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ESTIMATION OF TIME VARYING ADJUSTED PROBABILITY OF INFORMED

TRADING AND PROBABILITY OF SYMMETRIC ORDER-FLOW SHOCK
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Abstract. Recently Duarte and Young (2009) study the probability of informed trading (PIN) proposed

by Easley et al. (2002) and decompose it into two parts: the adjusted PIN (APIN) as a measure of

asymmetric information and the probability of symmetric order-flow shock (PSOS) as a measure of

illiquidity. They provide some cross-section estimates of these measures using daily data over annual

periods. In this paper we propose a method to estimate daily APIN and PSOS by extending the method

in Tay et al. (2009) using high-frequency transaction data. Our empirical results show that while

PIN is positively contemporaneously correlated with variance, APIN is not. On the other hand, PSOS

is positively correlated with daily average effective spread and variance, which is consistent with the

interpretation of PSOS as a measure of illiquidity. Compared to APIN, PSOS exhibits clustering and

sporadic bursts over time.

Key words and phrases. autoregressive conditional duration, market microstructure, probability of informed trading,

probability of symmetric order-flow shock, transaction data.
† City University of Hong Kong. ‡ Singapore Management University. Address correspondence to Yiu-Kuen Tse,

School of Economics, Singapore Management University, 90 Stamford Road, Singapore 178903, Singapore; e-mail:

yktse@smu.edu.sg. We are grateful to conference participants at the 4th International Conference on Computational and

Financial Econometrics (2010, London), SMU-ESSEC Symposium on Empirical Finance & Financial Econometrics (2011,

Singapore) and seminar participants at Uppsala University and Helsinki Center of Economic Research for their comments

and suggestions. All remaining errors are our own. The authors gratefully acknowledge research support from the Singa-

pore Ministry of Education AcRF Tier 2 fund, research grant T206B4301-RS. The first author is thankful to the Sim Kee

Boon Institute for Financial Economics, and the Institute’s Centre for Financial Econometrics, at Singapore Management

University for partial research support. Tao Yang provided excellent research assistance. Comments and suggestions from

Tim Bollerslev, the Editor, and three anonymous referees are gratefully acknowledged.

1



2

1. Introduction

Since the seminal work of Easley et al. (1996), Easley et al. (1997) and Easley et al. (2002, EHO), many

studies in the finance literature have used the probability of informed trading (PIN) to analyze the effects

of asymmetric information on asset pricing and volatility. Easley and O’Hara (2004) argued that the

effect of asymmetric information is undiversifiable and is thus priced. Hence, as a proxy for information

asymmetry, PIN is expected to be significantly positively correlated with average stock returns.

Recently Duarte and Young (2009, DY) extended the EHO framework to analyze PIN as a measure of

asymmetric information. Apart from relaxing the assumption that the arrival rate of informed sellers is

the same as the arrival rate of informed buyers, as was imposed by EHO, they introduce what they call a

“symmetric order-flow shock” to the model. They argue that traders may disagree on the interpretation

of a public news event, which may cause both buy- and sell-orders to arrive at higher rates. As a result,

DY propose a modification of PIN to measure the probability of informed trading, called the adjusted

PIN (APIN). More importantly, they introduce a measure called the probability of symmetric order-flow

shock (PSOS), which is the unconditional probability that a given trade comes from a shock to both buy-

and sell-order flows. The authors show that high PSOS firms are usually firms with low trading volumes

on most days, but who experience large increases in both buy- and sell-orders on days with public news.

To this extent, they argue that PSOS is effectively a proxy for illiquidity, which is supported by their

empirical finding that high PSOS firms tend to have high Amihud (2002) measures. Furthermore, they

find that APIN is not priced, while PSOS is priced.

The empirical results of DY are based on the analysis of daily stock data over annual subperiods,

for which the parameters of their APIN model are assumed to be constant within each year. Indeed,

the empirical literature on PIN typically assumes constant probabilities of news and buy-sell intensity

parameters over the sample period. The commonly adopted methodology is to estimate PIN using daily

aggregates of buy- and sell-orders, which are assumed to be statistically independent. In addition to the

assumption of constant probabilities of no news, good news and bad news, trade volume is not taken into

account. These limitations have been criticized recently as possible causes for the anomalous behavior

of PIN in some studies (see, e.g., Aktas et al., 2007). To overcome these difficulties Tay et al. (2009,

TTTW) consider the estimation of PIN using transaction data. Their model allows the probabilities of

the states of news to vary daily, and they incorporate the use of covariates such as volume and duration

of trade for the determination of PIN. An application of the TTTW model can be found in Hui et al.

(2011).

In this paper we consider the estimation of APIN and PSOS using high-frequency transaction data

by extending the methodology of TTTW. Following TTTW, we model transaction duration using the

asymmetric autoregressive conditional duration (AACD) model proposed by Bauwens and Giot (2003).

We allow the expected duration of buy- and sell-orders to be dependent on covariates such as lagged

duration, lagged conditional expected duration, lagged trade direction (buy- or sell-order) and lagged
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trade volume. Also, we incorporate into our model time varying probabilities of no news, good news,

bad news and common shocks, as featured in the DY model. The model parameters are estimated using

the maximum likelihood estimation (MLE) method, from which we obtain daily estimates of APIN and

PSOS. Our results provide an enhanced methodology to study the effects of asymmetric information and

illiquidity on asset pricing. While the DY methodology provides a means for cross-sectional analysis of

the relation of APIN and PSOS with size, spread and other illiquidity measures of a sample of stocks,

our daily APIN and PSOS estimates can be used to trace the time-varying relation between asymmetric

information, illiquidity and the price dynamics of each stock.

In sum, this paper contributes to the PIN literature in two aspects. First, while TTTW considered

only events of good news, no news and bad news, we extend their method to incorporate the possibility of

symmetric order-flow shock, which is achieved by modifying the conditional expected duration function

according to different events. Thus, we are able to segregate PIN into the APIN and PSOS components.

Second, by modeling time varying probability we estimate PIN, APIN and PSOS daily, which extends

the cross-sectional analysis of DY to a dynamic context.

Our results on the contemporaneous correlations between PIN/APIN/PSOS and spread/return/variance

are as follows. First, PSOS is significantly positively correlated with spread and variance, confirming its

role as a measure of illiquidity. Second, the correlations between PIN and APIN with return are ambiguous

as these two measures are not directional. On the other hand, return is positively (negatively) correlated

with the probability of good (bad) news, due to the directional nature of the latter. Third, while PIN is

positively correlated with variance, the correlations between APIN and variance is ambiguous.

The remainder of the paper is organized as follows. In Section 2 we briefly review the PIN model of

EHO and the APIN model of DY. In Section 3 we review the PIN-AACD model of TTTW and outline

our extension, the APIN-AACD model. In doing so, we also briefly review the AACD model of Bauwens

and Giot (2003). Section 4 reports the results of our empirical study. Section 5 concludes.

2. The PIN and APIN Models

In this section we briefly summarize the PIN model of EHO and its extension, namely, the APIN

model of DY. A more extensive review can be found in the supplementary web-based appendix.

2.1. The PIN Model. Let Bd and Sd denote the aggregate number of buy- and sell-orders on day d,

respectively. In the PIN model, Bd and Sd are assumed to be independent Poisson random variables,

with different intensities for days with bad news (B), good news (G) and no news (N). Let θE denote the

probability of news being released on day d and let θB denote the probability of bad news, conditional on

the release of news. Thus, the daily state probabilities are πB = θEθB , πG = θE(1−θB) and πN = 1−θE ,

for a day with bad news, good news and no news, respectively. For a day with no news, the means of Bd

and Sd are λ1 and λ−1, respectively. For a day with bad news the sell intensity increases by a constant

δ, while the buy intensity remains the same as for a day with no news. Similarly, for a day with good
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news the buy intensity increases by δ, while the sell intensity stays the same as for a no-news day. EHO

compute the PIN as the relative intensity of informed trades to the intensity of all trades, so that

PIN =
P2

P1 + P2
, (2.1)

where P1 = λ1 + λ−1 and P2 = θEδ.

2.2. The APIN Model. DY extended the PIN model of EHO by allowing for the arrival rate of informed

sellers (δ−1) to be different from the arrival rate of informed buyers (δ1) and, more importantly, by allowing

both buy- and sell-order flows to increase on certain days even when there is no news. In the APIN model

Bd and Sd have different intensities for days with bad news and a common shock (CB), good news and

a common shock (CG) and no news and a common shock (CN). Let θC denote the daily probability of a

common shock.1 In the event of a common shock, the buy intensity increases by 41 and the sell intensity

by 4−1. DY compute the APIN as

APIN =
P2

P1 + P2 + P3
, (2.2)

and introduce PSOS as

PSOS =
P3

P1 + P2 + P3
, (2.3)

where P1 = λ1+λ−1, P2 = θE [(1−θB)δ1+θBδ−1] and P3 = θC(41+4−1). Note that APIN in Equation

(2.2) reduces to the original PIN measure in Equation (2.1) when δ1 = δ−1 and θC = 0, as expected.

3. The PIN-AACD and APIN-AACD Models

In this section we review the PIN-AACD model of TTTW and outline our extension, the APIN-AACD

model, analogous to the extension by DY of the PIN model of EHO. In doing so, we first review the

AACD model of Bauwens and Giot (2003).

3.1. The AACD Model of Trade Direction. TTTW model trade direction (buy- and sell-initiated

order) and duration between trades (waiting time) jointly using an AACD model, and compute PIN from

this model. We denote xi as the (diurnally adjusted) waiting time between trade i− 1 at time ti−1 and

trade i at time ti so that xi = ti − ti−1. In addition, we denote yi as the trade direction of the ith

trade, which takes on values −1 and 1 representing a sell- and buy-order, respectively. Φi−1 denotes the

information upon the (i − 1)th trade, which may include trade direction yi−1, transaction volume vi−1,

waiting time xi−1, as well as their lagged values.

Conditional on Φi−1, TTTW assume that both potential trade directions (buy or sell) at time ti follow

latent point processes. More specifically, given Φi−1, {Bi(si), si ≥ 0} and {Si(si), si ≥ 0} are latent

Poisson processes, representing buy- and sell-orders, with common start time ti−1, i.e. si = si(t) = t−ti−1,

and intensities λ1i and λ−1,i. The observed trade direction at time ti is the outcome of the competition

between the two Poisson processes to be the first arrival.

1DY also consider models for which the probability of common shock varies with the state of news or no news. However,

they argue empirically that the restriction of imposing invariance is innocuous. In this paper we adopt this restriction.
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Conditional on Φi−1, let dji be the latent waiting time (duration) until the first occurrence for trade

direction j and suppose that d1i is independent of d−1,i. Let xi = min {d1i, d−1,i} and yi = j, where

j = −1 if d−1,i = xi and j = 1 if d1i = xi. Under the Poisson process assumption dji is exponentially

distributed with mean ψji = 1/λji given Φi−1. It can be shown that xi is conditionally exponential with

mean 1/(λ1i + λ−1,i), and yi is conditionally two-point distributed with probability function λji/(λ1i +

λ−1,i), for j = −1, 1. Moreover, it can be shown that xi and yi are independent conditional on Φi−1.

Hence, the conditional joint distribution (pf-pdf) of duration xi and direction yi is given by

f(xi, yi|Φi−1) = λjie
−(λ1i+λ−1,i)xi (3.1)

=

(
1

ψ1i

)1{yi=1} ( 1

ψ−1,i

)1{yi=−1}

exp

[
−
(

1

ψ1i
+

1

ψ−1,i

)
xi

]
,

where 1{·} is the indicator function.

While we adopt the exponential waiting time assumption as a consequence of the Poisson assump-

tion of the arrival of trade orders in the EHO framework, alternative waiting time assumptions can be

considered. For example, if Weibull distributions with identical shape parameters, which encompass the

exponential, are used for the latent waiting time variables the conditional independence of xi and yi still

holds (see Bauwens and Giot, 2003).2 From an empirical perspective, Bauwens et al. (2004) compared

the predictive performance of various duration distributions and concluded that none are clearly preferred

over the exponential.3 Tay et al. (2011) estimated the AACD model using both exponential and Weibull

assumptions, and the results were found to be similar. Tse and Yang (2012) fitted ACD models using the

exponential assumption and semiparametric method. They reported similar results when these estimates

are used to calculate intraday volatility. Thus, the exponential assumption can be viewed as a theoretical

consequence of the EHO model with some support from the empirical literature.

3.2. The PIN-AACD Model. Like the PIN model of EHO, the PIN-AACD model of TTTW has

states corresponding to no news, good news and bad news. However, unlike the EHO approach, TTTW

allow for interactions between consecutive buy- and sell-orders, and account for the duration between

trades and the volume of the trade. Note that the PIN-AACD model allows PIN to be computed for a

specific day as well as over intraday intervals using high-frequency transaction data.

In the PIN-AACD model, the conditional expected duration ψsji of dsji for s ∈ S = {G,B,N} is based

on ψNji (the conditional expected duration on a no-news day), where ψNji is assumed to follow the extended

logarithmic ACD(1,1) model

lnψNji = νj11{yi−1=1} + νj,−11{yi−1=−1} + βj lnψNj,i−1 + αj lnxi−1 + ςjyi−1 ln vi−1, (3.2)

2As shown by Drost and Werker (2004) the exponential assumption has an advantage that the ML estimator of the
conditional expected duration is consistent provided the conditional expected duration equation is correctly specified,

regardless of the duration distribution. It should be noted, however, that Drost and Werker’s (2004) result applies to linear

ACD models and is not applicable to nonlinear models such as the AACD model.
3Bauwens et al. (2004) pointed out that financial duration models need to put more probability mass on small durations,

and as far as this is concerned, the generalized gamma distribution offers an improvement.
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for j = −1, 1, where vi−1 is the volume of the trade at time ti−1.4 Thus, the base equation for ψNji depends

on whether the previous transaction is a buy- or sell-initiated order, yi−1, the lagged conditional expected

duration, ψNj,i−1, the previous duration, xi−1, and the lagged signed logarithmic volume, yi−1 ln vi−1.

Hence, in contrast to the PIN model of EHO, the PIN-AACD model allows volume to impact trade

intensity. Analogous to the PIN model of EHO, on a bad-news day lnψB−1,i = lnψN−1,i − µB and on a

good-news day lnψG1i = lnψN1i − µG.5 The equations for the implied conditional Poisson intensities, λsji,

are λG1i = λN1i(e
µG − 1) and λB−1,i = λN−1,i(e

µB − 1), where λNji = 1/ψNji with ψNji as in Equation (3.2).

We expect the parameters µB and µG to be positive so that on a bad-news (good-news) day, ψB−1,i (ψG1i)

decreases and λB−1,i (λG1i) increases.

In their general specification, TTTW model θE and θB rather than assuming them to be constant,

thus allowing the probabilities of news to vary over time. More specifically, they assume logistic models

in which the arrival of bad news, good news and no news on day d depends on the aggregate volume of

buy- and sell-orders. This is motivated by recent empirical work reporting positive correlation between

(public) information and trading volume.6 TTTW denote the average number of lots traded per day

initiated by buy orders by V
B

. Similarly, they denote the average number of lots traded per day initiated

by sell orders by V
S

. The numbers of lots traded on day d initiated by buy- and sell-orders are denoted

by V Bd and V Sd , respectively. The probability of news on day d is assumed to be

θEd = 1− 1

1 + exp
{
γ1 + γ2

[
ln
(
V Bd + V Sd

)
− ln

(
V
B

+ V
S
)]} ,

where γ2 is expected to be strictly positive.7 Given news on day d, the probability of bad news is assumed

to be

θBd = 1− 1

1 + exp
[
γ3

(
lnV Sd − lnV

S
)
− γ4

(
lnV Bd − lnV

B
)] ,

where γ3 and γ4 are expected to be strictly positive. The arrival of bad news, good news and no news

on day d are given by πBd = θEdθBd, πGd = θEd(1− θBd) and πNd = 1− θEd, respectively.

4TTTW use the log-ACD(1, 1) model of Bauwens and Giot (2000) as a basis for (3.2), rather than the standard ACD(1,1)

model of Engle and Russell (1998), as it is flexible for including additional explanatory variables in the autoregressive
equation.
5In fact, TTTW assume that µB = µG. Here we allow µB to be different from µG, as might be justified due to short-selling
restrictions (see Diamond and Verrecchia, 1991).
6Andersen (1996) proposed the modified mixture of distribution hypothesis in which volatility and volume of informed

traders are both driven by information intensity. This model is further extended by Li and Wu (2006). Berry and Howe
(1994) found evidence in support of trading volume driven by information as measured by Reuters’ news release, with similar

findings reported by Mitchell and Mulherin (1994). To circumvent the difficulty in identifying “relevant information”, we
follow TTTW to adopt a reduced-form modeling approach for information intensity with trading volume as a proxy. To
further distinguish between asymmetric information and differential information, the approach proposed by Sarkar and

Schwartz (2009) in modeling “market sidedness” may be considered.
7The state-probability functions proposed in this paper assume the volume series are stationary, which may not be valid

over a long period of time. For the data used in this paper, however, we do not observe trends in the volume series that
would suggest the violation of a stable mean level.
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The PIN-AACD model is estimated using the MLE method. With Nd = Bd + Sd orders on day d, its

likelihood function is given by

D∏
d=1

[∑
s∈S

πsd

(
Nd∏
i=1

fs(xi, yi|Φi−1)

)]
, for S = {B,G,N}, (3.3)

where

fs(xi, yi|Φi−1) =

(
1

ψs1i

)1{yi=1}
(

1

ψs−1,i

)1{yi=−1}

exp

[
−

(
1

ψs1i
+

1

ψs−1,i

)
xi

]
,

whenever xi ≥ 0, yi = −1, 1 and zero otherwise (cf. Equation 3.1).

Because of the Poisson process assumption, it can be shown that conditional on Φi−1 the expected

number of trades due to all traders in the fixed interval (ti−1, ti] on day d is

E[Bi(xi) + Si(xi)|Φi−1, xi] =
∑
s∈S

πsE[Bi(xi) + Si(xi)|Φi−1, xi, s] =
(
λN1i + λN−1,i︸ ︷︷ ︸

P1i

+πGdλ
G
1i + πBdλ

B
−1,i︸ ︷︷ ︸

P2i

)
xi,

where P1i and P2i are due to uninformed and informed trades, respectively.8 Similar to the original PIN

measure of EHO, TTTW compute the daily AACD PIN as

PINd =

∑Nd

i=1 P2ixi∑Nd

i=1(P1i + P2i)xi
, (3.4)

emphasizing that Equation (3.4) can be modified to compute AACD PIN measures over intraday intervals,

in which case the summations are over trades in specific intraday intervals.

3.3. The APIN-AACD Model. Like the APIN model of DY, our proposed APIN-AACD model has

six different daily states, allowing for symmetric order-flow shock trades. Similar to the PIN-AACD

model, and in contrast to the APIN model, the APIN-AACD model allows for the APIN and the PSOS

to be computed daily as well as over intraday intervals.

As an extension of the PIN-AACD model, the APIN-AACD model has three additional states rep-

resenting trading days in which the conditional intensities of both Bd and Sd increase due to common

shocks. These days occur with probabilities θCd. Analogous to TTTW, we assume a logistic model for

the daily probability of a common shock such that

θCd = 1− 1

exp
[
γ5

(
lnV Bd − lnV

B
)
+

(
lnV Sd − lnV

S
)
+

] ,
where (u)+ equals u if u > 0 and zero otherwise. Note that, for θCd to lie between 0 and 1, we must have

γ5 ≥ 0. Furthermore, θCd = 0 unless V Bd > V
B

d and V Sd > V
S

d . Thus, there is no symmetric order-flow

shock on day d unless both the buy- and sell-orders on that day are larger than their corresponding sample

average. This assumption appears to be reasonable given that a symmetric order-flow shock induces both

buy and sell orders. In practice θCd is frequently zero. For example, for the IBM data in our empirical

study 515 out of 754 probabilities (i.e., θCd) are zero.

8By definition, λG1i = 1/ψG
1i − λN1i and λB−1,i = 1/ψB

−1,i − λN−1,i.
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Like the PIN-AACD model, the conditional expected duration ψsji for each state s ∈ S is based on

ψNji in Equation (3.2). Equations for the remaining ψsji are given in Table 1 (see the web-based appendix

for an illustration). Analogous to the APIN model of DY, on a bad-news day with a common shock

lnψCB1i = lnψN1i−µCB and lnψCB−1,i = lnψN−1,i−µB−µCB . Similarly, on a good-news day with a common

shock lnψCG1i = lnψN1i − µG − µCG and lnψCG−1,i = lnψN−1,i − µCG. Finally, on a no-news day with a

common shock lnψCNji = lnψNji − µCN .9

It can be shown that conditional on Φi−1 the expected number of trades due to all traders in the fixed

interval (ti−1, ti] on day d is

E[Bi(xi) + Si(xi)|Φi−1, xi]

=
[
λN1i + λN−1,i︸ ︷︷ ︸

P1i

+πGdλ
G
1i + πBdλ

B
−1,i︸ ︷︷ ︸

P2i

+πCBd
(
λCB1i + λCB−1,i

)
+ πCGd

(
λCG1i + λCG−1,i

)
+ πCNd

(
λCN1i + λCN−1,i

)︸ ︷︷ ︸
P3i

]
xi,

where P1i, P2i and P3i are the expected numbers of trades due to uninformed, informed and symmetric

order-flow shock trades, respectively.10 The daily AACD APIN and PSOS are given by

APINd =

∑Nd

i=1 P2ixi∑Nd

i=1(P1i + P2i + P3i)xi
, (3.5)

and

PSOSd =

∑Nd

i=1 P3ixi∑Nd

i=1(P1i + P2i + P3i)xi
. (3.6)

Note that the APIN-AACD measure in Equation (3.5) reduces to the PIN-AACD measure in Equation

(3.4) when θCd = 0, as expected.

4. Empirical Results

4.1. Data. The intraday data used in this section were extracted and compiled from the New York

Stock Exchange (NYSE) Trade and Quote (TAQ) Database provided through the Wharton Research

Data Services. We retrieved data from the Consolidated Trade (CT) file as well as the Consolidated

Quote (CQ) file. From the CT file we downloaded the data for the date, trading time, price and number

of shares traded for each stock in our study. From the CQ file we downloaded the data for the offer

and bid prices, as well as the time of the quote revisions. The data sets used consist of high-frequency

transaction data for the IBM, GE (General Electric), PG (Procter and Gamble) and WMT (Walmart)

stocks over the period Jan 1, 2005 through Dec 31, 2007, covering 754 trading days.

Due to opening effects, the first 20 minutes (9:30 am to 9:50 am) of each trading day were removed.

All transactions after 4:00 pm were also deleted. Days where the opening transaction occurred after the

9We also experimented with a more parsimonious model specification (µB = µG and µCB = µCG) which yielded empirical

results similar to those reported in Section 4.
10Analogous to TTTW, we define λG1i = 1/ψG

1i−λN1i and λB−1,i = 1/ψB
−1,i−λN−1,i. In addition, we define λCB

1i = 1/ψCB
1i −λN1i,

λCB
−1,i = 1/ψCB

−1,i − λN−1,i − λB−1,i, λ
CG
1i = 1/ψCG

1i − λN1i − λG1i, λ
CG
−1,i = 1/ψCG

−1,i − λN−1,i, λ
CN
1i = 1/ψCN

1i − λN1i and

λCN
−1,i = 1/ψCN

−1,i − λN−1,i.
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first 20 minutes of the trading day or where there were insufficient (less than 10) transactions between

9:50 am and 10:00 am to obtain meaningful initial values for the ML estimation were also removed.

The frequency of zero trade durations (simultaneous transactions) in the data sets is high. For example,

about 35% of the observations for the IBM data are of zero durations. We deal with the zero durations

in the following way. For transactions with the same time stamp we aggregate the transaction volumes

and compute an average price weighted by volume, as described in Pacurar (2008).

We compute the diurnal factors, which are linked to the trading habits and intraday seasonality, by

applying a smoothing cubic spline to the average raw duration at each time point with available data.

We use the Matlab function spap2 to estimate the spline by least-squares. The cubic spline is made up

of 6 polynomial pieces, with knots set on each hour (10:00 am to 4:00 pm). Following Engle and Russell

(1998), we set the mean of the computed diurnal factors equal to the sample mean of the raw durations.

Note that, in practice, this implies that the sample mean of our diurnally adjusted (DA) durations is

approximately 1.

Like DY, we classify trade direction according to the Lee and Ready (1991) algorithm. Trades for

which the algorithm does not apply were further classified as buyer- or seller-initiated based on a tick

test. Some summary statistics of the resulting data sets are given in Table 2. The average number of

trades per day ranges from 4,468.32 (PG) to 5,419.49 (GE). More than 50% of the trades for all stocks

are sell orders. Table 2 also reports estimates of the state probabilities as well as PIN (APIN and PSOS)

obtained using the EHO (DY) models. It can be observed that π̂N of the EHO model exceeds π̂N + π̂CN

of the DY model for all stocks. While there is reduction in the probability of no news (with or without

common shocks) of the DY model, the probability of good and bad news (with or without common

shocks) correspondingly increases. The results also show that PSOS is larger than APIN for all stocks.

4.2. Maximum Likelihood Estimation of the Models. ML estimation of the PIN- and APIN-

AACD models with time varying probabilities was performed using the Matlab function fmincon with

the interior-point algorithm and numerical derivatives. The values ψNj1 used to initialize each day were

computed as follows. Let nd denote the number of transactions between 9:50 am and 10:00 am on trading

day d. As initial values for day d we use

ψNj1 =

∑nd

i=1 1{yi=j}xi∑nd

i=1 1{yi=j}
, for j = −1, 1.

To search for a global optimum, we use a random starting point for the numerical method and run the

likelihood optimization 10 times for each data set. We then select the maximum of these 10 optimizations.

The estimation procedure converges for all data sets.

The ML estimation results for the PIN- and APIN-AACD models with time varying probabilities are

presented in Table 3. It can be seen that the parameter estimates exhibit a remarkable resemblance

across the four stocks. We note that γ̂1 is negative for all stocks, implying that the estimated probability

of news θ̂Ed is less than 0.5 on an average day (when the buy- and sell-orders are equal to the sample
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average). As expected, estimates of γ2 through γ5 are all positive. Both β̂1 + α̂1 and β̂−1 + α̂−1 are

less than 1. The persistence of the latent processes, however, appears to be quite high. Similar to

TTTW, we observe that ς̂−1 > 0 and ς̂1 < 0 for both models and all stocks (although these estimates

are not statistically significant for WMT in both models), implying that large buy orders induce shorter

conditional expected durations for subsequent buy orders but longer conditional expected durations for

sell orders. The opposite goes for large sell orders. Thus, the results suggest that volume plays an explicit

part in predicting trade direction.11

Note that the standard regularity conditions for the limiting null distribution of the likelihood ratio

test statistic to be chi-squared are not satisfied when testing the restricted (γ5 = 0) PIN-AACD model

against the unrestricted APIN-AACD model. This is because the parameter lies on the boundary of

the parameter space under the null hypothesis. Consequently we do not report any likelihood ratio or

Wald test results. However, both the Akaike Information Criterion (AIC) and the Schwarz Bayesian

Criterion (SBC) support the selection of the unrestricted APIN-AACD model over the restricted PIN

model.12 Finally we note that all estimates are statistically significant at the 5 percent level, except for

γ̂2 of PG for the APIN-AACD model as well as ς̂1 and ς̂−1 for WMT for both models.13 The statistical

insignificance of γ̂2 implies that the probability of news does not vary over different days. However, as

γ̂3 and γ̂4 are statistically nonzero, the probabilities of good news and bad news are still time varying.

4.3. Estimates of Daily PIN, APIN and PSOS. Figure 1 presents the plots of the estimated daily

probabilities of good news, no news and bad news for the PIN-AACD model applied to the IBM stock.

It can be seen that the model-implied probability of bad news appears to be quite stable throughout the

sample period and is less than 0.2 more than half of the days. In contrast, the estimated probability of

good news is more volatile, with values exceeding 0.8 for a few days. Figure 2 shows the plots of the

estimated daily state probabilities for the APIN-AACD model applied to the IBM stock. For this model,

the estimated probability of good news without common shock (π̂G) is more stable over time compared to

the probability of good news in the PIN-AACD model. In particular, π̂G is less than 0.5 for all days. In

contrast, estimates of the probabilities of events with common shock (π̂CG, π̂CN and π̂CB) are irregular

and sporadic. The estimated probabilities are zero for most days, but may be quite large (exceeding 0.5)

on some days. This result suggests that the volatile pattern of π̂G in the PIN-AACD model may be due

11While volume is statistically significant for three out of four stocks its economic effects are relatively small. The economic

impact on conditional expected duration is the highest for lagged conditional expected duration, followed by lagged duration
and then lagged signed volume.
12Comparing the results in Tables 2 and 3, we can see that the Ljung-Box statistics are reduced for the diurnally adjusted
durations versus the raw durations and further drastically reduced for the standardized durations, although they are still

highly significant. These results are in line with those in the literature (see, e.g., Engle and Russell (1998)), due to the

enormous sample size of high-frequency data (note that though our Ljung-Box statistics are much larger than those of Engle
and Russell (1998), our sample size is 78 to 88 times larger). However, the Ljung-Box statistics for the APIN-AACD model

are not reduced versus the PIN-AACD model for two stocks. While there may be further improvement in the Ljung-Box

statistics by considering higher order AACD models, this extension has not been considered in this paper.
13The standard errors are computed using the Hessian matrix. The inner product form of the asymptotic variance is not

computable as the likelihood for each observation cannot be separated.
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to common-shock trading. We also note that the average π̂CN estimated from the APIN-AACD model

(see the web-based appendix) is lower than π̂CN (see Table 2) obtained from the DY model.

Daily AACD PIN, APIN and PSOS estimates were computed using Equations (3.4), (3.5) and (3.6),

respectively. Figure 3 presents the plots of PIN/APIN/PSOS for the IBM stock.14 APIN appears to be

more stable than PIN. While APIN is less than 0.05 on almost all days, PIN fluctuates a lot with quite

a few days exceeding 0.1. On the other hand, PSOS behaves quite differently from PIN and APIN. In

particular, while PSOS is zero for many days, it also fluctuates to above 0.2 for quite a few days. We also

note that PSOS may remain zero for an extended period of time, during which common-shock traders are

absent from the market. Furthermore, the average PSOS and APIN computed from the APIN-AACD

model (see the web-based appendix) are lower than the PSOS and APIN estimated using the DY model

(see Table 2).

DY reported the correlations between PIN, APIN and PSOS computed over a period of time with

some variables of interest such as spread and firm size across a cross-section of NYSE stocks. In Table

4 we present the contemporaneous correlations of the daily estimates of PIN, APIN and PSOS with the

average daily effective spread, the daily variance and return for the four stocks.15 In addition, we also

present the contemporaneous correlations between daily return and the daily estimates of the probability

of good news π̂G and bad news π̂B obtained from the APIN-AACD model. Our correlations computed

using the time series data provide some complementary results to the cross-section analysis of DY.16

We observe that daily PSOS is significantly positively correlated with the average effective spread, with

p-value ranging from 0.003 to 0.062. This result is consistent with the notion of PSOS being a measure

of illiquidity, which is further supported by the positive correlation between PSOS and variance. In

contrast, daily APIN is not significantly correlated with effective spread for all four stocks, and is indeed

negatively significantly correlated with variance for three stocks. This rather surprising result raises

doubts about the use of APIN as a measure of asymmetric information. It also raises the question of how

information asymmetry may impact high-frequency volatility. On the other hand, PIN is significantly

positively correlated with variance for all four stocks, while its correlation with spread is significant for

only two stocks. Again, the positive correlation of variance with PIN but not APIN remains a puzzle.

Correlations between daily returns and PIN/APIN/PSOS are largely ambiguous. This result can be

explained by the fact that the PIN, APIN and PSOS measures are not directional and do not determine

the directions of price movements in the time-series context. However, the correlations between daily

14The plots for the other stocks of the PIN-AACD and APIN-AACD models are visually similar. Additional plots for the
GE stock can be found in the web-based appendix.
15Effective spread is computed as two times the absolute value of price minus mid-quote. Daily variance is computed using

the ACD-ICV method proposed by Tse and Yang (2012). This method estimates the integrated conditional variance (ICV)
over an intraday interval using tick data. It is computed as the weighted sum of the instantaneous conditional variances

estimated from an ACD model.
16DY also examined the determination of the expected stock returns by running the Fama-MacBeth regressions of time-

series averages from firm-level cross sections. Our contemporaneous correlation analysis, however, does not have equilibrium

asset pricing implications.
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return and π̂G (π̂B) are significantly positive (negative), which is consistent with the assumption that

news moves the market.

Finally we observe that APIN is negatively contemporaneously correlated with PIN and PSOS, while

PIN and PSOS are positively contemporaneously correlated. Although DY reported positive pairwise

correlations between PIN, APIN and PSOS in the cross-section context across different stocks, our re-

sults show a different contemporaneous pattern for each stock in the time-series context. On a daily

basis, a strong information signal increases APIN and reduces common shocks caused by disagreement

in information interpretation, hence causing negative contemporaneous correlation between APIN and

PSOS. On the other hand, PSOS is a component of the PIN measure, as argued by DY, hence inducing

negative contemporaneous correlation between APIN and PIN.

5. Conclusions

In this paper we propose a method to estimate time varying APIN and PSOS suggested by DY as

measures of asymmetric information and illiquidity, respectively. Our method is an extension of TTTW

using high-frequency transaction data, which is based on an AACD model of expected durations of buy-

and sell-orders. We allow the expected duration of buy- and sell-orders to be dependent on covariates

such as lagged duration, lagged conditional expected duration, lagged trade direction and lagged trade

volume. Also, we incorporate into our model time varying probabilities of no news, good news, bad news

and symmetric order-flow shock. The model parameters are estimated using MLE, from which we obtain

daily estimates of APIN and PSOS. The results provide an enhanced methodology to study the effects of

asymmetric information and illiquidity on asset pricing. Our empirical results indicate that daily APIN

is more stable than daily PIN. PSOS is correlated with average daily effective spread and daily volatility,

supporting that it is a measure of illiquidity. We also observe the interesting result that the daily PSOS

series exhibit a sporadic pattern of extended periods of no common shocks intermingled with clustered

periods of active common-shock trading.
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Table 1. Conditional expected durations for the APIN-AACD model

Buy-initiated trade Sell-initiated trade

ψCB1i = ψN1ie
−µCB ψCB−1,i = ψN−1,ie

−(µB+µCB)

ψB1i = ψN1i ψB−1,i = ψN−1,ie
−µB

ψCG1i = ψN1ie
−(µG+µCG) ψCG−1,i = ψN−1,ie

−µCG

ψG1i = ψN1ie
−µG ψG−1,i = ψN−1,i

ψCN1i = ψN1ie
−µCN ψCN−1,i = ψN−1,ie

−µCN

Notes: ψNji is defined in Equation (3.2). The positive
constants µCB , µB , µCG, µG and µCN are unknown
parameters.

Table 2. Summary statistics of the data, the EHO-PIN results and the DY-APIN-PSOS results

IBM GE PG WMT

Panel A: Summary statistics

Frequency of buy-orders (%) 47.81 45.38 47.85 44.98
Frequency of sell-orders (%) 52.19 54.62 52.15 55.03
Serial correlation of trade direction 0.11 0.16 0.13 0.10
Runs test of trade direction 0.00 0.00 0.00 0.00
LB(15) for raw durations (×105) 5.69 7.67 4.95 6.06
LB(15) for DA durations (×105) 3.55 5.67 3.09 4.07
Average logarithmic trade volume 5.87 6.56 6.08 6.29
Average trade volume 712.71 2,149.12 1,038.07 1,366.44
Average daily number of trades 4,806.28 5,419.49 4,468.32 5,182.37
Average daily number of buy-orders 2,297.68 2,459.20 2,138.23 2,330.77
Average daily number of sell-orders 2,508.60 2,960.29 2,330.09 2,851.60
Number of observations 3,623,936 4,086,293 3,369,114 3,907,509

Panel B: Estimated EHO-PIN results

πG 0.077 0.116 0.035 0.165
πN 0.750 0.717 0.685 0.727
πB 0.174 0.167 0.280 0.109
EHO-PIN 0.069 0.083 0.081 0.061

Panel C: Estimated DY-APIN-PSOS results

πG 0.147 0.106 0.045 0.106
πCG 0.045 0.037 0.023 0.041
πN 0.438 0.474 0.333 0.414
πCN 0.134 0.167 0.167 0.159
πB 0.180 0.160 0.287 0.202
πCB 0.055 0.056 0.144 0.078
APIN 0.057 0.050 0.071 0.052
PSOS 0.124 0.146 0.154 0.121

Notes: “Serial correlation of trade direction” is the sample autocorrelation at lag 1. “Runs test
of trade direction” is the p-value of the Wald-Wolfowitz test for randomness for trade direction.
LB(15) is the Ljung-Box statistic with 15 lags.
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Table 3. Estimation results for the PIN- and APIN-AACD models

IBM GE
PIN-AACD APIN-AACD PIN-AACD APIN-AACD

γ1 -0.773 (0.085) -0.262 (0.053) -0.853 (0.091) -0.911 (0.073)
γ2 3.286 (0.391) 1.524 (0.126) 2.902 (0.353) 1.210 (0.210)
γ3 3.538 (0.406) 10.819 (1.000) 2.145 (0.361) 9.669 (1.242)
γ4 7.245 (0.703) 11.795 (0.927) 6.230 (0.722) 10.367 (1.217)
γ5 5.285 (0.431) 6.319 (0.666)

ν1,−1 0.125 (0.002) 0.122 (0.002) 0.263 (0.002) 0.267 (0.002)
ν1,1 0.099 (0.002) 0.093 (0.002) 0.221 (0.003) 0.222 (0.003)
β1 0.899 (0.001) 0.903 (0.001) 0.777 (0.002) 0.774 (0.001)
α1 0.073 (0.001) 0.072 (0.001) 0.122 (0.001) 0.122 (0.001)
ς1 -0.005 (0.000) -0.005 (0.000) -0.014 (0.000) -0.014 (0.000)

ν−1,−1 0.041 (0.001) 0.110 (0.002) 0.093 (0.001) 0.217 (0.003)
ν−1,1 0.055 (0.001) 0.107 (0.002) 0.102 (0.001) 0.181 (0.002)
β−1 0.957 (0.001) 0.895 (0.001) 0.904 (0.001) 0.793 (0.002)
α−1 0.042 (0.000) 0.067 (0.001) 0.084 (0.001) 0.114 (0.001)
ς−1 0.002 (0.000) 0.006 (0.000) 0.006 (0.000) 0.015 (0.000)

µB 0.084 (0.003) 0.180 (0.002) 0.123 (0.004) 0.236 (0.003)
µG 0.216 (0.002) 0.095 (0.002) 0.319 (0.002) 0.173 (0.002)
µCB 0.233 (0.003) 0.361 (0.002)
µCG 0.279 (0.003) 0.271 (0.004)
µCN 0.199 (0.002) 0.277 (0.002)

LB(15) (×103) 8.058 6.330 7.510 20.594
AIC (×107) 1.21681 1.21558 1.34778 1.34520
SBC (×107) 1.21683 1.21561 1.34780 1.34522

PG WMT
PIN-AACD APIN-AACD PIN-AACD APIN-AACD

γ1 -0.724 (0.075) -0.518 (0.073) -0.921 (0.088) -0.629 (0.030)
γ2 1.303 (0.101) 0.017 (0.184) 1.480 (0.291) 0.550 (0.111)
γ3 4.255 (0.337) 11.791 (2.018) 12.081 (5.042) 13.659 (0.774)
γ4 6.008 (0.317) 13.165 (2.067) 13.570 (8.427) 13.997 (0.647)
γ5 3.757 (0.378) 3.8834 (0.422)

ν1,−1 0.191 (0.003) 0.183 (0.003) 0.208 (0.010) 0.223 (0.004)
ν1,1 0.146 (0.003) 0.137 (0.004) 0.082 (0.012) 0.095 (0.003)
β1 0.843 (0.002) 0.851 (0.003) 0.868 (0.006) 0.856 (0.004)
α1 0.092 (0.001) 0.090 (0.001) 0.091 (0.007) 0.094 (0.004)
ς1 -0.008 (0.000) -0.007 (0.000) -0.000 (0.008) -0.000 (0.002)

ν−1,−1 0.043 (0.001) 0.110 (0.004) 0.058 (0.009) 0.075 (0.002)
ν−1,1 0.080 (0.001) 0.140 (0.009) 0.086 (0.021) 0.102 (0.003)
β−1 0.945 (0.001) 0.881 (0.007) 0.928 (0.012) 0.911 (0.002)
α−1 0.051 (0.001) 0.074 (0.002) 0.063 (0.012) 0.069 (0.002)
ς−1 0.002 (0.000) 0.005 (0.000) 0.002 (0.057) 0.003 (0.002)

µB 0.089 (0.003) 0.199 (0.002) 0.088 (0.004) 0.094 (0.003)
µG 0.250 (0.002) 0.111 (0.003) 0.223 (0.004) 0.180 (0.002)
µCB 0.302 (0.006) 0.158 (0.004)
µCG 0.346 (0.010) 0.184 (0.002)
µCN 0.204 (0.004) 0.111 (0.003)

LB(15) (×103) 5.285 6.618 8.047 7.947
AIC (×107) 1.12973 1.12849 1.30381 1.30307
SBC (×107) 1.12976 1.12851 1.30383 1.30310

Notes: AIC is the Akaike Information Criterion. SBC is Schwarz Bayesian Criterion. Figures within
parentheses are standard errors. LB(15) is the Ljung-Box statistic with 15 lags.
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Table 4. Correlations between daily spread/variance/return and PIN/APIN/PSOS

IBM GE

PIN APIN PSOS PIN APIN PSOS

Effective spread 0.046 0.011 0.107 0.122 0.049 0.101
(0.205) (0.765) (0.003) (0.001) (0.179) (0.006)

Variance 0.379 -0.129 0.382 0.493 -0.153 0.490
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Return -0.101 -0.036 -0.128 0.055 -0.152 0.011
(0.006) (0.319) (0.000) (0.129) (0.000) (0.754)

PSOS 0.884 -0.623 0.878 -0.657
(0.000) (0.000) (0.000) (0.000)

APIN -0.472 -0.405
(0.000) (0.000)

π̂G π̂B π̂G π̂B

Return 0.148 -0.109 0.303 -0.285
(0.000) (0.003) (0.000) (0.000)

PG WMT

PIN APIN PSOS PIN APIN PSOS

Effective spread 0.018 0.006 0.068 0.144 –0.010 0.091
(0.623) (0.869) (0.062) (0.000) (0.790) (0.013)

Variance 0.142 -0.126 0.231 0.231 0.030 0.135
(0.000) (0.001) (0.000) (0.000) (0.417) (0.000)

Return 0.124 -0.115 -0.021 0.117 0.064 0.040
(0.001) (0.002) (0.567) (0.001) (0.078) (0.274)

PSOS 0.740 -0.767 0.799 -0.745
(0.000) (0.000) (0.000) (0.000)

APIN -0.874 -0.228
(0.000) (0.000)

π̂G π̂B π̂G π̂B

Return 0.208 -0.182 0.168 -0.195
(0.000) (0.000) (0.000) (0.000)

Notes: Figures within parentheses are p-values (null hypothesis is zero-correlation). π̂G
and π̂B are the estimated daily probabilities of good news and bad news, respectively,
for the APIN-AACD model.
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Figure 1. Model-implied probabilities for the PIN-AACD model of IBM.
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Figure 2. Model-implied probabilities for the APIN-AACD model of IBM.
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Figure 3. Estimated Daily PIN, APIN and PSOS for IBM.
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Easley et al. (2002, EHO) proposed a market microstructure model to derive a measure of asymmetric

information reflecting the relative intensity of informed versus uninformed (liquidity) trades, called the

probability of informed trading, PIN. As described in Figure 1, the PIN model assumes that each trading

day may be classified as one with news or no news. Furthermore, a day with news can be one with

good news or bad news. The daily aggregate number of buyer- and seller-initiated trades (buy and sell

orders) are assumed to follow independent Poisson distributions with intensities dependent on whether

the trading day is one with good news, bad news or no news. In the model there are two types of traders,

informed traders who trade based on relevant news or information, and uninformed traders who trade

for reasons not accounted for by relevant information, such as portfolio rebalancing and liquidity needs.

Let Bd and Sd denote the aggregate number of buy- and sell-orders on day d, respectively. In the PIN

model, Bd and Sd are assumed to be independent Poisson random variables, with different intensities for

days with bad news (B), good news (G) and no news (N). Let θE denote the probability of news being

released on day d and let θB denote the probability of bad news, conditional on the release of news.

Thus, the daily state probabilities are πB = θEθB , πG = θE(1 − θB) and πN = 1 − θE , for a day with

bad news, good news and no news, respectively. The means of Bd and Sd (the intensity parameters) vary

according to whether the trading day is one with good news, bad news or no news. In particular, for a

day with no news, the means of Bd and Sd are λ1 and λ−1, respectively. For a day with bad news the

sell intensity increases by a constant δ, while the buy intensity remains the same as for a day with no

news. Similarly, for a day with good news the buy intensity increases by δ, while the sell intensity stays

the same as for a no-news day. The PIN model assumes that orders due to informed and uninformed

traders are independent.
1
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For each trading day d, the joint distribution of Bd and Sd is given by

f(Bd, Sd) =
∑
s∈S

f(Bd, Sd, s) =
∑
s∈S

πsf(Bd, Sd|s), for S = {B,G,N},

implying that the daily expected total number of trades is

E(Bd + Sd) =
∑
s∈S

πsE(Bd + Sd|s)

= θEθB(λ1 + λ−1 + δ) + θE(1− θB)(λ1 + λ−1 + δ) + (1− θE)(λ1 + λ−1)

= λ1 + λ−1︸ ︷︷ ︸
P1

+ θEδ︸︷︷︸
P2

,

where P1 and P2 are the expected numbers of trades due to uninformed and informed traders, respectively.

EHO compute the PIN as the relative intensity of informed trades to the intensity of all trades, so that

PIN =
P2

P1 + P2
.

The parameters in the PIN model can be estimated using the MLE method. With D days of data, the

likelihood function is

D∏
d=1

[
πB

λ
Bd
1

Bd!
e−λ1

(λ−1 + δ)Sd

Sd!
e−(λ−1+δ) + πG

(λ1 + δ)Bd

Bd!
e−(λ1+δ)

λ
Sd
−1

Sd!
e−λ−1 + πN

λ
Bd
1

Bd!
e−λ1

λ
Sd
−1

Sd!
e−λ−1

]
,

as given by EHO.

Duarte and Young (2009, DY) extended the PIN model of EHO by allowing for the arrival rate of

informed sellers to be different from the arrival rate of informed buyers and, more importantly, by allowing

both buy- and sell-order flows to increase on certain days even when there is no news. Their APIN model,

outlined in Figure 2, has three additional states representing days in which both the numbers of buys

and sells increase due to symmetric order-flow shocks, or common shocks for short. The motivation for

the first extension is to improve the ability of the PIN model to account for the fact that buy-order flow

has a larger variance than sell-order flow, for almost all firms, in their empirical study. The second, more

important, extension allows for increased buy and sell variations, and a positive correlation between buys

and sells, as each day a common shock may occur that causes both buy- and sell-order flows to increase.

In the APIN model Bd and Sd have different intensities for days with bad news and a common shock

(CB), good news and a common shock (CG) and no news and a common shock (CN). The occurrence

of a common shock is assumed to be independent of the arrival of news (good, bad or no news). Let θC

denote the daily probability of a common shock. The state space S then represents cases of no common

shocks, and the extended state space is S∗ = {CB,CG,CN,B,G,N}. In the event of a common shock,

the buy intensity increases by 41 and the sell intensity by 4−1. Possible causes for common shocks

include the arrival of public news the implications of which traders disagree, and coordinated trading on
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certain days in order to reduce trading costs (Duarte and Young, 2009). The APIN model also allows the

arrival rate of informed sellers to be different from the arrival rate of informed buyers. On a day with

bad news the sell intensity increases by δ−1, while the buy intensity remains the same as for a day with

no news. On a day with good news the buy intensity increases by δ1, while the sell intensity stays the

same as for a no-news day.

The likelihood function for the APIN model is given by

D∏
d=1

[
πCB

(λ1 +41)Bd

Bd!
e−(λ1+41)

(λ−1 + δ−1 +4−1)Sd

Sd!
e−(λ−1+δ−1+4−1)

+ πB
λBd
1

Bd!
e−λ1

(λ−1 + δ−1)Sd

Sd!
e−(λ−1+δ−1)

+ πCG
(λ1 + δ1 +41)Bd

Bd!
e−(λ1+δ1+41)

(λ−1 +4−1)Sd

Sd!
e−(λ−1+4−1) + πG

(λ1 + δ1)Bd

Bd!
e−(λ1+δ1)

λSd
−1
Sd!

e−λ−1

+ πCN
(λ1 +41)Bd

Bd!
e−(λ1+41)

(λ−1 +4−1)Sd

Sd!
e−(λ−1+4−1) + πN

λBd
1

Bd!
e−λ1

λSd
−1
Sd!

e−λ−1

]
.

For this model it is straightforward to show that the expected value of all trades for day d can be

decomposed into three parts

E(Bd + Sd) = λ1 + λ−1︸ ︷︷ ︸
P1

+ θE [(1− θB)δ1 + θBδ−1]︸ ︷︷ ︸
P2

+ θC(41 +4−1)︸ ︷︷ ︸
P3

.

Tay et al. (2009, TTTW) estimated the PIN model assuming the latent trade directions follow the

AACD model, introducing the PIN-AACD model. The conditional intensities of buy- and sell-orders

under different news environments are illustrated in Figure 3. In a similar manner, Figure 4 illustrates

the extended APIN-AACD model, in which the DY APIN model is estimated using the AACD model.

Figures 5, 6 and 7 present additional graphical plots of the estimated daily probabilities of news as

well as PIN/APIN/PSOS for the GE stock. Tables 1 and 2 present some summary statistics of the PIN-

AACD and APIN-AACD models for the four stocks, respectively. The Matlab codes for the computation

of the PIN-AACD and APIN-AACD models can be downloaded, the user guide of which is included in

this appendix.
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Table 1. Summary statistics of the PIN-AACD model with time varying probabilities.

IBM GE PG WMT

πG

Mean 0.182 0.173 0.156 0.139
Std Dev 0.203 0.184 0.116 0.124

πN

Mean 0.692 0.704 0.685 0.725
Std Dev 0.201 0.175 0.099 0.104

πB

Mean 0.126 0.123 0.155 0.136
Std Dev 0.069 0.065 0.068 0.090

PIN

Mean 0.025 0.035 0.028 0.022
Std Dev 0.021 0.025 0.013 0.011

Table 2. Summary statistics of the APIN-AACD model with time varying probabilities.

IBM GE PG WMT

πG

Mean 0.165 0.114 0.152 0.140
Std Dev 0.127 0.085 0.120 0.102

πN

Mean 0.543 0.653 0.565 0.601
Std Dev 0.191 0.206 0.132 0.162

πB

Mean 0.182 0.118 0.185 0.158
Std Dev 0.122 0.087 0.128 0.105

πCG

Mean 0.042 0.028 0.022 0.024
Std Dev 0.115 0.076 0.056 0.066

πCN

Mean 0.041 0.067 0.062 0.059
Std Dev 0.083 0.136 0.131 0.125

πCB

Mean 0.027 0.020 0.015 0.018
Std Dev 0.082 0.063 0.041 0.055

APIN

Mean 0.026 0.026 0.029 0.021
Std Dev 0.009 0.009 0.010 0.006

PSOS

Mean 0.026 0.033 0.025 0.014
Std Dev 0.056 0.068 0.052 0.031



stock

no news

Bd ∼ P(λ1)

Sd ∼ P(λ−1)

1 −
θ
E

news

good news

Bd ∼ P(λ1 + δ)

Sd ∼ P(λ−1)

1 − θB

bad news

Bd ∼ P(λ1)

Sd ∼ P(λ−1 + δ)θB

θE

Figure 1. Trading tree for the PIN model: Bd and Sd are the total number of buy and
sell orders on trading day d, respectively. We write Bd ∼ P(λ1) to indicate that Bd is
Poisson distributed with intensity parameter (mean and variance) λ1. On each trading
day news arrive with probability θE . On a no-news day, Bd is Poisson distributed with
intensity λ1 and Sd is Poisson distributed with intensity λ−1. Bad news causes an increase
in the intensity of Sd, consequently Sd is Poisson distributed with intensity λ−1 + δ on
a bad-news day. Similarly, Bd is Poisson distributed with intensity λ1+δ on a good-news
day.
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stock

no news

{Bi(si), si ≥ 0}, λ1i = λN1i

{Si(si), si ≥ 0}, λ−1,i = λN−1,i

1 −
θ
E
d

news

good news

{Bi(si), si ≥ 0}, λ1i = λN1i + λG1i

{Si(si), si ≥ 0}, λ−1,i = λN−1,i

1 − θ
Bd

bad news

{Bi(si), si ≥ 0}, λ1i = λN1i

{Si(si), si ≥ 0}, λ−1,i = λN−1,i + λB−1,iθBd

θEd

Figure 3. Trading tree for the PIN-AACD model: {Bi(si), si ≥ 0} and {Si(si), si ≥ 0}
are the latent Poisson processes of buy and sell orders initiated at time ti−1 on trading
day d, respectively, given the information Φi−1. On each trading day news arrive with
probability θEd. On a no-news day the conditional intensity of the buy orders is λN1i and
the conditional intensity of the sell orders is λN−1,i. On a bad-news day the conditional

intensity of sell orders increase by λB−1,i, while that of buy orders remains the same as
on a no-news day. Similarly, on a good-news day the conditional intensity of buy orders
increase by λG1i, while that of sell orders remains the same as on a no-news day.
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Figure 5. Model-implied probabilities for the PIN-AACD model of GE.
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Figure 6. Model-implied probabilities for the APIN-AACD model of GE.
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MATLAB CODES TO ACCOMPANY PREVE AND TSE (2012)

Introduction

This document summarizes the Matlab functions used in Preve and Tse (2012) for the estimation of the
PIN- and APIN-AACD models and for the computation of the PIN, APIN and PSOS measures. These
codes require Matlab 2009b (or later) and the optimization toolbox.

Overview

The list below shows the Matlab functions listed in alphabetical order. For more detailed information,
type help fun in the command window to display a description of and syntax for the function fun.

• computePIN0 – computes the daily estimated PIN for the PIN-AACD model
• computePIN1 – computes the daily estimated APIN and PSOS for the APIN-AACD model
• gaOptions0 – creates an options structure for the PIN-AACD model
• gaOptions1 – creates an options structure for the APIN-AACD model
• logL0 – log-likelihood function for the PIN-AACD model
• logL1 – log-likelihood function for the APIN-AACD model
• PIN0 – computePIN0 support function
• PIN1 – computePIN1 support function

Daily PIN

The PIN-AACD model of Tay, Ting, Tse and Warachka (2009) can be estimated and its PIN measure
computed in two steps:

(1) Run gaOptions0, then run optimtool with ga - Genetic Algorithm, -logL0 as fitness function
(number of variables=16, population size=250, generations=100, function tolerance=1e-8) and
fmincon as hybrid function. Use ‘Aineq’, ‘bineq’ as linear inequalities, ‘lb’ and ‘ub’ as bounds
and ‘options’ as options for fmincon. Export the result to a structure, e.g. IBM.Optimum.0.mat.
Repeat step (1) ten times. Select the best optimum and use it in step (2).

(2) Using the optimum in step (1), run computePIN0 to compute the daily estimated PIN for the
PIN-AACD model with time-varying probabilities of news.

Daily APIN and PSOS

The APIN-AACD model of Preve and Tse (2012) can be estimated and its APIN and PSOS measures
computed in two steps:

(1) Run gaOptions1, then run optimtool with ga - Genetic Algorithm, -logL1 as fitness function
(number of variables=20, population size=250, generations=100, function tolerance=1e-8) and
fmincon as hybrid function. Use ‘Aineq’, ‘bineq’ as linear inequalities, ‘lb’ and ‘ub’ as bounds
and ‘options’ as options for fmincon. Export the result to a structure, e.g. IBM.Optimum.1.mat.
Repeat step (1) ten times. Select the best optimum and use it in step (2).

(2) Using the optimum in step (1), run computePIN1 to compute the daily estimated adjusted PIN
and PSOS for the APIN-AACD model with time-varying probabilities of news.

1
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