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1 Introduction

Modeling the interest rate term structure is essential in understanding expectations of
risk compensation and the future path of monetary policy. For instance, the affine class
of arbitrage-free term structure models has gained great popularity in both pricing and
predicting future movements of bonds, because of its parsimonious factor structure and
tractability. As a stylized fact, the predictability of bond returns is widely recognized
in Fama and Bliss (1987), Cochrane and Piazzesi (2005), Sarno, Thornton and Valente
(2007) and Ludvigson and Ng (2009). The traditional Expectations Hypothesis (EH)
has been strongly rejected statistically and therefore, the term premia should be time-
varying.1 Accurate term premium predictions should be useful for portfolio optimization,
as it guides a mean-variance investor to making a tradeoff between expected returns and
the volatility of the portfolio.

Surprisingly, significant predictability in expected bond returns cannot be translated
into large economic gains, as suggested by Della Corte, Sarno and Thornton (2008),
Thornton and Valente (2012) and Sarno, Schneider and Wagner (2014). They reach the
conclusion that when compared with a EH investor, the investor using alternative predic-
tion models with statistical significance cannot improve economic utility. The seemingly
contradictory evidence in this literature is indeed puzzling. Seeking to resolve this puzzle
with those findings, Gargano, Pettenuzzo and Timmermann (2014) allow for parameter
and model uncertainty. However, the resolution to the puzzle is far from perfect and
further research is required. To resolve the economic value puzzle, it is necessary to un-
derstand the uncertainty in the predictability and, moreover, to consider various sources
of uncertainty when making the optimal portfolio choice.

This issue is revisited by taking account of both parameter and model uncertainty. We
propose a flexible term structure model which includes time-varying coefficients, stochas-
tic volatility and dynamic model selection. These features are sensible in an agent’s
pricing and forecasting problem because parameters and models are uncertain without
sufficient data. Like an econometrician, the agent needs to learn about the evolution of
the state of the economy (Cagetti et al. (2002) and Hansen (2007)). These features can
be formalized in an affine model to accommodate structural changes, where the learning
speed or ‘gain’ is specified.2

1A weak form of EH requires the term premia to be a constant, which implies that expected excess
bond returns should not be predictable.

2As shown in Evans and Honkapohja (2001), this framework provides an expectationally stable solu-
tion as long as the gain parameter is sufficiently small.
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The seminal contribution of Timmermann (1993, 1996) studies the implications of
learning in explaining the volatility and predictability of asset returns. There is sub-
stantial literature employing learning to explain a range of financial market anomalies.
Specifically, Piazzesi and Schneider (2007) and Collin-Dufresne, Johannes and Lochstoer
(2013) examine the implications of learning in a preference-based asset pricing frame-
work, and they show that learning can explain standard puzzles in bond yields. Using a
reduced-form pricing kernel, Kozicki and Tinsley (2001) and Dewachter and Lyrio (2008)
study the learning problem in which agents continuously update their beliefs regarding
the central bank’s policy targets, but they only allow for time variations of the drift pa-
rameter. Laubach, Tetlow and Williams (2007), Orphanides and Wei (2012) and Cieslak
and Povala (2014) relax the assumptions about the potential sources of structural insta-
bility and allow for updating beliefs of all model parameters. A common practice is to use
macro variables as pricing factors, which may cause undesired mispricing as indicated by
Anh and Joslin (2013). To avoid the potential mispricing problem and increase predictive
power, in this paper we consider portfolios as risk factors, similar to the learning model
of Giacoletti, Laursen and Singleton (2014).3

However, learning does not guarantee the convergence of agents’ heterogeneous be-
liefs. Bond yields are highly persistent, and Kurz (1994) suggests that if the economic
system is close to nonstationary, limited data would make it difficult for rational investors
to identify the correct model from alternative ones. Model uncertainty can arise from
the imposition of restrictions related to model identification. In order to increase fore-
cast performance, researchers impose over-identifying restrictions motivated statistically
or economically, see for example, Christensen, Diebold and Rudebusch (2011), Duffee
and Stanton (2012) and Joslin, Priebsch and Singleton (2014). The economic dynam-
ics are ambiguous with undetermined restrictions and therefore, statistical methods are
employed to determine the optimal specification. Joslin, Priebsch and Singleton (2014)
and Jotikasthira, Le and Lundblad (2015) choose restrictions based on the Bayesian In-
formation Criterion (BIC), while Bauer (2015) uses Bayesian model averaging method
to calculate the weighted average across specifications for robust inference. The above
model selections are conducted with full-sample data, and a real-time dynamic model
selection is desirable in the topic of interest rate forecasting. In stock return predictions,
Cremers (2002) and Avramov (2002) have shown that allowing investors to dynamically

3Giacoletti, Laursen and Singleton (2014) incorporate macro information in the setup of unspanned
macro risks proposed by Joslin, Priebsch and Singleton (2014), where the prices of risk can depend on
both latent factors (portfolios) and macro variables.
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select between different models is useful to control for the data snooping problem and
can increase out-of-sample predictability. More recent studies, for instance, Dangl and
Halling (2012), Johannes, Korteweg and Polson (2013) and Gargano, Pettenuzzo and
Timmermann (2014) adopt Bayesian approaches to accommodate model uncertainty in
stock and bond return forecasts. In this paper, we adopt the same framework as Dangl
and Halling (2012) to conduct a real-time Bayesian model selection, explicitly exploring
model uncertainty in term structure modeling.

Uncertainty in parameters and models is not explicitly priced in classical term struc-
ture models, but a sophisticated investor should be aware of the uncertainty when making
investment decisions. Pástor and Stambaugh (1999, 2000) investigate how the uncertainty
in parameters or models changes the way we make portfolio decisions.4 Investors prefer
known risks over unknown risks, so Uppal and Wang (2003) introduce an important ex-
tension to allow for ambiguity aversion. While most of the related research focuses on the
portfolio allocation of stocks, very few recent papers have approached the topic of bond
returns.5 In order to close this gap, we consider a generalized framework with ambiguity
aversion that nests the case of ordinary risk-averse investors, following and extending
Garlappi, Uppal and Wang (2007).

This paper builds upon the work of Giacoletti, Laursen and Singleton (2014), who
construct a learning framework of arbitrage-free affine term structure models and who
investigate different learning rules in term structure forecasts. We further introduce
model uncertainty in the learning problem, which provides flexibility in selecting the
best restrictions imposed on factor dynamics and the optimal learning gain/speed. More
importantly, this extension allows the analysis of the uncertainty in the predictive perfor-
mance in order to reveal the sources of prediction uncertainty. Our work is also related
to Gargano, Pettenuzzo and Timmermann (2014), who evaluate the economic gains of
models with parameter and model uncertainty, but differs in a way that we consider a
more generalized portfolio allocation problem with ambiguity aversion. In this frame-
work, we explore to what extent investors benefit from ambiguity aversion in addition to
the traditional risk aversion.

4Recent contributions on portfolio choice under uncertainty include Brandt et al. (2005), Avramov
and Chordia (2006), and Rapach, Strauss and Zhou (2009).

5Gagliardini, Porchia and Trojani (2009) and Ulrich (2013) show that considering ambiguity aversion
helps explain the term premia dynamics but they do not explicitly explore the portfolio allocation prob-
lem. Della Corte, Sarno and Thornton (2008), Thornton and Valente (2012) and Sarno, Schneider and
Wagner (2014) study the bond portfolio selection problem for risk-averse investors. Gargano, Pettenuzzo
and Timmermann (2014) evaluate the economic gains by considering parameter and model uncertainty,
but also for risk-averse investors.
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In particular, the proposed learning model nests most of the affine term structure
models with learning, and is flexible in selecting the optimal specification from different
learning speeds and model restrictions. Utilizing our approach we make several contri-
butions to understanding the US bond market from 1961:06 to 2014:10. The first finding
is that the pricing dynamics have not varied much since the 1960s, which is consistent
with Giacoletti, Laursen and Singleton (2014), but we observe large variability in factor
dynamics under the physical measure. The proposed model is promising in forecasting,
as its predictive performance using conditional information is similar to the benchmark
model using full information. By analyzing the sources of predictive uncertainty, it can
be seen that, apart from observational variance, parameter instability is the main driver
of predictive variance. Uncertainty in learning speed or model specification, vis-à-vis
parameter instability, does not generally play an important role.

With respect to asset allocation, we consider both parameter and model uncertainty by
extending the mean-variance framework proposed by Garlappi, Uppal and Wang (2007).
Our ambiguity-averse investor successfully turns the predictability of excess returns im-
plied by the learning model into substantial economic gains, when compared with the
Expectations Hypothesis benchmark. In addition to parameter uncertainty, the con-
sideration of model uncertainty is the key to ensuring success. This finding is robust
compared to different subsample periods, despite that the economic gains can be eroded
during the financial crisis. Therefore, this framework resolves the economic value puzzle
in bond return predictions with the evidence in the previous term structure literature.

The rest of the paper is structured as follows. Section 2 describes the methodology,
the term structure models considered, and the framework with ambiguity aversion for
evaluating the out-of-sample predictability of excess returns. Section 3 outlines the em-
pirical results of the learning model and its out-of-sample portfolio performance, including
discussion about pricing dynamics, physical dynamics and term structure predictability.
Section 4 concludes.

2 Methodology

2.1 A Canonical Gaussian Dynamic Term Structure Model (GDTSM)

We firstly consider an economic environment in which agents value nominal bonds us-
ing the stochastic discount factor or pricing kernel. The one-period pricing kernel or
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stochastic discount factor of an asset is given by

MZ,t+1 = e−rt− 1
2 Λ′ZtΛZt−Λ′Ztε

P
t+1 , (2.1)

where the N × 1 state vector Zt encompasses all risks in the economy, ΛZt is the vector
collecting market prices of risk, and rt is the one-period bond yield. In the absence of
macro risks, Zt is a linear rotation of N × 1 vector of portfolio risk factors Pt.6

Following Joslin, Singleton and Zhu (2011), we specify the pricing kernel in the bond
market. The bond-market-specificMP,t+1, conditional on the information of the priced
risks in the bond market Pt,7 is now given by

MP,t+1 = e−rt− 1
2 Λ′PtΛPt−Λ′Ptε

P
P,t+1 , (2.2)

where the short rate rt is an affine function of Pt,

rt = ρ0P + ρ1P · Pt, (2.3)

and the risks εPP,t+1 are the N innovations from the unconstrained first-order vector-
autoregressive (VAR) model under the physical or historical measure P8

Pt = KP
0P +KP

PPPt−1 +
√

ΣPPεPPt, (2.4)

where εPPt ∼ N(0, IN) and ΣPP is an N ×N nonsingular matrix. We close the model by
specifying the dynamics of Pt under the pricing (risk-neutral) distribution Qt

Pt = KQ
0P +KQ

PPPt−1 +
√

ΣPPεQPt. (2.5)

Under the above assumptions and the absence of arbitrage opportunities, the yield
6Our model can be easily extended to a setup with unspanned macro risks where Zt includes the

information of macroeconomic risk factors Mt in addition to portfolio risk factors Pt.
7Without loss of generality, we rotate the N risk factors to make normalization. Accordingly, Pt

corresponds to the N portfolios of bond yields; for example, P can be the first N principal components
(PCs) of bond yields. Joslin, Singleton and Zhu (2011) show that the rotation is normalized so that the
parameters governing the Q distribution of yields, i.e. (ρ0P , ρ1P ,K

Q
0P ,K

Q
PP) are fully determined by the

parameter set (ΣPP , λ
Q
, rQ∞), where λQ denotes the N -vector of ordered nonzero eigenvalues of KQ

PP and
rQ∞ denotes the long-run mean of rt under Q.

8This representation, which characterizes the dynamics of the full set of N risk factor, can be viewed
as the companion form of a higher-order VAR of the state vector of risk factors.
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on an m-period bond, for any m > 0, is an affine function of Pt,

ymt = AP(m) +BP(m)Pt, (2.6)

where the loadings AP(m) and BP(m) govern the Q distribution of yields.9 The detailed
expressions of the loadings can be found in Appendix A.

The scaled market prices of risk are also affine functions of Pt,

Σ1/2
PPΛP(Pt) = Λ0 + Λ1Pt, (2.7)

where Λ1 = KP
PP −K

Q
PP is an N ×N matrix and Λ0 = KP

0P −K
Q
0P is an N × 1 vector.

2.2 Learning and Model Uncertainty

From the last section, we can see that the bond-market-specific pricing kernel MP,t+1

is a function of priced risks P and a set of parameters Θ ≡ (ΘP,ΘQ) that govern the
dynamics under the physical measure P and risk-neutral measure Q. To be more specific,
the parameter set ΘP ≡ (KP

0P , K
P
PP) governs the drift of P under the physical measure,

whereas the set ΘQ ≡ (ΣPP , λ
Q
, rQ∞) determines the risk-neutral dynamics, i.e. the pricing

distribution. Note that the variance matrix ΣPP in fact enters both the physical and risk-
neutral dynamics, which can be estimated from Equation (2.4) that describes the physical
dynamics of pricing factor P .

We consider a representative agent who can adaptively learn about the evolution of
the state of the economy. He or she may have different perceptions of the pricing kernel
MP,t+1 at different points in time.10 As mentioned in Evans and Honkapohja (2001),
the concept of adaptive learning (AL) introduces a specific form of bounded rationality,
and provides a means of approximating agents’ expectations that incorporates learning
as well as a rationale for rational expectations. Based on the learning concept, we rewrite
the evolution of the one-period pricing kernel under the physical measure P, conditional

9As we will see in the next section, the loadings are known functions of parameters ΘQ ≡
(ΣPP , λ

Q
, rQ∞).

10Similar to Giacoletti, Laursen and Singleton (2014), we consider a model with a reduced-form pricing
kernel, which does not clearly specify agents’ preferences when compared with preference-based models
such as Piazzesi and Schneider (2007) and Collin-Dufresne, Johannes and Lochstoer (2013). Nevertheless,
as shown in Duffie (2001) and Piazzesi (2010), we can link the pricing equation to fundamentals within
a representative agent endowment economy where preference parameters are specified.
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on the information at time t, as

Mt,t+1 = EP
t [fM(Θt,Pt+1)|Pt] = FM(Θt,Pt). (2.8)

Therefore, the price Dm
t of a zero-coupon bond issued at date t and maturing at date m,

is also a function of (Θt,Pt) under the physical measure P

Dm
t = EP

t [
m∏
s=1
Mt+s−1,t+s] = FDm(Θt,Pt). (2.9)

To simplify the estimation problem in our learning system, we have the following
assumptions:

• The portfolio risk factors Pt are measured without errors.

• The parameters Θ, which may evolve over time, are unknown to the agent, and
hence, need to be estimated statistically at each point in time t.

• The risk of unknown parameters is not priced.

These assumptions are standard in the literature of term structure pricing or learning,
see Joslin, Singleton and Zhu (2011), Joslin, Priebsch and Singleton (2014) and Giaco-
letti, Laursen and Singleton (2014). With these mild assumptions, we can partition the
parameter set Θt into subsets ΘP and ΘQ and estimate them respectively.

For the physical dynamics, we consider a case where the agent believes the law of
motion (perceived law of motion) of parameters ΘP is a random walk process, and then
Equation (2.4) becomes

Pt = KP
t,0P +KP

t,PPPt−1 +
√

Σt,PPε
P
Pt, (2.10) KP

t,0P

vec(KP
t,PP)

 =

 KP
t−1,0P

vec(KP
t−1,PP)

+ ut, (2.11)

where vec(·) means the vectorization of a matrix and ut is a vector of transition errors.
The above system can be estimated using a (Bayesian) Kalman filter.

For the pricing dynamics, the perceived law of motion of parameters (rQ∞, λ
Q) in ΘQ
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is also a random walk process. We rewrite Equation (2.6) as

ymt = AmP (Σt,PP , λ
Q

t , r
Q
t,∞) +Bm

P (λQ

t )Pt, (2.12)r
Q
t,∞

λ
Q
t

 =

r
Q
t−1,∞

λ
Q
t−1

+ ut, (2.13)

where Σt,PP is estimated from Equation (2.10) and ut is a vector of transition errors, see
Joslin, Singleton and Zhu (2011) for technical details. We estimate the above nonlinear
system with the unscented Kalman filter.11

2.2.1 Learning Rules

Let us start with the physical dynamics. For a more convenient description, we rewrite
the learning dynamics (2.10) and (2.11) under the physical measure as a form of p-lag
time-varying parameter vector autoregression (TVP-VAR)12

zt = Xtβt + vPt , (2.14)

βt+1 = βt + ut, (2.15)

where zt = Pt, Xt = IN ⊗
[
z′t−1, ..., z

′
t−p

]
, βt =

[
ct, vec (B1t)′ , · · · , vec (Bpt)′

]′
is a vector

summarizing all VAR coefficients, vPt ∼ N (0,Σt) with Σt an n×nmeasurement covariance
matrix, and ut ∼ N (0, Qt) with an n× n transition covariance matrix.

As we have mentioned, the system can be solved by means of the Kalman filter, see
Appendix B.1 for details. The solution for this system follows a recursive rule given by

βt|Dt ∼ N (mt,Φt) , (2.16)

whereDt is the information set at time t. The solution is equivalent to a special case of the
class of adaptive least squares (ALS) learning proposed by McCulloch (2007), which also
nests the ordinary least squares (OLS) and constant gain least squares (CGLS) algorithm
introduced by Sargent (2002) and Evans and Honkapohja (2001). The ALS formulas are

11For identification one can fix rQ∞ = 0, see for example Dai and Singleton (2000), Christensen, Diebold
and Rudebusch (2011) and Joslin, Singleton and Zhu (2011).

12Note that p is usually set to 1 in most of the no-arbitrage affine term structure models.
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given by

mt = mt|t−1 +R−1
t X ′tΣ−1

t ṽt, (2.17)

Rt = (1− γt)Rt−1 +X ′tΣ−1
t Xt, (2.18)

where ṽt = zt−Xtmt|t−1 is the prediction error and γt is the gain parameter which belongs
to interval [0, 1). Note that apart from the learning gain, stochastic volatility also plays a
role in controlling the informativeness of incoming information flows, which parallels the
finding of Cieslak and Povala (2015b) that stochastic volatility has a non-trivial effect on
the conditional distribution of interest rates.

By setting the gain parameter to different values, we have different learning algorithms
or rules:

• Learning Rule 1: When γt = Qt(Φt−1 + Qt)−1 and Rt = Φ−1
t , the learning

algorithm is the most general case of the ALS, i.e. the standard Kalman filter
solution.13

• Learning Rule 2: When γt is replaced by a sufficiently small constant, as in
Sargent (2002) and Evans and Honkapohja (2001), the learning rule becomes the
constant gain least squares (CGLS) algorithm. This case is also consistent with
the ‘forgetting factor’ algorithm proposed by Koop and Korobilis (2012, 2013), see
Appendix B.1.

• Learning Rule 3: When γt = 0, the learning algorithm becomes the recursive
least squares (RLS), i.e. a recursive form of ordinary least squares (OLS).

We will focus on the last two learning rules. In learning rule 3, with γ = 0 we
immediately get Qt = 0 (Appendix B.2), so the ALS degenerates to a constant parameter
case, or a decreasing gain case in Evans and Honkapohja (2001). When there are no
structural changes, mt will converge to the true value when t → ∞. However, when
compared with the constant gain case, the decreasing gain case has a lower convergence
speed. Moreover, gain sequences decrease to zero in the constant gain case when t→∞,
so this model cannot sufficiently deal with structural changes. Therefore, we need to
consider learning rule 2 with constant gains and face a trade-off: A larger constant gain
is better at tracking changes but at the cost of larger variance. Hence, similar to Sargent

13The derivation of this result is provided in Appendix B.2
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(2002), we only consider small gains to avoid instability.14

For the nonlinear system of the pricing dynamics, we can still write the rules of
adaptive learning similar to the formulas of the Kalman filter, see Appendix B.3.

2.2.2 Model Uncertainty and Dynamic Model Selection

On top of adaptive learning, an agent may also have a set of possible models because
of insufficient histories of data. A robust model needs to take this model uncertainty
into account. In this paper, we consider model uncertainty regarding physical dynamics
from two perspectives, both of which are closely related the predictability.15 The first
issue is the speed of learning. We can specify different values for the gain parameter
γ, which controls the time variability of regression coefficients. A model with a small
gain parameter would not be sensitive to new information, which means the agent slowly
learns about structural changes. In an extreme case when γ is set to zero, the model boils
down to a constant-coefficient case so the agent assumes there would not be structural
breaks. The second issue we are concerned with regards the restrictions on the physical
dynamics, which corresponds to the persistence of pricing factors. As Duffee (2011) and
Joslin, Priebsch and Singleton (2014) suggest high persistence may boost the predictive
performance, we incorporate this point in a time-varying manner.

In a time-varying framework, when implementing joint estimation of coefficients and
model probabilities for k = 1, ..., K models, it means that we need to estimate the fol-
lowing sum:

p(βt−1|Dt−1) =
K∑
k=1

p(β(k)
t−1|Lt−1 = k,Dt−1)Pr(Lt−1 = k|Dt−1), (2.19)

where Lt−1 = k means the kth model is selected at time t− 1 and p(β(k)
t−1|Lt−1 = k,Dt−1)

is given by the Kalman filter. Technical details regarding the computation of the above
quantities are left to Appendix B.4 and are explained in detail in Koop and Korobilis
(2012, 2013). We implement a dynamic model selection (DMS) approach that chooses
the best model with the highest probability at any point in time, in order to obtain the
optimal restrictions the representative agent imposes in a time-varying manner.

14We also need the gain to be sufficiently small in order to ensure convergence, see Evans and Honkapo-
hja (2001) or more technically, Benveniste, Métivier and Priouret (1990).

15In light of the argument in Joslin, Singleton and Zhu (2011), we focus on physical dynamics only as
the predictive performance of pricing factors is unrelated to pricing dynamics in our setup.

10



2.2.3 Decomposition of the Sources of Uncertainty

Following Dangl and Halling (2012), we conduct the following variance decomposition
from the law of total variance. Through the decomposition, we aim to understand all
possible sources of uncertainty with respect to the prediction of our pricing factor P .

Firstly, we can decompose the variance with respect to different choices of learning
gain parameter γ:

V ar(P) = Eγ
(
V ar(P|γ)

)
+ V arγ

(
E(P|γ)

)
, (2.20)

where the operators Eγ(·) and V arγ(·) are the expectation and variance with regards to
γ, respectively. The former term in the above equation can be further decomposed with
respect to different choices of forecasting model L:

Eγ
(
V ar(P|γ)

)
= EL

(
V ar(P|L, γ)

)
+ V arL

(
E(P|L, γ)

)
. (2.21)

After some algebra and using the expressions detailed in previous sections and Appendix
B, we have

V ar(Pt+1) =
∑
j

[∑
k

(Σt|Lk, γj, Dt)P (Lk|γj, Dt)
]
P (γj|Dt)︸ ︷︷ ︸

Observational variance

+
∑
j

[∑
k

(XtΦt|t−1X
′
t|Lk, γj, Dt)P (Lk|γj, Dt)

]
P (γj|Dt)︸ ︷︷ ︸

Parameter uncertainty

+
∑
j

[∑
k

(P̂jt+1,k − P̂
j
t+1)2P (Lk|γj, Dt)

]
P (γj|Dt)︸ ︷︷ ︸

Model restriction uncertainty

+
∑
j

(P̂jt+1 − P̂t+1)2P (γj|Dt)︸ ︷︷ ︸
Learning speed uncertainty

, (2.22)

where Σt denotes the variance of the disturbance term in the observation equation, Φt|t−1

denotes the unconditional variance of the time-t prior of the coefficient vector βt, P̂jt+1 is
the weighted average conditional on γj and P̂t+1 is the weighted average over all candidate
models.

The individual terms of Equation (2.22) state the sources of prediction uncertainty
and have intuitive interpretations. The first term measures the expected observational
variance, calculated over different choices of learning gain γ and forecast model L. This

11



term in fact captures the random fluctuations or risks in the pricing factors, relative to the
predictable drift component. The second term is the expected variance from errors in the
estimation of the coefficient vector, which can be interpreted as the source of estimation
or parameter uncertainty. The third term captures model uncertainty with respect to
model restrictions. The last term measures the uncertainty with respect to the learning
speed, which can also be considered as the time variability of the model coefficients.

2.3 Portfolio Allocation under Uncertainty

In the last section we describe the term structure pricing model allowing for parameter
and model uncertainty, but the uncertainty is not priced for the representative agent.
That is to say, no matter how many models are available, provided a model estimated
and selected by the agent ex post, there is no uncertainty but only interest-rate or inflation
risk.16 Investors may rebalance the portfolio because of speculation or hedging demand,
but it is hard to tell whether the term premia accounts for the uncertainty or not, and to
what degree. In the case where the representative agent truly requires compensation for
the uncertainty, the market prices of risk may be overestimated.17 Therefore, the model
that does not explicitly take uncertainty premia into account can cause some anomalies,
for example, high Sharpe ratios suggested by Duffee (2010). This can be explained by the
inability to separate the uncertainty premia from the risk premia, see Knight (1921). We
do not intend to decompose the term premia into risk premia and uncertainty premia in
this paper, but we are interested in whether allowing for uncertainty aversion can increase
economic value for a small short-term investor with no market impact.

The aversion to uncertainty is essential when we consider a short-term investment
by holding a long-term bond for a relatively short period say one year, as Sangvinatsos
and Wachter (2005) and Johannes, Korteweg and Polson (2013) suggest that failing to
hedge out the uncertainty carries a high utility cost. A classical, or maybe naive, short-
term investor who is given only one pricing model and who does not consider parameter
uncertainty, can end up with an investment strategy with high volatility and has little

16This implies long-term investors do not perceive high uncertainty, because once an investment deci-
sion is made, they do not rebalance the portfolio frequently. Sangvinatsos and Wachter (2005) show that
investors with long investment horizons indeed take extreme long positions in long-term bonds because of
hedging demands. If a bond is held to maturity, the expected return is fixed and irrelevant to the model,
given that the U.S. treasury bonds are usually considered non-defaultable. The long-term institutional
investors hold major share of the U.S. bond market and hence has high market power.

17This in fact is a small-sample problem, which can be resolved with very long histories of data, as we
can recover the true model with learning and dynamic model selection.
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economic value. In contrast, a sophisticated mean-variance investor will consider a robust
strategy because he or she is averse to parameter and model uncertainty.18

2.3.1 A Mean-Variance Portfolio Model with Parameter Uncertainty Aver-
sion

To begin with, we consider the classical mean-variance model proposed by Markowitz
(1952) and Sharpe (1970), where the optimal portfolio weight of M r risky assets, w, is
given by the solution of the following optimization problem:19

max
w

wᵀµ− γ

2w
ᵀΣw, (2.23)

where µ is the M r-vector of the true expected excess returns over the risk-free asset, Σ
is the M r ×M r covariance matrix of excess returns, and the scalar γ is the risk aversion
parameter. The solution to this problem is

w = 1
γ

Σ−1µ. (2.24)

However, an investor knows that the expected excess returns are from a model which
may generate imprecise estimates of expected excess returns µ̂, and therefore, pursues
robustness when determining the portfolio weights. The demand for robustness is equiv-
alent to investors’ aversion to the uncertainty associated with the parameters estimated,
see Gilboa and Schmeidler (1989) and Chen and Epstein (2002). To explicitly account
for the uncertainty aversion, we introduce two elements to the above optimization prob-
lem following Garlappi, Uppal and Wang (2007). Firstly, the investor recognizes that
the expected excess return for each asset can lie within a specified interval of its esti-
mated value. This implies that the point estimate of the expected excess return is not
the only possible value considered by the investor. Secondly, we introduce an additional
optimization: The investor minimizes over the choice of expected returns, subject to the
constraint of the specified interval.

The max-min problem above originates from the model of Gilboa and Schmeidler
18Gargano, Pettenuzzo and Timmermann (2014) analyze the portfolio selection problem under un-

certainty with power utility, but they do not consider robust control. Johannes, Korteweg and Polson
(2013) suggest mean-variance utility is similar to power utility in absence of fat tails, so in this paper we
only consider investors with mean-variance utility for simplicity.

19In order to keep the classical representation, the following equations in this section have abuse of
notation γ. Note that the notation γ in bold in this section means the risk aversion parameter, which is
different from the learning gain parameter γ in previous sections.
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(1989), which is given by the form

max
w

min
µ
wᵀµ− γ

2w
ᵀΣw, (2.25)

subject to

fC(µ, µ̂,Σ) ≤ ε. (2.26)

To clarify the constraint (2.26), consider a case where the excess returns follow a mul-
tivariate Gaussian distribution with the true mean µ and the expected returns µ̂ are
estimated by the sample mean with T observations. Then the quantity

T (µ̂− µ)ᵀΣ−1(µ̂− µ)

has a χ2 distribution with M r degree of freedom, where M r is the dimension of the
vector of returns.20 Let fC = T (µ̂− µ)ᵀΣ−1(µ̂− µ) and ε be a chosen quantile for the χ2

distribution. The constraint (2.26) can be expressed as

T (µ̂− µ)ᵀΣ−1(µ̂− µ) ≤ ε.

It means the constraint corresponds to a confidence interval in the probabilistic statement

P [T (µ̂− µ)ᵀΣ−1(µ̂− µ) ≤ ε] = 1− p,

for an appropriate level p, say 5%.
Now we parameterize the constraint (2.26) as

(µ̂− µ)ᵀΣ−1(µ̂− µ) ≤ ε. (2.27)

Then the max-min problem (2.25) subject to constraint (2.27) can be simplified into a
maximization problem and we can obtain an intuitive expression of the optimal portfolio
weights. Garlappi, Uppal and Wang (2007) have the following proposition:

Proposition 1. The max-min problem (2.25) subject to constraint (2.27) is equivalent
20If Σ is not known, then the quantity T (T−Mr)

(T−1)Mr (µ̂−µ)ᵀΣ̂−1(µ̂−µ) follows an F distribution with Mr

and T −Mr degrees of freedom, see Garlappi, Uppal and Wang (2007).
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to the following maximization problem

max
w

wᵀµ̂− γ

2w
ᵀΣw −

√
εwᵀΣw. (2.28)

The optimal portfolio weights for this problem can be expressed as

w∗ = 1
γ

Σ−1
( 1

1 +
√
ε

γσ∗p

)
µ̂, (2.29)

where σ∗p is the variance of the optimal portfolio that can be obtained from solving a second
degree polynomial equation, see Appendix C.1.

This framework nests the classical mean-variance portfolio. When ε → 0, we imme-
diately obtain Equation (2.24). Without loss of generality, the framework of parameter
uncertainty aversion measures the effect of uncertainty aversion with respect to rare
events, as indicated in Liu, Pan and Wang (2005). This means investors have robust
control for rare events and allow for the worst-cast scenario that rare disasters actually
happen.21 With higher value of ε investors become more pessimistic. When ε → ∞,
investors become so pessimistic that they would not invest on any risky assets, which in
turn gives a minimum-variance portfolio.

2.3.2 An Extension with Model Uncertainty

In this section, we extend the optimization problem (2.25) to characterize model uncer-
tainty. In Equation (2.25) we only use one model to generate expected excess returns µ̂,
without the freedom of selecting alternative models. Suppose we have a set of candidate
models, then the max-min problem becomes

max
w,µ̂

min
µ
wᵀµ− γ

2w
ᵀΣw, (2.30)

subject to

(µ̂− µ)ᵀΣ−1(µ̂− µ) ≤ ε, (2.31)

µ̂ ∈ {µ̂k : k = 1, ..., K}, (2.32)
21To see this, recall that ε has a probabilistic interpretation. Our max-min problem mimics investors’

’pessimism’ that they assume the worst-case scenario will always happen when making investment deci-
sions.
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where µ̂ can be chosen from a set of K candidate models. The above max-min problem
can also be simplified into a maximization problem which is easier to solve. Extending
the results of Garlappi, Uppal and Wang (2007), we have the following proposition:

Proposition 2. The max-min problem (2.30) subject to constraint (2.31) and (2.32) is
equivalent to the following maximization problem

max
w,µ̂

wᵀµ̂− γ

2w
ᵀΣw −

√
εwᵀΣw, (2.33)

subject to µ̂ ∈ {µ̂k : k = 1, ..., K}. The optimal portfolio weights for this problem can be
expressed as

w∗∗ = 1
γ

Σ−1
( 1

1 +
√
ε

γσ∗p

)
µ̂∗, (2.34)

where µ̂∗ is the optimal expected excess return selected from K candidate models, and σ∗p
is the variance of the optimal portfolio that can be obtained from solving a second degree
polynomial equation, see Appendix C.2.

We can see how this extension contributes to investors’ portfolio allocation in an
intuitive way. Equation (2.31) shows we expand the feasible region in our minimum
optimization problem, which is the same as the case of parameter uncertainty aversion.
However, with condition (2.32), we then shrink the admissible region to the area associ-
ated with the optimal forecasts generated from candidate models. Indeed the region we
search is expanded for the minimum optimization, but we only select the weights that give
us higher utility in the maximum optimization. This refinement helps investors avoid un-
realistic pessimistic investment, especially during the period when the minimum-variance
strategy performs poorly. Even in a conservative situation where ε is large, investors
still intend to hold some risky assets. It is indeed more realistic: An investor can hedge
out risks by diversification according to a selected forecasting model, instead of being
extremely pessimistic and only invest in risk-free assets.

3 Results

In this paper, we use the smoothed US bond yields provided from the US Federal Reserve
by Gürkaynak, Sack and Wright (2007). We also include the 3- and 6-month Treasury
Bills (Secondary Market Rate) from St. Louis Federal Reserve Economic Data (FRED).
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The empirical analysis focuses on yields with 12 maturities of 3, 6, 12, 24, 36, 48, 60, 72,
84, 96, 108 and 120 months. The full sample of end of the month yield data is from June
1961 to October 2014. Our training sample has 121 observations from the beginning, up
to and including June 1971. We do not introduce any other variables in addition to bond
yield data, because we aim to understand the predictability that purely comes from the
information in the bond market. From a finance viewpoint, we aim to explore all sources
of the prediction uncertainty and how investors can benefit from a robust model which
takes these sources of uncertainty into account.22

3.1 Pricing Dynamics and Market Prices of Risk

In our pricing setup, we specify a parsimonious factor structure so that a few portfolio
risk factors can effectively model the term structure. Three risk factors – Level, Slope and
Curvature – can capture most of the variance of bond yields, see Nelson and Siegel (1987)
and Litterman and Scheinkman (1991). In line with most of the literature, we also use
these three pricing factors or portfolios to price bonds when specifying our model. The
portfolio weights are fixed for consistency and tractability.23 Following Joslin, Singleton
and Zhu (2011), we assume our portfolio risk factors P are measured without errors.
Given this assumption, the cross-sectional arbitrage-free restrictions are irrelevant to the
conditional point forecasts of P under P. Therefore, we can separately estimate pricing
dynamics, provided that the covariance of the innovations of P is estimated from physical
dynamics.

Figure 1 displays the evolution of three real eigenvalues λQ associated with KQ
PP over

time. The first eigenvalue is slightly below zero, which implies that the Level factor is
very persistent and close to a unit root process. The second eigenvalue is smaller but it
still implies a highly persistent process of the Slope factor. The third eigenvalue is the
smallest among the three, suggesting a less persistent evolution of the Curvature factor.
We can see that the eigenvalues are stable over time, and therefore the arbitrage-free
relation that specifies the link between market prices of risk and risk factors is unlikely

22Ludvigson and Ng (2009) and Joslin, Priebsch and Singleton (2014) suggest that unspanned macro
information has predictive power for future movements of bond yields, whilst Bauer and Rudebusch
(2015) provide evidence that some key macroeconomic variables are indeed spanned by bond yields. It
is interesting to develop hybrid models with both spanned and unspanned macroeconomic risks, and
explore the prediction uncertainty from different choices of predictors. We do not pursue this direction
in this paper, although our framework can be easily extended to allow for the unspanned macro risks or
hybrid models.

23Our findings are robust to different approximation methods of the portfolio weights and pricing
factors.
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to have a significant change. The above findings are consistent with Joslin, Priebsch and
Singleton (2014) and Giacoletti, Laursen and Singleton (2014). Our new finding is that
the factor process in pricing dynamics becomes more persistent in the recent decade,
which implies a relatively more flat forward curve. The second eigenvalue is gradually
growing up since the middle of the 2000s, while the third eigenvalue is rising from the
start of the financial crisis.

Figure 1: Eigenvalues λQ
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Notes: This graph shows the estimates of time-varying parameters λQ associated with KQ
PP , which

govern the loading matrix Bm
P (λQ

t ) in Pricing Equation (2.13). Sample period is from 1971:07 to
2014:10.

In this framework, we can gain knowledge about the priced risk by looking into Equa-
tion (2.7). Joslin, Priebsch and Singleton (2014) show that to a first-order approximation,
the three elements of the scaled prices of risk represent the expected excess returns of
three factor-mimicking portfolios, respectively. To be more specific, the excess return
on a factor-mimicking portfolio, say Level, changes locally one-to-one with changes in
the corresponding factor, but whose value is unresponsive to changes in other factors.
Figure 2 depicts the one-period expected excess returns of Level, Slope and Curvature
factor-mimicking portfolios.24 Exposures to Level lose money if rates are expected to
fall, which is usually when monetary policy is eased, for example, the recession periods.

24We relax the zero restrictions imposed on the price of the Curvature risk by Joslin, Priebsch and
Singleton (2014) and Giacoletti, Laursen and Singleton (2014). This relaxation does not affect the power
of in-sample fitting or out-of-sample forecasting in our framework. Further discussion is followed in the
next section.
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Exposures to Slope lose (gain) money if the curve is going to steepen (flatten), which is
connected with the changes in the stance of monetary policy or investors’ expectations,
e.g. the monetarist experiment during the early 1980s. Exposures to Curvature may
be difficult to interpreted, but Litterman, Scheinkman and Weiss (1991) link curvature
to the volatility of the Level factor via the argument of yield curve convexity. We also
find that the expected returns of Level portfolio heavily drop to historical low in the
global financial crisis, which potentially reflects the ‘flight-to-quality’ demand suggested
by Christensen, Lopez and Rudebusch (2010) and Bauer, Rudebusch and Wu (2014).25

Figure 2: One-Period Expected Excess Returns of Factor-Mimicking Portfolios
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Notes:
1. This figure displays the one-period expected excess returns of Level, Slope and Curvature
factor-mimicking portfolios from 1971:07 to 2014:10, which can be obtained from Equation (2.7).
2. Shaded areas are recession periods based on the NBER Recession Indicators. The unit is percentage.

Additionally, we can assess the economic significance of three pricing factors by cal-
25Specifically, Bauer and Rudebusch (2015) indicate inflation measures are mainly correlated with the

Level, ‘measures of slack’ are most closely correlated with the Slope, and growth measures are correlated
most strongly with the Curvature. Similar evidence can also be found in Diebold and Rudebusch (2013).
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culating their contribution to the variability of the pricing kernel. From Equation (2.2)
we have

lnMP,t+1 = −rt −
1
2Λ′PtΛPt − Λ′PtεPP,t+1. (3.1)

Following Adrian, Crump and Moench (2013), we decompose the conditional volatility of
the pricing kernel into the contributions due to each price of risk according to

V ar(lnMP,t+1) = Λ′PtΛPt =
N∑
j=1

Λ2
j,Pt. (3.2)

Figure 3 sets out the contribution of risk prices of all three factors to the time variation
of the pricing kernel. We find that there are several peaking periods of the time variance
after 2000, and the time variance is extremely high around the financial crisis, which
means agents’ expectations of excess returns are very uncertain at that time. Consistent
with Adrian, Crump and Moench (2013), pricing kernel time variance is largely, though
not exclusively, driven by the Level risk, which implies that the expected excess returns
on the long-term bonds are also largely driven by the Level risk.

Figure 3: Pricing Kernel Variance Decomposition
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Notes: This graph shows the decomposition of the conditional volatility of the pricing kernel by
decomposing Λ′PtΛPt into three components corresponding to Level, Slope and Curvature risks.
Sample period is from 1971:07 to 2014:10.
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3.2 Physical Dynamics and Out-of-Sample Predictability

As mentioned above, the physical dynamics are crucial for term structure predictabil-
ity. In the model setup, the agent is able to learn about the evolution of parameters
over time. Specifically, we allow for both time-varying volatility and coefficients, as Jo-
hannes, Korteweg and Polson (2013) and Gargano, Pettenuzzo and Timmermann (2014)
suggest these extensions are useful in capturing time-varying features and improving out-
of-sample predictability. In addition to parameter uncertainty, our method also consider
model uncertainty and therefore is robust to potential structural breaks, see Gürkaynak
and Wright (2012).

We introduce two layers of model uncertainty. The first layer is the learning speed,
which is controlled by the learning gain parameter γ discussed in Section 2.2.1. We define
a wide grid of values for γ: [0, 0.01, 0.02, 0.03, 0.04], which covers the last two learning
rules. While γ = 0 is equivalent to the constant parameter case, γ = 0.04 gives us a
very flexible model as the observation two years ago only receive 45% as much weight as
the newly incoming observation. The learning speed characterizes how agents adjust to
structural changes and form their expectations, and hence is related to the out-of-sample
predictability.

The next layer of model uncertainty is about the restrictions we impose on the physi-
cal dynamics. The restrictions are motivated by the finding of Joslin, Singleton and Zhu
(2011) and Duffee (2011) that cross-sectional restrictions are unrelated to the predictive
performance.26 Diebold and Li (2006) and Diebold, Rudebusch and Aruoba (2006) indi-
cate that mixed evidence is found concerning the usefulness of various restrictions, where
they consider both cases of related factors and unrelated factors. In our specification, we
have in total 20 models, which nests the cases of related and unrelated factors in Diebold
and Li (2006), as well as the random walk restrictions in Duffee (2011).27 Combining two
layers of model uncertainty, we have in total 5 · 20 = 100 models for selection at each

26Note that Joslin, Priebsch and Singleton (2014) impose restrictions on the market prices of risk which
increase the persistence of the physical dynamics, and hence the out-of sample forecasting performance
can be improved. Our flexible model selection framework in fact implicitly nests the restrictions of the
same purpose, and therefore it is not necessary to explicitly impose zero restrictions on the market prices
of risk.

27In addition to the unrestricted model, we restrict that the Level factor is unaffected by other two
factors, so we have two zero restrictions in the first row; we further have 24 = 16 combinations of zero
restrictions imposed on off-diagonal elements of the remaining two rows of the coefficient matrix. We
then have additionally three more models that ensure the first one, two and three factors follow random
walks, respectively. Intuitively, these restrictions can enforce a high degree of persistence under P and
hence may increase the forecast performance as suggested by Joslin, Priebsch and Singleton (2014).

21



point in time.28 Actually, our method is robust to model specification and can mitigate
the small sample bias indicated in Duffee and Stanton (2012) and Bauer, Rudebusch and
Wu (2012), as the one ‘true’ model will always be selected with a long history of data.

3.2.1 Learning about the (un)predictability in the term structure

As mentioned in previous sections, our proposed term structure model with learning nests
most of the current term structure models using conditional information at each point in
time. In terms of the predictive performance of bond yields, we can safely focus on the
conditional forecasts of pricing factors only in our framework. Joslin, Singleton and Zhu
(2011) have shown that the cross-sectional no-arbitrage restriction is irrelevant for the
conditional forecast of P under measure P.

In this section, we compare the out-of-sample performance of the proposed model
with two challenging benchmark models: random walk and the full-sample estimation
following Joslin, Singleton and Zhu (2011).29 Duffee (2002) remarks that it is hard for
term structure models to beat the random walk, though the random walk cannot provide
informative economic implications in terms of the dynamics of risk premia. The full-
sample estimation of Joslin, Singleton and Zhu (2011) in fact is an in-sample forecasting
exercise, which gains huge advantages as it incorporate the information of realized values.
However, the full-sample estimation may be contaminated by the realized expectations
of interest rates, which therefore do not perfectly reflect real-time expectations using
conditional information.

Table 1 shows the predictive performance of the proposed model relative to bench-
marks. The performance of the learning model is similar to the benchmark models, at
least at shorter forecast horizons; the learning model even outperforms the benchmark
models for some maturities. This is not surprising as conditional information should
be helpful for short-horizon forecasts. Moreover, the short-rate forecasts, which is most
related to future short rate expectations and term premium estimates, are relatively
accurate even for longer horizons. Therefore, we can consider the term premium esti-
mates of the learning model a plausible alternative to that of the model using full-sample
information. However, a rather surprising result is that the performance of either the
learning model or the benchmark using full-sample information, is close to that of ran-

28To speed up the estimation process, we employ the algorithm proposed by Koop and Korobilis (2013),
see Appendix B for technical details.

29The model of Joslin, Singleton and Zhu (2011) is in fact nested within our framework if we focus on
out-of-sample performance.
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dom walk. This observation urges us to have a deeper understanding of the interest rate
(un)predictability.

We explore the sources of prediction uncertainty by the variance decomposition noted
in Section 2.2.3. The total prediction variance can be decomposed into observational vari-
ance, variance due to errors in the estimation of the coefficients (parameter uncertainty),
variance due to model uncertainty in terms of the choice of the restrictions (restriction
uncertainty), and variance due to model uncertainty regarding the choice of learning
speed (learning speed uncertainty). Figure 4 displays the variance decomposition for
three pricing factors, where Panel A shows that the predominant source of uncertainty is
observational variance. This finding is consistent with the findings of Dangl and Halling
(2012), as the asset prices frequently fluctuate randomly over their expected values. These
fluctuations serve as the source of risk premia, and dominate the drift components in the
term structure model. Therefore the fluctuations in fact contaminate the predictability
of term structure models, especially during the periods when pricing factors are highly
persistent.30

In Panel B of Figure 4, by excluding the observational variance we can focus upon
the relative weights of the remaining sources of prediction uncertainty. The parameter
uncertainty turns out to be the dominant source of prediction uncertainty, which im-
plies parameter instability is another main source causing interest rate unpredictability.
Therefore, a success forecasting model should at least consider the feature of time-varying
parameters. The restriction uncertainty is less important but can be meaningful during
certain periods. For example, restriction uncertainty rises steeply around the year 2003
and in the beginning of the financial crisis for the Slope factor. The uncertainty in
learning speed is detectable but not of essence for most of the time. To highlight the im-
portance of parameter uncertainty, Figure 5 sets out the persistence of the physical factor
dynamics over time, which is examined by considering the behavior of the eigenvalues.
There is a rising trend for the third eigenvalue since 1980s. We also detect significant
drops in the persistence during recession periods, when the restrictions aiming to increase
the persistence may not be valid.

Therefore, the large observational variance together with the high persistence in the
data-generating process of bond pricing factors, gives rise to the similarity in the pre-
dictive performance between valid term structure models and the random walk. The

30This does not at all mean term structure models are not useful. For instance, term structure models
can reveal informative dynamics of market prices of risks and have reliable term premia of long-term
bonds, which can not be offered by the random walk model.
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Figure 4: Sources of Prediction Variance
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Notes:
1. This figure displays the decomposition of the prediction variance with respect to different sources.
2. In Panel A, the prediction variance is split into observational variance (Obs. var.), variance caused
by errors in the estimation of coefficients (Unv. coef.), variance caused by the uncertainty with respect
to the choice of restrictions (Unc. restr.) and variance caused by the uncertainty with respect to the
learning speed (Unc. learn.). The illustration shows the relative weights of these components.
3. Panel B masks out observational variance and shows relative weights of the remaining variance.
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Figure 5: Eigenvalues λP
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Notes: This graph shows the time-varying eigenvalues of estimated KP
t,PP in Eq (2.10). Sample period

is from 1971:07 to 2014:10. Shaded areas are recession periods based on the NBER Recession
Indicators.

inability to beat the random walk does not mean no predictability in excess returns,
as excess return predictability is about whether excess returns can be explained by any
pricing factors. The random walk model can be viewed as a special case of term struc-
ture models in which pricing factors are extremely persistent, and in that case the excess
returns can be predicted by the pricing factors.

Campbell and Shiller (1991) indicate that no predictability in excess bond returns is
equivalent to the Expectations Hypothesis (EH), and Adrian, Crump and Moench (2013)
show the realized excess returns can be decomposed into innovations and a predictable
element. If innovations are at a reasonable level, we should be able to detect predictability
in excess returns by capturing the factor dynamics. Actually, Cieslak and Povala (2015a)
show term premia is spanned by pricing factors and excess returns are predictable when
compared with the EH benchmark.31 However, in the previous literature, it seems difficult
to translate the predictability of term premia into significant economic value, see for
example, Della Corte, Sarno and Thornton (2008). In the following sections, we will
evaluate that whether allowing for different sources of uncertainty can contribute to
economic gains over the EH when investors make portfolio allocations.

31The violation of the Expectations Hypothesis (EH) does not depend on the persistence of pricing
factors, and hence the random walk model can also generate predictable excess returns if the loadings
for short rates are not consistent with that for long rates.
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3.3 Portfolio Selection

3.3.1 Predictability of excess returns

A simple approach to modeling the term structure is the Expectations Hypothesis (EH)
that expected future short rates explain long rates. Campbell and Shiller (1991) indicates
the empirical evidence fails to justify the strong form of Expectations Hypothesis and
the idea that long-term interest rate are simply determined by the average of current
and future expected short-term rates. However, EH could be resuscitated in weak form
allowing for a constant term premia, consistent with an upward sloping yield curve.
Based on the weak form of the Expectations Hypothesis, the long-term yield is average
of expected future short term rates yt(τ)EH plus a constant risk premium CEH :

yt(τ) = yt(τ)EH + CEH , (3.3)

where the Expectations Hypothesis (EH) consistent bond yield yt(τ)EH is given by:

yt(τ)EH = 1
τ

τ−1∑
i=0

Etyt+i(1), (3.4)

where yt(τ) is the yield at time t for a bond of τ -period maturity. That is to say, the EH
consistent long yield is equal to the average of expected short yields Etyt+i(1).

The belief in Expectations Hypothesis is closely related to investors’ behavior. If
the weak form of the Expectations Hypothesis holds, then risk premia is constant. In
other words, we should not be able to predict the short-term returns in the future. If an
investor believes that the Expectations Hypothesis does not hold and the term premium
should be time-varying, then the investor can rely on a specific prediction model to guide
his/her portfolio choice.

To show the above argument, we follow Cieslak and Povala (2015a) to decompose the
excess holding period return. First, we define the holding period return as the return on
buying a τ -year zero coupon bond at time t and then selling it, as a (τ −m)-year zero
coupon bond, at time t+m. This holding period return is given by:

HPRt+m(τ,m) = 1
m

[pt+m(τ −m)− pt(τ)] (3.5)

where pt(τ) is the log price of τ -year zero coupon bond at time t and pt+m(τ −m) is the
log price of (τ −m)-year zero coupon bond at time t+m. The difference between holding
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period return and the m-year continuously compounded short yield is the excess holding
period return:

EXRt+m(τ,m) = HPRt+m(τ,m)− yt(m). (3.6)

Note that a general form of term premium is given by

TPt(τ) = yt(τ)− yt(τ)EH . (3.7)

where TPt(τ) ≡ CEH if the EH holds. We can rewrite Equation (3.7) by relating the
term premium to the excess holding period return:

TPt(τ) = 1
τ
Et[

τ−2∑
i=0

EXRt+1+i(τ, 1)]. (3.8)

where Et[·] is the expectation operator. By the linearity of expectation, we can write the
1-period ahead expected excess holding period return as

Et[EXRt+1(τ, 1)] = −(τ − 1)Et[TPt+1(τ − 1)] + τ TPt(τ). (3.9)

Therefore, it is not difficult to see that under the weak form of the Expectations Hypoth-
esis, the m-period ahead expected excess holding period return is a constant:

Et[EXREH
t+m(τ,m)] = CEH

m , (3.10)

where CEH
m is associated with the constant risk premium CEH and often approximated by

the historical average, see Rapach, Strauss and Zhou (2009) and Thornton and Valente
(2012). But risk, and hence the term premia, is unlikely to be constant while underlying
variables are changing. Cochrane and Piazzesi (2008) construct a test by regressing the
excess bond returns on the forward rates and show that the forward rates have significant
predictive power. Similar evidence can be found in Duffee (2002), Cochrane and Piazzesi
(2005), Sarno, Thornton and Valente (2007), Tang and Xia (2007) and Gürkaynak and
Wright (2012). In the case where the term premia is time-varying, the m-period excess
holding period return is denoted by xpt,m:

xpt,m = Et[EXRt+m(τ,m)] = −(τ −m)Et[TPt+m(τ −m)] + τ TPt(τ). (3.11)
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It is straightforward to obtain xpt,m using a prediction model.
Although the EH is rejected by strong statistical evidence, it is puzzling that such

predictability could not bring an improvement in economic utility of mean-variance in-
vestors, see Della Corte, Sarno and Thornton (2008), Thornton and Valente (2012) and
Sarno, Schneider and Wagner (2014). Gargano, Pettenuzzo and Timmermann (2014)
show that for investors with power utility and accounting for estimation error and model
uncertainty, the predictability can be translated into higher economic value. Building
upon previous literature, we consider a general framework that considers ambiguity aver-
sion and nests ordinary risk aversion. It allows us to see if investors have significant
improvement in their realized utility when considering potential sources of uncertainty.

3.3.2 Economic value

The evaluation of out-of-sample predictability does not consider the risk borne by an
investor. It raises the issue of economic value of a forecasting model, as statistical signif-
icance does not measure its economic significance. Here we evaluate whether the model
predictability is sufficiently large to be of economic value to risk-averse, or more generally,
ambiguity-averse investors. Following Campbell and Thompson (2008), Welch and Goyal
(2008), and Rapach, Strauss and Zhou (2009), we assume each investor, who is small and
hence with no market impact, chooses portfolio weights based on the return forecasts.
In this paper, we allow the investor to be able to invest in 10 fixed-income assets: 1- to
10-year US bonds. We then calculate realized utility gains for a mean-variance investor
on a real-time basis.

To demonstrate the evaluation of the above strategies, we firstly discuss the case
of an Expectations Hypothesis (EH) investor. We can compute the average utility for
the mean-variance investor with relative risk aversion parameter γR who allocates his
or her portfolio monthly among all assets using forecasts of the excess returns based
on the historical average. This exercise requires the investor to forecast the variance of
excess returns. Following Campbell and Thompson (2008), we assume that the investor
estimates the variance matrix Σ̂−1

t+1 using a 5-year rolling window using monthly data of
excess annually returns. A mean-variance investor who forecasts the excess bond returns
using the historical average r̄t+1 will decide at the end of period t to allocate the following
share of his or her portfolio to securities in period t+ 1:

w0,t = 1
γR

Σ̂−1
t+1r̄t+1 (3.12)
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where σ̂2
t+1 is the 5-year rolling-window estimate of the variance of excess returns.32

Over the out-of-sample period, the average of the realized utility of the investor is
given by

v̂0 = µ̂0 − (1
2)γRσ̂2

0 (3.13)

where µ̂0 and σ̂2
0 are respectively the sample mean and variance of the excess holding

period returns on the benchmark portfolio of the EH investor, which is constructed using
forecasts of the excess returns based on the historical average.

Similarly, we can calculate the average utility for the same investor, when his or her
decision is made by using a model j to forecast the excess bond returns. As it is noted
in Section 2.3, we can construct the share wj,t based on the forecasts of model j.

The resulting realized average utility level is

v̂j = µ̂j − (1
2)γRσ̂2

j (3.14)

where µ̂j and σ̂2
j are the sample mean and variance of the excess holding period returns

on the portfolio indexed by j. The investor forms the portfolio j using forecasts of the
excess returns of bonds according to the jth forecasting model.

We can compute the utility gain, or certainty equivalent return, as the difference
between v̂j in Eq. (3.14) and v̂0 Eq. (3.13)

∆ = v̂j − v̂0. (3.15)

The utility gain that is expressed in average annualized percentage return can be
interpreted as the portfolio management fee that an investor would be willing to pay
to have access to the additional information available in a predictive model relative to
the information in the historical term premia alone. We report results for risk aversion
parameters γR = 1, 3, 6; the results are qualitatively similar for other reasonably values
(ranging from 1 to 10).

32Following Campbell and Thompson (2008), Rapach, Strauss and Zhou (2009) and Thornton and
Valente (2012), we constrain the portfolio weight on bonds to lie between -100% and 200% each month,
so in Eq. (3.12) w0,t = −1 (w0,t = 2) if w0,t < −1 (w0,t > 2).
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3.3.3 Performance of portfolio choice with uncertainty aversion

In this paper, we evaluate economic gains of 5 strategies holding for one year, over the
mean-variance portfolio based on the Expectations Hypothesis (EH). The strategies re-
ported in Table 2 include minimum-variance portfolio, mean-variance portfolio based on
the proposed learning model (learning portfolio), EH portfolio with parameter uncer-
tainty aversion (PUA), learning portfolio with PUA, and learning portfolio considering
parameter uncertainty aversion and model uncertainty (PUA & MU). In Table 2 we also
report different degrees of parameter uncertainty level, representing different views of
rare events.33

The results are rather surprising. Our proposed model has very significant economic
value in contrast to the EH benchmark. The utility gain based on the proposed model
is ranging from 4% to a remarkably high value 27%. The economic value of the learning
portfolios with uncertainty aversion and minimum-variance portfolio peak when γR =
6. The minimum-variance strategy naturally performs well at high risk-averse level, so
learning portfolios with uncertainty aversion also have favorable performance as they are
shrunk toward the minimum-variance strategy. Panel B of Table 2 shows when short
sales are not allowed, the EH strategy seems to perform much worse, so the economic
gains of strategies allowing for uncertainty aversion become extremely high.

It is worth noting that the strategies we proposed have very consistent performance.
At low risk-averse level, whilst the minimum-variance portfolio have a relatively small
economic gain (0.46%), the proposed strategies still have 4 − 6% utility gains. This
is because we search the portfolio weights in the admissible region based on reliable
forecasts, so we do not fall into the ‘pessimism trap’ that no investment in risky assets is
made.

Figure 6 gives the cumulative sum of log returns generated by the above strategies
over time, so we can have an intuitive impression. The minimum-variance portfolio
has the smallest cumulative sum of log returns, but it is the most stable strategy which
therefore can provide high economic value for a risk-averse investor. The learning portfolio
considering parameter uncertainty aversion and model uncertainty (PUA&MU) is slightly
less than the learning portfolio with parameter uncertainty only, but is more stable so it
has a higher economic gain. The EH-based strategies perform less favorably owing to the
drops in the late 1970s and early 1980s, probably because the economy was undergoing

33As we have discussed in Section 2.3.1, the quantity ε has a probability interpretation corresponding
to an F distribution with degrees of freedoms N and T −N .
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Table 2: Economic Gains of Different Strategies

Strategy Utility gain (∆)

γR = 6 γR = 3 γR = 1

Panel A: Short sales allowed

Minimum-variance 29.69 12.15 0.46

Learning 11.76 7.14 4.08

ε = 2.78 (99%)

EH with PUA 3.86 0.52 -1.72

Learning with PUA 13.93 8.28 4.50

Learning with PUA&MU 27.22 13.12 6.18

ε = 2.07 (95%)

EH with PUA 0.63 0.07 -0.28

Learning with PUA 12.77 7.51 4.01

Learning with PUA&MU 27.05 13.26 6.23

Panel B: Short sales not allowed

Minimum-variance 94.43 39.87 3.49

Learning 15.08 8.39 3.92

ε = 2.78 (99%)

EH with PUA 18.58 6.59 -1.40

Learning with PUA 22.04 11.94 5.21

Learning with PUA&MU 42.38 17.59 5.88

ε = 2.07 (95%)

EH with PUA 5.63 2.29 0.13

Learning with PUA 18.40 9.77 4.02

Learning with PUA&MU 42.12 17.29 5.67

Notes: 1. The table reports the out-of-sample 12-month holding utility gain (∆) on different portfolio
strategies, over the evaluation period from 1971:07 to 2014:10.
2. Utility gain (∆) is the portfolio management fee (in annualized percentage return) that an investor
with mean-variance preferences would be willing to pay, in order to switch from the Expectations Hy-
pothesis (EH) strategy to another strategy. The utility gain is computed at three risk aversion levels,
i.e., γR = 1, 3, 6. Higher utility gain is preferred.
3. We report the performance of strategies relative to the mean-variance portfolio based on the EH. The
strategies reported include minimum-variance portfolio, mean-variance portfolio based on the proposed
learning model (learning portfolio), EH portfolio with parameter uncertainty aversion (PUA), learning
portfolio with PUA, and learning portfolio considering parameter uncertainty aversion and model uncer-
tainty (PUA&MU). In parenthesis, we report the percentage size of the confidence interval for an F9,51
implied by the values of ε.
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a structural change at that time.

Figure 6: Cumulative Sum of Log Returns
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Notes:
1. This figure displays the cumulative sum of log returns generated by respective strategies when short
sales are allowed and when we set γR = 3, ε = 2.78. The strategies include minimum-variance portfolio,
mean-variance portfolio based on the proposed learning model (learning portfolio), EH portfolio with
parameter uncertainty aversion (PUA), learning portfolio with PUA, and learning portfolio considering
parameter uncertainty aversion and model uncertainty (PUA&MU).
2. The evaluation period is from 1971:07 to 2014:10. The unit is percentage.

3.3.4 Robustness

In Figure 6 of the last section, we detect a notable fall in returns for the EH portfolio in
and around 1980, while Federal Reserve’s famous ‘monetarist experiment’ was conducted.
We consider robustness checks by excluding this period. Table 3, 4 and 5 display the
performance of the same strategies from 1990, 2000 and 2010 onward, respectively.

The resulting economic gains for our proposed portfolios are weakened, but still signifi-
cant. Note that whilst the minimum-variance portfolios tend to have distinct performance
at different risk-aver levels, the learning portfolios with uncertainty aversion perform sta-
bly and have significant positive gains (2% or more). Even when the minimum-variance
portfolios have significantly negative gains, the performance of learning portfolios does
not fall along the same way. Our proposed portfolios seem to have relatively weaker per-
formance from 2000 onward, which we find is mainly due to highly uncertain estimates
of pricing kernel in and around the financial crisis, recall Figure 3. This characteristic
is potentially related to the decrease in persistence under the physical measure, see Fig-
ure 5. Moreover, the zero lower bound problem during the financial crisis may induce
some unfeasible return forecasts which should be excluded when we construct the optimal
portfolio. After 2010, we see that the proposed portfolios get back on track and have
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economic value around 2%. Note that from these robustness checks, forecasts implied by
our learning model alone does not guarantee substantial and consistent economic value,
so ambiguity aversion is imperative in generating satisfactory economic utility. There-
fore, by considering parameter and model uncertainty, investors truly benefit from the
predictability of excess returns, and hence the economic value puzzle in bond returns can
be resolved.

Moreover, by a simple utility gain decomposition from our results, we can reveal dif-
ferent degrees of utility gains because of aversion to various sources of uncertainty. The
utility gain decomposition is done by computing the difference in gains among portfo-
lios, i.e. learning, learning with PUA, and PUA&MU. The difference between learning
portfolio and learning with PUA is the gain (if any) from the aversion to parameter
uncertainty. The difference between learning portfolio and learning with PUA&MU is
the gain from the ambiguity aversion allowing for both parameter and model uncertainty,
which is generally much larger than the former one, except in very few cases. This finding
is informative and confirms the necessity of incorporating model uncertainty. Although
we have mentioned in Section 3.2.1 that the parameter uncertainty is the main source of
prediction uncertainty when compared with model uncertainty, we find that allowing for
the smaller fraction of prediction variance originated from model uncertainty is of essence
to generate significant and consistent economic value. This finding further assures the
robustness of our learning framework with model uncertainty.
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Table 3: Economic Gains of Different Strategies (from 1990 onward)

Strategy Utility gain (∆)

γR = 6 γR = 3 γR = 1

Panel A: Short sales allowed

Minimum-variance 1.21 -5.88 -10.60

Learning -0.93 -0.19 0.30

ε = 2.78 (99%)

EH with PUA -0.56 -0.53 -0.51

Learning with PUA -0.89 -0.32 0.06

Learning with PUA&MU 3.35 0.12 -0.44

ε = 2.07 (95%)

EH with PUA -0.42 -0.37 -0.36

Learning with PUA -0.81 -0.21 0.18

Learning with PUA&MU 3.22 0.25 -0.34

Panel B: Short sales not allowed

Minimum-variance 22.36 -2.86 -19.67

Learning -0.94 -0.29 0.15

ε = 2.78 (99%)

EH with PUA -1.47 -1.27 -1.14

Learning with PUA -0.41 -0.29 -0.21

Learning with PUA&MU 8.19 2.71 0.06

ε = 2.07 (95%)

EH with PUA -1.09 -0.89 -0.76

Learning with PUA -0.35 -0.12 0.04

Learning with PUA&MU 8.07 2.66 -0.06

Notes: 1. The table reports the out-of-sample 12-month holding utility gain (∆) on different portfolio
strategies, over the evaluation period from 1990:01 to 2014:10.
2. Utility gain (∆) is the portfolio management fee (in annualized percentage return) that an investor
with mean-variance preferences would be willing to pay, in order to switch from the Expectations Hy-
pothesis (EH) strategy to another strategy. The utility gain is computed at three risk aversion levels,
i.e., γR = 1, 3, 6. Higher utility gain is preferred.
3. We report the performance of strategies relative to the mean-variance portfolio based on the EH. The
strategies reported include minimum-variance portfolio, mean-variance portfolio based on the proposed
learning model (learning portfolio), EH portfolio with parameter uncertainty aversion (PUA), learning
portfolio with PUA, and learning portfolio considering parameter uncertainty aversion and model uncer-
tainty (PUA&MU). In parenthesis, we report the percentage size of the confidence interval for an F9,51
implied by the values of ε.
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Table 4: Economic Gains of Different Strategies (from 2000 onward)

Strategy Utility gain (∆)

γR = 6 γR = 3 γR = 1

Panel A: Short sales allowed

Minimum-variance -3.07 -8.03 -11.34

Learning -1.42 0.68 2.09

ε = 2.78 (99%)

EH with PUA 0.01 0.01 0.01

Learning with PUA -1.10 0.86 2.17

Learning with PUA&MU -0.50 -1.36 -1.41

ε = 2.07 (95%)

EH with PUA 0.01 0.01 0.00

Learning with PUA -0.99 0.95 2.25

Learning with PUA&MU -0.14 -1.40 -1.52

Panel B: Short sales not allowed

Minimum-variance 4.88 -12.70 -24.42

Learning -4.49 -1.31 0.80

ε = 2.78 (99%)

EH with PUA 0.00 0.00 0.00

Learning with PUA -3.84 -1.00 0.89

Learning with PUA&MU 0.14 -0.43 0.28

ε = 2.07 (95%)

EH with PUA 0.00 0.00 0.00

Learning with PUA -3.47 -0.73 1.09

Learning with PUA&MU 0.71 -0.38 0.28

Notes: 1. The table reports the out-of-sample 12-month holding utility gain (∆) on different portfolio
strategies, over the evaluation period from 2000:01 to 2014:10.
2. Utility gain (∆) is the portfolio management fee (in annualized percentage return) that an investor
with mean-variance preferences would be willing to pay, in order to switch from the Expectations Hy-
pothesis (EH) strategy to another strategy. The utility gain is computed at three risk aversion levels,
i.e., γR = 1, 3, 6. Higher utility gain is preferred.
3. We report the performance of strategies relative to the mean-variance portfolio based on the EH. The
strategies reported include minimum-variance portfolio, mean-variance portfolio based on the proposed
learning model (learning portfolio), EH portfolio with parameter uncertainty aversion (PUA), learning
portfolio with PUA, and learning portfolio considering parameter uncertainty aversion and model uncer-
tainty (PUA&MU). In parenthesis, we report the percentage size of the confidence interval for an F9,51
implied by the values of ε.
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Table 5: Economic Gains of Different Strategies (from 2010 onward)

Strategy Utility gain (∆)

γR = 6 γR = 3 γR = 1

Panel A: Short sales allowed

Minimum-variance -1.08 -7.74 -12.17

Learning 1.06 0.61 0.30

ε = 2.78 (99%)

EH with PUA 0.00 0.00 0.00

Learning with PUA 1.06 0.61 0.30

Learning with PUA&MU 2.84 2.36 1.74

ε = 2.07 (95%)

EH with PUA 0.00 0.00 0.00

Learning with PUA 1.06 0.61 0.30

Learning with PUA&MU 2.35 2.10 1.74

Panel B: Short sales not allowed

Minimum-variance 14.85 -7.08 -21.70

Learning -0.06 0.02 0.07

ε = 2.78 (99%)

EH with PUA 0.00 0.00 0.00

Learning with PUA -0.06 0.02 0.07

Learning with PUA&MU 1.82 0.75 0.33

ε = 2.07 (95%)

EH with PUA 0.00 0.00 0.00

Learning with PUA -0.06 0.02 0.07

Learning with PUA&MU 1.82 0.75 0.79

Notes: 1. The table reports the out-of-sample 12-month holding utility gain (∆) on different portfolio
strategies, over the evaluation period from 2010:01 to 2014:10.
2. Utility gain (∆) is the portfolio management fee (in annualized percentage return) that an investor
with mean-variance preferences would be willing to pay, in order to switch from the Expectations Hy-
pothesis (EH) strategy to another strategy. The utility gain is computed at three risk aversion levels,
i.e., γR = 1, 3, 6. Higher utility gain is preferred.
3. We report the performance of strategies relative to the mean-variance portfolio based on the EH. The
strategies reported include minimum-variance portfolio, mean-variance portfolio based on the proposed
learning model (learning portfolio), EH portfolio with parameter uncertainty aversion (PUA), learning
portfolio with PUA, and learning portfolio considering parameter uncertainty aversion and model uncer-
tainty (PUA&MU). In parenthesis, we report the percentage size of the confidence interval for an F9,51
implied by the values of ε.
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4 Conclusion

This paper studies the problem of a representative agent who learns about the informa-
tion in the bond market over time, with the consideration of parameter uncertainty and
model uncertainty. In addition to adaptive learning about parameters as considered in
Giacoletti, Laursen and Singleton (2014), this proposed framework provides flexibility
in specifying different learning speeds and model restrictions. The optimal specification
can be selected according to predictive performance over time, and, therefore, reduce the
risk of data snooping. This method is robust in the sense that it reveals the agent’s
expectations in real time by using conditional information. We find that apart from
observational variance, parameter instability is the dominant driving force of predictive
uncertainty, when compared with uncertainty in learning speed or model restrictions.
It suggests that a successful term structure model should at least consider time-varying
parameters when making conditional forecasts.

The problem of asset allocation for an investor with ambiguity aversion building
upon Garlappi, Uppal and Wang (2007) is studied. After learning the parameters,
the ambiguity-averse investor forms optimal portfolios by maximizing mean-variance ex-
pected utility. The ensemble of all salient features offered by our framework is essential
in producing significant and consistent economic value over the Expectations Hypothe-
sis benchmark. Ambiguity aversion with model uncertainty ensures that the search for
portfolio weights is in a reliable region, which in turn not only boosts but also stabilizes
the gains. Therefore, ambiguity aversion is a key to salvaging the models with significant
predictability but little economic value used in the previous literature, and the economic
value puzzle in bond returns can be resolved following this direction.

There are various important directions in which this approach can be extended. By
allowing for more general model specifications, such as incorporating more information
from macro-finance predictor variables or economic constraints as in Pettenuzzo, Tim-
mermann and Valkanov (2014), it is possible to further improve model performance and
provide meaningful economic rationales. It would also be interesting to develop hybrid
models with both spanned and unspanned macroeconomic risks and explore the prediction
uncertainty from different choices of predictors, as suggested by Bauer and Rudebusch
(2015). Finally, our results suggest that the zero lower bound problem could hinder the
performance of our portfolio strategy. We leave these directions for further research.
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Appendix A Bond Pricing in GDTSMs
Under the assumptions in Section 2.1, the price of an m-period zero-coupon bond is given
by

Dm
t = EQ

t [e−
∑m−1

i=1 rt+i ] = eAm+Bm·Pt , (A.1)

where (Am,Bm) solve the first-order difference equations

Am+1 −Am = (KQ
0 )′Bm + 1

2B
′
mΣPPBm − ρ0, (A.2)

Bm+1 − Bm = (KQ
1 )′Bm − ρ1, (A.3)

subject to the initial conditions A0 = 0, B0 = 0. The loadings for the corresponding bond
yield are Am = −Am/m and Bm = −Bm/m. See Dai and Singleton (2003) for details.

Appendix B Estimation Methods

B.1 Bayesian Kalman Filter with Forgetting Factor
We conduct the Kalman filter estimation for the state space model with Equation (2.14)
and Equation (2.15):

zt = Xtβt + vt,

βt+1 = βt + ut,

where zt is an n×1 vector of variables, Xt = In⊗
[
z′t−1, ..., z

′
t−p

]′
, βt are VAR coefficients,

vt ∼ N (0,Σt) with Σt an n× n covariance matrix, and ut ∼ N (0, Qt).
Given that all the data from time 1 to t denoted as Dt, the Bayesian solution to

updating about the coefficients βt takes the form

p (βt|Dt) ∝ L (βt; zt) p (βt|Dt−1) ,

p (βt|Dt−1) =
∫
℘
p (βt|Dt−1, βt−1) p (βt−1|Dt−1) dβt−1,

where ℘ is the support of βt−1. The solution to this problem can be defined using a
Bayesian generalization of the typical Kalman filter recursions. Given an initial condition
β0 ∼ N (m0,Φ0) we can define (cf. West and Harrison (1997))34:

34For a parameter θ we use the notation θt|s to denote the value of parameter θt given data up to time
s (i.e. Ds) for s > t or s < t. For the special case where s = t, I use the notation θt|t = θt
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1. Posterior at time t− 1

βt−1|Dt−1 ∼ N (mt−1,Φt−1) ,

2. Prior at time t

βt|Dt−1 ∼ N
(
mt|t−1,Φt|t−1

)
,

where mt|t−1 = mt−1 and Φt|t−1 = Φt−1 +Qt.

3. Posterior at time t

βt|Dt ∼ N (mt,Φt) , (B.1)

where mt = mt|t−1+ Φt|t−1X
′
t(V −1

t )′ṽt and Φt = Φt|t−1 − Φt|t−1X
′
t(V −1

t )′XtΦ′t|t−1,
with ṽt = zt−Xtmt|t−1 the prediction error and Vt = XtΦt|t−1X

′
t + Σt its covariance

matrix.

Following the discussion above, we need to find estimates for Σt and Qt in the formulas
above. We define the time t prior for Σt to be

Σt|Dt−1 ∼ iW (St−1, δnt−1) , (B.2)

while the posterior takes the form

Σt|Dt ∼ iW (St, nt) ,

where nt = δnt−1 +1 and St = δSt−1 +n−1
t

(
S0.5
t−1V

−0.5
t−1 ṽt|t−1ṽ

′
t|t−1V

−0.5
t−1 S0.5

t−1

)
. In this formu-

lation, vt is replaced with the one-step-ahead prediction error ṽt|t−1 = zt−mt|t−1Xt. The
estimate for Σt is approximately equivalent numerically to the Exponentially Weighted
Moving Average (EWMA) filter Σ̂t = δΣ̂t−1 + (1− δ) vtv′t. The parameter δ is the decay
factor, where for 0 < δ < 1. In fact, Koop and Korobilis (2013) apply such a scheme
directly to the covariance matrix Σt, which results in a point estimate. In this case by
applying variance discounting methods to the scale matrix St, we are able to approximate
the full posterior distribution of Σt.

Regarding Qt, we use the forgetting factor approach in Koop and Korobilis (2013);
see also West and Harrison (1997) for a similar discounting approach. In this case Qt is
set to be proportionate to the filtered covariance Φt−1 = cov (βt−1|Dt−1) and takes the
following form

Qt =
(
λ−1 − 1

)
Φt−1, (B.3)

for a given forgetting factor λ. Note that λ is mathematically equivalent to the quan-
tity 1 − γ in the constant gain least squares (CGLS) algorithm, see Appendix B.2 and
McCulloch (2007). Therefore, the forgetting factor λ and the gain parameter γ are two
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sides to the same coin. As λ becomes larger, the γ becomes smaller, so the model would
adjust more slowly if a structural break happens.

An alternative brief interpretation of forgetting factors is that they control how much
‘recent past’ information will be used. With the exponential decay for the forgetting
factors, if it takes a value of 0.99, the information 24 periods ago (two years for monthly
data) receives around 80% as much weight as the information of last period. If forgetting
factor takes 0.95, then forecast performance 24 periods ago receives only about 30% as
much weight. The similar implication holds for the decay factor.

B.2 The Link between the Kalman Filter and Adaptive Least
Squares

From the Kalman filter described in last section, we have the following formulas

mt = mt|t−1 + Φt|t−1X
′
t(V −1

t )′ṽt, (B.4)
Φt = Φt|t−1 − Φt|t−1X

′
t(V −1

t )′XtΦ′t|t−1, (B.5)
Vt = XtΦt|t−1X

′
t + Σt, (B.6)

where ṽt = zt −Xtmt|t−1 is the prediction error. Post-multiply (B.5) by X ′t and combine
with (B.6) we obtain

ΦtX
′
t = Φt|t−1

(
X ′t −X ′t(V −1

t )′XtΦ′t|t−1X
′
t

)
= Φt|t−1

(
X ′t −X ′t(V −1

t )′(Vt − Σt)
)

= Φt|t−1X
′
t(V −1

t )′Σt. (B.7)

We can get the expressions of ALS by post-multiplying (B.7) by Σ−1
t and substituting it

back to (B.4) and (B.5), respectively.
For (B.4) we have

mt = mt|t−1 +R−1
t X ′tΣ−1

t ṽt, (B.8)

where we set Rt = Φ−1
t . So we obtain the evolution of the drift in ALS.

We continue the previous substitution in (B.5) with Φt|t−1 = Φt−1 +Qt in hand, which
gives

Φt = Φt−1 +Qt − ΦtX
′
tΣ−1

t XtΦt−1 − ΦtX
′
tΣ−1

t XtQt. (B.9)

Setting Rt = Φ−1
t , we can get the final equation after some manipulation

Rt = (I +QtΦ−1
t )−1Rt−1 +X ′tΣ−1

t Xt. (B.10)

If we set Qt = γ
1−γΦt−1, then we have the constant gain least squares (CGLS) algorithm.
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B.3 Brief Introduction of the Unscented Kalman Filter
Consider the following nonlinear discrete-time stochastic system represented by:

zt = f(βt) + vt, (B.11)
βt+1 = βt + ut, (B.12)

where zt is an n×1 vector of variables, βt are coefficients that govern the pricing equation
f(·), vt ∼ N (0,Σt) with Σt an n× n covariance matrix, and ut ∼ N (0, Qt).

As we mentioned before, the solution for this system follows a recursive rule given by

βt|Dt ∼ N (mt,Φt) , (B.13)

where Dt is the information set at time t. Similar to the Kalman filter, the unscented
Kalman filter has the same recursive estimation process as in Appendix B.1, except the
update equations (B.4) and (B.5) are replaced by:

mt = mt|t−1 +Ktṽt, (B.14)
Φt = Φt|t−1 −KtPztK′t, (B.15)

where Kt is the Kalman gain of the filter and Pzt is the prior variance of zt. The above
updating equations are intuitively similar to the ones in the Kalman filter, except we use
different formulas to obtain the Kalman gain and the prior variance. To be more specific,
these quantities can be calculated by simulating sigma points around the mean of state
variables, see Wan and Van Der Merwe (2000) and Appendix D for details.

B.4 Probabilities for Dynamic Model Selection
To obtain the desire probabilities for dynamic selection or averaging, we need updating
at each point in time. In papers such as Raftery, Kárnỳ and Ettler (2010) or Koop
and Korobilis (2012) the models are TVP regressions with different sets of explanatory
variables. The analogous result of the model prediction equation, when doing Bayesian
model averaging, is

p(βt−1|Dt−1) =
K∑
k=1

p(β(k)
t−1|Lt−1 = k,Dt−1)Pr(Lt−1 = k|Dt−1), (B.16)

where Lt−1 = k means the kth model35 is selected and p(β(k)
t−1|Lt−1 = k,Dt−1) is given by

the Kalman filter (Equation B.1). To simplify notation, let πt|s,l = Pr(Lt = l|Ds).
35For example, it can be the kth model in a pool of possible models with different restrictions or gain

parameter γ.
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Raftery, Kárnỳ and Ettler (2010) used an empirically sensible simplification that

πt|t−1,k =
παt−1|t−1,k∑K
l=1 π

α
t−1|t−1,l

, (B.17)

where 0 < α ≤ 1. A forgetting factor is also employed here, of which the meaning is
discussed in the last section.36 The huge advantage of using the forgetting factor α is
that it does not require an MCMC algorithm to draw transitions between models or a
simulation algorithm over model space.

The model updating equation is

πt|t,k = πt|t−1,kpk(zt|Dt−1)∑K
l=1 πt|t−1,lpl(zt|Dt−1)

, (B.18)

where pk(zt|Dt−1) is the predictive likelihood. When proceeding with dynamic model
selection (DMS), the model with the highest probability is the best model we would like
to select. Alternatively, we can conduct dynamic model averaging (DMA), which average
the predictions of all models with respective probabilities.

36In this paper, we set α = 1 to put equal weights to previous information.
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Appendix C Proof of Propositions

C.1 Heuristics of Proposition 1
Following Garlappi, Uppal and Wang (2007), we start with the inner minimization

min
µ
wᵀµ− γ

2w
ᵀΣw, (C.1)

subject to

(µ̂− µ)ᵀΣ−1(µ̂− µ) ≤ ε. (C.2)

The Lagrangian is given by

L(µ, λL) = wᵀµ− γ

2w
ᵀΣw − λL[ε− (µ̂− µ)ᵀΣ−1(µ̂− µ)]. (C.3)

µ∗ is a solution of the constrained problem above if and only if there exists a scalar
λL∗ ≥ 0, such that (µ∗, λL∗) is a solution of the following unconstrained problem

min
µ

max
λL
L(µ, λL). (C.4)

From the first order conditions with respect to µ in Equation (C.3), we have

µ∗ = µ̂− 1
2λLΣw. (C.5)

Substituting this in the Lagrangian (C.3) we obtain

L(µ∗, λL) = wᵀµ̂− ( 1
4λL + γ

2 )wᵀΣw − λLε. (C.6)

Therefore, the original max-min problem with constraints is equivalent to the maximiza-
tion problem below

max
w,λL

wᵀµ̂− ( 1
4λL + γ

2 )wᵀΣw − λLε. (C.7)

Solving for λL, we get λL = 1
2

√
wᵀΣw
ε

> 0. Then we can rewrite the maximization
problem as

max
w

wᵀµ̂− γ

2w
ᵀΣw(1 + 2

√
ε

γ
√
wᵀΣw

). (C.8)

It is easy to show, the first-order condition with respect to w gives

w =
( σp

γσp +
√
ε

)
Σ−1µ̂. (C.9)
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With Equation (C.9), we can post-multiply wᵀ by Σw and obtain

σ2
p =

( σp
γσp +

√
ε

)2
µ̂ᵀΣ−1µ̂, (C.10)

where σp =
√
wᵀΣw.

After some manipulation, the optimal portfolio weight w∗ is given by the positive real
solution σ∗p of the following polynomial

γ2σ2
p + 2

√
εγσp + ε− µ̂ᵀΣ−1µ̂ = 0. (C.11)

If µ̂ᵀΣ−1µ̂ is sufficiently large, we have a unique positive real solution σ∗p. Otherwise, we
have a non-negative solution σ∗p, i.e. w∗ = 0. Therefore, using Equation (C.9) we have
Equation (2.29) in Proposition 1.

C.2 Heuristics of Proposition 2
To solve the max-min problem

max
w,µ̂

min
µ
wᵀµ− γ

2w
ᵀΣw, (C.12)

subject to

(µ̂− µ)ᵀΣ−1(µ̂− µ) ≤ ε, (C.13)
µ̂ ∈ {µ̂k : k = 1, ..., K}, (C.14)

we follow the same procedures as in Appendix C.1. The difference lies in the outer
maximization:

max
w,µ̂

wᵀµ̂− γ

2w
ᵀΣw(1 + 2

√
ε

γ
√
wᵀΣw

), (C.15)

where we need to consider first-order conditions with respect to µ̂ as well as w. We have
the same formula (C.9) for w. However, in addition to w, we need to search µ̂ over a set
of possible models at each point in time, and use the optimal forecasts µ̂∗ that give the
largest value in the above maximization problem.

52



Appendix D Technical Details of the Unscented Kalman
Filter

D.1 Unscented Transformation
The UKF is based on the unscented transformation (UT) in order to form a Gaussian
approximation to the target distribution. The advantage of UT over the Taylor series
based approximation in other nonlinear filters (for example, the extended Kalman filter)
is that Jacobian and Hessian matrices are not need, so the estimation procedure is more
convenient in a system where closed-form expressions are not available.

The follows show the procedure of unscented transformation:

1. We simulate a set of 2n+ 1 sigma points X of the state variables x, where n is the
dimension of the state, from the mean m and covariance matrix Φ:

X (0) = m,

X (i) = m+
√

(n+ λ)Φ, i = 1, ..., n,

X (i) = m−
√

(n+ λ)Φ, i = n+ 1, ..., 2n, (D.1)

with the associated weights Wm of the state variables x and Wc of the observations
z:

W (0)
m = λ

n+ λ
,

W (0)
c = λ

n+ λ
+ (1− α2 + β),

W (i)
m = W (i)

c = 1
2(n+ λ) , i = 1, ..., 2n, (D.2)

where λ = α2(n + κ) − n is a scaling parameter. α and κ determine the spread of
the sigma points around the state, and β is used to incorporate prior knowledge of
the distribution of the state.37

2. The sigma points are propagated though non-linearity as

Z(i) = f(X (i)), i = 0, ..., 2n. (D.3)
37As suggested by Wan and Van Der Merwe (2000), normal values are α = 10−3, κ = 0 and β = 2. If

the true distribution of x is Gaussian, β = 2 is optimal. Note that the simple approximation approach
taken with the UT are accurate to the third order for all nonlinearities with Gaussian innovations, which
has an advantage over Monte-Carlo methods which require (orders of magnitude) more sample points to
provide an accurate distribution of the state.
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3. We can compute the mean and covariance estimates for z:

z̄ ≈
2n∑
i=0

W (i)
m Z(i),

Pz ≈
2n∑
i=0

W (i)
c (Z(i) − z̄)(Z(i) − z̄)ᵀ. (D.4)

4. Estimation of the cross-covariance between z and x is given by

Px,z ≈
2n∑
i=0

W (i)
c (X (i) −m)(Z(i) − z̄)ᵀ. (D.5)

D.2 Estimation Procedure using UKF
Based on the discussion of UT above, we describe the following prediction and update
steps of the UKF.

• Prediction: Compute the predicted state mean mt|t−1 and covariance Φt|t−1, the
predicted observation mean Ẑt and covariance Pzt , and the cross-variance of the
state and measurement Pxt,zt :

mt|t−1 = mt−1|t−1,

Φt|t−1 = Φt−1|t−1 +Qt,

ẑt =
2n∑
i=0

W (i)
m Z

(i)
t|t−1,

Pzt =
2n∑
i=0

W (i)
c (Z(i)

t|t−1 − ẑt)(Z
(i)
t|t−1 − ẑt)

ᵀ + Σt,

Pxt,zt =
2n∑
i=0

W (i)
c (X (i)

t|t−1 −mt|t−1)(Z(i)
t|t−1 − ẑt)

ᵀ. (D.6)

• Update: Compute the filter gain Kt and the updated state mean mt|t and covariance
Φt|t in order to get Equations (B.14) and (B.15):

Kt = Pxt,ztP
−1
zt
,

mt|t = mt|t−1 +Ktṽt,
Φt|t = Φt|t−1 −KtPxtK′t. (D.7)

Following Koop and Korobilis (2012) and Koop and Korobilis (2013), we specify

Qt =
(
λ−1
f − 1

)
Φt−1, (D.8)

where λf is the ‘forgetting factor’. We have an intuitive interpretation for the
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forgetting factor: the smaller the λf , the more weights UKF puts on the new
information, and hence the system is more sensitive to structural changes.38 To fix
the idea, we set the value to 0.99 to ensure the stability of the system.

D.3 Detailed Specification of the ATSM
We adopt a specific parametric form of the class of Affine Term Structure Models (ATSMs)
with arbitrage-free restrictions under the Duffie and Kan (1996) framework, which is sim-
ilar to the majority of current related literature, see for example, Duffee (2002), Dai and
Singleton (2003), Joslin, Singleton and Zhu (2011) and Joslin, Priebsch and Singleton
(2014).39 In this setup, the measurement equation in the nonlinear system is governed
by parameter set (ΣPP , λ

Q
, rQ∞).40 Joslin, Singleton and Zhu (2011) prove that every

canonical GDTSM is observationally equivalent to the canonical GDTSM:

Xt = J(λQ) +
√

ΣXε
Q
t , (D.9)

rt = rQ∞ + 1 ·Xt, (D.10)

where Xt are normalized risk factors, rQ∞ denotes the unconditional mean of rt under
Q, and J(λQ) is a real Jordan form matrix associated with eigenvalues λQ . We can
conveniently apply invariant transformation of Xt and then replace the risk factors with
preferred portfolio combinations, see Dai and Singleton (2000) and Joslin, Singleton and
Zhu (2011) for details.

Solving for the bond prices of m-period zero-coupon bond Dm
t using the recursion

given by

Dm
t = EQ

t [e−
∑m−1

i=1 rt+i ], (D.11)

we can obtain the following pricing equation form-period bond yields as the measurement
equation:

ymt = AmX(Σt,PP , λ
Q

t , r
Q
t,∞) +Bm

X (λQ

t )Xt, (D.12)

where

Am+1
X − AmX = 1

2B
m′
X ΣXB

m
X − rQt,∞,

Bm+1
X −Bm

X = J(λQ

t )′Bm
X . (D.13)

38To see this, use Taylor series expansion around the observation mean. See Koop and Korobilis (2012)
and Koop and Korobilis (2013) for detailed discussion about the ‘forgetting factor’.

39Joslin, Singleton and Zhu (2011) denote their proposed model as a canonical Gaussian dynamic term
structure model (GDTSM). We use ATSM and GDTSM interchangeably.

40Following the notations in Joslin, Singleton and Zhu (2011) and Joslin, Priebsch and Singleton
(2014), λQ denotes the N -vector of ordered nonzero eigenvalues of KQ

PP and rQ∞ denotes the long-run
mean of rt under Q.
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