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Abstract. This note studies robust estimation of the autoregressive (AR) parameter in a nonlin-
ear, nonnegative AR model driven by nonnegative errors. It is shown that a linear programming
estimator (LPE), considered by Nielsen and Shephard (2003) among others, remains consistent
under severe model misspecification. Consequently, the LPE can be used to test for, and seek
sources of, misspecification when a pure autoregression cannot satisfactorily describe the data
generating process, and to isolate certain trend, seasonal or cyclical components. Simple and
quite general conditions under which the LPE is strongly consistent in the presence of seri-
ally dependent, non-identically distributed or otherwise misspecified errors are given, and a
brief review of the literature on LP-based estimators in nonnegative autoregression is presented.
Finite-sample properties of the LPE are investigated in an extensive simulation study covering
a wide range of model misspecifications. A small scale empirical study, employing a volatility
proxy to model and forecast latent daily return volatility of three major stock market indexes,
illustrates the potential usefulness of the LPE.
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1. Introduction

In the last decades, nonlinear and nonstationary time series analysis have gained much at-
tention. This attention is mainly motivated by evidence that many real life time series are
non-Gaussian with a structure that evolves over time. For example, many economic time se-
ries are known to show nonlinear features such as cycles, asymmetries, time irreversibility,
jumps, thresholds, heteroskedasticity and combinations thereof. This note considers robust
estimation in a (potentially) misspecified nonlinear, nonnegative autoregressive model, that
may be a useful tool for describing the behaviour of a broad class of nonnegative time series.

For nonlinear time series models it is common to assume that the errors are i.i.d. with
zero-mean and finite variance. Recently, however, there has been considerable interest in non-
negative models. See, e.g., Abraham and Balakrishna (1999), Engle (2002), Tsai and Chan
(2006), Lanne (2006) and Shephard and Sheppard (2010). The motivation to consider such
models comes from the need to account for the nonnegative nature of certain time series. Ex-
amples from finance include variables such as absolute or squared returns, bid-ask spreads,
trade volumes, trade durations, and standard volatility proxies such as realized variance, real-
ized bipower variation (Barndorff-Nielsen and Shephard, 2004) or realized kernel (Barndorff-
Nielsen et al., 2008).1 This note considers a nonlinear, nonnegative autoregressive model
driven by nonnegative errors. More specifically, it considers robust estimation of the AR pa-
rameter β in the autoregression

yt = β f (yt−1, . . . , yt−s) + ut, (1)

with nonnegative (possibly) misspecified errors ut. Potential distributions for ut include log-
normal, gamma, uniform, Weibull, inverse Gaussian, Pareto and mixtures of them. In some
applications, robust estimation of the AR parameter is of interest in its own right. One ex-
ample is point forecasting, as described in Preve et al. (2015). Another is seeking sources of
model misspecification. In recognition of this fact, this note focuses explicitly on the robust
estimation of β in (1). If the function f is known, a natural estimator for β given the sample
y1, . . . , yn of size n and the nonnegativity of the errors is

β̂n = min
{

ys+1

f (ys, . . . , y1)
, . . . ,

yn

f (yn−1, . . . , yn−s)

}
. (2)

This estimator has been used to estimate β in certain restricted first-order autoregressive,
AR(1), models (e.g. Anděl, 1989b; Datta and McCormick, 1995; Nielsen and Shephard, 2003).
An early reference of the autoregression in (1) is Bell and Smith (1986), who considers the
linear AR(1) specification f (yt−1, . . . , yt−s) = yt−1 to model water pollution and the accom-
panying estimator in (2) for estimation.2 The estimator in (2) can, under some additional
conditions, be viewed as the solution to the linear programming problem of maximizing the
objective function g(β) = β subject to the n− s linear constraints yt − β f (yt−1, . . . , yt−s) ≥ 0
(cf. Feigin and Resnick, 1994). Because of this, we will refer to it as a LP-based estimator or
LPE. As it happens, (2) is also the (on y1, . . . , ys) conditional maximum likelihood estimator
(MLE) for β when the errors are exponentially distributed (cf. Anděl, 1989a). What is inter-
esting, however, is that β̂n is a strongly consistent estimator of β for a wide range of error
distributions, thus the LPE is also a quasi-MLE (QMLE).

In all of the above references the errors are assumed to be i.i.d.. To the authors knowledge,
there has so far been no attempt to investigate the statistical properties of LP-based estimators

1Another example is temperature, which can be used for pricing weather derivatives (e.g. Campbell and Diebold,
2005; Alexandridis and Zapranis, 2013).
2Bell and Smith (1986) refer to the LPE as a ‘quick and dirty’ nonparametric point estimator.
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in a non i.i.d. time series setting. This is the focus of the present note. In that sense, the
note can be viewed as a companion note to Preve and Medeiros (2011) in which the authors
establish statistical properties of a LPE in a non i.i.d. cross-sectional setting. Estimation of time
series models with dependent, non-identically distributed errors is important for two reasons:
First, the assumption of independent, identically distributed errors is a serious restriction.
In practice, possible causes for non i.i.d. or misspecified errors include omitted variables,
measurement errors and regime changes. Second, traditional estimators, like the least squares
estimator, may be inconsistent when the errors are misspecified. In some applications the
errors may also be heavy-tailed. The main theoretical contribution of the note is to provide
conditions under which the LPE in (2) is consistent for the unknown AR parameter in (1)
when the errors are serially dependent, non-identically distributed and heavy-tailed.

The remainder of this note is organized as follows. In Section 2 we give simple and quite
general conditions under which the LPE is a strongly consistent estimator for the AR param-
eter, relaxing the assumption of i.i.d. errors significantly. In doing so, we also briefly review
the literature on LP-based estimators in nonnegative autoregression. Section 3 reports the
simulation results of an extensive Monte Carlo study investigating the finite-sample perfor-
mance of the LPE and at the same time illustrating its robustness to various types of model
misspecification. Section 4 reports the results of a small scale empirical study, and Section 5

concludes. Mathematical proofs are collected in the Appendix. An extended Appendix (EA)
available on request from the author contains some results mentioned in the text but omitted
from the note to save space.

2. Theoretical Results

In finance, many time series models can be written in the form yt = ∑
p
i=1 βi fi(yt−1, . . . , yt−s) +

ut. A recent example is Corsi’s (2009) HAR model.3 In this section we focus on the particular
case when p = 1 and the errors are nonnegative, serially correlated, possibly heterogeneously
distributed and heavy-tailed random variables. The case when p = 1 is special in our setting as
the linear programming problem of maximizing the objective function g(β1, . . . , βp) = ∑

p
i=1 βi

subject to the n− s linear constraints

yt −
p

∑
i=1

βi fi(yt−1, . . . , yt−s) ≥ 0

(cf. Feigin and Resnick, 1994) then has an explicit solution. This simplifies the statistical
analysis of the LPE. In general (p > 1), one has to rely on numerical methods.

2.1. Assumptions. We give simple and quite general assumptions under which the LPE con-
verges with probability one or almost surely (a.s.) to the unknown AR parameter.

Assumption 1. The autoregression {yt} is given by

yt = β f (yt−1, . . . , yt−s) + ut, t = s + 1, s + 2, . . .

for some function f : Rs → R, AR parameter β > 0, and (a.s.) positive initial values y1, . . . , ys. The
errors ut driving the process are nonnegative random variables.

Assumption 1 includes error distributions supported on [η, ∞), for any unknown nonnegative
constant η, indicating that an intercept in the process is superfluous (Section 3.1.2). It also
allows us to consider various mixture distributions that can account for data characteristics
3The HAR model of Corsi can be written as yt = ∑3

i=1 βi fi(yt−1, . . . , yt−22) + ut, where f1(yt−1, . . . , yt−22) = yt−1,
f2(yt−1, . . . , yt−22) = yt−2 + · · ·+ yt−5, f3(yt−1, . . . , yt−22) = yt−6 + · · ·+ yt−22 and yt is the realized volatility over
day t. Here p = 3 and s = 22.
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such as jumps (Section 3.3.2). The next assumption concerns the potentially multi-variable
function f , which allows for various lagged or seasonal specifications (Section 3.1.3).

Assumption 2. The function f : Rs → R is known (measurable and nonstochastic), and there exist
constants c > 0 and r ∈ {1, . . . , s} such that f (x) = f (x1, . . . , xr, . . . , xs) ≥ cxr when all of its
arguments are nonnegative.

Assumptions 1 and 2 combined ensure the nonnegativity of {yt}, indicating that the process
may be used to model durations, volatility proxies, and so on. Assumption 2 is, for instance,
met by elementary one-variable functions such as exs , sinh xs and any polynomial in xs of
degree higher than 0 with positive coefficients.4 Thus, in contrast to Anděl (1989b), we allow
f to be non-monotonic.

Assumption 3. The error at time t is given by

ut = µt + σtεt, t = s + 1, s + 2, . . .

where {µt} and {σt} are discrete-time processes, and {εt} is a sequence of m-dependent, identically
distributed, nonnegative continuous random variables. The order, m, of the dependence is finite.

Assumption 3 allows for different kinds of m-dependent error specifications, with m ∈ N

potentially unknown.5 For example, finite-order moving average (MA) specifications (Section
3.2.2). The σt of (possibly) unknown form are scaling variates, which express the possible
heteroskedasticity. The specification of the additive error component can be motivated by the
fact that it is common for the variance of a time series to change as its level changes. Since the
forms and distributions of µt, σt and εt are taken to be unknown, the formulation is nonpara-
metric. Assumption 3 also allows for more general forms of serially correlated errors (Section
3.2). Such correlation arises if omitted variables included in ut themselves are correlated over
time, or if yt is measured with error (Section 4).

Assumption 4. There exist constants 0 ≤ µ < ∞ and 0 < σ ≤ σ < ∞ such that P(0 ≤ µt ≤ µ) = 1
and P(σ ≤ σt ≤ σ) = 1 for all t.

Assumption 4 ensures that {µt} and {σt} in Assumption 3 are bounded in probability. The
bounds (and the forms) for µt and σt are not required to be known. The assumption is quite
general and allows for various standard specifications, including structural breaks, Markov
switching, thresholds, smooth transitions, ‘hidden’ periodicities or combinations thereof, of
the error mean and variance (Section 3.3).6

2.2. Finite-Sample Theory. The nonlinear, nonnegative autoregression implied by assump-
tions 1–4 is flexible and nests several specifications in the related literature.7 It is worth noting
that, since β̂n − β = Rn where Rn = min {us+1/ f (ys, . . . , y1), . . . , un/ f (yn−1, . . . , yn−s)}, the
LPE is positively biased and stochastically decreasing in n under the assumptions. Moreover,
it is not difficult to show that the LP residuals ût = yt − β̂n f (yt−1, . . . , yt−s), by construction,
are nonnegative.

4An interesting example of a multi-variable function f is given by the AR index process considered by Im et al.
(2006) for which f (x) = x1 + · · ·+ xs or, equivalently, f (yt−1, . . . , yt−s) = yt−1 + · · ·+ yt−s. The AR index models
of order 1, 5 and 22 all can be viewed as special cases of Corsi’s (2009) HAR model.
5A sequence ε1, ε2, . . . of random variables is said to be m-dependent if and only if εt and εt+k are pairwise
independent for all k > m. In the special case when m = 0, m-dependence reduces to independence.
6It is important to note that µt and σt are allowed to be degenerate random variables (i.e. deterministic).
7For example, Bell and Smith’s specification is obtained by choosing f (x) = x1 or, equivalently, f (yt−1, . . . , yt−s) =
yt−1, µt = 0 and σt = 1 for all t, and m = 0. Note that in this case the errors are i.i.d..
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2.3. Asymptotic Theory.

2.3.1. Convergence. Previous works focusing explicitly on the strong convergence of LP-based
estimators in nonnegative autoregressions include Anděl (1989a), Anděl (1989b) and An (1992).
These LPEs are interesting as they can yield much more accurate estimates than traditional
methods, such as conditional least squares (LS). See, e.g., Datta et al. (1998) and Nielsen and
Shephard (2003). Like the LSE for β, the LPE is distribution-free in the sense that its consis-
tency does not rely on a particular distributional assumption for the errors. However, the LPE
is sometimes superior to the LSE. For example, its rate of convergence can be faster than

√
n

even when β < 1.8 For instance, in the linear AR(1) with exponential errors the (supercon-
sistent) LPE converges to β at the rate of n. For another example, in contrast to the LSE, the
consistency conditions of the LPE do not involve the existence of any higher order moments.

The following theorem is the main theoretical contribution of the note. It provides condi-
tions under which the LPE is strongly consistent for the unknown AR parameter.

Theorem 1. Suppose that assumptions 1–4 hold. Then the LPE or QMLE in (2) is strongly consistent
for β in (1), i.e. β̂n converges to β a.s. as n tends to infinity, if either (i) P(c1 < εt < c2) < 1 for all
0 < c1 < c2 < ∞ and µt = 0 for all t, or (ii) P(εt < c3) < 1 for all 0 < c3 < ∞.

In other words, the LPE remains a consistent estimator for β if the i.i.d. error assumption is
significantly relaxed. The convergence is almost surely (and, hence, also in probability). Note
that the additional condition of Theorem 1 is satisfied for any distribution with unbounded
nonnegative support (sufficient, but not necessary), and that the consistency conditions of the
LPE do not involve the existence of any moments.9 Hence, heavy-tailed error distributions are
also included (Section 3.1.2).

2.3.2. Distribution. As aforementioned, the purpose of this note is not to derive the distribu-
tion of the LPE in our (quite general) setting, but rather to highlight some of its robustness
properties. Nevertheless, for completeness, we here mention some related distributional re-
sults. For the case with i.i.d. nonnegative errors several results are available: Davis and Mc-
Cormick (1989) derive the limiting distribution of the LPE in a stationary AR(1) and Nielsen
and Shephard (2003) derive the exact (finite-sample) distribution of the LPE in a AR(1) with
exponential errors. Feigin and Resnick (1994) derive limiting distributions of LPEs in a sta-
tionary AR(p). Datta et al. (1998) establish the limiting distribution of a LPE in an extended
nonlinear autoregression. The limited success of LPEs in applied work can be partially ex-
plained by the fact that their asymptotic distributions depend on the (in most cases) unknown
distribution of the errors. To overcome this problem, Datta and McCormick (1995) and Feigin
and Resnick (1997) consider bootstrap inference for linear autoregressions via LPEs. Some ro-
bustness properties and exact distributional results of the LPE in a cross-sectional setting were
recently derived by Preve and Medeiros (2011).

8This occurs, under some additional conditions, when the exponent of regular variation of the error distribution
at 0 or ∞ is less than 2 (Davis and McCormick, 1989; Feigin and Resnick, 1992). The rate of convergence for the
LSE is faster than

√
n only when β ≥ 1 (Phillips, 1987).

9As an extreme example, consider estimating 0 < β < 1 in the linear specification yt = βyt−1 + ut with indepen-
dent, nonnegative stable errors ut ∼ S(a, b, c, d; 1), where the index of stability a < 1, the skewness parameter
b = 1 and the location parameter d ≥ 0 (cf. Lemma 1.10 in Nolan, 2015). In this case yt also follows a stable
distribution with index of stability a and, hence, no finite first moment for a suitable choice of y1 (cf. the Monte
Carlo experiment with Lévy distributed errors in Section 3.1.2).
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3. Simulation Results

In this section we report simulation results concerning the estimation of the AR parameter β
in the nonnegative autoregression yt = β f (yt−1, . . . , yt−s) + ut, ut = µt + σtεt, considered in
sections 1–2. The purpose of the simulations is to see how the LPE and a benchmark estimator
perform under controlled circumstances when the data generating process is known.

For ease of exposition, we let f (yt−1, . . . , yt−s) = yt−s and s = 1, 4.10 Thus, in the simulations
the data generating process (DGP) is

yt = βyt−s + ut, with ut = µt + σtεt, t = s + 1, s + 2, . . . (3)

and the LPE is

β̂LP = min
{

ys+1

y1
, . . . ,

yn

yn−s

}
= β + min

{
us+1

y1
, . . . ,

un

yn−s

}
. (4)

In this case, whenever the errors ut are believed to be serially uncorrelated and to satisfy the
usual moment conditions, a natural benchmark for the LPE of β is the corresponding ordinary
least squares estimator, β̂LS, which also is a distribution-free estimator. If {yt} is generated by
(3) and {ut} is a sequence of random variables with common finite mean, the LSE for β given
a sample y1, . . . , yn of size n > s is

β̂LS =
∑n

t=s+1(yt − ȳ+)(yt−s − ȳ−)
∑n

t=s+1(yt−s − ȳ−)2 = β +
∑n

t=s+1(ut − ū+)(yt−s − ȳ−)
∑n

t=s+1(yt−s − ȳ−)2 , (5)

where

ȳ+ =
1

n− s

n

∑
t=s+1

yt, and ȳ− =
1

n− s

n

∑
t=s+1

yt−s.

By the second equality in (5) it is clear that the LSE, like the LPE, can be decomposed into two
parts: the true (unknown) value β and a stochastic remainder term, indicating that β̂LS may
be asymptotically biased. For instance, if the errors ut are serially correlated.

Table 1 shows simulation results for various specifications of µt, σt and εt in (3). The as-
sumptions of Theorem 1 are satisfied for all of these specifications, hence, the LPE (but not
necessarily the LSE) is consistent for β. Our simulations try to answer two questions: First,
how well does the LPE perform when the estimated model is misspecified? Second, how well
does a traditional estimator, the LSE, perform by comparison? We report the empirical bias
and mean squared error (MSE) of the LPE and LSE based on 1 000 000 simulated samples for
different sample sizes n. Each table entry is rounded to three decimal places. All the reported
experiments share a common initial state of the generator for pseudo-random number gen-
eration, use initial values y1 = ∑100 000

i=0 βiu1−is as an approximation of ∑∞
i=0 βiu1−is, and were

carried out using Matlab. The initial values µs+1 and σs+1 for the experiments in sections
3.2.1, 3.2.4 and 3.3.1.–3.3.2 were obtained similarly.11

3.1. I.I.D. Errors. Panels A–H of Table 1 report simulation results when the errors ut in (3) are
independent, identically distributed. In all eight experiments, the bias and MSE of the LPE
is quite reasonable. The LSE also performs reasonably well, but often has a larger bias and a
much larger MSE.

10Sample paths of some of the processes considered in this study and additional supporting simulation results
can be found in Section 2 of the EA.
11Matlab code for the Monte Carlo experiments of this section is available through the authors webpage at
http://www.researchgate.net\profile\Daniel Preve.

http://www.researchgate.net/profile/Daniel_Preve
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3.1.1. Light-Tailed Errors. The LPE can be comparatively accurate also when there is no model
misspecification (i.e. when model and DGP coincide). To illustrate this, we first consider three
different light-tailed distributions for the errors. Panels A–C report simulation results when
yt = 0.5yt−1 + ut and the ut are i.i.d. uniform, exponential, and Weibull.12 In all experiments
the estimated model is an AR(1). In the first experiment (Panel A) the error at time t has a
standard uniform distribution. Here the distribution of yt conditional on yt−1 is also uniform.
In the second experiment (Panel B) the errors are standard exponential, and in the third (Panel
C) Weibull distributed with scale parameter 1 and shape parameter 2. The simulation results
show that the accuracy of the LPE can be quite remarkable. For example, when n = 25 and
the errors are exponentially distributed the results are close to those expected by the limit
theory. The magnitudes of the bias and MSE of the LSE on the other hand are nearly 5 and 40

times as large, respectively.

3.1.2. Heavy-Tailed Errors. Panels D–E report simulation results when yt = 0.5yt−1 + ut and
the ut are i.i.d. Pareto and Lévy, respectively.13 In both experiments the estimated model is an
AR(1). In the first experiment (Panel D) the error is Pareto distributed with scale parameter
1 and shape parameter 1.25 and, hence, with support [1, ∞). The Pareto distribution is one
of the simplest distributions with heavy-tails. Here the errors have finite mean, 5, but infinite
variance. In the second experiment (Panel E) the error is Lévy distributed with location
parameter 0 and scale parameter 1.14 The Lévy distribution is a member of the class of stable
distributions, that allow for asymmetry and heavy-tails. Here the errors have infinite mean
(but finite median) and variance. AR(MA) processes with infinite variance have been used by
Fama (1965) and others to model stock market prices. See also Ling (2005), Andrews et al.
(2009), and Andrews and Davis (2013). The simulation results show that LPE performs well,
particularly in small samples. The bias and MSE of the LSE on the other hand can be severe
even in moderate samples, as illustrated in Panel E.

3.1.3. Seasonal Autoregression. Panels F–H report simulation results when yt = βyt−4 + ut, the
AR parameter β = 0.25, 0.5, 0.75, the errors ut are i.i.d. Weibull with scale parameter 1 and
shape parameter 2, and the (correctly specified) estimated model is a SARMA(0,0)×(1,0)4.15

These three experiments illustrate that the bias and MSE of the LPE for a fixed n, viewed as
a function of β, is stochastically decreasing in the AR parameter. It can be shown that this
property holds under fairly general conditions on f in Assumption 2.16

3.2. Serially Correlated Errors. Panels I–N of Table 1 report simulation results when yt =
βyt−1 + ut, and the ut are serially correlated. In all six experiments the estimated model is an
AR(1). To investigate the sensitivity of the LPE to serially correlated errors, we consider four
different specifications for ut: a multiplicative specification belonging to the MEM family of

12Nonnegative first-order autoregressions with uniformly distributed errors have been considered by Nouali and
Fellag (2005) and Bell and Smith (1986), and with exponential errors by Nielsen and Shephard (2003), among
others. Exponential and Weibull errors are popular in the autoregressive conditional duration (ACD) literature
initiated by Engle and Russell (1998).
13Pareto and Lévy pseudo-random numbers were generated using the inversion method and via Problem 1.17 in
Nolan (2015), respectively.
14Cf. Corollary 1 in the EA.
15More generally, it is not difficult to show that (Proposition 3 in the EA) the LPE in (4) can consistently estimate
the AR parameter of a nonnegative covariance stationary SARMA(0,q)×(1,Q)4 process under the assumptions of
Theorem 1.
16See Proposition 4 in the EA.
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Engle (2002), a MA specification, a nonlinear specification, and an omitted variables specifica-
tion. In all experiments the bias and MSE of the LPE vanishes rather quickly. In contrast, the
bias of the LSE does not vanish and its MSE is quite substantial even for large samples.17

3.2.1. MEM Errors. First we consider the multiplicative error specification

ut = σtεt

σt = α0 +
q

∑
i=1

αiut−i +
p

∑
j=1

β jσt−j, t = 0,±1,±2, . . .

with i.i.d. εt, that is, a MEM(p,q). Here µt in Assumption 3 is zero for all t and m is also zero.
This specification has the same structure as the ACD model of Engle and Russell (1998) for
trade durations. Panel I reports simulation results for the case p = q = 1. The DGP is

yt = 0.5yt−1 + σtεt, σt = α0 + α1σt−1εt−1 + β1σt−1,

with independent identically beta distributed εt (beta distributed with both shape parameters
equal to 2 and, hence, with about 0.5 symmetric common density), and α1 = 0.2, β1 = 0.75,
α0 = 1− α1 − β1. For these values of α1, β1 and α0 the autocorrelation function of {ut} decays
slowly (cf. Bauwens and Giot, 2000, p. 124). It can be shown that Assumption 4 is satisfied for
this case with µ = 0, σ = 0.2 and σ = 1.

3.2.2. MA Errors. Next we consider the linear m-dependent error specification

ut = εt = εt +
q

∑
i=1

ψiεt−i, t = 0,±1,±2, . . .

with i.i.d. εt, that is, a MA(q). Here µt = 0, σt = 1 and m = q. Panels J–K report simulation
results for this case, which may be considered as a basic omitted variables specification, with
q = 1, 2.18 The DGPs for panels J and K are

yt = 0.75yt−1 + εt+0.75εt−1, and yt = 0.75yt−1 + εt+0.75εt−1 + 0.5εt−2,

respectively, where the εt are i.i.d. inverse Gaussian with mean and variance both equal to 1.
The inverse Gaussian distribution (Seshadri, 1993) has previously been considered by Abra-
ham and Balakrishna (1999) for the error term in a nonnegative first-order autoregression.
Although the LPE is strongly consistent in this case whenever q is finite, extended simulations
not reported in the note indicate that its convergence can be slow for large values of q.

3.2.3. Nonlinear Specification. The third specification we consider is a nonlinear m-dependent
error specification

ut = εt = εt +
m

∑
i=1

ψiεtεt−i,

with i.i.d. εt. Panels L–M report simulation results for this case, with m = 1, 2. The DGPs for
panels L and M are

yt = 0.5yt−1 + εt+0.75εtεt−1, and yt = 0.5yt−1 + εt+0.75εtεt−1 + 0.5εtεt−2,

respecively, where the εt are i.i.d. inverse Gaussian with mean and variance both equal to 1.

17Recall that the variance of an estimator is equal to the difference of its MSE and its squared bias.
18For example, finite sums of finite-order MA processes driven by i.i.d. disturbances are m-dependent.
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3.2.4. Omitted Variables. Last we consider the linear error specification

ut = µt + εt

µt =
p

∑
i=1

αiµt−i + εt, t = 0,±1,±2, . . .

with i.i.d. εt. Here the pth-order AR specification for µt may be considered to represent one
or more omitted variables, σt = 1, and m = 0. Panel N reports simulation results for the case
p = 1. The DGP is

yt = 0.75yt−1+µt + εt, µt = 0.25µt−1 + εt,

with standard exponential εt (mean and variance both equal to 1) and i.i.d. on (0, 25) uniform
εt, mutually independent of the εt. It is not difficult to show that Assumption 4 is satisfied for
this case with µ = 100/3 and σ = σ = 1.

3.3. Structural Breaks. Finally we investigate the sensitivity of the LPE to an unknown num-
ber of unknown breaks in the mean. This is of interest as such structural breaks are well
known to be able to reproduce the slow decay frequently observed in the sample autocorrela-
tions of financial variables such as volatility proxies and absolute stock returns. The simulation
results are reported in Panels O–P of Table 1. In both experiments the estimated model is an
AR(1). Once again the bias and MSE of the LPE vanishes rather quickly, whereas the bias of
the LSE does not vanish and its MSE is quite substantial even for large samples.

3.3.1. Random Breakdates. An autoregression with b ≥ 1 structural breaks in the sample and
breakdates n1 < · · · < nb can be specified using

µt =
b−1

∑
i=1

αi1{ni<t≤ni+1} + αb1{t>nb},

where 1{·} is the indicator function. Panel O reports simulation results for a nonnegative
autoregression with b = 2 structural breaks in the sample and random breakdates n1 < n2.
The DGP is

yt = 0.5yt−1 + α11{n1<t≤n2} + α21{t>n2} + εt,

with α1 = 2.3543, α2 = α1/2, and i.i.d. truncated normal εt (normal distribution with mean
2.3263 and variance 1, truncated at zero).19 The random breakdate n1 has a discrete uniform
distribution on {1, . . . , n− 2}, and the on n1 conditional distribution of n2 is discrete uniform
on {n1 + 1, . . . , n− 1}.20

3.3.2. Random Breakdates & Occasional Jumps. Alternatively, we can specify an autoregression
with b structural breaks using

σt = 1{t≤n1} +
b−1

∑
i=1

αi1{ni<t≤ni+1} + αb1{t>nb},

and multiplicative errors ut = σtεt. We can further allow for jumps by letting the i.i.d. εt have
a k-component mixture distribution, with each component representing a different jump size

19Here µt = α11{n1<t≤n2} + α21{t>n2}, σt = 1 and m = 0. Other types of breaks are considered in the EA.
20Note that the results for different sample sizes are not directly comparable for this (and the following) experi-
ment, as the supports for the breakdate variables involve n.
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(e.g. small, medium, large). Panel P report simulation results for a nonnegative autoregression
with b = 5 structural breaks in the sample and random breakdates n1 < · · · < n5. The DGP is

yt = βyt−1 +

(
1{t≤n1} +

4

∑
i=1

αi1{ni<t≤ni+1} + α51{t>n5}

)
εt,

with i.i.d. εt having a 2-component lognormal mixture distribution. Once more, the condi-
tional distribution of the breakdate ni is discrete uniform. For this experiment, the parameters
of the DGP were calibrated using the S&P 500 realized kernel data considered in Section 4.
Figures 1b and 1c show that this fairly simple process is able to reproduce some of the features
of the S&P 500 data.

4. Empirical Results

This section reports the results of a small scale empirical study employing the LPE. The pur-
pose of the study is twofold: First, it illustrates how the robustness of the LPE can be capi-
talized on to estimate and forecast a simple semiparametric model in an environment where
traditional estimators, like the LSE, are likely to be inconsistent. The model combines a para-
metric component, taking into account the most recent observation, with a nonparametric
component - forecasted by a moving median similar to the moving averages frequently used
in technical analysis, taking into account possible omitted variables, measurement errors and
structural breaks. Second, it also illustrates that volatility proxy forecasts of a parsimonious
(single parameter) model estimated by the LPE can be at least as accurate as those of a rather
involved (multiple parameter) ARFIMA benchmark model. The ARFIMA is probably the
most commonly used model for forecasting volatility proxies. See, for example, Andersen et
al. (2003), Koopman et al. (2005), Lanne (2006), Corsi (2009) and the references therein.

We use a volatility proxy to model and forecast latent daily return volatility of three major
stock market indexes. The Standard & Poor’s 500 (S&P 500), the NASDAQ-100, and the Dow
Jones Industrial Average (DJIA). We employ the LPE as the observable process is nonnega-
tive, persistent and likely to be nonlinear (changes in index components) with measurement
errors.21 Also, the LPE of β avoids the need for estimating potential additional parameters,
which may prove useful. Two models are considered: a simple nonnegative, semiparametric,
autoregressive (NNAR) model and a parametric benchmark model.

Following Andersen et al. (2003), we use a fractionally-integrated long-memory Gaussian
autoregression of order five (corresponding to five days or one trading week) for the daily
logarithmic volatility proxy as our benchmark model. We use the realized kernel (RK) of
Barndorff-Nielsen et al. (2008) as a volatility proxy for latent volatility. This proxy is known
to be robust to certain types of market microstructure noise. Daily RK data over the period
3 January 2000 through 3 June 2014 for the three assets was obtained from the Oxford-Man
Institute’s Realized Library v0.2 (Heber et al., 2009). Figure 1a shows the S&P 500 data, which
will be used for illustration in the remainder of this section.

We estimate the ARFIMA(5,d,0) for log-RK using the Ox language of Doornik (2009) and
compute bias corrected forecasts for raw RK, due to the data transformation (Granger and

21If the observable process {yt} is a noisy proxy for an underlying latent process {xt} then measurement errors
will influence the dynamics of {yt} and may conceal the persistence of {xt}. In this case the robustness properties
of the LPE can be useful. Consider Example 1 in Hansen and Lunde (2014) for illustration: With a slightly
different notation, the latent variable is xt = βxt−1 + (1 − β)δ + vt and the observable noisy, possibly biased,
proxy is yt = xt + ξ + wt. Thus yt = βyt−1 + ut, where ut = (1− β)(δ + ξ) + vt + wt − βwt−1. Here the LPE
consistently estimates β, the persistence parameter, under suitable conditions for the supports of the independent
zero-mean disturbances vt and wt (ensuring that {xt} and {yt} both are nonnegative processes) when 0 < β < 1
and the bias ξ is positive. The LSE of β, however, is inconsistent (Hansen and Lunde, 2014).
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(Lévy)

PanelF
(SA

R
M

A
,

β
=

0.25)
PanelG

(SA
R

M
A

,
β
=

0.5)
PanelH

(SA
R

M
A

,
β
=

0.75)

25
0.003

0.000
−

517.081
1.491×

10
11

0.149
0.028

−
0.065

0.050
0.103

0.013
−

0.085
0.049

0.053
0.004

−
0.091

0.042
50

0.001
0.000

254.149
1.237×

10
11

0.101
0.013

−
0.035

0.021
0.070

0.006
−

0.048
0.020

0.036
0.002

−
0.056

0.016
100

0.000
0.000

−
97.272

5.013×
10

9
0.071

0.006
−

0.018
0.010

0.048
0.003

−
0.025

0.009
0.025

0.001
−

0.031
0.006

200
0.000

0.000
−

6.934
2.131×

10
7

0.050
0.003

−
0.009

0.005
0.034

0.002
−

0.012
0.004

0.017
0.000

−
0.016

0.003
400

0.000
0.000

−
1.524

2.336×
10

6
0.035

0.002
−

0.004
0.002

0.024
0.001

−
0.006

0.002
0.012

0.000
−

0.008
0.001

800
0.000

0.000
−

0.003
58.263

0.025
0.001

−
0.002

0.001
0.017

0.000
−

0.003
0.001

0.009
0.000

−
0.004

0.001
1600

0.000
0.000

−
0.008

42.893
0.017

0.000
−

0.001
0.001

0.012
0.000

−
0.002

0.001
0.006

0.000
−

0.002
0.000

PanelI(M
EM

(1,1))
PanelJ(M

A
(1))

PanelK
(M

A
(2))

PanelL
(nonlinear

I)

25
0.104

0.014
−

0.020
0.037

0.066
0.005

0.043
0.013

0.089
0.009

0.100
0.019

0.072
0.006

0.081
0.030

50
0.073

0.007
0.054

0.020
0.053

0.003
0.084

0.011
0.074

0.006
0.132

0.020
0.055

0.003
0.126

0.026
100

0.052
0.003

0.094
0.017

0.045
0.002

0.103
0.012

0.063
0.004

0.147
0.023

0.043
0.002

0.151
0.027

200
0.036

0.002
0.114

0.017
0.038

0.002
0.113

0.013
0.054

0.003
0.154

0.024
0.034

0.001
0.164

0.029
400

0.026
0.001

0.124
0.017

0.033
0.001

0.117
0.014

0.048
0.002

0.158
0.025

0.027
0.001

0.171
0.031

800
0.018

0.000
0.130

0.018
0.028

0.001
0.120

0.015
0.042

0.002
0.160

0.026
0.023

0.001
0.175

0.031
1600

0.013
0.000

0.132
0.018

0.025
0.001

0.121
0.015

0.037
0.001

0.161
0.026

0.019
0.000

0.177
0.032

PanelM
(nonlinear

II)
PanelN

(om
itted

variables)
PanelO

(breaks)
PanelP

(breaks
&

jum
ps)

25
0.078

0.007
0.104

0.035
0.074

0.006
−

0.022
0.020

0.170
0.036

0.201
0.064

0.080
0.009

0.123
0.057

50
0.061

0.004
0.154

0.033
0.062

0.004
0.038

0.008
0.127

0.022
0.257

0.080
0.069

0.006
0.189

0.072
100

0.049
0.003

0.180
0.037

0.052
0.003

0.066
0.007

0.092
0.013

0.285
0.091

0.058
0.004

0.225
0.081

200
0.040

0.002
0.194

0.040
0.044

0.002
0.079

0.007
0.063

0.007
0.299

0.098
0.048

0.003
0.244

0.085
400

0.033
0.001

0.202
0.042

0.038
0.002

0.085
0.008

0.042
0.004

0.306
0.101

0.039
0.002

0.253
0.085

800
0.028

0.001
0.207

0.043
0.033

0.001
0.088

0.008
0.027

0.002
0.310

0.103
0.032

0.001
0.257

0.084
1600

0.024
0.001

0.209
0.044

0.029
0.001

0.090
0.008

0.016
0.001

0.312
0.104

0.026
0.001

0.259
0.082



LINEAR PROGRAMMING-BASED ESTIMATORS IN NONNEGATIVE AUTOREGRESSION December 10, 2015 11

1
50
0

10
00

15
00

20
00

25
00

30
00

35
00

0

0.
00
2

0.
00
4

0.
00
6

0.
00
8

0.
01

RK

t

−1
4

−1
2

−1
0

−8−6−4

log−RK

(a
)

D
ai

ly
S&

P
5

0
0

re
al

iz
ed

ke
rn

el
(R

K
,

so
lid

lin
e)

an
d

lo
ga

ri
th

m
ic

re
al

iz
ed

ke
rn

el
(l

og
-R

K
,d

as
he

d
lin

e)
.

1
50
0

10
00

15
00

20
00

25
00

30
00

35
00

0

0.
00
2

0.
00
4

0.
00
6

0.
00
8

0.
01

t

012345

σt

(b
)

Sa
m

pl
e

pa
th

of
a

no
nn

eg
at

iv
e

au
to

re
gr

es
si

on
(s

ol
id

lin
e)

,w
it

h
pa

ra
m

et
er

s
ca

lib
ra

te
d

to
th

e
S&

P
5

0
0

R
K

da
ta

,a
nd

it
s

st
ru

ct
ur

al
br

ea
ks

(d
as

he
d

lin
e)

.

0
0.

2
0.

4
0.

6
0.

8
1

1.
2

x 
10

−3

0

20
00

40
00

60
00

80
00 (c
)

K
er

ne
l

de
ns

it
y

es
ti

m
at

e
(s

ol
id

lin
e)

an
d

fit
te

d
tw

o
co

m
po

ne
nt

,l
og

no
rm

al
m

ix
tu

re
de

ns
it

y
(d

as
he

d
lin

e)
fo

r
th

e
LP

E
re

si
du

al
s

of
th

e
in

it
ia

ls
am

pl
e

us
ed

in
th

e
S&

P
5

0
0

R
K

fo
re

ca
st

in
g

ex
er

ci
se

.

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0
−0

.20

0.
2

0.
4

0.
6

0.
8

La
g

Sample Autocorrelation (d
)S

am
pl

e
au

to
co

rr
el

at
io

ns
fo

r
th

e
S&

P
5

0
0

R
K

da
ta

in
Fi

gu
re

1
a

(d
as

he
d

lin
e)

an
d

th
e

as
so

ci
at

ed
si

m
ul

at
ed

da
ta

in
Fi

gu
re

1
b

(s
ol

id
lin

e)
.

Fi
g

u
r

e
1
.

R
es

ul
ts

fo
r

th
e

da
ily

S&
P

5
0

0
re

al
iz

ed
ke

rn
el

da
ta

.



12 DANIEL P. A. PREVE

Newbold, 1986, p. 311). We fit the NNAR model yt = βyt−1 + ut using the LPE and calculate
the, by construction, nonnegative LP residuals

ût = yt − β̂LPyt−1.

Ideally, we want to allow for an unknown number of unknown breaks in the mean as such
structural breaks are able to reproduce the slow decay observed in the sample autocorrelations
of volatility proxies (cf. Section 3.3). Due to the robustness of the LPE, simple semiparametric
forecasts in the presence of breaks can be obtained by applying a one-sided moving average, or
moving median, to the LP residuals. Motivated by the five trading days ARFIMA specification,
and the several large observations in the sample, as a simple one-day-ahead semiparametric
forecast we take

ŷn+1|n = β̂LPyn + ũn,
where ũn is the sample median of the last five LP residuals.

For the S&P 500 data, we use the period Jan 3, 2000–Dec 31, 2003 (985 observations) to
initialize the forecasts, and the remaining 2612 observations to compare the forecasts. We use
the recursive scheme, where the size of the sample used for parameter estimation grows as we
make forecasts for successive observations.

Table 2. Forecasting performance (one-day-ahead forecasts).

S&P 500 NASDAQ-100 DJIA

Model MSE QLIKE MSE QLIKE MSE QLIKE

Log-ARFIMA(5,d,0) 4.573× 10−8 −8.676 1.863× 10−8 −8.699 4.483× 10−8 −8.671

NNAR 4.434× 10−8 −8.639 1.853× 10−8 −8.676 4.548× 10−8 −8.627

We consider MSE and QLIKE as these loss functions are known to be robust to the use of
noisy volatility proxies (Patton and Sheppard, 2009; Patton, 2011). The results for the three
assets are shown in Table 2. One might, of course, also wonder if the observed differences
under MSE and QLIKE in Table 2 are statistically significant or not. One way to address this
question is to employ the Diebold and Mariano (1995, DM) test for equal predictive accuracy.
For the S&P 500 data, the DM t-statistics under MSE and QLIKE loss are −0.009 and 0.148,
respectively, indicating that the two models have equal predictive accuracy.22 The results for
NASDAQ-100 and DJIA are similar.23

5. Conclusions and Future Work

The focus in this note is on robust estimation of the AR parameter in a nonlinear, nonnegative
AR model driven by nonnegative errors using a LPE or QMLE. In the previous literature the
errors are assumed to be i.i.d.. Many times this assumption may be considered too restric-
tive and one would like to relax it. In this note, we relax the i.i.d. assumption significantly

22We could, of course, also fit one or more parametric models to the LP residuals. For example the MEM model
considered in Section 3, or a nonnegative MA model (Feigin et al., 1996). For the case with three or more forecasting
models a multivariate version of the DM test can be used (Mariano and Preve, 2012). Here we restrict ourselves to
two models for simplicity.
23Specifically, the DM t-statistics under MSE and QLIKE loss are −0.002 and 0.129 for NASDAQ-100, and 0.010
and 0.133 for DJIA. We emphasize that the purpose of the study is not to advocate the superiority of the NNAR
model, but rather to illustrate that its forecasting performance, presumably due to the robustness of the LPE, can
match that of a commonly used benchmark model.
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by allowing for serially correlated, heterogeneously distributed, heavy-tailed errors and give
simple conditions under which the LPE is strongly consistent for these types of model mis-
specifications. In doing so, we also briefly review the literature on LP-based estimators in
nonnegative autoregression. Because of its robustness properties, the LPE can be used to seek
sources of misspecification in the errors of the estimated model and to isolate certain trend,
seasonal or cyclical components. In addition, the observed difference between the LPE and
a traditional estimator, like the LSE, can form the basis of a test for model misspecification.
Our simulation results show that the LPE can have very reasonable finite-sample properties,
and that it can be a strong alternative to the LSE when a purely autoregressive process cannot
satisfactorily describe the data generating process. Extended simulations not reported in the
note indicate that the LPE works best when the probability that εt in Assumption 3 is near
zero (cf. the first condition of Theorem 1), or is relatively large (cf. the second condition of
Theorem 1), is not close to zero. Our empirical study used a nonnegative semiparametric au-
toregressive model, estimated by the LPE, to successfully forecast latent daily return volatility
of three major stock market indexes.

Some extensions may also be possible. First, a natural question is whether the established
robustness generalizes to the LP estimators for extended nonnegative autoregressions de-
scribed in Feigin and Resnick (1994) and Datta et al. (1998). Second, it would be interesting to
see if the results of the note generalize to the multivariate setting described in Anděl (1992).
These extensions will be explored in later studies.

APPENDIX

The following lemmas are applied in the proof of Theorem 1.

Lemma 1. Under assumptions 1–2, Rn
p→ 0⇒ β̂n

a.s.−→ β.

Proof. We will use that β̂n converges almost surely to β if and only if for every ε > 0,
limn→∞ P(|β̂k − β| < ε; k ≥ n) = 1 (Lemma 1 in Ferguson, 1996). Let ε > 0 be arbitrary.
Then,

P(|β̂k − β| < ε; k ≥ n) = P(|Rk| < ε; k ≥ n) = P(|Rn| < ε)→ 1 as n→ ∞.

The last equality follows since the sequence {Rk} of nonnegative random variables is stochas-
tically decreasing, and the limit since Rn

p→ 0 by assumption. �

Lemma 2. Under assumptions 1–2,

ylr+s ≥ (cβ)lys +
l−1

∑
j=0

(cβ)ju(l−j)r+s

for l = 1, 2, . . . (a.s.).

Proof. We proceed with a proof by induction. By Assumption 1, with t = r + s,

yr+s = β f (yr+s−1, . . . , yr) + ur+s. (6)

By Assumption 2, with x1 = y(r+s)−1, . . . , xr = y(r+s)−r, . . . , xs = y(r+s)−s,

f (yr+s−1, . . . , ys, . . . , yr) ≥ cys. (7)

Equations (6) and (7) together imply that

yr+s ≥ cβys + ur+s.



14 DANIEL P. A. PREVE

Hence the assertion is true for l = 1. Suppose it is true for some positive integer k. Then, for
k + 1

y(k+1)r+s = β f (y(k+1)r+s−1, . . . , ykr+s, . . . , y(k+1)r) + u(k+1)r+s ≥ cβykr+s + u(k+1)r+s

≥ (cβ)k+1ys +
k

∑
j=0

(cβ)ju(k+1−j)r+s,

where the last inequality follows by the induction assumption. �

Lemma 3. Let v and w be i.i.d. nonnegative continuous random variables. Then the following two
statements are equivalent:

(i) P(v > εw) = 1 for some ε > 0,
(ii) there exist c1 and c2, 0 < c1 < c2 < ∞, such that P(c1 < v < c2) = 1.

Proof. See p. 2291 in Bell and Smith (1986). �

Lemma 4. Let v and w be i.i.d. nonnegative continuous random variables, and let κ > 0. Then the
following two statements are equivalent:

(i) P(κ + v > εw) = 1 for some ε > 0,
(ii) there exists c3, 0 < c3 < ∞, such that P(v < c3) = 1.

Proof. If (i) holds, a geometric argument shows that

0 = P(w ≥ κ+v
ε ) ≥ P(κ + v ≤ δ, w > δ

ε )

for any δ > 0. By independence it follows that

P(κ + v ≤ δ)P(w > δ
ε ) = 0. (8)

Clearly there exists some δ0 > 0 such that P(κ + v ≤ δ0) > 0. By (8) we then must have

P(w > δ0
ε ) = 0.

Since v and w are identically distributed we can take c3 = δ0/ε. Conversely, if (ii) holds
P(εw < εc3) = 1 for all ε > 0. At the same time P(κ + v > κ) = 1. Hence, P(κ + v > εw) = 1
for all 0 < ε < κ/c3. �

Proof of Theorem 1. In view of Lemma 1 it is sufficient to show that Rn
p→ 0 as the sample

size n tends to infinity. Let ε > 0 be given. By a series of inequalities, we will establish an
upper bound for P(|Rn| > ε) and then show that this bound tends to zero as n→ ∞. For ease
of exposition, let k = 2(m + 1)r where m is as in Assumption 3. We begin by noting that for
n ≥ k(s + 1) + r + s

P(|Rn| > ε) = P(Rn > ε) = P(ut > ε f (yt−1, . . . , yt−s); t = s + 1, . . . , n)

≤ P(uki+r+s > ε f (yki+r+s−1, . . . , yki+r); i = s + 1, . . . , N),

where N is the integer part of (n− r− s)/k. Here the first equality follows as Rn is nonnegative
a.s. under assumptions 1–2. Apparently, s + 1 ≤ N < n and tends to infinity as n → ∞. Let
l = ki/r. By Assumption 2 and Lemma 2, respectively,

f (ylr+r+s−1, . . . , ylr+s, . . . , ylr+r) ≥ cylr+s

≥ cl+1βlys +
l−1

∑
j=0

cj+1βju(l−j)r+s

≥ cj+1βju(l−j)r+s,
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for each j ∈ {0, . . . , l − 1}. Hence, for j = m it is readily verified that

P(|Rn| > ε) ≤ P(uki+r+s > εcm+1βmuki−mr+s; i = s + 1, . . . , N).

By assumptions 3 and 4, respectively,

P(|Rn| > ε) ≤ P(uki+r+s > εcm+1βmuki−mr+s; i = s + 1, . . . , N)

= P(µki+r+s + σki+r+sεki+r+s > εcm+1βmµki−mr+s + εcm+1βmσki−mr+sεki−mr+s; i = s + 1, . . . , N)

≤ P(µki+r+s + σki+r+sεki+r+s > εcm+1βmσki−mr+sεki−mr+s; i = s + 1, . . . , N)

≤ P(µ + σki+r+sεki+r+s > εcm+1βmσki−mr+sεki−mr+s; i = s + 1, . . . , N).

Moreover, by assumption 4,

P(|Rn| > ε) ≤ P(µ + σki+r+sεki+r+s > εcm+1βmσki−mr+sεki−mr+s; i = s + 1, . . . , N)

= P(µ/σki+r+s + εki+r+s > εcm+1βm(σki−mr+s/σki+r+s)εki−mr+s; i = s + 1, . . . , N)

≤ P(κ + εki+r+s > εεki−mr+s; i = s + 1, . . . , N),

where κ = µ/σ and ε = εcm+1βm(σ/σ). We first consider case (i) of the theorem. Since µt = 0
for all t we can take µ = 0, which gives κ = 0 and

P(|Rn| > ε) ≤ P(εki+r+s > εεki−mr+s; i = s + 1, . . . , N).

Since the sequence εs+1, . . . , εn of errors is m-dependent, εt and εt+k are pairwise independent
for all k > m. Let ξi = εki+r+s/εki−mr+s. Then ξs+1, . . . , ξN is a sequence of i.i.d. random
variables, for which the numerator and denominator of each ξi are pairwise independent, and
hence

P(|Rn| > ε) ≤ P(ξs+1 > ε)× · · · × P(ξN > ε) = P(εk(s+1)+r+s > εεk(s+1)−mr+s)
N−s.

In view of Lemma 3 and the limiting behavior of N this implies that P(|Rn| > ε) → 0 as
n → ∞. Since ε > 0 was arbitrary, Rn converges in probability to zero. Similarly, for case (ii)
where κ > 0 we have that

P(|Rn| > ε) ≤ P(κ + εk(s+1)+r+s > εεk(s+1)−mr+s)
N−s.

In view of Lemma 4 this also implies that Rn converges in probability to zero. �
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