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Abstract

We run an oil prices forecasting competition among a set of structural models, includ-
ing vector autoregressions and dynamic stochastic general equilibrium models. Our results
highlights two principles. First, forecasts should exploit the mean reversion of the real oil
price over long horizons. Second, models should not replicate the high volatility of oil prices
observed in sample. Abiding by these principles, we show that a small scale DSGE model
performs much better in real oil price forecasting than the random walk as well as vector
autoregressions.
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1 Introduction

Large swings in oil prices draw a lot of attention among policymakers, academics and practitioners.
The key questions are whether large price changes can be explained by demand or rather supply
shocks and whether these changes are predictable. This is why the last decade has witnessed a
series of studies aimed at constructing a structural model that would be able to link the dynamics
of oil prices and global macroeconomic variables and which could be used for forecasting.

The most recent studies aimed at explaining the dynamics of commodity prices using struc-
tural macroeconomic models can be divided into two broad categories, differentiated on the basis
of the adopted framework. In the first group, which is focused on the data, researchers use struc-
tural vector autoregressions (VAR). In the second one, which is more grounded on the economic
theory, authors simulate dynamic stochastic general equilibrium (DSGE) models incorporating
the oil sector. It should be mentioned that on top of structural VAR and DSGE based stud-
ies, the literature from the 1990s and early 2000s also delivers analyses of the oil market based
on traditional macroeconometric models (see Kaufmann, 1995; Dees et al., 2007, and references
therein).

The most popular specification of the structural VAR model for the oil market was proposed
by Kilian (2009). It explains the dynamics of three endogenous variables (oil production, global
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activity and the real price of oil) by three structural shocks (oil supply, global demand and oil
demand). A big contribution of Kilian is that he proposes an index of global economic activity
based on shipping costs and shows that it is a good indicator of global demand for oil.1 Next, he
presents evidence that real oil prices are predominantly driven by demand shocks, whereas the
impact of supply shocks on the dynamics of oil prices is of much lower importance. At that time
this claim was rather controversial as, following the study by Hamilton (2003), the consensus
was that oil price fluctuations are driven rather by supply than demand factors. The subsequent
studies using structural VAR models evolved in few directions. First, the trivariate specification
was extended by decomposing global economic activity into developing and developed countries
(Lippi and Nobili, 2012; Caldara et al., 2018), taking into account financial speculation (Fattouh
et al., 2013) or incorporating the level of oil inventories (Kilian and Murphy, 2014). Second, the
literature discussed how to measure global economic activity and pointed to global GDP (Jacks
and Stuermer, 2018), global industrial production or the index of industrial metals (Caldara et al.,
2018) as well as a common factor extracted from commodity markets (Delle Chiaie et al., 2017;
Alquist et al., 2019). Third, some authors investigated a method of shocks identification, which in
the benchmark model of Kilian (2009) assumes that oil supply is price inelastic in the short term.
Even though the main finding of Kilian (the marginal role of supply shocks) was not overturned
by studies applying sign restrictions (Kilian and Murphy, 2012; Baumeister and Peersman, 2013),
a more elaborate inference methods applied by Baumeister and Hamilton (2019) or Caldara et al.
(2018) indicate that supply shocks constitute an important source of oil price fluctuations.

As regards studies using DSGE models incorporating the oil sector, they can be grouped into
three main categories. In the first group, oil prices and production are assumed to be exogenous
(e.g. Leduc and Sill, 2004). In the second one, oil prices are endogenous but production remains
exogenous (e.g. Bodenstein et al., 2011). In the third group, both oil prices and production are
determined within the model, which allows for a two-way feedback between the two variables.
In this category there are two distinctive frameworks that were fitted to the data: dominant oil
producer and two-stage production setup. The dominant oil producer framework, proposed by
Nakov and Pescatori (2010) and modified by Nakov and Nuno (2013), assumes that there are
three global regions: oil importing country (US), dominant oil exporter (OPEC) and other oil
exporters (non-OPEC). OPEC behaves as a monopolist and chooses the level of oil production
(and implicitly prices) that maximizes the present value of profits, subject to the level of oil
production by non-OPEC countries, the expected demand for oil in the global economy and the
marginal cost of producing oil. In the two-stage production framework, which was proposed by
Balke et al. (2010) and Balke and Brown (2018), it is assumed that in stage one competitive
drilling firms invest to discover new exploitable oil fields, whereas in stage two oil producing firms
rent discovered fields and combine them with labor to extract the oil from the ground. It can
be added that the original setup by Balke et al. (2010) was extended by Peersman and Stevens
(2013), among others by allowing for the variable utilization rate of discovered oil fields, which
increased the responsiveness of oil production to current market conditions, and by adding oil to
the utility function to account for the existence of oil inventories.

As regards studies focusing on forecasting oil prices with VAR and DSGE models, their number
is low. The most prominent example of this kind of analysis was presented by Baumeister and
Kilian (2012, 2015), who assessed the quality of forecasts for real oil prices over years 1991-2010
derived with a set of models, including the VAR proposed by Kilian and Murphy (2014). They

1The construction of the index was recently criticized by Hamilton (2019), where the critique was responded
to by Kilian (2019).
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showed that this model performed well compared with the no-change forecast, especially at the
shortest horizons. A less favorable results on the usefulness of VAR models in oil price forecasting
was presented by Manescu and Van Robays (2016), who analyzed the out-of-sample performance
of various methods over the 1995-2012 horizon. They found that the VAR model by Kilian and
Murphy (2014) is not powerful enough to consistently deliver better forecasts than those from
the random walk model. The analysis also reveals that the outstanding performance of VAR
presented in Baumeister and Kilian (2012) was driven predominantly by the upward trend in
oil prices observed in the 2002-2007 period. Its performance was much weaker if forecasts were
evaluated over 1995-2001 or 2008-2012 sub-samples. According to our best knowledge, the study
by Manescu and Van Robays (2016) is also the only one that analyzes the quality of oil price
forecasts produced by a DSGE model. In particular, the authors applied a calibrated model of
Nakov and Nuno (2013) to find that its out-of-sample performance is relatively good. It should
be added, however, that the DSGE model was given a head start as its calibration was based on
the knowledge about the dynamics of observed time series over the entire data span, including the
forecast evaluation sample. We are not aware of any study that would use recursively estimated
DSGE model to forecast oil prices.

The key aim of this paper is to provide a thorough evaluation of how well VAR and DSGE
models perform in real oil price forecasting. In this sense we contribute to both the literature
surveyed above as well as the studies that explore the forecasting properties of VAR and DSGE
models (see Adolfson et al., 2007; Rubaszek and Skrzypczynski, 2008; Del Negro and Schorfheide,
2012; Ca’ Zorzi et al., 2017; Kolasa and Rubaszek, 2018, and references therein). Towards this
end, we generate recursive forecasts from the structural VAR model proposed by Kilian (2009)
as well as the DSGE model developed by Nakov and Pescatori (2010). These two models were
chosen for three reasons. First, they are well recognized in the literature. Second, both articles
were available to the public over a decade ago, hence we can design a forecasting “horse race” in
which applied methods were available to economists at the start of the competition. Third, both
models were checked for their reliability by passing the replicability test of Chang and Li (2015).

Apart from the two structural models, to understand better the dynamics of the oil market,
we also bring into the forecasting race other competing models. The first one is the “twin”
DSGE model, which is identical from a theoretical perspective, but allows for a linear trend in
the real price of oil in the measurement equation to improve the in-sample fit. We include this
specification in our forecasting race to check if adding a trend is helpful or rather counterproductive
in forecasting oil prices, as it was showed for real exchange rates by Ca’ Zorzi et al. (2017). The
next competitor is the VAR model by Kilian estimated with Bayesian methods. We also add
three Bayesian VAR models estimated with data present in the DSGE model. Two of them are
standard, with the difference that one is estimated on variables in levels, whereas the second
one after their differentiation. The third one exploits the methodology of Villani (2009) to elicit
the prior that the real price of oil reverts to its recursive mean, as would suggest the discussion
by Dvir and Rogoff (2009) and Kruse and Wegener (2019). The next two models are random
walks, with and without drift, which are the most popular benchmarks in real oil price forecasting
competitions. The last two models are simple autoregressive processes, which were estimated or
calibrated. In the latter case we assume that the half-life of real price of oil is five years, as it was
done in the study of Ca’ Zorzi et al. (2017) for real exchange rates.

Our key contribution is that we present evidence that, in order to deliver real oil price forecasts
of high quality, models must abide by two principles. As a first priority, they must produce
“conservative” forecasts, in the sense that they should not attempt to explain a large fraction of
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oil price volatility out of sample. The second principle to which models should conform is that
they ought to exploit mean reverting tendency of the real price of oil. All our core results become
entirely intuitive if we keep these principles in the back of our mind. First, the DSGE model
perform better than the random walk for all horizons. However, adding the trend to the DSGE
model decreases slightly the accuracy of forecasts, as it unnecessarily extrapolates trends observed
in the past. The second result is that all VAR models performed relatively poor for short-term
horizons, also the framework proposed by Kilian (2009). Even though for longer horizons their
performance improved somewhat, it remained inferior to that of the DSGE model. Finally, we
find that a calibrated autoregressive mean-reverting model performs relatively well.

The remainder of the paper is structured as follows. Section 2 discusses the models participat-
ing in the forecasting race, whereas Section 3 describes the data. Section 4 presents and explains
the main results, emphasizing the main takeaways of our analysis. Section 5 concludes.

2 Round-up of forecasting methodologies

We consider the following competitors in the forecasting horse race.

DSGE models

Our key theoretical reference is the DSGE model developed by Nakov and Pescatori (2010). In this
model the oil industry is represented by a dominant producer (OPEC) a fringe of competitive oil
suppliers (non-OPEC), who are small individually but collectively can restrain the market power
of the cartel, and oil importer (US). OPEC maximizes welfare from oil profits, internalizing the
effect of its pricing decision on global output and oil demand. Oil is subsequently used as an input
in the production of final goods by US producers, which operate in a monopolistically competitive
environment and face nominal rigidities á la Calvo. Households maximize their lifetime utility,
which depends on consumption and habits. Monetary policy is conducted according to the Taylor-
type rule with smoothing.

The model is fitted to the data with exactly the same method as it was done in the original
paper, which means that all the model’s assumptions and derivations, as well as prior distributions
can be found in Nakov and Pescatori (2010). We proceed as follows. First, we calibrate the steady-
state and fit the model to four macroeconomic times series: the log change in real GDP (∆ỹ),
inflation of GDP deflator (∆p̃), the nominal Fed Funds rate (̃i) and the growth rate of the real
WTI price (∆q̃). For that purpose we use Bayesian methods and make the same prior assumptions
for the estimated parameters as in the source article. The only difference is that in the baseline
DSGE model we fix the constant in the measurement equation to zero, whereas in the version
of the model with trend (DSGEt) the constant is estimated. It can be added that since our
estimation assumptions are based on the results and model specification that were available at
the beginning of forecast evaluation sample, it is unlikely that the DSGE model received an unfair
advantage in the forecasting race due to a choice of priors that aims to improve the model fit to
the forecast evaluation sample, a concern raised by Gurkaynak et al. (2013).

BVAR counterparts of the DSGE model

It is well known that DSGE models have a restricted infinite-order VAR representation (Fernandez-
Villaverde et al., 2007), which explains why VARs have been widely used in the forecasting liter-
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ature evaluating DSGE models. However, because of the large number of parameters and short
time series, classical estimates of unrestricted VAR coefficients are often imprecise and forecasts
are of low quality due to large estimation error. A common method to tackle this problem is to
apply Bayesian VAR techniques. We follow this route by considering three BVAR models that
are estimated using the same times series as in the case of the DSGE model. These three specifi-
cations differ in the choice of whether the real oil price and other regressors are differenced prior
to estimation, and on whether we impose the prior that the real price of oil is mean reverting. In
particular, we consider a BVAR in “levels” (LBVAR, for ỹ, p̃, ĩ and q̃), one expressed as a mixed
model of variables expressed in “levels” and “differences” (DBVAR, for ∆ỹ, ∆p̃, ĩ and ∆q̃) and
one where we exploit the methodology of Villani (MBVAR, for ∆ỹ, ∆p̃, ĩ and q̃) to elicit the prior
that the real price of oil is mean reverting, as would suggest the work by Dvir and Rogoff (2009);
Kruse and Wegener (2019). In all cases we use the specification with four lags as the models are
fitted to the data of quarterly frequency.

As regards the details of the estimation process, we set the standard Normal-Wishart prior
proposed by Kadiyala and Karlsson (1997) for LBVAR and DBVAR models, and assume a normal-
diffuse prior for the MBVAR as in Villani (2009). For LBVAR we center the prior at random
walk parameters, whereas for the mixed models (MBVAR and DBVAR), we follow Adolfson et al.
(2007) and Villani (2009), centering the prior for the first own lag at zero for the differenced
variables and at 0.9 for the variables in levels. All other VAR coefficients are centered at zero. As
regards the dispersion of the prior distributions, we assume that they are tighter for higher lags
(decay hyperparameter is set to 1) and choose the conventional value of 0.2 for the overall tightness
hyperparameter. In the case of the MBVAR model, we additionally set the prior variance for
cross-variable coefficients to lower values than for their own lags (weight hyperparameter equal
to 0.5). The steady-state prior for the real oil prices is centered at its recursive mean, with
tightness such that the 95% interval coincides with the ±5% range around this mean. As regards
the remaining economic variables, we take standard values suggested by the literature. The 95%
interval is defined as 0.5% ±0.25% for steady-state (quarterly) inflation and output growth and
1.0% ±0.25% for the (quarterly) interest rate.

Structural VAR

The next competitors in the forecasting horse race are based on the structural VAR model pro-
posed by Kilian (2009), which are estimated using three variables: log-changes in oil production

(∆p̃rod), global economic activity index (g̃ea) and the real price of oil (q̃). In the first version the
model is estimated with least-squares estimator (Kilian VAR, KVAR), whereas in the second us-
ing Bayesian methods with settings described above (Kilian BVAR, KBVAR). As in the previous
cases, we use the specification with four lags.

Atheoretical benchmarks

We also let three atheoretical models into the race. The first one is the most widely used bench-
mark in the forecasting literature, i.e. the näıve random walk model, both with and without
trend. From the perspective of the forecasting practitioner, there is nothing more conservative
than assuming that no changes occur over the forecast horizon. The second one is an autoregres-
sion for the real price of oil (q̃) estimated with Bayesian methods (BAR). As for BVAR models,
we use the specification with four lags and the prior proposed by Kadiyala and Karlsson (1997).
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The third atheoretical model is a method that assumes that the real price of oil gradually returns
to its historical average (AR-fixed). This method was recently shown to be very competitive
relative to several other methods for inflation (Faust and Wright, 2013) as well as real exchange
rate forecasting (Ca’ Zorzi et al., 2017). We set the autoregressive parameter of the “AR fixed”
to be consistent with the half-life adjustment of three years.

3 Data

We use quarterly data over the period 1984:1 to 2018:3 for six time series that are present in the
Nakov and Pescatori (2010) and Kilian (2009) models. The models as well as the estimation and
forecast evaluation samples were chosen in a way that ensures that we don’t use information from
the evaluation sample. In particular, the working paper versions of both models, including the
values of the calibrated parameters in the DSGE model, were available in 2008. In both papers
the estimation sample ends in 2007, whereas the steady state of the DSGE model was calibrated
using a sample starting in the first quarter of 1984. The only advantage is given to the KVAR and
KBVAR models, given that we use the revised time series for the global economic activity index,
which incorporates part of the critique of Hamilton (2019) and is presented in Kilian (2019). In
particular, this gives some time advantage to the KVAR and KBVAR models in the forecasting
competition as the revision became available to economists in 2018 and not at the start of the
forecasting competition. Bearing in mind the last comment, we can claim that our choices are not
contaminated by knowledge from the forecast evaluation sample, such as the development of new
theories, availability of new data or estimation methods. In other words, we use only information
that was available to an economist living at the beginning of the forecast evaluation sample and
has gradually became available with the release of new data.

As regards the exact values of the time series, they were retrieved from Federal Reserve Bank
of St. Louis FRED database, International Energy Agency through Quandl and Lutz Kilian
webpage. All data sources are provided in Table 1.

4 Results

We assess the out-of-sample forecast performance of all models for horizons ranging from one
quarter to five years. The models were estimated using recursive samples, where the first set
of forecasts was elaborated with models estimated over the sample 1984:1-2007:4 for the period
2008:1-2012:4. This procedure was repeated with samples ending in each quarter from the pe-
riod 2008:1-2018:2. As a result the one-quarter-ahead forecasts are evaluated on the basis of 43
observations, two-quarter-ahead forecasts on the basis of 42 observations, and so forth with the
20-quarter-ahead forecasts comprising 24 observations.

For the DSGE model the posterior distribution of parameters is approximated with 200,000
draws obtained with the Metropolis-Hastings (MH) algorithm, after discarding the initial 50,000
draws. This number of draws was sufficient to achieve convergence according to standard diag-
nostics. Next, for every twentieth realization of the MH chain, we take five sequences of random
draws of structural shocks over the forecast horizon. Consequently, at each forecast date we have
in total 50,000 draws from the predictive density that can be used to calculate both point (mean
across the draws) and density forecasts. For the remaining models we also base our forecasts
using 50,000 draws from the predictive density.
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4.1 Point forecast

We begin the contest by investigating the mean forecast error (MFE) for the real oil prices (Table
2). The values of MFE for the random walk benchmark (without drift) indicate that in the
evaluation sample there was a decline in the real prices of oil. In fact, the price of WTI barrel
in 2007:4 stood at 90.8 USD, whereas its price in 2018:3 amounted to 69.7 USD. Taking into
account that over this period the level of implicit GDP deflator increased by 18.8%, the real
price of oil declined by 35.3%. The values of MFE for equally weighted pooled forecast indicate
that on average the investigated methods managed well to predict this decline, especially for
shorter horizons. Looking at the performance of individual methods, a general finding is that
they deliver unbiased forecasts, apart from the RW with drift and DVAR models, which sizeably
and significantly overpredict future movements in oil prices over a longer horizons. Finally, the
table also shows that methods assuming mean reversion of real oil prices, in particular AR-fixed
and DSGE without trend, delivered lower forecasts than methods extrapolating past trends (RW
with drift, DVAR and DSGE with trend).

A good way forward to get a visual impression of the performance of the competing methods
is to plot their forecasts at different points in time (Figure 1).2 A first glance at the figure reveals
the upward bias of forecasts from the RWdrift and DVAR models, i.e. two models that are
estimated using differentiated variables. These models dully extrapolate past trends in the real
price of oil observed in the past, which does not pay out in terms of forecast accuracy. Next, the
figure illustrates the difference between the two versions of the DSGE model, which differ only
on whether we allow for a constant in the measurement equation for the real price of oil. Even
though in both cases the analyzed variable is reverting to a well defined steady state, in the case of
DSGEt it is given by a deterministic trend, whereas for DSGE it is a constant. It can be seen that
the forecasts from DSGEt model are shifted upward in comparison to the baseline DSGE. The
figure also shows that forecasts from the KVAR model are relatively unstable and are strongly
influenced by just few observations. This is especially visible at the beginning of the forecast
evaluation sample, in which the model delivers very high forecast for two initial observations
to dramatically change predictions after the Great Financial Crisis. Finally, the figure reveals
that the DSGE (without trend) and AR fixed models are characterized by very similar forecasts,
which are mean-reverting and conservative, in a sense that they do not attempt to explain a large
fraction of the data variation or to anticipate turning points.

We continue by comparing the second moments of the forecast errors with the most popular
measure of ex-post forecast quality: root mean squared forecast errors (RMSFE). Given that
the benchmark model in our competition is the näıve random walk, in Table 3 we report the
levels of the RMSFEs for this benchmark, whereas the remaining numbers are expressed as the
ratios so that the values below unity indicate that a given method outperforms the näıve forecast.
Moreover, we test whether a given method dominates the benchmark using the Clark and West
(2006) test. A number of key features of the results are immediately evident. First, the baseline
DSGE model performs best among all investigated methods for all forecast horizons. Moreover,
it delivers forecasts that are significantly better than those from the random walk benchmark.
For one-quarter ahead horizon the gain in the forecast accuracy amounts to 2% and it gradually
increases to 28% for five-year ahead horizon. Second, baseline DSGE is only slightly better than
the AR-fixed model, which would suggest that the outstanding performance of the DSGE model

2It should be noted that the figure presents the level for the real price of oil, whereas Table 2 is based on error
for logarithms, hence the values are not directly comparable.
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is predominantly driven by its two already-mentioned features: it delivers mean-reverting and
conservative forecasts. Third, the comparison of both DSGE models shows that allowing for a
deterministic trend in the steady state for real oil prices is deteriorating the quality of forecasts.
However, forecasts from the DSGE model with trend are still characterized by higher accuracy
than those from the random walk. Fourth, the results for VAR models are rather discouraging,
which is in line with the findings by Manescu and Van Robays (2016) and less optimistic than
the results of Baumeister and Kilian (2012). In most cases the RMSFE ratios are above unity,
especially for short term horizons. In this case MBVAR is the best performing model, which
would emphasize the role of mean-reversion is real oil prices forecasting. On he contrary, DVAR
is the worst performing method, which would suggest that differencing variables before estimation
is not successful strategy in forecasting the real price of oil.

We proceed by comparing the realized (q̃t+h − q̃t) and forecast (q̃ft,h − q̃t) changes in the real
price of oil. In Table 4 we report the correlation between both variables for different horizons h.
It can be noted that the values in the table can be interpreted as the fit of the Mincer-Zarnowitz
type of regression of forecast efficiency:

(q̃t+h − q̃t) = α + β(q̃ft,h − q̃t) + ηt+h

so that negative or low values indicate that a given method do not pass the efficiency test. The
table shows that for the baseline DSGE model the correlation coefficients are positive for all
horizons, ranging between 0.22 for the shortest one and 0.56 for six-quarter ahead forecasts. Only
two other methods deliver comparably good (AR-fixed) or slightly worse (DSGEt) results. On
the contrary, forecasts from two models estimated on first differences (RW with drift and DVAR)
are negatively correlated with realizations, which confirms their low quality. For the remaining
VAR models the results are mixed, as for some horizons the correlation coefficients are negative,
whereas for other positive. It is unambiguous, however, that they deliver less effective forecasts
than DSGE and AR-fixed models.

To shed more light on the above result, on Figure 2 we present scatter plots of realizations (y-
axis) versus model-based forecasts (x-axis) for selected models and horizons. Points along the 45
degree line correspond to perfect predictions. Observations that fall in the top-right and bottom-
left quadrants are forecasts that anticipate correctly the directional change of the real price of
oil. Based on their position relative to the 45 degree line, the predictions that have the correct
sign can be further split between those where the forecasted absolute change in the real price of
oil is larger (overprediction) or smaller (underprediction) than realization. The figure shows that
in most cases the DSGE model delivers forecasts of correct sign, which underpredict the scale of
subsequent oil price adjustment. Adding a trend to the model (DSGEt) is just shifting the “dots”
to the right, which is detrimental to forecast quality. As regards the DVAR model, the forecasts
are very tightly concentrated around the value that is consistent with the deterministic trend
observed in the past. They are therefore unable to predict the wide dispersion of realizations.
In turn, the KVAR model is the only one that delivers forecasts that are comparably dispersed
as realizations. The problem of this method is that, apart from longer horizons, the correlation
between both is negative or low. Finally, the figure shows that the pooled forecast is very tightly
dispersed and actually not very distant from forecasts derived from the benchmark random walk
model.
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4.2 Density forecasts

We complement point forecast evaluation with the assessment of density forecasts. The aim is
to check to what extent the analyzed forecasts provide a realistic description of actual uncer-
tainty. We start by looking at fan charts from the benchmark and five selected models for two
characteristic periods. Figure 3 presents density forecasts formulated in 2008:2, i.e. just before
the plummeting of the oil prices during the Great Financial Crisis. It illustrates that the initial
depth of oil price decline was deeper than what any method would predict. It also shows that
the mean-reverting methods, i.e. DSGE and AR-fixed, provided more reliable density forecasts
than DBVAR and KVAR, even though the width of the interval forecast they delivered was lower
than from DBVAR. In turn, Figure 4 presents fan charts for forecasts formulated using data up
to 2009:1, i.e. just after the oil price collapse. In this case the subsequent rebound is within the
99% confidence interval generated by all presented methods. It can be noted that fan charts can
only be used for illustrative purposes, but cannot determine which model is the best.

To analyze if density forecasts from one model outperform another one, we compare their
quality by using the log predictive scores (LPS) calculated with the method proposed by Adolfson
et al. (2007). Table 5 presents the average LPS differences of a given model in comparison to
the random walk so that positive values indicate that the investigated model outperforms the
benchmark. We test whether the values are significantly above zero with the one-tailed Amisano
and Giacomini (2007) test. The table confirms the results for point forecasts, namely that the
baseline DSGE model and AR-fixed perform best. In this case, however, their superiority over
the benchmark random walk model is not significant. As regards the VAR models, the average
values of LPS are usually below the random walk benchmark, apart from MBVAR.

We end the evaluation of density forecasts with Probability Integral Transform (PIT), a mea-
sure developed by Rosenblatt in 1952, imported to the economic literature by Diebold et al. (1998)
and applied in evaluating the quality of DSGE based forecasts by Herbst and Schorfheide (2012)
and Kolasa et al. (2012). The PIT is defined value of cumulative predictive density at realization.
If the density forecast is well calibrated, PITs should drawn from independent uniform distribu-
tion on the interval (0, 1). One way to illustrate if this is the case is to divide the unit interval
into J subintervals and check if the fraction of PITs in each of them is close 1/J . Following
Herbst and Schorfheide (2012) we set J = 10 and present the results in Figure 5. It shows that
for the shortest horizon the distribution of PITs does not deviate to much from uniformity. As
regards longer horizons, it indicates that density forecasts from the baseline DSGE model are too
narrow as too many PITs fall into the corner bins. As regards RW and especially DBVAR, an
unproportional number of PITs fall into the lowest bin, reflecting the fact that both models tend
to overpredict the level and analyzed variable. The opposite picture emerges for KVAR model,
for which a large number of PITs fall into the upper bins, suggesting that the model produces
density forecasts that are on average too low. In general, the figure shows that none of the models
delivers a well calibrated density forecast.

Overall, a general picture that emerges from the above analysis is that the DSGE model,
followed closely by AR-fixed, performs best among all analyzed methods. Its forecasts turned out
to be unbiased, strongly correlated with realizations and characterized by the lowest RMSFE and
highest LPS. On the downside, density forecasts from this model turned out to be too narrow,
especially for longer horizons. Our interpretation of this results is that the strength of this
model can be attributed to the fact that it assumes gradual mean-reversion of real oil prices and
conservative short term dynamics.
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5 Conclusion and Policy Implications

In this paper we have verified the forecasting performance of a set of methods for the quarterly
real WTI oil prices. We were particularly interested in the performance of two structural models
for the oil market, which were proposed in two articles published a decade ago. The first one is a
structural VAR model by Kilian (2009), whereas the second one is a DSGE model developed by
Nakov and Pescatori (2010). For the benchmark model we have chosen the näıve random walk,
as it is was usually done in the previous studies. We have also added nine other competitors to
the forecasting contest. Next, we have collected quarterly data from the period 1984:1-2018:3
and calculated recursive point and density forecasts from all analyzed methods. Finally, we have
compared the quality of point and density forecasts using the data from the evaluation period
2008:1-2018:3 and a wide range of statistics.

The main conclusion is that, in order to deliver real oil prices forecasts of good quality, models
must fulfill two principles. First, they should be conservative, i.e. they must not attempt to
replicate out of sample the high volatility of oil prices observed in-sample. Second, they have to
deliver real oil prices that are mean reverting. Given that the baseline DSGE model conforms
with both principles, it becomes intuitive why its performance is relatively good over all forecast
horizons. The side message of this paper is that the ability of DSGE models to forecast real oil
prices should not be overplayed as another model that conforms with the same principles performs
equally well. We have shown that there is indeed not an appreciable difference in the forecasting
performance of the DSGE and AR-fixed models. The decision on which of the two models is more
useful depends on the preferences of the final user. The argument in favor of our baseline DSGE is
that it provides a fully consistent story and accounts for the feedback between the oil market and
the macroeconomy. The strength of the AR-fixed method is that its is very easy to implement.
However, it does not provide any insights into what drives oil prices nor explanations of how the
adjustment to unfolds. The final finding from our analysis is that a good performance of VAR
models presented in the earlier studies has not been confirmed in our sample. The accuracy of
forecasts from this class of models turned out to be visibly worse than those from the DSGE
model.
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Tables and figures

Table 1: Variable description and data sources
Variable description Source

ỹ log of real GDP FRED (GDPC1)
p̃ log of GDP implicit price deflator FRED (GDPDEF)

ĩ effective federal funds rate FRED (FEDFUNDS)
s̃ log of WTI price FRED (WTISPLC)
q̃ log of real WTI price q̃ = s̃− p̃

p̃rod log of global oil production Quandl (EIA/INTL 53 1 WORL TBPD Q)
g̃ea global economic activity index https://sites.google.com/site/lkilian2019/

Notes: FRED – Federal Reserve Bank of St. Louis database. The data for oil production prior to 1994
were interpolated from annual values sourced from Quandl, ticker: EIA/INTL 53 1 WORL TBPD A.
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Table 2: Mean Forecast Error (MFE)
H=1 H=2 H=4 H=6 H=8 H=12 H=16 H=20

RW -0.01 -0.02 -0.07 -0.08 -0.10 -0.21 -0.32 -0.37
RW with drift -0.01 -0.03 -0.08 -0.09 -0.12 -0.25 -0.38∗ -0.45•

Bayesian AR 0.02 0.03 0.04 0.07 0.09 0.07 0.04 0.03
AR-fixed 0.02 0.04 0.05 0.10 0.14 0.16 0.17 0.19
Difference BVAR -0.02 -0.06 -0.15 -0.21◦ -0.28◦ -0.50• -0.71• -0.85•

Level BVAR 0.00 -0.01 -0.05 -0.04 -0.05 -0.10 -0.16 -0.20
Mean-reverting BVAR 0.00 0.00 -0.04 -0.03 -0.04 -0.11 -0.19 -0.26◦

Kilian VAR 0.05 0.10 0.15 0.21 0.25 0.21 0.11 0.05
Kilian BVAR 0.04 0.09 0.13 0.19 0.23 0.19 0.10 0.04
DSGE with trend -0.01 -0.02 -0.06 -0.05 -0.06 -0.10 -0.16 -0.21
DSGE without trend 0.02 0.04 0.05 0.09 0.11 0.11 0.09 0.06
Pool 0.01 0.01 0.00 0.01 0.01 -0.05 -0.13 -0.18

Notes: The errors are calculated for log real prices so that the presented numbers represent average
percent difference between realizations and forecasts. Positive and negative values stand for under- and
overprediction, respectively. Asterisks •, ∗ and ◦ denote, respectively, the 1%, 5% and 10% significance
levels for the unbiasedness null, where the long-run variance is calculated with the Newey-West method.
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Table 3: Root Mean Squared Forecast Error (RMSFE)
H=1 H=2 H=4 H=6 H=8 H=12 H=16 H=20

RW (RMSFE value) 0.18 0.28 0.35 0.39 0.46 0.52 0.58 0.59

RW with drift 1.01 1.01 1.03 1.04 1.05 1.06 1.09 1.11
Bayesian AR 1.00 1.03 1.01 1.01 1.00 0.94◦ 0.85∗ 0.74•

AR-fixed 0.98 0.96 0.90◦ 0.91◦ 0.90∗ 0.88∗ 0.80• 0.75•

Difference BVAR 1.09 1.14 1.17 1.21 1.26 1.39 1.55 1.70
Level BVAR 1.02 1.05 1.06 1.08 1.07 1.06 1.00 0.92◦

Mean-reverting BVAR 1.02 1.04 0.99 0.97 0.96 0.94◦ 0.92◦ 0.91∗

Kilian VAR 1.11 1.21 1.40 1.48 1.45 1.15 0.84∗ 0.82∗

Kilian BVAR 1.09 1.19 1.38 1.45 1.41 1.12 0.85∗ 0.83∗

DSGE with trend 1.00 0.97 0.91∗ 0.92∗ 0.91• 0.91• 0.86• 0.80•

DSGE without trend 0.98 0.95 0.85◦ 0.86∗ 0.87∗ 0.85• 0.77• 0.72•

Pool 1.00 1.02 1.01 1.00 0.99 0.90◦ 0.82∗ 0.76•

Notes: The table shows the ratios of the RMSFE from a given model in comparison to the RW benchmark.
Values below unity indicate that forecasts from the model are more accurate than from this benchmark.
Asterisks •, ∗ and ◦ denote, respectively, the 1%, 5% and 10% significance levels of the Clark-West test,
where the long-run variance is calculated with the Newey-West method.
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Table 4: Correlation of forecasts and realizations
H=1 H=2 H=4 H=6 H=8 H=12 H=16 H=20

RW 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RW with drift -0.25 -0.44 -0.61 -0.58 -0.59 -0.56 -0.56 -0.53
Bayesian AR 0.12 -0.06 0.01 0.07 0.12 0.02 -0.09 0.36
AR-fixed 0.24 0.37 0.51 0.51 0.54 0.48 0.51 0.53
Difference BVAR -0.05 -0.34 -0.31 -0.40 -0.46 -0.38 -0.40 -0.46
Level BVAR 0.08 -0.06 -0.01 0.02 0.03 -0.15 -0.60 -0.35
Mean-reverting BVAR -0.04 -0.17 0.11 0.18 0.20 0.13 0.01 0.14
Kilian VAR 0.08 -0.15 -0.36 -0.33 -0.28 0.06 0.41 0.46
Kilian BVAR 0.02 -0.20 -0.39 -0.33 -0.27 0.06 0.38 0.43
DSGE with trend 0.13 0.23 0.40 0.39 0.40 0.27 0.22 0.38
DSGE without trend 0.22 0.34 0.55 0.56 0.54 0.45 0.42 0.40
Pool 0.10 -0.07 -0.03 0.02 0.07 0.19 0.45 0.61

Notes: The table shows the correlation of realized (q̃t+h − q̃t) and forecasted (q̃ft,h − q̃t) changes for log
real oil prices.
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Table 5: Log Predictive Scores (LPS)
H=1 H=2 H=4 H=6 H=8 H=12 H=16 H=20

RW with drift -0.01 -0.03 -0.05 -0.05 -0.06 -0.07 -0.09 -0.10
Bayesian AR 0.05 0.12 0.11 0.01 0.00 0.00 0.05 0.08
AR-fixed 0.04 0.08 0.16 0.12 0.11 0.11 0.19 0.26
Difference BVAR -0.09 -0.09 -0.14 -0.28 -0.34 -0.50 -0.64 -0.69
Level BVAR 0.03 0.06 0.01 -0.11 -0.13 -0.15 -0.08 0.01
Mean-reverting BVAR 0.06 0.11 0.14 0.05 0.04 0.02 0.03 0.00
Kilian VAR -0.07 -0.11 -0.29 -0.33 -0.30 -0.15 -0.03 -0.05
Kilian BVAR -0.05 -0.12 -0.27 -0.31 -0.29 -0.13 -0.01 -0.03
DSGE with trend 0.01 0.05 0.12 0.03 0.02 0.00 0.10∗ 0.23•

DSGE without trend 0.05 0.11 0.23 0.17 0.12 0.11 0.19 0.26

Notes: The figures represent the average differences of the LPS from a given model in comparison to the
RW benchmark. Positive values indicate that density forecasts from a given model are better calibrated
than those from the benchmark. The values can be interpreted as a percentage gain in the fit of forecasts
to realizations in comparison to the benchmark. Asterisks •, ∗ and ◦ denote, respectively, the 1%, 5%
and 10% significance levels of the one-tailed Amisano and Giacomini (2007) test, where the long-run
variance is calculated with the Newey-West method.
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Figure 1: Sequential forecasts for real WTI prices
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Notes: The values are expressed in real USD per barrel, where the reference date is set to the last
observation from the sample (2018q3).
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Figure 2: Scatter-plot of realizations and forecasts
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Notes: Forecasted values (expressed as percents) for log-changes (q̃ft,h − q̃t) are on the horizontal axis,
whereas for realizations (q̃t+h − q̃t) on the vertical one.
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Figure 3: Fan chart for 2008q2
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Notes: The values are expressed in real USD per barrel, where the reference date is set to the last
observation from the sample (2018q3). The shaded areas cover up to 99% confidence interval.
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Figure 4: Fan chart for 2009q1
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Notes: The values are expressed in real USD per barrel, where the reference date is set to the last
observation from the sample (2018q3). The shaded areas cover up to 99% confidence interval.
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Figure 5: Probability Integral Transform (PIT) histograms
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Notes: Bars represent the fraction of realized observations falling into deciles of density forecasts. The
solid line represents the theoretical value of 10% for a well-calibrated model.
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