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Abstract

A new mixture autoregressive model based on Student’s t–distribution is proposed. A key feature
of our model is that the conditional t–distributions of the component models are based on autore-
gressions that have multivariate t–distributions as their (low-dimensional) stationary distributions.
That autoregressions with such stationary distributions exist is not immediate. Our formulation
implies that the conditional mean of each component model is a linear function of past observations
and the conditional variance is also time varying. Compared to previous mixture autoregressive
models our model may therefore be useful in applications where the data exhibits rather strong
conditional heteroskedasticity. Our formulation also has the theoretical advantage that conditions
for stationarity and ergodicity are always met and these properties are much more straightforward
to establish than is common in nonlinear autoregressive models. An empirical example employing
a realized kernel series based on S&P 500 high-frequency data shows that the proposed model
performs well in volatility forecasting.
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1 Introduction

Different types of mixture models are in widespread use in various fields. Overviews of mixture models
can be found, for example, in the monographs of McLachlan & Peel (2000) and Frühwirth-Schnatter
(2006). In this paper, we are concerned with mixture autoregressive models that were introduced
by Le et al. (1996) and further developed by Wong & Li (2000, 2001a,b) (for further references, see
Kalliovirta et al. (2015)).

In mixture autoregressive models the conditional distribution of the present observation given the
past is a mixture distribution where the component distributions are obtained from linear autoregressive
models. The specification of a mixture autoregressive model typically requires two choices: choosing
a conditional distribution for the component models and choosing a functional form for the mixing
weights. In a majority of existing models a Gaussian distribution is assumed whereas, in addition
to constants, several different time-varying mixing weights (functions of past observations) have been
considered in the literature.

Instead of a Gaussian distribution, Wong et al. (2009) proposed using Student’s t–distribution. A
major motivation for this comes from the heavier tails of the t–distribution which allow the resulting
model to better accommodate for the fat tails encountered in many observed time series, especially
in economics and finance. In the model suggested by Wong et al. (2009), the conditional mean and
conditional variance of each component model are the same as in the Gaussian case (a linear function
of past observations and a constant, respectively), and what changes is the distribution of the inde-
pendent and identically distributed error term: instead of a standard normal distribution, a Student’s
t–distribution is used. This is a natural approach to formulate the component models and hence also
a mixture autoregressive model based on the t–distribution.

In this paper, we also consider a mixture autoregressive model based on Student’s t–distribution, but
our specification differs from that used by Wong et al. (2009). Our starting point is the characteristic
feature of linear Gaussian autoregressions that stationary distributions (of consecutive observations)
as well as conditional distributions are Gaussian. We imitate this feature by using a (multivariate)
Student’s t–distribution and, as a first step, construct a linear autoregression in which both conditional
and (low-dimensional) stationary distributions have Student’s t–distributions. This leads to a model
where the conditional mean is as in the Gaussian case (a linear function of past observations) whereas
the conditional variance is no longer constant but depends on a quadratic form of past observations.
These linear models are then used as component models in our new mixture autoregressive model
which we call the StMAR model.

Our StMAR model has some very attractive features. Like the model of Wong et al. (2009), it can
be useful for modelling time series with regime switching, multimodality, and conditional heteroskedas-
ticity. As the conditional variances of the component models are time-varying, the StMAR model can
potentially accommodate for stronger forms of conditional heteroskedasticity than the model of Wong
et al. (2009). Our formulation also has the theoretical advantage that, for a pth order model, the
stationary distribution of p + 1 consecutive observations is fully known and is a mixture of partic-
ular Student’s t–distributions. Moreover, stationarity and ergodicity are simple consequences of the
definition of the model and do not require complicated proofs.

Finally, a few notational conventions. All vectors are treated as column vectors and we write
x = (x1, . . . , xn) for the vector x where the components xi may be either scalars or vectors. The
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notation X ∼ nd(µ,Γ) signifies that the random vector X has a d–dimensional Gaussian distribution
with mean µ and (positive definite) covariance matrix Γ. Similarly, by X ∼ td(µ,Γ, ν) we mean that
X has a d–dimensional Student’s t–distribution with mean µ, (positive definite) covariance matrix Γ,
and degrees of freedom ν (assumed to satisfy ν > 2); the density function and some properties of the
multivariate Student’s t–distribution employed are given in an Appendix. The notation 1d is used for
a d–dimensional vector of ones, ıd signifies the vector (1, 0, . . . , 0) of dimension d, and the identity
matrix of dimension d is denoted by Id. The Kronecker product is denoted by ⊗, and vec(A) stacks
the columns of matrix A on top of one another.

2 Linear Student’s t autoregressions

In order to formulate our new mixture model, this section briefly considers linear pth order autore-
gressions that have multivariate Student’s t–distributions as their stationary distributions. First, for
motivation and to develop notation, consider a linear Gaussian autoregression zt (t = 1, 2, . . .) gener-
ated by

zt = ϕ0 +

p∑
i=1

ϕjzt−i + σet, (1)

where the error terms et are independent and identically distributed with a standard normal distribu-
tion, and the parameters satisfy ϕ0 ∈ R, ϕ = (ϕ1, . . . , ϕp) ∈ Sp, and σ > 0, where

Sp = {(ϕ1, . . . , ϕp) ∈ Rp : ϕ (z) = 1−
p∑
i=1

ϕiz
i 6= 0 for |z| ≤ 1} (2)

is the stationarity region of a linear pth order autoregression. Denoting zt = (zt, . . . , zt−p+1) and
z+
t = (zt, zt−1), it is well known that the stationary solution zt to (1) satisfies

zt ∼ np(µ1p,Γp),

z+
t ∼ np+1(µ1p+1,Γp+1), (3)

zt | zt−1 ∼ n1(ϕ0 +ϕ′zt−1, σ
2) = n1(µ+ γ ′pΓ

−1
p (zt−1 − µ1p), σ

2),

where the last relation defines the conditional distribution of zt given zt−1 and the quantities Γp, γ0,
γp, µ, and Γp+1 are defined via

vec(Γp) = (Ip2 − (Φ⊗ Φ))−1 ıp2 σ
2, Φ =

[
ϕ1 · · ·ϕp−1 ϕp

Ip−1 0p−1

]
,

γ0 = σ2 +ϕ′Γpϕ, γp = Γpϕ, µ = ϕ0/(1− ϕ1 − · · · − ϕp), Γp+1 =

[
γ0 γ ′p
γp Γp

]
. (4)

Two essential properties of linear Gaussian autoregressions are that they have the distributional features
in (3) and the representation in (1).

It is not immediately obvious that linear autoregressions based on Student’s t–distribution with
similar properties exist (such models have, however, appeared at least in Spanos (1994), Heracleous &
Spanos (2006), and Pitt & Walker (2006)). Suppose that for a random vector in Rp+1 it holds that
(z, z) ∼ tp+1(µ1p+1,Γp+1, ν) where ν > 2 (and other notation is as above in (4)). Then (for details,
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see the Appendix) the conditional distribution of z given z is z | z ∼ t1(µ(z), σ2(z), ν + p), where

µ(z) = ϕ0 +ϕ′z, σ2(z) =
ν − 2 + (z − µ1p)

′Γ−1
p (z − µ1p)

ν − 2 + p
σ2. (5)

We now state the following theorem (proofs of all theorems are in the Supplementary Material).

Theorem 1. Suppose ϕ0 ∈ R, ϕ = (ϕ1, . . . , ϕp) ∈ Sp, σ > 0, and ν > 2. Then there exists a process
zt = (zt, . . . , zt−p+1) (t = 0, 1, 2, . . .) with the following properties.

(i) The process zt (t = 1, 2, . . .) is a Markov chain on Rp with a stationary distribution characterized
by the density function tp(µ1p,Γp, ν). When z0 ∼ tp(µ1p,Γp, ν), we have, for t = 1, 2, . . ., that
z+
t ∼ tp+1(µ1p+1,Γp+1, ν) and the conditional distribution of zt given zt−1 is

zt | zt−1 ∼ t1(µ(zt−1), σ2(zt−1), ν + p). (6)

(ii) Furthermore, for t = 1, 2, . . ., the process zt has the representation

zt = ϕ0 +

p∑
i=1

ϕi zt−i + σt εt (7)

with conditional variance σ2
t = σ2(zt−1) (see (5)), where the error terms εt form a sequence of in-

dependent and identically distributed random variables with a marginal t1(0, 1, ν + p) distribution and
with εt independent of {zs, s < t}.

Results (i) and (ii) in Theorem 1 are comparable to properties (3) and (1) in the Gaussian case. Part
(i) shows that both the stationary and conditional distributions of zt are t–distributions, whereas part
(ii) clarifies the connection to standard AR(p) models. In contrast to linear Gaussian autoregressions, in
this t–distributed case zt is conditionally heteroskedastic and has an ‘AR(p)–ARCH(p)’ representation
(here ARCH refers to autoregressive conditional heteroskedasticity).

3 A mixture autoregressive model based on Student’s t–distribution

3.1 Mixture autoregressive models

Let yt (t = 1, 2, . . .) be the real-valued time series of interest, and let Ft−1 denote the σ–algebra
generated by {yt−j , j > 0}. We consider mixture autoregressive models for which the conditional
density function of yt given its past, f(· | Ft−1), is of the form

f(yt | Ft−1) =
M∑
m=1

αm,tfm(yt | Ft−1), (8)

where the (positive) mixing weights αm,t are Ft−1–measurable and satisfy
∑M

m=1 αm,t = 1 (for all t),
and the fm(· | Ft−1), m = 1, . . . ,M , describe the conditional densities of M autoregressive component
models. Different mixture models are obtained with different specifications of the mixing weights αm,t
and the conditional densities fm(· | Ft−1).

Starting with the specification of the conditional densities fm(· | Ft−1), a common choice has
been to assume the component models to be linear Gaussian autoregressions. For the mth component
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model (m = 1, . . . ,M), denote the parameters of a pth order linear autoregression with ϕm,0 ∈ R,
ϕm = (ϕm,1, . . . , ϕm,p) ∈ Sp, and σm > 0. Also set yt−1 = (yt−1, . . . , yt−p). In the Gaussian case, the
conditional densities in (8) take the form (m = 1, . . . ,M)

fm(yt | Ft−1) =
1

σm
φ
(yt − µm,t

σm

)
,

where φ(·) signifies the density function of a standard normal random variable, µm,t = ϕm,0+ϕ′myt−1 is
the conditional mean function (of componentm), and σ2

m > 0 is the conditional variance (of component
m), often assumed to be constant. Instead of a Gaussian density, Wong et al. (2009) consider the case
where fm(· | Ft−1) is the density of Student’s t–distribution with conditional mean and variance as
above, µm,t = ϕm,0 +ϕ′myt−1 and a constant σ2

m, respectively.
In this paper, we also consider a mixture autoregressive model based on Student’s t–distribution,

but our formulation differs from that used by Wong et al. (2009). In Theorem 1 it was seen that
linear autoregressions based on Student’s t–distribution naturally lead to the conditional distribution
t1(µ(·), σ2(·), ν + p) in (6). Motivated by this, we consider a mixture autoregressive model in which
the conditional densities fm(yt | Ft−1) in (8) are specified as

fm(yt | Ft−1) = t1(yt;µm,t, σ
2
m,t, νm + p), (9)

where the expressions for µm,t = µm(yt−1) and σ2
m,t = σ2

m(yt−1) are as in (5) except that z is replaced
with yt−1 and all the quantities therein are defined using the regime specific parameters ϕm,0, ϕm, σm,
and νm (whenever appropriate a subscript m is added to previously defined notation, e.g., µm or Γm,p).
A key difference to the model of Wong et al. (2009) is that the conditional variance of component m
is not constant but a function of yt−1. An explicit expression for the density in (9) can be obtained
from the Appendix and is

fm(yt | Ft−1) = C(νm)σ−1
m,t

(
1 + (νm + p− 2)−1

(yt − µm,t
σm,t

)2)− 1+νm+p
2

, (10)

where C(ν) = Γ((1+ν+p)/2)

(π(ν+p−2))1/2Γ((ν+p)/2)
(and Γ(·) signifies the gamma function).

Now consider the choice of the mixing weights αm,t in (8). The most basic choice is to use constant
mixing weights as in Wong & Li (2000) and Wong et al. (2009). Several different time-varying mixing
weights have also been suggested, see, e.g., Wong & Li (2001a), Glasbey (2001), Lanne & Saikkonen
(2003), Dueker et al. (2007), and Kalliovirta et al. (2015, 2016).

In this paper, we propose mixing weights that are similar to those used by Glasbey (2001) and
Kalliovirta et al. (2015). Specifically, we set

αm,t =
αmtp(yt−1;µm1p,Γm,p, νm)∑M
n=1 αntp(yt−1;µn1p,Γn,p, νn)

, (11)

where the αm ∈ (0, 1), m = 1, . . . ,M , are unknown parameters satisfying
∑M

m=1 αm = 1. Note that
the Student’s t density appearing in (11) corresponds to the stationary distribution in Theorem 1(i): If
the yt’s were generated by a linear Student’s t autoregression described in Section 2 (with a subscript
m added to all the notation therein), the stationary distribution of yt−1 would be characterized by
tp(yt−1;µm1p,Γm,p, νm). Our definition of the mixing weights in (11) is different from that used in
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Glasbey (2001) and Kalliovirta et al. (2015) in that these authors employed the np(yt−1;µm1p,Γm,p)

density (corresponding to the stationary distribution of a linear Gaussian autoregression) instead of
the Student’s t density tp(yt−1;µm1p,Γm,p, νm) we use.

3.2 The Student’s t mixture autoregressive model

Equations (8), (9), and (11) define a model we call the Student’s t mixture autoregressive, or StMAR,
model. When the autoregressive order p or the number of mixture components M need to be empha-
sized we refer to an StMAR(p,M) model. We collect the unknown parameters of an StMAR model in
the vector θ = (ϑ1, . . . ,ϑM , α1, . . . , αM−1) ((M(p+4)−1)×1), where ϑm = (ϕm,0,ϕm, σ

2
m, νm) (with

ϕm ∈ Sp, σ2
m > 0, and νm > 2) contains the parameters of each component model (m = 1, . . . ,M) and

the αm’s are the parameters appearing in the mixing weights (11); the parameter αM is not included
due to the restriction

∑M
m=1 αm = 1.

The StMAR model can also be presented in an alternative (but equivalent) form. To this end, let
Pt−1 (·) signify the conditional probability of the indicated event given Ft−1, and let εm,t be a sequence
of independent and identically distributed random variables with a t1(0, 1, νm + p) distribution such
that εm,t is independent of {yt−j , j > 0} (m = 1, . . . ,M). Furthermore, let st = (s1,t, . . . , sM,t) be a
sequence of (unobserved) M–dimensional random vectors such that, conditional on Ft−1, st and εm,t
are independent (for all m). The components of st are such that, for each t, exactly one of them
takes the value one and others are equal to zero, with conditional probabilities Pt−1(sm,t = 1) = αm,t,
m = 1, . . . ,M . Now yt can be expressed as

yt =

M∑
m=1

sm,t(µm,t + σm,tεm,t) =

M∑
m=1

sm,t(ϕm,0 +ϕ′myt−1 + σm,tεm,t), (12)

where σm,t is as in (9). This formulation suggests that the mixing weights αm,t can be thought of
as (conditional) probabilities that determine which one of the M autoregressive components of the
mixture generates the observation yt.

It turns out that the StMAR model has some very attractive theoretical properties; the carefully
chosen conditional densities in (9) and the mixing weights in (11) are crucial in obtaining these prop-
erties. The following theorem shows that there exists a choice of initial values y0 such that yt is a
stationary and ergodic Markov chain. Importantly, an explicit expression for the stationary distribution
is also provided.

Theorem 2. Consider the StMAR process yt generated by (8), (9), and (11) (or (12) and (11)) with
the conditions ϕm ∈ Sp and νm > 2 satisfied for all m = 1, . . . ,M . Then yt = (yt, . . . , yt−p+1)

(t = 1, 2, . . .) is a Markov chain on Rp with a stationary distribution characterized by the density

f(y;θ) =

M∑
m=1

αmtp(y;µm1p,Γm,p, νm).

Moreover, yt is ergodic.

The stationary distribution of yt is a mixture ofM p–dimensional t–distributions with constant mix-
ing weights αm. Hence, moments of the stationary distribution of order smaller than min (ν1, . . . , νM )

exist and are finite. As can be seen from the proof of Theorem 2 (in the Supplementary Material), the
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stationary distribution of the vector (yt,yt−1) is also a mixture ofM t–distributions with density of the
same form,

∑M
m=1 αmtp+1(µm1p+1,Γm,p+1, νm). Thus the mean, variance, and first p autocovariances

of yt are (here the connection between γm,j and Γm,p+1 is as in (4))

µ
def
= E[yt] =

M∑
m=1

αmµm, γj
def
= Cov[yt, yt−j ] =

M∑
m=1

αmγm,j +

M∑
m=1

αm(µm − µ)2, j = 0, . . . , p.

Subvectors of (yt,yt−1) also have stationary distributions that belong to the same family (but this
does not hold for higher dimensional vectors such as (yt+1, yt,yt−1)).

The fact that an explicit expression for the stationary (marginal) distribution of the StMAR model
is available is not only convenient but also quite exceptional among mixture autoregressive models
or other related nonlinear autoregressive models (such as threshold or smooth transition models).
Previously, similar results have been obtained by Glasbey (2001) and Kalliovirta et al. (2015) in
the context of mixture autoregressive models that are of the same form but based on the Gaussian
distribution (for a few rather simple first order examples involving other models, see Tong (2011,
Section 4.2)).

From the definition of the model, the conditional mean and variance of yt are obtained as

E[yt | Ft−1] =

M∑
m=1

αm,tµm,t, V ar[yt | Ft−1] =

M∑
m=1

αm,tσ
2
m,t +

M∑
m=1

αm,t

(
µm,t −

M∑
n=1

αn,tµn,t

)2

. (13)

Except for the different definition of the mixing weights, the conditional mean is as in the Gaussian
mixture autoregressive model of Kalliovirta et al. (2015). This is due to the well-known fact that
in the multivariate t–distribution the conditional mean is of the same linear form as in the multi-
variate Gaussian distribution. However, unlike in the Gaussian case, the conditional variance of the
multivariate t–distribution is not constant. Therefore, in (13) we have the time-varying variance com-
ponent σ2

m,t which in the models of Kalliovirta et al. (2015) and Wong et al. (2009) is constant (in
the latter model the mixing weights are also constants). In (13) both the mixing weights αm,t and the
variance components σ2

m,t are functions of yt−1, implying that the conditional variance exhibits non-
linear autoregressive conditional heteroskedasticity. Compared to the aforementioned previous models
our model may therefore be useful in applications where the data exhibits rather strong conditional
heteroskedasticity.

4 Estimation

The parameters of an StMAR model can be estimated by the method of maximum likelihood (details
of the numerical optimization methods employed and of simulation experiments are available in the
Supplementary Material). As the stationary distribution of the StMAR process is known it is even
possible to make use of initial values and construct the exact likelihood function and obtain exact
maximum likelihood estimates. Assuming the observed data y−p+1, . . . , y0, y1, . . . , yT and stationary
initial values, the log-likelihood function takes the form

LT (θ) = log

( M∑
m=1

αmtp(y0;µm1p,Γm,p, νm)

)
+

T∑
t=1

lt(θ), (14)
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where

lt(θ) = log

( M∑
m=1

αm,tt1(yt;µm,t, σ
2
m,t, νm + p)

)
. (15)

An explicit expression for the density appearing in (15) is given in (10), and the notation for µm,t and
σ2
m,t is explained after (9). Although not made explicit, αm,t, µm,t, and σ2

m,t, as well as the quantities
µm, γm,p, and Γm,p, depend on the parameter vector θ.

In (14) it has been assumed that the initial values y0 are generated by the stationary distribution.
If this assumption seems inappropriate one can condition on initial values and drop the first term on
the right hand side of (14). In what follows we assume that estimation is based on this conditional
log-likelihood, namely L(c)

T (θ) = T−1
∑T

t=1 lt(θ) which we, for convenience, have also scaled with the
sample size. Maximizing L(c)

T (θ) with respect to θ yields the maximum likelihood estimator denoted
by θ̂T .

The permissible parameter space of θ, denoted by Θ, needs to be constrained in various ways.
The stationarity conditions ϕm ∈ Sp, the positivity of the variances σ2

m, and the conditions νm > 2

ensuring existence of second moments are all assumed to hold (for m = 1, . . . ,M). Throughout we
assume that the number of mixture components M is known, and this also entails the requirement
that the parameters αm (m = 1, . . . ,M) are strictly positive (and strictly less than unity whenever
M > 1). Further restrictions are required to ensure identification. Denoting the true parameter value
by θ0 and assuming stationary initial values, the condition needed is that lt(θ) = lt(θ0) almost surely
only if θ = θ0. An additional assumption needed for this is

α1 > · · · > αM > 0 and ϑi = ϑj only if 1 ≤ i = j ≤M. (16)

From a practical point of view this assumption is not restrictive because what it essentially requires
is that the M component models cannot be ‘relabeled’ and the same StMAR model obtained. We
summarize the restrictions imposed on the parameter space as follows.

Assumption 1. The true parameter value θ0 is an interior point of Θ, where Θ is a compact subset of
{θ = (ϑ1, . . . ,ϑM , α1, . . . , αM−1) ∈ RM(p+3) × (0, 1)M−1 : ϕm ∈ Sp, σ2

m > 0, and νm > 2 for all m =

1, . . . ,M, and (16) holds}.

Asymptotic properties of the maximum likelihood estimator can now be established under conven-
tional high-level conditions. Denote I(θ) = E

[∂lt(θ)
∂θ

∂lt(θ)
∂θ′

]
and J (θ) = E

[∂2lt(θ)
∂θ∂θ′

]
.

Theorem 3. Suppose yt is generated by the stationary and ergodic StMAR process of Theorem 2 and
that Assumption 1 holds. Then θ̂T is strongly consistent, i.e., θ̂T → θ0 almost surely. Suppose further
that (i) T 1/2 ∂

∂θL
(c)
T (θ0)

d→ N(0, I(θ0)) with I(θ0) finite and positive definite, (ii) J (θ0) = −I(θ0),
and (iii) E

[
supθ∈Θ0

∣∣∂2lt(θ)
∂θ∂θ′

∣∣] < ∞ for some Θ0, a compact convex set contained in the interior of Θ

that has θ0 as an interior point. Then T 1/2(θ̂T − θ0)
d→ N

(
0,−J (θ0)−1

)
.

Of the conditions in this theorem, (i) states that a central limit theorem holds for the score vector
(evaluated at θ0) and that the information matrix is positive definite, (ii) is the information matrix
equality, and (iii) ensures the uniform convergence of the Hessian matrix (in some neighbourhood of
θ0). These conditions are standard but their verification may be tedious.

Theorem 3 shows that the conventional limiting distribution applies to the maximum likelihood
estimator θ̂T which implies the applicability of standard likelihood-based tests. It is worth noting,
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however, that here a correct specification of the number of autoregressive components M is required.
In particular, if the number of component models is chosen too large then some parameters of the
model are not identified and, consequently, the result of Theorem 3 and the validity of the related tests
break down. This particularly happens when one tests for the number of component models. Such
tests for mixture autoregressive models with Gaussian conditional densities (see (8)) are developed by
Meitz & Saikkonen (2017). The testing problem is highly nonstandard and extending their results to
the present case is beyond the scope of this paper.

Instead of formal tests, in our empirical application we use information criteria to infer which model
fits the data best. Similar approaches have also been used by Wong et al. (2009) and others. Note
that once the number of regimes is (correctly) chosen, standard likelihood-based inference can be used
to choose regime-wise autoregressive orders and to test other hypotheses of interest.

5 Empirical example

Modeling and forecasting financial market volatility is key to manage risk. In this application we use
the realized kernel of Barndorff-Nielsen et al. (2008) as a proxy for latent volatility. We obtained daily
realized kernel data over the period 3 January 2000 through 20 May 2016 for the S&P 500 index from
the Oxford-Man Institute’s Realized Library v0.2 (Heber et al., 2009). Figure 1 shows the in-sample
period (Jan 3, 2000–June 3, 2014; 3597 observations) for the S&P 500 realized kernel data (RKt),
which is nonnegative with a distribution exhibiting substantial skewness and excess kurtosis (sample
skewness 14.3, sample kurtosis 380.8). We follow the related literature which frequently use logarithmic
realized kernel (log(RKt)), to avoid imposing additional parameter constraints, and to obtain a more
symmetric distribution, often taken to be approximately Gaussian. The log(RKt) data, also shown
in Figure 1, has a sample skewness of 0.5 and kurtosis of 3.5. Visual inspection of the time series
plots of the RKt and log(RKt) data suggests that the two series exhibit changes at least in levels and
potentially also in variability. A kernel estimate of the density function of the log(RKt) series also
suggest the potential presence of multiple regimes.

Table 1 reports estimation results for three selected StMAR models (for further details, see the
Supplementary Material). Following Wong & Li (2001a), Wong et al. (2009), and Li et al. (2015), we
use information criteria for model comparison. For the log(RKt) data in-sample period the Akaike
information criterion (aic) favours the StMAR(4,3) model, the Hannan-Quinn information criterion
(hqc) the StMAR(4,2) model, and the Bayesian information criterion (bic) the simpler StMAR(4,1)
model. In view of the approximate standard errors in Table 1, the estimation accuracy appears
quite reasonable except for the degrees of freedom parameters. Taking the sum of the autoregressive
parameters as a measure of persistence, we find that the estimated persistence for the first regime of
the StMAR(4,2) is 0.909 and 0.489 for the second regime, suggesting that persistence is rather strong
in the first regime and moderate in the second regime.

Numerous alternative models for volatility proxies have been proposed. We employ Corsi’s (2009)
heterogeneous autoregressive (HAR) model as it is arguably the most popular reference model for
forecasting proxies such as the realized kernel. We also consider a pth-order autoregression as the
AR(p) often performs well in volatility proxy forecasting. The StMAR models are estimated using
maximum likelihood, and the reference AR and HAR models by ordinary least squares. We use a
fixed scheme, where the parameters of our volatility models are estimated just once using data from
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Table 1: Parameter estimates for three selected StMAR models and the log(RKt) data over the period
3 January 2000 – 3 June 2014. Numbers in parentheses are standard errors based on a numerical
Hessian.

StMAR(4, 1) StMAR(4, 2) StMAR(4, 3)

ϕ1,0 −0.746 (0.089) −0.851 (0.112) −3.667 (0.727)
ϕ1,1 0.428 (0.017) 0.432 (0.024) 0.331 (0.035)
ϕ1,2 0.224 (0.019) 0.221 (0.025) 0.169 (0.034)
ϕ1,3 0.121 (0.019) 0.122 (0.025) 0.055 (0.033)
ϕ1,4 0.150 (0.017) 0.134 (0.024) 0.093 (0.033)
σ2

1 0.298 (0.011) 0.285 (0.015) 0.293 (0.016)
ν1 11.999 (1.109) 10.510 (1.426) 18.328 (1.814)

ϕ2,0 −5.381 (1.007) −1.013 (0.341)
ϕ2,1 0.289 (0.046) 0.509 (0.038)
ϕ2,2 0.129 (0.048) 0.179 (0.042)
ϕ2,3 0.023 (0.046) 0.043 (0.045)
ϕ2,4 0.047 (0.052) 0.153 (0.036)
σ2

2 0.287 (0.022) 0.327 (0.024)
ν2 29.031 (1.595) 12.977 (2.200)

ϕ3,0 −3.639 (1.243)
ϕ3,1 0.208 (0.072)
ϕ3,2 0.198 (0.082)
ϕ3,3 0.219 (0.067)
ϕ3,4 −0.010 (0.079)
σ2

3 0.167 (0.025)
ν3 22.008 (2.697)

α1 0.724 (0.064) 0.459 (0.088)
α2 0.342 (0.099)

T L
(c)
T (θ̂T ) −2854.153 −2832.665 −2820.077

aic 5722.306 5695.330 5686.154
hqc 5737.741 5728.406 5736.870
bic 5765.613 5788.131 5828.449
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Figure 1: Left panel: Daily RKt (lower solid) and log(RKt) (upper solid), and mixing weights based
on the estimates of the StMAR(4,2) model in Table 1 (dot-dash) for the log(RKt) series. The mixing
weights α̂1,t are scaled from (0, 1) to (min log(RKt), max log(RKt)). Right panel: A kernel density
estimate of the log(RKt) observations (solid), and the mixture density (dashes) implied by the same
StMAR model as in the left panel.

Table 2: The percentage shares of cumulative realized kernel observations that belong to the 99%,
95% and 90% one-sided upper prediction intervals based on the distribution of 500, 000 simulated
conditional sample paths.

Daily Weekly
99% 95% 90% 99% 95% 90%

AR(11) 98.99 95.97 90.52 96.54 91.26 86.18
HAR 98.59 94.76 90.52 96.14 91.06 86.99
StMAR(4,1) 98.99 95.97 92.14 98.17 95.12 90.24
StMAR(4,2) 99.19 95.97 92.54 97.97 94.92 90.65
StMAR(4,3) 99.19 96.37 92.94 98.37 94.72 90.65

Biweekly Monthly
99% 95% 90% 99% 95% 90%

AR(11) 94.05 89.53 85.63 94.11 88.63 85.47
HAR 93.63 88.71 84.80 91.79 87.37 83.79
StMAR(4,1) 97.33 93.22 90.76 97.89 93.89 91.79
StMAR(4,2) 97.33 93.22 90.76 97.26 94.11 91.16
StMAR(4,3) 97.54 93.22 90.97 97.89 94.32 91.37
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Jan 3, 2000–June 3, 2014. These estimates are then used to generate all forecasts. The remaining 496
observations of our sample are used to compare the forecasts from the alternative models. As discussed
in Kalliovirta et al. (2016), computing multi-step-ahead forecasts for mixture models like the StMAR
is rather complicated. For this reason we use computer driven forecasts to predict future volatility: For
each out-of-sample date T , and for each alternative model, we simulate 500,000 sample paths. Each
path is of length 22 (representing one trading month) and conditional on the information available at
date T . In these simulations unknown parameters are replaced by their estimates. As the simulated
paths are for log(RKt), and our object of interest is RKt, an exponential transformation is applied.

We examine daily, weekly (5 day), biweekly (10 day), and monthly (22 day) volatility forecasts
generated by the alternative models; for instance, the weekly volatility forecast at date T is the forecast
for RKT+1 + · · ·+RKT+5 (the 5-day-ahead cumulative realized kernel). Table 2 reports the percentage
shares of (1, 5, 10, and 22-day) cumulative RKt out-of-sample observations that belong to the 99%,
95%, and 90% one-sided upper prediction intervals based on the distribution of the simulated sample
paths; these upper prediction intervals for volatility are related to higher levels of risk in financial
markets. Overall, it is seen that the empirical coverage rates of the StMAR based prediction intervals
are closer to the nominal levels than the ones obtained with the reference models. By comparison,
the accuracy of the prediction intervals obtained with the popular HAR model quickly degrade as the
forecast period increases. The StMAR model performs well also when two-sided prediction intervals
and point forecast accuracy are considered (for details, see the Supplementary Material).
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The supplementary material includes proofs of Theorems 1–3, information on the numerical optimiza-
tion methods employed for maximum likelihood estimation, simulation experiments, and further details
of the empirical example.

Appendix

Properties of the multivariate Student’s t–distribution

The standard form of the density function of the multivariate Student’s t–distribution with ν degrees
of freedom and dimension d is (see, e.g., Kotz & Nadarajah (2004, p. 1))

f (x) =
Γ ((d+ ν)/2)

(πν)d/2 Γ (ν/2)
det (Σ)−1/2 (1 + ν−1(x− µ)′Σ−1(x− µ)

)− d+ν
2 ,

where Γ (·) is the gamma function and µ ∈ Rd and Σ (d×d), a symmetric positive definite matrix, are
parameters. For a random vector X possessing this density, the mean and covariance are E[X] = µ
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and Cov[X] = Γ = ν
ν−2Σ (assuming ν > 2). The density can be expressed in terms of µ and Γ as

f (x) =
Γ ((d+ ν)/2)

(π(ν − 2))d/2 Γ (ν/2)
det (Γ)−1/2 (1 + (ν − 2)−1(x− µ)′Γ−1(x− µ)

)− d+ν
2 .

This form of the density function, denoted by td(x;µ,Γ, ν), is used in this paper, and the notation
X ∼ td(µ,Γ, ν) is used for a random vector X possessing this density. Condition ν > 2 and positive
definiteness of Γ will be tacitly assumed.

For marginal and conditional distributions, partition X as X = (X1,X2) where the components
have dimensions d1 and d2 (d1 + d2 = d). Conformably partition µ and Γ as µ = (µ1,µ2) and

Γ =

[
Γ11 Γ12

Γ′12 Γ22

]
.

Then the marginal distributions of X1 and X2 are td1(µ1,Γ11, ν) and td2(µ2,Γ22, ν), respectively. The
conditional distribution of X1 given X2 is also a t–distribution, namely (see Ding (2016, Sec. 2))

X1 | (X2 = x2) ∼ td1(µ1|2(x2),Γ1|2(x2), ν + d2),

where µ1|2(x2) = µ1 + Γ12Γ
−1
22 (x2 − µ2) and Γ1|2(x2) =

ν−2+(x2−µ2)′Γ−1
22 (x2−µ2)

ν−2+d2
(Γ11 − Γ12Γ

−1
22 Γ′12).

Furthermore, td(x;µ,Γ, ν) = td1(x1;µ1|2(x2),Γ1|2(x2), ν + d2) td2(x2;µ2,Γ22, ν).
Now consider a special case: a (p+ 1)–dimensional random vector X ∼ tp+1(µ1p+1,Γp+1, ν), where

µ ∈ R and Γp+1 is a symmetric positive definite Toeplitz matrix. Note that the mean vector µ1p+1

and the covariance matrix Γp+1 have structures similar to those of the mean and covariance matrix of
a (p+ 1)–dimensional realization of a second order stationary process. More specifically, assume that
Γp+1 is the covariance matrix of a second order stationary AR(p) process.

Partition X as X = (X1,X2) = (X1, Xp+1) withX1 andXp+1 real valued and X1 and X2 both p×1

vectors. The marginal distributions of X1 and X2 are X1 ∼ tp(µ1p,Γp, ν) and X2 ∼ tp(µ1p,Γp, ν),
where the (symmetric positive definite Toeplitz) matrix Γp = Cov [X1] = Cov [X2] is obtained from
Γp+1 by deleting the first row and first column or, equivalently, the last row and last column (here the
specific structures of µ1p+1 and Γp+1 are used). The conditional distribution of X1 given X2 = x2 is

X1 | (X2 = x2) ∼ t1(µ(x2), σ2(x2), ν + p),

where expressions for µ(x2) and σ2(x2) can be obtained from above as follows. Partition Γp+1 as

Γp+1 =

[
γ0 γ ′p
γp Γp

]
,

and denote ϕ = Γ−1
p γp and σ2 = γ0 − γ ′pΓ−1

p γp (σ2 > 0 as Γp+1 is positive definite). From above,

µ(x2) = µ1|2(x2) = µ+ γ ′pΓ
−1
p (x2 − µ1p) = µ(1− γ ′pΓ−1

p 1p) +ϕ′x2,

σ2(x2) = Γ1|2(x2) =
ν − 2 + (x2 − µ1p)

′Γ−1
p (x2 − µ1p)

ν − 2 + p
σ2.

12



References

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A. & Shephard, N. (2008). Designing real-
ized kernels to measure the ex post variation of equity prices in the presence of noise. Econometrica
76, 1481–1536.

Corsi, F. (2009). A simple approximate long-memory model of realized volatility. J. Finan. Economet.
7, 174–196.

Ding, P. (2016). On the conditional distribution of the multivariate t distribution. Am. Statistician
70, 293–295.

Dueker, M. J., Sola, M. & Spagnolo, F. (2007). Contemporaneous threshold autoregressive
models: estimation, testing and forecasting. J. Economet. 141, 517–547.

Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models. Springer.

Glasbey, C. A. (2001). Non-linear autoregressive time series with multivariate Gaussian mixtures as
marginal distributions. J. R. Statist. Soc. C 50, 143–154.

Heber, G., Lunde, A., Shephard, N. & Sheppard, K. (2009). Oxford-man institute’s realized
library v0.2. Oxford-Man Institute, University of Oxford.

Heracleous, M. S. & Spanos, A. (2006). The Student’s t dynamic linear regression: re-examining
volatility modeling. In Econometric Analysis of Financial and Economic Time Series (Advaces in
Econometrics, Vol 20 Part 1), D. Terrell & T. B. Fomby, eds. Emerald Group Publishing Limited,
pp. 289–319.

Kalliovirta, L., Meitz, M. & Saikkonen, P. (2015). A Gaussian mixture autoregressive model
for univariate time series. J. Time Ser. Anal. 36, 247–266.

Kalliovirta, L., Meitz, M. & Saikkonen, P. (2016). Gaussian mixture vector autoregression. J.
Economet. 192, 485–498.

Kotz, S. & Nadarajah, S. (2004). Multivariate t distributions and their applications. Cambridge:
Cambridge University Press.

Lanne, M. & Saikkonen, P. (2003). Modeling the US short-term interest rate by mixture autore-
gressive processes. J. Finan. Economet. 1, 96–125.

Le, N. D., Martin, R. D. & Raftery, A. E. (1996). Modeling flat stretches, bursts, and outliers
in time series using mixture transition distribution models. J. Am. Statist. Assoc. 91, 1504–1515.

Li, G., Guan, B., Li, W. K. & Yu, P. L. (2015). Hysteretic autoregressive time series models.
Biometrika 102, 717–723.

McLachlan, G. & Peel, D. (2000). Finite Mixture Models. Wiley.

Meitz, M. & Saikkonen, P. (2017). Testing for observation-dependent regime switching in mixture
autoregressive models. HECER Discussion Paper No. 420, University of Helsinki, arXiv:1711.03959.

13



Pitt, M. K. & Walker, S. G. (2006). Extended constructions of stationary autoregressive processes.
Stat. Probabil. Lett. 76, 1219–1224.

Spanos, A. (1994). On modeling heteroskedasticity: the Student’s t and elliptical linear regression
models. Economet. Theory 10, 286–315.

Tong, H. (2011). Threshold models in time series analysis – 30 years on. Statistics and Its Interface
4, 107–118.

Wong, C. S., Chan, W. S. & Kam, P. L. (2009). A student t-mixture autoregressive model with
applications to heavy-tailed financial data. Biometrika 96, 751–760.

Wong, C. S. & Li, W. K. (2000). On a mixture autoregressive model. J. R. Statist. Soc. B 62,
95–115.

Wong, C. S. & Li, W. K. (2001a). On a logistic mixture autoregressive model. Biometrika 88,
833–846.

Wong, C. S. & Li, W. K. (2001b). On a mixture autoregressive conditional heteroscedastic model.
J. Am. Statist. Assoc. 96, 982–995.

14



Supplementary material for
“A mixture autoregressive model based on Student’s t–distribution”
by Meitz, Preve, and Saikkonen (not meant for publication)

This Supplementary Material includes proofs of Theorems 1–3, information on the numerical opti-
mization methods employed for maximum likelihood estimation, simulation experiments, and further
details of the empirical example.

1 Proofs

Proof of Theorem 1. Corresponding to ϕ0 ∈ R, ϕ = (ϕ1, . . . , ϕp) ∈ Sp, σ > 0, and ν > 2, define the
notation Γp, γ0, γp, µ, and Γp+1 as in (4), and note that Γp and Γp+1 are, by construction and due
to assumption ϕ ∈ Sp, symmetric positive definite Toeplitz matrices. To prove (i), we will construct
a p–dimensional Markov process zt = (zt, . . . , zt−p+1) (t = 1, 2, . . .) with the desired properties. We
need to specify an appropriate transition probability measure and an initial distribution. For the
former, assume that the transition probability measure of zt is determined by the density function
t1(zt;µ(zt−1), σ2(zt−1), ν + p), where µ(zt−1) and σ2(zt−1) are obtained from the last two displayed
equations in the Appendix by substituting zt−1 for x2. This shows that zt can be treated as a Markov
chain (see Meyn and Tweedie (2009, Ch. 3)). Concerning the initial value z0, suppose it follows the
t–distribution z0 ∼ tp(µ1p,Γp, ν). Furthermore, if z+

t = (zt, zt−1) = (zt, zt−p), we find from the
Appendix that the density function of z+

1 is given by

tp+1(z+
1 , µ1p+1,Γp+1, ν) = t1(z1;µ(z0), σ2(z0), ν + p) tp(z0;µ1p,Γp, ν). (A1)

Thus, z+
1 ∼ tp+1(µ1p+1,Γp+1, ν) and, as in the Appendix, it follows that the marginal distribution of

z1 is the same as that of z0, that is, z1 ∼ tp(µ1p,Γp, ν) (the specific structure of Γp+1 is used here).
Hence, as zt is a Markov chain, we can conclude that it has a stationary distribution characterized by
the density function tp(z, µ1p,Γp, ν) (see Meyn and Tweedie (2009, pp. 230–231)). This completes the
proof of (i).

To prove (ii), note that, due to the Markov property, zt | Fzt−1 ∼ t1(µ(zt−1), σ2(zt−1), ν + p)

where Fzt−1 signifies the sigma-algebra generated by {zs, s < t}. Thus we can write the conditional
expectation and conditional variance of zt given Fzt−1 as

E[zt | Fzt−1] = E[zt | zt−1] = µ+ γ ′pΓ
−1
p (zt−1 − µ1p) = ϕ0 +ϕ′zt−1,

V ar[zt | Fzt−1] = V ar[zt | zt−1] =
ν − 2 + (zt−1 − µ1p)

′Γ−1
p (zt−1 − µ1p)

ν − 2 + p
σ2.

Denote this conditional variance by σ2
t = σ2(zt−1) (and note that σ2

t > 0 a.s. due to the assumed
conditions σ2 > 0, Γp > 0, and ν > 2). Now the random variables εt defined by

εt
def
= (zt − ϕ0 −ϕ′zt−1)/σt

follow, conditional on Fzt−1, the t1(0, 1, ν + p) distribution. Hence, we obtain the ‘AR(p)–ARCH(p)’
representation (7). Because the conditional distribution εt | Fzt−1 ∼ t1(0, 1, ν + p) does not depend
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on Fzt−1 (or, more specifically, on the random variables {zs, s < t}), the same holds true also un-
conditionally, εt ∼ t1(0, 1, ν + p), implying that the random variables εt are independent of Fzt−1 (or
of {zs, s < t}). Moreover, from the definition of the εt’s it follows that {εs, s < t} is a function of
{zs, s < t}, and hence εt is also independent of {εs, s < t}. Consequently, the random variables εt
are IID t1(0, 1, ν + p), completing the proof of (ii). �

Proof of Theorem 2. First note that yt is a Markov chain on Rp. Now, let y0 = (y0, . . . , y−p+1)

be a random vector whose distribution has the density f(y0;θ) =
∑M

m=1 αmtp(y0;µm1p,Γm,p, νm).
According to (8), (9), (11), and (A1), the conditional density of y1 given y0 is

f(y1 | y0;θ) =

M∑
m=1

αmtp(y0;µm1p,Γm,p, νm)∑M
n=1 αntp(y0;µn1p,Γn,p, νn)

t1(y1;µ(y0), σ2(y0), νm + p)

=

M∑
m=1

αm∑M
n=1 αntp(y0;µn1p,Γn,p, νn)

tp+1((y1,y0);µm1p+1,Γm,p+1, νm).

It follows that the density of (y1,y0) is f((y1,y0);θ) =
∑M

m=1 αmtp+1((y1,y0);µm1p+1,Γm,p+1, νm).
Integrating y−p+1 out (and using the properties of marginal distributions of a multivariate t–distribution
in the Appendix) shows that the density of y1 is f(y1;θ) =

∑M
m=1 αmtp(y1;µm1p,Γm,p, νm). There-

fore, y0 and y1 are identically distributed. As {yt}∞t=1 is a (time homogeneous) Markov chain, it
follows that {yt}∞t=1 has a stationary distribution πy (·), say, characterized by the density f(·;θ) =∑M

m=1 αmtp(·;µm1p,Γm,p, νm) (cf. Meyn and Tweedie (2009, pp. 230–231)).
For ergodicity, let P py(y, ·) = Pr(yp | y0 = y) signify the p–step transition probability measure of

yt. It is straightforward to check that P py(y, ·) has a density given by

f(yp | y0;θ) =

p∏
t=1

f(yt | yt−1;θ) =

p∏
t=1

M∑
m=1

αm,tt1(yt;µ(yt−1), σ2(yt−1), νm + p).

The last expression makes clear that f(yp | y0;θ) > 0 for all yp ∈ Rp and all y0 ∈ Rp. Now, one
can complete the proof that yt is ergodic in the sense of Meyn and Tweedie (2009, Ch. 13) by using
arguments identical to those used in the proof of Theorem 1 in Kalliovirta et al. (2015). �

Proof of Theorem 3. First note that Assumption 1 together with the continuity of L(c)
T (θ) ensures

the existence of a measurable maximizer θ̂T . For strong consistency, it suffices to show that a certain
uniform convergence condition and a certain identification condition hold. Specifically, the former
required condition is that the conditional log-likelihood function obeys a uniform strong law of large
numbers, that is, supθ∈Θ |L

(c)
T (θ) − E[L

(c)
T (θ)]| → 0 a.s. as T → ∞. As the yt’s are stationary and

ergodic and E[L
(c)
T (θ)] = E[lt(θ)], condition E [supθ∈Θ |lt(θ)|] < ∞ ensures that the uniform law of

large numbers in Ranga Rao (1962) applies.
The validity of condition E [supθ∈Θ |lt(θ)|] <∞ can be established by deriving suitable lower and

upper bounds for lt(θ). Recall from (10) and (15) that

lt(θ) = log

( M∑
m=1

αm,tt1(yt;µm,t, σ
2
m,t, νm + p)

)
,
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where

t1(yt;µm,t, σ
2
m,t, νm + p) = C(νm)σ−1

m,t

(
1 + (νm + p− 2)−1

(yt − µm,t
σm,t

)2
)− 1+νm+p

2

and C(ν) = Γ((1+ν+p)/2)

(π(ν+p−2))1/2Γ((ν+p)/2)
. The following arguments hold for some choice of finite positive

constants c1, . . . , c10, and all staments are understood to hold ‘for all m = 1, . . . ,M ’ whenever appro-
priate. The assumed compactness of the parameter space (Assumption 1) and the continuity of the
gamma function on the positive real axis imply that

c1 ≤ C(νm) ≤ c2. (A2)

Next, recall that σ2
m,t =

νm−2+(yt−1−µm1p)′Γ−1
m,p(yt−1−µm1p)

νm−2+p σ2
m, where the matrix Γm,p is positive definite

and σ2
m > 0. Thus, by the compactness of the parameter space, σ2

m,t ≥ c3. On the other hand, as
Γm,p is a continuous function of the autoregressive coefficients, the continuity of eigenvalues implies
that the smallest eigenvalue of Γm,p, λmin(Γm,p), is bounded away from zero by a constant. This,
together with elementary inequalities, yields (yt−1 − µm1p)

′Γ−1
m,p(yt−1 − µm1p) ≤ λ−1

min(Γm,p)‖yt−1 −
µm1p‖2 ≤ c4(1 + y2

t−1 + · · · + y2
t−p). Thus, by the compactness of the parameter space, we have

c3 ≤ σ2
m,t ≤ c5(1 + y2

t−1 + · · ·+ y2
t−p) so that also

c−1
5 (1 + y2

t−1 + · · ·+ y2
t−p)

−1 ≤ σ−2
m,t ≤ c

−1
3 . (A3)

Therefore
1 ≤ 1 + (νm + p− 2)−1

(yt − µm,t
σm,t

)2
≤ c6(1 + y2

t + y2
t−1 + · · ·+ y2

t−p),

which, together with the compactness of the parameter space, implies that

c7(1 + y2
t + y2

t−1 + · · ·+ y2
t−p)

−c8 ≤
(

1 + (νm + p− 2)−1
(yt − µm,t

σm,t

)2
)− 1+νm+p

2

≤ 1. (A4)

Using (A2)–(A4) it now follows that

c9(1 + y2
t−1 + · · ·+ y2

t−p)
−1/2(1 + y2

t + y2
t−1 + · · ·+ y2

t−p)
−c8 ≤ t1(yt;µm,t, σ

2
m,t, νm + p) ≤ c10.

Using this and the fact that
∑M

m=1 αm,t(θ) = 1 we can now bound lt(θ) from above by a constant, say
lt(θ) ≤ C̄ <∞. Furthermore, for some C <∞,

−C(1 + log(1 + y2
t + y2

t−1 + · · ·+ y2
t−p)) ≤ lt(θ).

Hence, as the StMAR process has finite second moments, we can conclude that E [supθ∈Θ |lt(θ)|] <∞.
As for the latter condition required for consistency, we need to establish that E[lt(θ)] ≤ E[lt(θ0)]

and that E[lt(θ)] = E[lt(θ0)] implies θ = θ0. For notational clarity, let us make the dependence on
parameter values explicit in the expressions in (5) and write µ(·,ϑ) and σ2(·,ϑ), and let αm(y,θ) stand
for αm,t (see (11)) but with yt−1 therein replaced by y and with the dependence on the parameter
values made explicit (m = 1, . . . ,M). Making use of the fact that the density of (yt,yt−1) has the
form f((yt,yt−1);θ) =

∑M
m=1 αmtp+1((yt,yt−1);µm1p+1,Γm,p+1, νm) (see proof of Theorem 2) and

3



reasoning based on the Kullback-Leibler divergence, we can now use arguments analogous to those in
Kalliovirta et al. (2015, p. 265) to conclude that E[lt(θ)] ≤ E[lt(θ0)] with equality if and only if for
almost all (y,y),

M∑
m=1

αm(y,θ)t1(y;µ(y,ϑm), σ2(y,ϑm), νm+p) =
M∑
m=1

αm(y,θ0)t1(y;µ(y,ϑm,0), σ2(y,ϑm,0), νm,0 +p).

(A5)
For each fixed y at a time, the mixing weights, conditional means, and conditional variances in (A5) are
constants, and we may apply the results on identification of finite mixtures of Student’s t–distributions
in Holzmann et al. (2006, Example 1) (their parameterization of the t–distribution is slightly different
than ours, but identification with their parameterization implies identification in our parameterization).
Consequently, for each fixed y at a time, there exists a permutation {τ(1), . . . , τ(M)} of {1, . . . ,M}
(where this permutation may depend on y) such that

αm(y,θ) = ατ(m)(y,θ0), µ(y,ϑm) = µ(y,ϑτ(m),0), σ2(y,ϑm) = σ2(y,ϑτ(m),0), and

νm = ντ(m),0 for almost all y (m = 1, . . . ,M). (A6)

The number of possible permutations being finite (M !), this induces a finite partition of Rp where the
elements y of each partition correspond to the same permutation. At least one of these partitions,
say A ⊂ Rp, must have positive Lebesque measure. Thus, (A6) holds for all fixed y ∈ A with some
specific permutation {τ(1), . . . , τ(M)} of {1, . . . ,M}. The fact that µ(y,ϑm) = µ(y,ϑτ(m),0) for
m = 1, . . . ,M , almost all y, and all y ∈ A, can be used to deduce that (ϕm,0,ϕm) = (ϕm,0,0,ϕτ(m),0)

for m = 1, . . . ,M (see (4), (5), and Kalliovirta et al. (2015, pp. 265–266)). Similarly, using condition
σ2(y,ϑm) = σ2(y,ϑτ(m),0) (and the knowledge that (ϕm,0,ϕm, νm) = (ϕm,0,0,ϕτ(m),0, νm,0)), it follows
that σ2

m = σ2
τ(m),0 so that ϑm = ϑτ(m),0 (m = 1, . . . ,M). Now αm = ατ(m),0 (m = 1, . . . ,M) follows

as in Kalliovirta et al. (2015, p. 266)). In light of (16), the preceding facts imply that θ = θ0. This
completes the proof of consistency.

Given conditions (i)–(iii) of the theorem, asymptotic normality of the ML estimator can now be
established using standard arguments. The required steps can be found, for instance, in Kalliovirta et
al. (2016, proof of Theorem 3). We omit the details for brevity. �

2 Estimation

2.1 Numerical optimization

Finding maximum likelihood estimates of the unknown parameters of an StMAR(p,M) model amounts
to maximizing L(c)

T (θ), a function in M(p+ 4)− 1 variables, under several constraints. Our experience
with both actual and simulated data indicates that this can be challenging, in part due to multiple local
maxima, and that advanced numerical optimization methods are needed. We use a hybrid numerical
optimization scheme combining randomized search methods and classical gradient based methods to
efficiently search for a global maximum that satisfies the constraints. (Using the commonly employed
EM algorithm is also a possibility; however, contrary to some previous mixture models, the mixing
weights of the StMAR model depend on the autoregressive parameters implying that the optimization
problem in the maximization step does not simplify much.)
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We first employ a genetic algorithm using a variety of initial populations (collections of starting
points; for discussions on the genetic algorithm, other popular algorithms, and their applications in
econometrics, see Goffe et al., 1994, and Dorsey and Mayer, 1995). For each of the initial populations,
the genetic algorithm is run for a small number of generations to reach the region near an optimum
point relatively quickly. Corresponding to each initial population, the solution found by the genetic
algorithm is then used as a starting point for Matlab’s optimization method fmincon, which is faster
and more efficient for local search (for fmincon we further use a sequential quadratic programming
method; see e.g. Nocedal and Wright, 2006). The final parameter estimate is the best solution found
by fmincon for all the starting points considered. This hybrid optimization scheme combining multiple
initial populations, the genetic algorithm, and fmincon allows us to efficiently search the parameter
space and reduces the risk of ending up with a local, not global, maximum. We parallelize our code
to consider multiple initial populations and starting points in parallel. This helps to speed up the
optimization considerably. In view of the complexity of the estimation procedure, numerical gradients
and Hessians are used for the optimization.

The StMAR code used in our S&P 500 realized kernel example, further described in our StMAR
MATLAB Toolbox Documentation, is available for download through the second authors webpage at
https://www.researchgate.net/profile/Daniel_Preve. R code by Savi Virolainen is available through
the CRAN repository in the form of the ‘uGMAR’ package.

2.2 Simulation experiments

We carried out several Monte Carlo studies to evaluate the performance of the numerical optimization
scheme described above. The results of two of these studies are reported in Tables 1 and 2. In these
experiments, 500 independent simulated sample paths were generated from an StMAR(1,2), and also
from an StMAR(4,2), process; the sample sizes and parameter values used are displayed in Tables 1
and 2.

Overall, the performance of the numerical optimization scheme is quite satisfactory. As is commonly
known, the degrees of freedom parameter of a Student’s t–distribution is relatively difficult to estimate,
especially if its true value is large. This is also the case for our StMAR model, and our simulation
results indicate that the νm parameters can be relatively difficult to estimate even in moderate or
large samples. Similar difficulties were reported by Wong et al. (2009) when estimating their (constant
mixing weights) version of a Student t-mixture autoregressive model using the EM algorithm (see their
Table 3).
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Table 1: Simulation results for a StMAR(1,2) with various sample sizes T and 500 replications.
M, Md and SD denote the sample mean, median, and standard deviation, respectively.

T = 500 T = 1000 T = 2500 T = 5000

Value M Md SD M Md SD M Md SD M Md SD

ϕ1,0 −1.50 −2.31 −1.75 2.25 −2.02 −1.58 1.55 −1.64 −1.51 0.65 −1.52 −1.51 0.22

ϕ1,1 0.85 0.73 0.83 0.20 0.78 0.84 0.16 0.83 0.85 0.08 0.85 0.85 0.03

σ2
1 0.35 0.38 0.32 0.45 0.35 0.33 0.09 0.35 0.34 0.05 0.35 0.35 0.04

ν1 4.00 14.01 5.29 44.43 6.45 4.59 11.47 4.47 4.16 2.22 4.12 4.03 0.47

ϕ2,0 −5.50 −4.79 −5.33 2.92 −5.10 −5.43 1.65 −5.41 −5.48 0.84 −5.50 −5.49 0.39

ϕ2,1 0.35 0.44 0.37 0.30 0.40 0.36 0.21 0.36 0.35 0.10 0.35 0.35 0.05

σ2
2 0.30 0.96 0.30 14.03 0.31 0.30 0.06 0.30 0.30 0.03 0.30 0.30 0.02

ν2 8.00 20.48 7.08 53.76 15.15 7.44 36.00 9.19 7.76 6.64 8.30 7.80 2.12

α1 0.60 0.61 0.59 0.10 0.59 0.59 0.07 0.59 0.59 0.04 0.60 0.60 0.03

Table 2: Simulation results for a StMAR(4,2) with various sample sizes T and 500 replications.
M, Md and SD denote the sample mean, median, and standard deviation, respectively.

T = 1000 T = 2500 T = 5000 T = 10000

Value M Md SD M Md SD M Md SD M Md SD

ϕ1,0 −1.00 −1.65 −1.16 1.03 −1.46 −1.08 0.83 −1.27 −1.03 0.67 −1.15 −1.02 0.51

ϕ1,1 0.35 0.34 0.34 0.06 0.34 0.34 0.06 0.34 0.35 0.03 0.35 0.35 0.02

ϕ1,2 0.20 0.16 0.17 0.07 0.18 0.19 0.05 0.19 0.20 0.04 0.19 0.20 0.03

ϕ1,3 0.15 0.12 0.13 0.07 0.13 0.14 0.06 0.14 0.15 0.04 0.14 0.15 0.03

ϕ1,4 0.10 0.08 0.08 0.06 0.09 0.09 0.05 0.09 0.09 0.03 0.10 0.10 0.02

σ2
1 0.25 1.84 0.26 17.82 0.46 0.25 3.77 0.26 0.25 0.04 0.25 0.25 0.02

ν1 9.00 9.06 7.02 16.71 8.14 8.32 3.64 8.50 8.87 2.62 8.70 8.88 1.91

ϕ2,0 −3.00 −2.95 −2.92 2.86 −2.68 −2.97 0.92 −2.80 −3.00 0.72 −2.88 −2.98 0.53

ϕ2,1 0.30 0.29 0.30 0.14 0.30 0.30 0.04 0.30 0.30 0.03 0.30 0.30 0.02

ϕ2,2 0.10 0.11 0.12 0.13 0.12 0.11 0.06 0.11 0.10 0.04 0.11 0.10 0.03

ϕ2,3 0.05 0.06 0.07 0.13 0.07 0.06 0.06 0.06 0.05 0.04 0.06 0.05 0.03

ϕ2,4 0.05 0.04 0.04 0.14 0.05 0.05 0.05 0.05 0.05 0.03 0.05 0.05 0.02

σ2
2 0.30 1.32 0.23 12.28 0.35 0.26 0.42 0.32 0.28 0.17 0.30 0.29 0.07

ν2 3.00 23.26 4.63 69.40 4.96 3.38 3.68 3.98 3.11 2.47 3.48 3.04 1.66

α1 0.55 0.62 0.59 0.10 0.57 0.56 0.05 0.56 0.56 0.04 0.55 0.55 0.03
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3 Empirical example

3.1 In-sample results

We estimated 12 different StMAR models with p = 1, 2, 3, 4 and M = 1, 2, 3. Of these models, the
bic, hqc, and aic information criteria chose the StMAR(4,1), StMAR(4,2), and StMAR(4,3) models,
respectively. Estimation results for these three models are shown in Table 1 of the main paper. Higher-
order models were also tried but their forecasting performance was inferior to the models with p = 4.

3.2 Out-of-sample results

3.2.1 Two-sided prediction intervals

Table 2 of the main paper reported the percentage shares of 1, 5, 10, and 22-day cumulative RKt

out-of-sample observations that belong to the 99%, 95%, and 90% one-sided upper prediction intervals
based on the distribution of the simulated sample paths. The corresponding numbers for two-sided
prediction intervals (for nominal levels 99%, 95%, 90%, 70%, and 50%) are presented in Table 3.
Overall, it is seen that the empirical coverage rates of the StMAR based prediction intervals are closer
to the nominal levels than the ones obtained with the reference models. The StMAR(4,1), and also the
StMAR(4,2), does particularly well. By comparison, the accuracy of the prediction intervals obtained
with the HAR quickly degrade as the forecast period increases.

Note that to generate prediction intervals for the reference AR and HAR models, we need to specify
an error distribution in these models; we assume that the errors are Gaussian. The order of the AR
model is chosen using aic and bic; both favour an AR(p) model with p = 11.

Table 3: The percentage shares of cumulative realized kernel observations that belong to the 99%,
95%, 90%, 70% and 50% two-sided prediction intervals based on the distribution of 500,000 simulated
conditional sample paths.

Daily Weekly

99% 95% 90% 70% 50% 99% 95% 90% 70% 50%

AR(11) 98.39 94.35 89.92 65.52 45.97 95.12 88.01 79.47 61.18 42.48

HAR 98.59 95.16 89.72 66.13 44.96 94.31 86.79 79.67 60.37 41.87

StMAR(4,1) 98.79 94.35 88.91 64.92 45.56 96.34 91.26 84.76 64.63 45.53

StMAR(4,2) 98.79 94.56 89.31 66.53 48.39 96.34 89.63 83.13 63.82 45.53

StMAR(4,3) 98.59 93.95 89.11 66.13 47.38 96.75 89.02 81.91 60.98 45.12

Biweekly Monthly

99% 95% 90% 70% 50% 99% 95% 90% 70% 50%

AR(11) 93.22 83.98 77.82 60.99 43.94 93.47 84.00 78.11 60.00 41.26

HAR 92.81 83.78 77.41 58.32 41.07 90.11 80.84 76.42 56.63 38.32

StMAR(4,1) 96.92 89.94 84.39 65.71 48.46 99.16 90.53 86.74 66.11 45.05

StMAR(4,2) 96.71 88.50 81.52 62.01 44.15 97.47 86.53 82.32 65.26 43.16

StMAR(4,3) 96.10 86.04 79.06 59.55 42.71 95.79 84.00 80.21 63.16 41.89
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3.2.2 Volatility point forecast evaluation criteria

Let RM denote a (cumulative) realized measure (volatility proxy), such as the realized variance or
realized kernel, and R̂M a forecast of RM . Although realized measures generally are consistent
estimators of the underlying latent volatility, in practice they are noisy proxies. Because of this,
care needs to be taken when choosing a loss function to evaluate and compare volatility forecasts.
Following the literature on volatility forecast comparison (Patton and Sheppard, 2009; Patton, 2011),
we consider the two most widely used loss functions, namely squared loss (MSE)

LMSE(RM, R̂M) = (RM − R̂M)2

and QLIKE (quasi-likelihood) loss

LQLIKE(RM, R̂M) =
RM

R̂M
− log

RM

R̂M
− 1.

Moreover, as Patton and Sheppard (2009) recommend the use of QLIKE rather than MSE in volatility
forecasting applications, we employ QLIKE loss as our primary loss function, and squared loss as our
secondary loss function.

3.2.3 Point forecasts

Results for 1, 5, 10, and 22-day cumulative RKt forecasts based on the sample median are presented in
Figure 1. The left panel reports QLIKEs and the right panel MSEs. Forecast accuracy of the models
is reported relative to the StMAR(4,2) model: The horizontal line (at 100) represents the StMAR(4,2)
model, whereas the other lines represent the size of the forecast error measure made relative to this
model (for instance, a value of 110 in the left panel is to be interpreted as a QLIKE 10% larger than for
the StMAR(4,2) model). The overall performance of the StMAR(4,2) model is quite reasonable. The
model does particularly well in terms of our primary loss function, QLIKE. Overall, the StMAR(4,3)
performs somewhat more poorly in terms of MSE. Figure 1 also suggests that the more parsimonious
StMAR(4,1) model may be preferred to the StMAR(4,2) model over longer (biweekly, monthly) forecast
periods. The popular HAR model performs well under MSE, but considerably less so under QLIKE.
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Figure 1: Relative forecast accuracies for the S&P 500 RK data in terms of QLIKE (left) and MSE
(right). Results for the AR(11) (circle), HAR (square), StMAR(4,1) (diamond), StMAR(4,2) (solid),
and StMAR(4,3) (triangle) models.
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