Report on Exchange Arrangements and Exchange Restrictions (AREAER). It not only captures the overall openness of the capital account but also provides a breakdown of openness across various types of subcategories: direction of flows (inflow verses outflow), residency (resident verses non-resident), and asset types (for example, equity, bonds, direct investment etc.). The granularity of this index provides researchers and policy-makers new avenues to pinpoint changes in de jure policies with associated changes in de facto capital flows. The large country coverage, particularly of low-income developing countries, allows for an in-depth analysis of each individual country or cross-country comparisons.

Panel B: Spot Intervention	Deper	ndent Variab	le: I_t
	Full Sample	Pre-Crisis	Post-Crisis
С	-6.5341	-7.0780	7.6730
	(4.1443)	(5.5368)	(5.3679)
Δe	-0.2275^{***}	-0.2302	-0.1700^{***}
	(0.0833)	(0.1512)	(0.0397)
$(R-R^*)$	-0.0210	-0.0080	-0.0410
	(0.0228)	(0.0409)	(0.0371)
IMF openness	19.9903**	23.0595^{**}	-8.6912
	(8.8857)	(10.5498)	(9.9483)
\mathbb{R}^2	0.2687	0.3039	0.2967
Num. obs.	56	32	24

*** p < 0.01, ** p < 0.05, * p < 0.1

Panel A:	Entire	Sample,	1999Q1 - 201	8Q4							
			India					Brazil			
Statistic	Ν	Mean	St. Dev.	Min	Max	Ν	Mean	St. Dev.	Min	Max	
i	84	6.98	1.62	3.35	10.52	76	13.447	4.579	6.5	26.500	
\hat{Y}	84	0.00	2.24	-6.46	6.61	76	-0.207	9.554	-18.712	16.250	
π	80	4.56	3.19	-5.68	10.47	76	5.242	3.385	3.025	11.153	
$\pi - \pi^*$	80	4.56	3.19	-5.68	10.47	76	0.419	1.023	-1.025	5.685	
Δe	83	0.73	3.04	-6.91	10.86	76	1.019	8.498	-17.857	28.557	
$R-R^*$	84	33.12	27.68	-34.01	93.13	76	1.244	49.978	-92.475	69.608	
I_{spot}	84	1.56	3.89	-8.30	10.14	76	2.63	6.769	-8.816	32.000	
Itotal	84	0.01	11.64	-34.76	26.66	76	2.581	7.12	-11.292	32.000	
openness	60	20.76	15.84	0.15	53.73	60	1.802	1.193	0.000	3.490	
Panel B.	Pre Cr	isis 1999	01 - 200804								
Tanei D.	110 01	1515, 1000	India					Brazil			
Statistic	Ν	Mean	St. Dev.	Min	Max	N	Mean	St. Dev.	Min	Max	
i	44	6.93	1.63	4.19	10.23	36	16.931	3.775	11.25	26.500	
\hat{Y}	44	0.25	2.61	-3.43	6.61	36	-0.624	10.049	-17.035	16.250	
π	40	4.56	3.19	-5.68	10.47	36	6.268	3.870	3.025	11.153	
$\pi - \pi^*$	40	5.15	1.87	1.51	10.47	36	0.546	1.254	-1.025	5.685	
Δe	43	0.50	2.87	-6.91	10.86	36	-0.148	8.109	-17.857	20.815	
$R - R^*$	44	29.68	36.78	-34.01	93.13	36	-42.709	33.72	-92.475	28.552	
I_{spot}	44	2.32	4.79	-8.30	10.14	36	4.263	9.358	-8.816	32.000	
I_{total}	44	0.14	11.37	-25.35	23.40	36	3.988	9.801	-11.292	32.000	
openness	32	8.07	5.67	0.15	20.36	32	1.409	1.346	0.000	3.490	
Panel C:	Post C	risis 200	901 - 20180	4							
i anei O.	1050 0	11515, 200	India	1				Brazil			
Statistic	Ν	Mean	St. Dev.	Min	Max	Ν	Mean	St. Dev.	Min	Max	
i	40	7.04	1.63	3.35	10.52	40	10.312	2.5	6.5	14.250	
\hat{Y}	40	-0.27	1.74	-6.46	3.41	40	0.168	9.198	-18.712	14.710	
π	40	3.97	4.05	-5.68	10.12	40	5.057	2.908	3.625	8.741	
$\pi - \pi^*$	40	3.97	4.05	-5.68	10.12	40	0.305	0.755	-0.905	2.705	
Δe	40	0.98	3.24	-3.86	10.72	40	2.069	8.801	-16.717	28.557	
$R - R^*$	40	36.91	10.51	19.07	62.61	40	40.802	19.869	-11.280	69.608	
I_{spot}	40	0.72	2.34	-4.56	9.12	40	1.161	2.199	-1.775	8.490	נוין
I_{total}	40	-0.16	12.08	-34.76	26.66	40	1.315	2.794	-2.743	8.959	I. N
openness	28	35.27	10.11	22.32	53.73	28	2.252	0.798	0.578	3.490	UII

Panel A: India

Panel B: Brazil

Capital Account Openness Index (April 2016)

The Wang-Jahan capital account openness index is a de jure index that provides information on the state of openness of the capital account based on 12 types of asset categories for 168 countries, of which 60 are low-income developing countries, over the period 1996 -2013. This index is constructed based on the information contained in the IMF's Annual Report on Exchange Arrangements and Exchange Restrictions (AREAER). It not only captures the overall openness of the capital account but also provides a breakdown of openness across various types of subcategories: direction of flows (inflow verses outflow), residency (resident verses non-resident), and asset types (for example, equity, bonds, direct investment etc.). The granularity of this index provides researchers and policy-makers new avenues to pinpoint changes in de jure policies with associated changes in de facto capital flows. The large country coverage, particularly of low-income developing countries, allows for an in-depth analysis of each individual country or cross-country comparisons.

Chinn-Ito Index of Capital Openness

Panel B: Brazil

Panel A: Interest Rate Policy - Pre GFC		Dependent	Variable: i_t	
	In	dia	Br	azil
	(1)	(2)	(1)	(2)
с	1.987***	3.2289^{***}	6.4176^{*}	8.8692**
	(0.3249)	(0.8176)	(3.4913)	(4.1772)
\hat{Y}	0.1277^{**}	0.2475^{***}	-0.0176	0.0041
	(0.0691)	(0.0578)	(0.0390)	(0.0416)
$(\pi - \pi^*)$	-0.0276	.0909	0.5248	0.5183
	(0.0489)	(.0849)	(0.3105)	(0.3798)
Δe	0.0323	0.0590	0.0089	0.0006
	(0.0336)	(0.0373)	(0.0294)	(0.0279)
i_{t-1}	0.5994^{***}	0.4054^{***}	0.5103^{*}	0.4080
	(0.0455)	(0.1175)	(0.2598)	(0.3249)
i_{US}	0.2474^{***}	0.236^{***}	0.1872	0.2717
	(0.0511)	(0.0473)	(0.2306)	(0.3268)
openness		-0.0809^{***}		-0.6089^{*}
		(0.0284)		(0.3550)
\mathbb{R}^2	0.8908	0.8766	0.8198	0.8369
Num. obs.	40	32	32	32

Panel B: Spot Intervention		Dependent Variable: I_t				
	In	dia	Bı	Brazil		
	Pre-Crisis	Post-Crisis	Pre-Crisis	Post-Crisis		
с	4.78***	-2.09	-9.39^{***}	8.06***		
	(1.35)	(4.51)	(2.14)	(1.77)		
Δe	-0.26^{**}	-0.27^{*}	-0.27	-0.00		
	(0.11)	(0.16)	(0.20)	(0.02)		
$R - R^*$	0.12	-0.02	-0.14^{***}	-0.08^{***}		
	(0.10)	(0.05)	(0.03)	(0.02)		
openness	-0.97^{**}	0.11	6.17^{***}	-1.50^{***}		
	(0.42)	(0.09)	(0.81)	(0.51)		
\mathbb{R}^2	0.66	0.30	0.49	0.41		
Num. obs.	32	28	32	28		

****p < 0.01, *** p < 0.05, * p < 0.1

These tables refer to Brazil

Panel A: Interest Rate Policy	Dependent Variable: i_t					
	Full Sample		Pre-Crisis		Post-Crisis	
	(1)	(2)	(1)	(2)	(1)	(2)
С	0.9760	0.6320	2.9856^{**}	-1.2779	-3.4245	-3.0400
	(1.0712)	(1.9516)	(1.3659)	(5.3497)	(3.7338)	(2.3490)
\hat{Y}	-0.0142	-0.0148	-0.0739	-0.1179	0.1863^{***}	0.1907^{***}
	(0.0322)	(0.0346)	(0.1374)	(0.1439)	(0.0544)	(0.0357)
$(\pi - \pi^*)$	0.9332^{**}	0.9336^{**}	0.7912	0.7491	-0.4857	-0.5218
	(0.4139)	(0.4122)	(0.4855)	(0.4430)	(0.3123)	(0.3600)
Δe	0.0302^{**}	0.0298^{*}	0.0054	-0.0018	0.0046	-0.0042
	(0.0144)	(0.0174)	(0.0296)	(0.0410)	(0.0204)	(0.0087)
i_{t-1}	0.9393^{***}	0.9379^{***}	0.8431^{***}	0.8094^{***}	0.4129^{***}	0.3784^{***}
	(0.0802)	(0.0816)	(0.1088)	(0.1274)	(0.0995)	(0.0877)
i_{US}	0.0597	0.1371	0.1208	1.1248	-1.5339	-14.1732^{*}
	(0.1536)	(0.4569)	(0.5868)	(1.3762)	(1.2734)	(6.9147)
IMF openness	-0.4900	0.2694	-1.5933	7.6095	18.5596^{*}	19.0827***
	(0.7449)	(4.0581)	(1.6149)	(12.1351)	(8.9950)	(5.0659)
$i_{US} \times \text{IMF} \text{ openness}$		-0.1697		-1.9265		19.1731
		(0.8623)		(2.4213)		(11.2279)
\mathbb{R}^2	0.9092	0.9093	0.7933	0.8001	0.9204	0.9276
Num. obs.	56	56	32	32	24	24

***p < 0.01, **p < 0.05, *p < 0.1