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MEASURE OF LOCATION-BASED ESTIMATORS

IN SIMPLE LINEAR REGRESSION

August 15, 2013

XIJIA LIU† AND DANIEL PREVE‡

Abstract. In this note we consider certain measure of location-based estimators (MLBEs) for
the slope parameter in a linear regression model with a single stochastic regressor. The median-
unbiased MLBEs are interesting as they can be robust to heavy-tailed samples and, hence,
preferable to the ordinary least squares estimator (LSE). Two different cases are considered as
we investigate the statistical properties of the MLBEs. In the first case, the regressor and error is
assumed to follow a symmetric stable distribution. In the second, other types of regressions, with
potentially contaminated errors, are considered. For both cases the consistency and exact finite-
sample distributions of the MLBEs are established. Some results for the corresponding limiting
distributions are also provided. In addition, we illustrate how our results can be extended to
include certain heteroskedastic and multiple regressions. Finite-sample properties of the MLBEs
in comparison to the LSE are investigated in a simulation study.

1. Introduction

In regression analysis, an important question is how to obtain suitable estimators for the slope
parameter β in the simple linear regression

yi = α+ βxi + ui. (1)

An example of such an estimator is the LSE for β, given by

β̂LS =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
= β +

∑n
i=1(xi − x̄)(ui − ū)∑n

i=1(xi − x̄)2
, (2)

which is consistent under quite general assumptions. A justification for the LSE is provided
by the Gauss-Markov theorem which states that if the explanatory variable is non-stochastic
and the regression errors are uncorrelated random variables with zero mean and common finite
variance, then β̂LS has the minimum variance of all linear unbiased estimators for β. However,
the method of ordinary least squares is sensitive to large values of the error term. For this
reason, alternative estimators such as the LAD estimator (Koenker and Bassett, 1978) that
are less sensitive to outliers have been proposed. Estimators that are robust to heavy-tailed
error distributions can also be obtained using nonparametric (distribution free) techniques, an
example being the Theil-Sen estimator (Sen, 1968b).

In this note we consider robust MLBEs for the slope parameter in (1) and investigate their
finite-sample and asymptotic properties in a parametric setting. These estimators are based
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on measures of location, such as the sample median and trimmed mean. Although our results
are more general, we focus on the case where the explanatory variable, which is assumed to be
stochastic, follows a symmetric stable distribution and the error is either symmetric stable, with
the same index of stability as the explanatory variable, or a normal mixture. We also consider
a conditionally heteroskedastic specification. The MLBEs are similar to the estimator of Preve
and Medeiros (2011) in the sense that they are order statistics of successive ratios between the
response and explanatory variable in a simple linear regression, and that their exact finite-sample
distributions can be obtained for a number of interesting cases.

Stable distributions are a broad class of probability distributions that allow for asymmetry
and heavy-tails. A basic property of stable distributions is that sums of independent stable
random variables, with common index of stability, follow a stable distribution. Moreover, by the
generalized central limit theorem (GCLT), stable distributions are the only possible nondegen-
erate limiting distributions for properly normalized sums of independent, identically distributed
(i.i.d.) random variables. Regressions with symmetric stable errors have been considered by
Blattberg and Sargent (1971), Kadiyala (1972), Smith (1973) and more recently by Nolan and
Ojeda-Revah (2013) and Hallin, Swan, Verdebout and Veredas (2013). A stable, potentially
non-normal, error distribution can be motivated in a number of ways. For example, in econom-
ics, the error ui may be thought of as the sum of a large number of i.i.d. stable random variables
(say, decisions of investors). If the stable assumption is relaxed, in view of the GCLT, the
distribution of ui will be approximately stable. There is a large amount of evidence suggesting
that many economic variables are best described by stable distributions with infinite variances.
Classical examples include common stock price changes and changes in other speculative prices,
cf. Mandelbrot (1963) and Fama (1965).1

For an example of a MLBE, consider the incomplete pairwise-slope estimator for β based on
a sample of size n

β̂PS = med
{ y2 − y1

x2 − x1
,
y4 − y3

x4 − x3
, . . . ,

y2k − y2k−1

x2k − x2k−1

}
(3)

= β + med{z1, z2, . . . , zk},

where

zi =
u2i − u2i−1

x2i − x2i−1
,

and med{z1, z2, . . . , zk} is the sample median of z1, z2, . . . , zk.
2 If the zi are i.i.d. continuous

random variables, standard results for order statistics show that the exact distribution of β̂PS−β
when k is odd can be expressed in terms of the incomplete beta function

G(z; k) = F r+1
z (z)

r∑
s=0

(
r + s

r

)[
1− Fz(z)

]s
=

Γ(k + 1)

Γ2(r + 1)

∫ Fz(z)

0
tr(1− t)rdt, (4)

1See also the extensive bibliography on stable distributions compiled by J. P. Nolan, downloadable at
http://academic2.american.edu/∼jpnolan.
2The estimator β̂PS is incomplete in the sense that it uses k = bn/2c differences, where bn/2c represents the
integer part of n/2, instead of n(n− 1)/2 (cf. Sen, 1968b).
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where Γ(·) is the gamma function, Fz(·) is the cdf of the zi and k = 2r + 1.3 See, for example,
David and Nagaraja (2003, p. 10). The incomplete beta function has been tabled extensively and
can easily be evaluated using standard mathematical software packages such as Mathematica
and Matlab. Another example of a MLBE that we will consider is

β̂UF = med
{ y1 − µy
x1 − µx

,
y2 − µy
x2 − µx

, . . . ,
yn − µy
xn − µx

}
, (5)

where µy and µx are location parameters of the yi and xi, respectively. We shall sometimes refer
to this estimator as unfeasible as it requires both µy and µx to be known, which for most cases
will not be realistic (cf. the b(α) estimators of Blattberg and Sargent, 1971).

Now consider any estimator β̂ for β that can be decomposed into β̂ = β+med{z1, z2, . . . , zk},
where the zi are i.i.d. continuous random variables with zero median and k is odd. Then, in
view of (4), it is readily shown that the median of β̂ − β also is zero. Hence, β̂ is a median-
unbiased estimator for β. If, in addition, the density of the zi is symmetric about zero, then
so is that of β̂ − β.4 This tells us that the distribution of β̂ is centered about the unknown
parameter β. Furthermore, if the median of zi is unique (in general, the median may be an
interval instead of a single number), then the sample median is a consistent estimator for the

population median (e.g. Jiang, 2010, p. 5) and β̂ converges in probability to β as k tends to
infinity. Of course, as an alternative to the sample median, one could instead use a symmetrically
trimmed mean in equations (3) and (5), cf. Section 5. Such an estimator could potentially have
a higher asymptotic relative efficiency (ARE), see Oosterhoff (1994). The main focus of this
note is to establish different conditions under which (3) and (5) are consistent, median-unbiased
estimators with exact distributions that can be expressed in terms of (4), and exact densities
that are symmetric about β.

The remainder of this note is organized as follows. In Section 2 we establish the consistency
and exact finite-sample distributions of the MLBEs given by equations (3) and (5) in a symmetric
stable regression. In doing so, we give conditions under which the median of the ratio of two
independent symmetric stable random variables is unique and zero. In Section 3 we discuss how
our results can be extended to include other types of regressions, with potentially contaminated
errors. In Section 4 we illustrate how these results can be further extended to include certain
types of conditionally heteroskedastic regressions. Section 5 reports the simulation results of
a Monte Carlo study comparing the finite-sample performance of the MLBEs to each other,
and to the LSE. In this study, we also consider feasible versions of (5). Section 6 concludes.
Mathematical proofs are collected in the Appendix. An extended Appendix available on request
from the authors contains some results mentioned in the text but omitted from the note to save
space.

2. A Symmetric Stable Regression

We shall initially assume that both the explanatory variable and error in (1) are symmetric
stable random variables with common index of stability. This ensures that also the response
variable is symmetric stable. More specifically, for this specification both the unconditional and
the (on xi) conditional distribution of yi follow a symmetric stable distribution, such as the

3The corresponding expression when k is even is

G(z; k) =
2Γ(k)

Γ2(r)

∫ z

−∞
F r−1
z (t){[1− Fz(t)]r − [1− Fz(2z − t)]r}fz(t)dt,

where fz(·) is the pdf of the zi and k = 2r (Desu and Rodine, 1969).
4See Proposition 1 in the extended Appendix.
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Figure 1. Densities of four S(a, 0, 1, d) distributed random variables, with com-
mon location parameter d = 2. Tails become progressively heavier as a decreases.

normal or Cauchy distributions. As we shall see, although the conditional mean of yi may not
exist, the conditional median of yi always exists for this specification.

The distribution of a stable random variable is described by four parameters, here denoted
by a, b, c and d. The parameter a, the index of stability, is confined to the interval (0, 2].
The skewness parameter b is confined to [−1, 1]. The scale parameter c > 0, and the location
parameter d can take on any real value. There exists a number of different parametrizations for
symmetric stable distributions. Here we will use the S(a, b, c, d) parametrization in Definition
1.7 of Nolan (2013).

For the remainder of this section, we will focus our attention on the class of symmetric stable
random variables. This class may be defined by the characteristic function,

ϕ(t) = E (eitv) = e−c
a|t|a+idt, (6)

where t is a real number. A random variable v is S(a, 0, c, d) distributed if its characteristic
function is given by (6). While there is no general closed form expression for the density of
a symmetric stable random variable, a great deal is known about their theoretical properties.
Lemma 1 in the Appendix (given here without a proof) lists a selected few of these. The reader
is referred to Nolan (2013), Nolan (2003) and Zolotarev (1986) for details.

There are only two known cases for which closed form expressions for the density of a
S(a, 0, c, d) distributed random variable exists. These are the Gaussian (a = 2) and Cauchy
(a = 1) densities, where the latter is given by

1

π

c

c2 + (v − d)2
, −∞ < v <∞.

In general, all we have is integral representations of the density. Figure 1 shows the densities
of four symmetric stable random variables with different indexes of stability.5

5Figure 1 was generated using the Matlab function stblpdf of M. Veillette, downloadable at
http://math.bu.edu/people/mveillet/research.html.
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To establish the median-unbiasedness, consistency and finite-sample distributions of our
MLBEs for the slope parameter in a symmetric stable regression, we make the following as-
sumption.

Assumption 1. Let yi (i = 1, 2, . . . , n) be given by (1), with median µy. Suppose that

(i) the xi are independent S(a, 0, cx, µx),
(ii) the ui are independent S(a, 0, cu, 0),

(iii) xi and uj are independent for each i and j,
(iv) the sample size is odd, n = 2k + 1.

Here a < 2 is a typical setting in which the, on the explanatory variable, conditional mean and
variance of the LSE for β may not exist.6 For example, if a = 1 the conditional distribution of
(2) is Cauchy. With this assumption in place, we can prove the following proposition.

Proposition 1. Let G(·) be given by (4). Under Assumption 1:

(i) β̂UF
p→ β as n → ∞ and the exact distribution of (5) is given by P (β̂UF − β ≤ z) =

G(z;n), with

Fz(z) =

∫ (cx/cu)z

−∞

∫ ∞
−∞
|t|f(st)f(t)dtds,

where f(·) is the density of a S(a, 0, 1, 0) distributed random variable. For each k, the

density of β̂UF − β is symmetric about zero.

(ii) If k = 2r + 1 is odd, β̂PS
p→ β as n → ∞ and the exact distribution of (3) is given by

P (β̂PS − β ≤ z) = G(z; k), with Fz(z) as in (i). For each r, the density of β̂PS − β is
symmetric about zero.

Although there is no closed form expression for Fz(z) in Proposition 1 in general, like the
normal distribution, the cdf can be efficiently and accurately evaluated using numerical integra-
tion (Nolan, 1997). The values of a, cx and cu are not needed to estimate the slope parameter
β, but would be to construct confidence intervals. In practice, these nuisance parameters can
be estimated using the explanatory variable and the residuals ε̂i = yi − β̂xi, where εi = α+ ui,
and consistent estimators for the index of stability and scale parameters of a stable distribution.
See Fama and Roll (1971), McCulloch (1986) and more recently Garcia, Renault and Veredas
(2011) for examples of consistent estimators for stable distributions.

We end this section with two examples of Fz(z) in Proposition 1. Table 1 reports results
for different symmetric stable ratio distributions.7 We consider Cauchy (a = 1) and Gaussian
(a = 2) distributions for the error and explanatory variable. For the latter specification, Fz(z)

is the cdf of a Cauchy distribution. Here the limiting distribution of β̂UF (and β̂PS) is normal.8

The asymptotic variance of the ordinary least squares (and maximum likelihood) estimator for

β is σ2
u/σ

2
x whereas that of β̂UF is (π/2)2σ2

u/σ
2
x. Hence, the ARE of this MLBE with respect

to the, asymptotically efficient, LSE is (2/π)2 ≈ 0.405 for the Gaussian specification. For the
Cauchy specification, Fz(z) is an integral which, for computational purposes, can be expressed
in terms of the polylogarithm (dilogarithm) function.

3. A Contaminated Normal Regression

So far we have restricted our analysis to symmetric stable random variables. In this section
we outline how our results can be extended to include other types of regressions, with potentially

6See Proposition 2 in the extended Appendix.
7See Proposition 3 in the extended Appendix.
8Cf. Proposition 2, with p = 0.
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Table 1. Symmetric stable ratio distributions (a = 1, 2).

Distribution Distribution Ratio Distribution Ratio Distribution
ui xi zi = ui/(xi − µx) zi = (u2i − u2i−1)/(x2i − x2i−1)

S(1, 0, cu, 0) S(1, 0, cx, µx) Fz(z) = 1
π2

∫ (cx/cu)z

−∞
ln(t2)

t2−1
dt Fz(z) = 1

π2

∫ (cx/cu)z

−∞
ln(t2)

t2−1
dt

Cauchy Cauchy

S(2, 0, σu/
√

2, 0) S(2, 0, σx/
√

2, µx) Fz(z) = 1
2

+ 1
π

arctan
(
σx
σu
z
)

Fz(z) = 1
2

+ 1
π

arctan
(
σx
σu
z
)

Gaussian Gaussian

contaminated errors. As an important special case, we derive the exact distributions of (3) and
(5) in a contaminated normal regression.

The regression we consider is {
yi = α+ βxi + ui
ui = (1− bi)vi + bi

√
γvi

(7)

where xi is normally distributed, bi is Bernoulli distributed with success parameter p, vi is
normally distributed with mean zero and variance σ2

v , γ > 1, and xi, bi and vi are mutually
independent. For this specification,

E(ui) = 0, E(u2
i ) = [1 + (γ − 1)p]σ2

v , (8)

and the density of ui is symmetric about zero. The contamination parameters p and γ are
potentially unknown. Here a ‘small’ value of p and a ‘large’ value of γ is a typical setting in which
the finite-sample performance of the LSE for β may be poor. For p = 0 there is no contamination
and (7) is a special case of (1), with xi ∼ S(2, 0, σx/

√
2, µx) and ui ∼ S(2, 0, σv/

√
2, 0).

To establish the median-unbiasedness, consistency, finite-sample and limiting distributions of
our MLBEs for the slope parameter in a contaminated normal regression, we make the following
assumption.

Assumption 2. Let yi (i = 1, 2, . . . , n) be given by (7), with µy = E(yi). Suppose that

(i) the xi are independent N (µx, σ
2
x),

(ii) the bi are independent Bernoulli distributed, with success parameter p,
(iii) the vi are independent N (0, σ2

v) and γ > 1,
(iv) xi, bj and vl are independent for each i, j and l,
(v) the sample size is odd, n = 2k + 1.

With this assumption in place, we can prove the following proposition.

Proposition 2. Let G(·) be given by (4). Under Assumption 2:

(i) β̂UF
p→ β as n → ∞ and the exact distribution of (5) is given by P (β̂UF − β ≤ z) =

G(z;n), with

Fz(z) = (1− p)Fr(z) + pFr(z/
√
γ), Fr(z) =

1

2
+

1

π
arctan

(σx
σv
z
)
.

For each k, the density of β̂UF − β is symmetric about zero. The limiting distribution of
β̂UF is normal,

√
n(β̂UF − β)

d→ N
(
0, [4f2

z (0)]−1
)
, fz(0) =

[
1 +

(
1−√γ
√
γ

)
p

]
σx
πσv

.
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(ii) If k = 2r + 1 is odd, β̂PS
p→ β as n → ∞ and the exact distribution of (3) is given by

P (β̂PS − β ≤ z) = G(z; k), with

Fz(z) = (1− p)2Fr(z) + 2p(1− p)Fr(
√

2/(γ + 1)z) + p2Fr(z/
√
γ),

and Fr(z) as in (i). For each r, the density of β̂PS − β is symmetric about zero. The

limiting distribution of β̂PS is normal,

√
n(β̂PS − β)

d→ N (0, [4f2
z (0)]−1), fz(0) =

[
(1− p)2 + 2p(1− p)

√
2

γ + 1
+

p2

√
γ

]
σx
πσv

.

By the proof of Proposition 2, it is clear that similar results can be obtained for higher order
mixtures and for a wide variety of cases where xi and/or vi are non-normally distributed, with
finite first and second moments, and the density of vi is symmetric about zero.

4. A Heteroskedastic Regression

In this section we illustrate how our results can be extended to include certain types of
conditionally heteroskedastic regressions. The regression we consider is{

yi = α+ βxi + ui
ui = λ(xi)vi

(9)

with e.g. λ(x) = (x − µx)2, λ(x) = |x − µx| or λ(x) = 1. We shall assume that the xi are i.i.d.
and the distribution of the i.i.d. vi is symmetric about zero. We shall also assume that xi and
vj are independent for each i and j. Under the assumptions of Lemma 2, this implies that the
distribution of the i.i.d. ui also is symmetric about zero.9 For ease of exposition, we consider
β̂UF and note that similar results can be obtained for β̂PS . The case when λ(x) = |x − µx| is

special. Here µy = α+ βµx, assuming all expectations exist, and the exact distribution of β̂UF
when n is odd is given by P (β̂UF − β ≤ z) = G(z;n) with Fz(z) = Fv(z), where Fv(·) is the cdf

of the vi.
10 Hence, the distribution of β̂UF does not depend on the distribution of the xi. The

consistency and asymptotic normality of β̂UF can be established under the usual assumptions
for Fz(·).11 For another example, suppose λ(x) = (x − µx)2 and the xi and vi are independent

N (µx, σ
2
x) and N (0, σ2

v), respectively. In this case β̂UF consistently estimates β and Fz(z) can
be expressed as an integral of a modified Bessel function of the second kind, multiplied by a
normalizing constant. More specifically, the exact distribution of β̂UF when n is odd is given by
P (β̂UF − β ≤ z) = G(z;n) with Fz(z) = (πσxσv)

−1
∫ z
−∞K0

(
|t|(σxσv)−1

)
dt, where K0(·) is the

modified Bessel function of the second kind of order zero.12 The above results are summarized
in Table 2.

5. Simulation Study

In this section we report simulation results concerning the estimation of the slope parameter
β = 3 in the regression yi = 7 + 3xi + ui (i = 1, 2, . . . , n). We consider sample sizes of
n = 27, 55, 111, 223 and 447 to ensure that both n and bn/2c are odd numbers, cf. assumptions 1
and 2, where b·c is the integer part function. These sample sizes are used to illustrate the relation
between k and r in propositions 1–2. We emphasize that the consistency of the estimators we
consider does not rely on the values of n or k, however, our exact distributional results in sections

9Hence, if E(ui) exists, E(ui) = 0.
10See Proposition 5 in the extended Appendix.
11See the proof of Proposition 2.
12See Proposition 6 in the extended Appendix.
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Table 2. Symmetric ratio distributions.

Heteroskedasticity Distribution Distribution Ratio Distribution
λ(x) xi vi zi = λ(xi)vi/(xi − µx)

|x− µx| Absolutely continuous, Absolutely continuous, and Fz(z) = Fv(z)
with finite mean µx symmetric about zero

(x− µx)2 N (µx, σ
2
x) N (0, σ2

v) Fz(z) = 1
πσxσv

∫ z
−∞K0

(
|t|

σxσv

)
dt

Gaussian Gaussian

2 through 4 do.13 Table 3 shows simulation results for various specifications of the explanatory
variable and error. We report the empirical bias and mean squared error (MSE) of the estimators

β̂UF , β̂FE , β̂PS and β̂LS . The estimator β̂FE , described below, is a feasible version of β̂UF . Each
table entry is based on 1 000 000 simulated samples. Symmetric stable pseudo-random numbers
were generated using Theorem 1.19 (a) in Nolan (2013).

Symmetric Stable Regression. Panels A-D of Table 3 report simulation results when the
xi and ui are i.i.d. S(a, 0, 1, 1) and S(a, 0, 1, 0), respectively, for a = 1, 1.25, 1.5 and 1.75. To

estimate the location parameters µy and µx when constructing a feasible version of β̂UF for the
symmetric stable regression in Section 2 we use the symmetrically trimmed mean

µ̂x = 1
bnp2c−bnp1c

bnp2c∑
i=bnp1c+1

x(i),

with p1 = 0.25 and p2 = 1 − p1. Here x(1) ≤ x(2) ≤ · · · ≤ x(n) is the ordered sample of size n.
The proportions p1 and 1 − p2 represent the proportion of the sample trimmed at either ends.
According to Fama and Roll (1968), the symmetrically trimmed mean performs very well over
the entire range 1 ≤ a ≤ 2 for this choice of p1 and p2. In all four experiments, the bias and
MSE of β̂UF and β̂FE is reasonable. β̂PS also performs reasonably well, but has a much larger
MSE. As expected, the performance of β̂LS is unacceptable for values of a close to 1.

Contaminated Normal Regression. Panels E-F of Table 3 report simulation results when
the errors ui = (1 − bi)vi + bi

√
γvi are contaminated normal. In these two experiments the xi

and vi are i.i.d. N (1, 1) and N (0, 1), respectively, and the bi are i.i.d. Bernoulli with success
parameter p = 0.05 and 0.1. The contamination parameter γ = 36, implying that the error
variance, given by (8), is 2.75 for p = 0.05 and 4.5 for p = 0.1. To estimate µy and µx when

constructing a feasible version of β̂UF for the contaminated normal regression in Section 3 we
use the sample mean, µ̂x = n−1

∑n
i=1 xi. In both experiments, the results indicate that the

MSE of β̂UF and β̂FE is considerably smaller than that of β̂LS . However, the MSE of β̂PS is
considerably higher than that of the LSE.

Heteroskedastic Regression. Finally, panels G-H of Table 3 report simulation results when
the errors ui = λ(xi)vi are conditionally heteroskedastic. We consider the last example of Section
4, where λ(x) = (x − µx)2, when the xi and vi are i.i.d. N (1, σ2

x) and N (0, 1), respectively, for

σ2
x = 1 and 2. To estimate µy and µx when constructing a feasible version of β̂UF we use the

13The former statement is also supported by a simulation study reported in Table 1 of the extended Appendix,

which shows that the decreasing trend of the MSE for β̂PS and β̂UF observed in Table 3 is maintained when n
and k are even numbers.
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sample mean. In general, the bias of the MLBEs is similar in magnitude to that of the LSE,
however, the MLBEs appear to have a much smaller MSE.

6. Conclusions and Extensions

In this note we have established the consistency and exact finite-sample distributions of two
median-unbiased MLBEs for the slope parameter in a simple linear regression model when (1) the
explanatory variable and error are symmetric stable random variables, and (2) the explanatory
variable is normal and the error is contaminated normal. These exact distributions may be
used for statistical inference. In addition, we have illustrated how our results can be extended
to include certain heteroskedastic regressions. Our simulation study indicated that the MLBEs
can have superior finite-sample properties compared to the LSE.

Because of their robustness and ease of computation, along the lines of Hinich and Talwar
(1975), β̂PS or β̂FE can also be used as a starting point for a more sophisticated method. For
example, in the context of numerical maximum likelihood estimation in a symmetric stable linear
regression, to search for a global optimum, β̂PS (or β̂FE) could be used as a easily computable
starting point for the numerical method.14 A well chosen starting point may lead to a drastic
decrease in computational time.15 Kadiyala and Murthy (1977), for example, use β̂LS as a
starting point. In light of our simulation results, this is a poor choice.

The exact distributional results in this note are based on the assumption that the sample size
n and k = bn/2c are odd numbers, however, the consistency of the MLBEs does not rely on
whether n and k are even or odd. Analogous exact distributional results for the case when n
and k are even numbers can be obtained using Equation (2.1) in Desu and Rodine (1969).

We have aimed for clarity at the expense of generality. For example, results analogous to those
of Proposition 1 can be obtained for MLBEs of the slope parameters in a general, symmetric
stable, linear regression with two or more statistically independent explanatory variables.16 For
another example, it appears that our results can be extended to allow for serially correlated errors
using existing results for m-dependent samples (e.g. Sen, 1968a).17 Finally, results analogous
to those of propositions 1 and 2 can be obtained for a simple unit root process, yt = yt−1 + ut,
with symmetric stable or contaminated normal errors. This is work in progress.

References

Barmi, H. E. and Nelson, P. (1997). Inference from stable distributions, Selected Proceedings of the Symposium
on Estimating Functions. IMS Lecture Notes-Monograph Series 32: 439–456.

Blattberg, R. and Sargent, T. (1971). Regression with non-gaussian stable disturbances: Some sampling results,
Econometrica 39(3): 501–510.

Cramér, H. (1946). Mathematical Methods of Statistics, Princeton University Press.
Curtiss, J. (1941). On the distribution of the quotient of two chance variables, The Annals of Mathematical

Statistics 12(4): 409–421.
David, H. and Nagaraja, H. (2003). Order Statistics, 3rd edn, John Wiley & Sons.
Desu, M. and Rodine, R. (1969). Estimation of the population median, Skandinavisk Aktuarietidskrift 28: 67–70.

14In view of Lemma 1, a starting point for α (the regression intercept) given a sample of size n = 2k + 1 could

then be α̂PS = y(k+1)− β̂PSx(k+1). More generally, α can be estimated by the sample median of the PS residuals

ε̂i = yi − β̂PSxi (cf. Hettmansperger, McKean and Sheather, 1997).
15Maximum likelihood estimation of the general linear regression model with symmetric stable errors has been
considered by Kadiyala and Murthy (1977), Barmi and Nelson (1997) and Nolan and Ojeda-Revah (2013), among
others. In most cases there is no closed form expression for the MLE (McCulloch, 1998). The maximization of
the likelihood function then imposes a high computational burden even for small to moderate sample sizes.
16See Proposition 7 in the extended Appendix.
17A sequence {u1, u2, . . . } of random variables is said to be m-dependent if and only if ui and ui+k are pairwise
independent for all k > m. In the special case when m = 0, m-dependence reduces to independence.



MEASURE OF LOCATION-BASED ESTIMATORS IN SIMPLE LINEAR REGRESSION 11

Fama, E. (1965). The behavior of stock-market prices, Journal of Business pp. 34–105.
Fama, E. and Roll, R. (1968). Some properties of symmetric stable distributions, Journal of the American Sta-

tistical Association 63(323): 817–836.
Fama, E. and Roll, R. (1971). Parameter estimates for symmetric stable distributions, Journal of the American

Statistical Association 66(334): 331–338.
Garcia, R., Renault, E. and Veredas, D. (2011). Estimation of stable distributions by indirect inference, Journal

of Econometrics 161: 325–337.
Hallin, M., Swan, Y., Verdebout, T. and Veredas, D. (2013). One-step r-estimation in linear models with stable

errors, Journal of Econometrics 172: 195–204.
Hettmansperger, T., McKean, J. and Sheather, S. (1997). Handbook of Statistics, Vol. 15, Elsevier, chapter 7,

Rank-based analyses of linear models, pp. 145–173.
Hinich, M. and Talwar, P. (1975). A simple method for robust regression, Journal of the American Statistical

Association 70(349): 113–119.
Jiang, J. (2010). Large Sample Techniques for Statistics, Springer.
Kadiyala, K. (1972). Regression with non-gaussian stable disturbances: Some sampling results, Econometrica

40(4): 719–722.
Kadiyala, K. and Murthy, K. (1977). Estimation of regression equation with cauchy disturbances, The Canadian

Journal of Statistics 5(1): 111–120.
Koenker, R. and Bassett, G. (1978). Regression quantiles, Econometrica 46(1): 33–50.
Mandelbrot, B. (1963). The variation of certain speculative prices, Journal of Business pp. 394–419.
McCulloch, J. (1986). Simple consistent estimators of stable distribution parameters, Communications in Statistics

- Simulation and Computation 15(4): 1109–1136.
McCulloch, J. (1998). A Practical Guide to Heavy Tails, Birkhäuser, chapter IV, Linear regression with stable
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APPENDIX

The following lemmas are applied in the proof of Propositions 1–2.

Lemma 1 (Properties of Symmetric Stable Variates). If v ∼ S(a, 0, cv, dv) and w ∼ S(a, 0, cw, dw)
are independent, then

(i) v is absolutely continuous, with a continuous and unimodal density,
(ii) the density of v is symmetric about dv, and the support of v is (−∞,∞),

(iii) if 1 < a ≤ 2, the mean of v is finite and equal to dv,
(iv) if 0 < a < 2, the variance of v does not exist,
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(v) for any α 6= 0 and real β, α+ βv ∼ S(a, 0, |β|cv, α+ βdv),
(vi) v + w ∼ S(a, 0, c, dv + dw), where ca = cav + caw.

Lemma 2 (Symmetric Product and Ratio Distributions). Suppose v and w are two independent
absolutely continuous random variables, and v is symmetrically distributed about zero. Then,
the product p = vw and ratio r = v/w are absolutely continuous and symmetrically distributed
about zero, with pdf’s

fp(p) =

∫ ∞
−∞

1

|t|
fv(p/t)fw(t)dt and fr(r) =

∫ ∞
−∞
|t|fv(rt)fw(t)dt, (10)

where fv(·) and fw(·) are the pdf’s of v and w, respectively.

Proof. By theorems 3.1 and 7.1 in Curtiss (1941), the cdf’s of p and r are absolutely continuous.
Moreover, the pdf’s of p and r exist almost everywhere and are given by (10). Since v is
symmetrically distributed about zero, fv(s) = fv(−s) for all real s. The result now follows by
noting that fp(p) = fp(−p) and fr(r) = fr(−r) for all real p and r. �

Lemma 3 (Uniqueness of the Median of a Ratio of Symmetric Stable Variates). Suppose that
v ∼ S(a, 0, 1, 0) and w ∼ S(a, 0, 1, 0) are independent, then the median of r = v/w is unique
and zero.

Proof. Let ε > 0 be arbitrary. By Lemma 2, the density of r is symmetric about zero. Hence,
to show that the median is not an interval, it is enough to show that∫ ε

0
fr(t)dt = Fr(ε)− Fr(0) = Fr(ε)− 1

2 > 0.

For a = 2 the ratio is standard Cauchy, hence, Fr(ε) − 1
2 = 1

π arctan(ε) > 0. For 0 < a < 2
Theorem 1 in Shcolnick (1985) gives

r
d
= xy, y =

[
sin
(
πa
2 z
)

sin
(
πa
2 (1− z)

)] 1
a

where x ∼ S(1, 0, 1, 0) and y are independent,
d
= denotes equality in distribution, and z is

uniformly distributed on (0, 1). Hence,

P (0 < r < ε) = P (0 < xy < ε) ≥ P (0 < x < ε, 0 < y < 1) = P (0 < x < ε)P (0 < y < 1).

As x is standard Cauchy, P (0 < x < ε) = 1
π arctan(ε). Next we show that P (0 < y < 1) = 1/2.

Since P (0 < z < 1) = 1, we only consider solutions 0 < z < 1 to 0 < y(z) < 1. For this subset,
0 < y < 1 if and only if

sin
(
πa
2 (1− z)

)
− sin

(
πa
2 z
)

= 2 cos
(
πa
4

)
sin
(
πa
4 −

πa
2 z
)
> 0.

It follows that P (0 < y < 1) = P (0 < z < 1/2) = 1/2. Thus,

Fr(ε)− 1
2 = P (0 < r < ε) ≥ 1

2π arctan(ε) > 0.

�

Lemma 4 (Symmetric Ratio Mixture Distribution). Suppose that

z = (1− b) v
w

+ b
√
γ
v

w
,

where b is Bernoulli distributed with success parameter p, v and w are independent absolutely
continuous random variables, v is symmetrically distributed about zero and γ > 0. Then the
ratio mixture z is absolutely continuous and symmetrically distributed about zero, with pdf

fz(z) = (1− p)fr(z) + p(1/
√
γ)fr(z/

√
γ),
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where fr(·) is the ratio density of Lemma 2.

Proof.

fz(z) =
1∑

k=0

fz,b(z, k) =
1∑

k=0

(1− p)1−kpkfz|b=k(z)

= (1− p)fr(z) + p(1/
√
γ)fr(z/

√
γ),

where we have used Lemma 2 and that the pdf of h =
√
γv is (1/

√
γ)fv(h/

√
γ), which is

symmetric about zero. Since fr(r) = fr(−r) for all real r, the result now follows by noting that
fz(z) = fz(−z) for all real z. �

Proof of Proposition 1. First we will show that

zi =
y2i − y2i−1

x2i − x2i−1
− β d

=
yi − µy
xi − µx

− β d
=
(
cu
cx

)
ri, (11)

where ri is the ratio of two independent S(a, 0, 1, 0) random variables. Since µy = α+ βµx, we
have

yi − µy
xi − µx

=
β(xi − µx) + ui

xi − µx
= β +

ui
xi − µx

.

In view of Lemma 1,

ui
xi − µx

d
=
vi
wi

d
=
(
cu
cx

)
ri,

where vi and wi are independent S(a, 0, cu, 0) and S(a, 0, cx, 0) variates, respectively. Similarly,

y2i − y2i−1

x2i − x2i−1
= β +

u2i − u2i−1

x2i − x2i−1
,

where
u2i − u2i−1

x2i − x2i−1

d
=
vi
wi

d
=
(
cu
cx

)
ri,

and vi and wi here are independent S(a, 0, 21/acu, 0) and S(a, 0, 21/acx, 0) variates, respectively.
This shows (11). By Lemma 2, the pdf of ri is symmetric about zero and the cdf of ri is given
by

Fr(r) =

∫ r

−∞

∫ ∞
−∞
|t|f(st)f(t)dtds,

where f(·) is the pdf of a S(a, 0, 1, 0) variate. Hence, the density of zi is symmetric about zero
and the distribution of zi is given by

Fz(z) = Fr(cxz/cu) =

∫ (cx/cu)z

−∞

∫ ∞
−∞
|t|f(st)f(t)dtds.

It follows that P (β̂PS − β ≤ z) = P (z(r+1) ≤ z), where k = 2r + 1 and z(r+1) is the sample
median of the i.i.d. sequence {z1, z2, . . . , zk}. Standard results for order statistics gives us the

exact distribution of z(r+1) in terms of Fz(z). The consistency of β̂PS follows from Lemma 3.
This proves (ii). The proof of (i) is analogous. �
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Proof of Proposition 2. Since µy = α+ βµx, we have

yi − µy
xi − µx

=
β(xi − µx) + ui

xi − µx
= β + zi,

where
zi = (1− bi)ri + bi

√
γri,

and ri = vi/(xi − µx). It follows that P (β̂UF − β ≤ z) = P (z(k+1) ≤ z), where n = 2k + 1 and
z(k+1) is the sample median of the i.i.d. sequence {z1, z2, . . . , zn}. By Lemma 4, the pdf of zi is
symmetric about zero, and the cdf of zi is given by

Fz(z) =

∫ z

−∞
fz(t)dt = (1− p)Fr(z) + pFr(z/

√
γ),

where Fr(·), the cdf of ri, can be obtained using Lemma 2. For the particular case when both
xi and vi are assumed to be normal, ri is S(1, 0, σv/σx, 0) distributed, with

Fr(z) =
1

2
+

1

π
arctan

(σx
σv
z
)
.

Hence, since Fz is strictly increasing, the unique solution to Fz(ξ) = 1/2 is ξ = 0. Standard
results for order statistics gives us the exact distribution of z(k+1) in terms of Fz(z). This proves
the first part of (i). For the second part, note that the continuous pdf fz(z) of zi is given by

F ′z(z) =
(1− p)
π

σv
σx

(σvσx )2 + z2
+
p

π

√
γσv
σx(√γσv

σx

)2
+ z2

,

with

fz(0) =

[
1 +

(
1−√γ
√
γ

)
p

]
σx
πσv

.

Since also the derivative of fz(z) is continuous, standard results (Cramér, 1946, p. 369) gives us
the limiting distribution in terms of fz(0),

√
n(β̂UF − β) =

√
nz(k+1)

d→ N (0, [4f2
z (0)]−1).

This proves the second part of (i). The proof of (ii) is analogous.18 �

18See Proposition 4 in the extended Appendix.
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Proposition 1. Suppose that the estimator β̂ for β can be decomposed into β̂ = β+med{z1, z2, . . . , zk},
where the zi are i.i.d. continuous random variables with zero median. Then,

(i) the median of β̂ − β is zero (i.e. β̂ is median-unbiased) and

(ii) if, in addition, the density of zi is symmetric about zero, then so is the density of β̂− β.

Proof. Let C = Γ(k + 1)/Γ2(r + 1) . Then, in view of (4), since Fz(0) = 1/2

G(0; k) = C

∫ 1/2

0
tr(1− t)rdt s=1−t

= −C
∫ 1/2

1
(1− s)rsrds = C

∫ 1

1/2
sr(1− s)rds.

Seeing that the sum of the first and last integral is one, it follows that G(0; k) = 1/2. This
proves (i). For the proof of (ii), note that Fz(z) = 1− Fz(−z) as the density of zi is symmetric
about zero. Hence,

G(z; k) = C

∫ Fz(z)

0
tr(1− t)rdt = C

∫ 1−Fz(−z)

0
tr(1− t)rdt s=1−t

= −C
∫ Fz(−z)

1
(1− s)rsrds

= C

∫ 1

Fz(−z)
sr(1− s)rds = 1− C

∫ Fz(−z)

0
sr(1− s)rds = 1−G(−z; k).

This proves (ii). �

Proposition 2. Under Assumption 1: (i) the conditional distribution of β̂LS is symmetric stable

with index of stability a, (ii) the conditional mean of β̂LS does not exist if 0 < a ≤ 1, and (iii)

the conditional variance of β̂LS does not exist if 0 < a < 2.

Proof. By (2), the LSE for β can be decomposed into

β̂LS = β +

∑n
i=1(xi − x̄)(ui − ū)∑n

i=1(xi − x̄)2
= β + (c1 − c̄)u1 + (c2 − c̄)u2 + · · ·+ (cn − c̄)un,

where

ci =
xi − x̄∑n

i=1(xi − x̄)2
.

† Uppsala University. ‡ City University of Hong Kong. Address correspondence to Xijia Liu, Department of
Statistics, Uppsala University, Box 513, 751 20 Uppsala, Sweden; e-mail: xijia.liu@statistics.uu.se.
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2 XIJIA LIU AND DANIEL PREVE

Hence, conditional on the xi, β̂LS − β is a linear combination of independent, identically
S(a, 0, cu, 0) distributed random variables which, in view of Lemma 1, is symmetric stable with
index of stability a. This proves (i). Standard results for stable distributions (Nolan, 2013, p.
15) show (ii) and (iii). �

Proposition 3. Under Assumption 1, Fz(z) in Proposition 1 is given by

Fz(z) =
1

π2

∫ (cx/cu)z

−∞

ln(t2)

t2 − 1
dt, if a = 1, and Fz(z) =

1

2
+

1

π
arctan

(σx
σu
z
)
, if a = 2.

Proof. Since S(2, 0, σ/
√

2, µ) = N (µ, σ2), we have

ui
xi − µx

d
=
(σu
σx

)
ri,

where ri is the ratio of two independent N (0, 1) random variables. Hence, ri is C(0, 1) where
C(0, 1) denotes the standard Cauchy distribution. Similarly,

u2i − u2i−1

x2i − x2i−1

d
=
vi
wi

d
=
(σu
σx

)
ri,

where vi and wi are independent N (0, 2σ2
u) and N (0, 2σ2

x) variates, respectively. As the cdf of a
standard Cauchy variate is 1

2 + 1
π arctan(z), the results on the second row in Table 1 now follow.

To show the results on the first row, note that S(1, 0, c, µ) = C(µ, c). In view of Lemma 1,

ui
xi − µx

d
=
vi
wi

d
=
(cu
cx

)
ri,

where vi and wi are independent C(0, cu) and C(0, cx) variates, respectively, and ri is the ratio
of two independent C(0, 1) random variables. Similarly,

u2i − u2i−1

x2i − x2i−1

d
=
vi
wi

d
=
(cu
cx

)
ri,

where vi and wi here are independent C(0, 2cu) and C(0, 2cx) variates, respectively. By Theorem
3.1 in (Curtiss, 1941), the density of the ratio of two independent standard Cauchy variates
exists almost everywhere and is given by

fr(r) =

∫ ∞
−∞
|t|
(

1

π

1

1 + (rt)2

)(
1

π

1

1 + t2

)
dt =

1

π2

∫ ∞
0

2t

(1 + r2t2)(1 + t2)
dt

=
1

π2

∫ ∞
0

1

(1 + r2s)(1 + s)
ds.

It is readily seen that fr(r) is equal to 1/π2 for r = ±1, and is divergent for r = 0. For r 6= ±1
partial fraction decomposition yields,

fr(r) =
1

π2

∫ ∞
0

1

(1 + r2s)(1 + s)
ds =

1

π2

∫ ∞
0

(
r2

r2−1

)
1 + r2s

−
(

1
r2−1

)
1 + s

ds

= lim
t→∞

1

π2

(
1

r2 − 1

)
ln

(
1 + r2t

1 + t

)
=

1

π2

ln(r2)

r2 − 1
.

A closer analysis shows that fr(r) is continuous at r = ±1. Hence, the ratio density fr is
continuous on (−∞, 0) and (0,∞), with a pole at zero. The results on the first row in Table 1
now follow. �



EXTENDED APPENDIX 3

Proposition 4. Let yi = α + βxi + ui (i = 1, 2, . . . , n), where ui = (1 − bi)vi + bi
√
γvi, with

µy = E(yi). Suppose that

(i) the xi are independent N (µx, σ
2
x),

(ii) the bi are independent Bernoulli distributed, with success parameter p,
(iii) the vi are independent N (0, σ2

v) and γ > 1,
(iv) xi, bj and vl are independent for each i, j and l,
(v) the sample size is odd, n = 2k + 1.

If k = 2r + 1 is odd, β̂PS
p→ β as n→∞ and the exact distribution of (3) is given by

P (β̂PS − β ≤ z) =
Γ(k + 1)

Γ2(r + 1)

∫ Fz(z)

0
tr(1− t)rdt,

with

Fz(z) = (1− p)2Fr(z) + 2p(1− p)Fr(
√

2/(γ + 1)z) + p2Fr(z/
√
γ)

and

Fr(z) =
1

2
+

1

π
arctan

(σx
σv
z
)
.

For each r, the density of β̂PS − β is symmetric about zero. The limiting distribution of β̂PS is
normal,

√
n(β̂PS − β)

d→ N (0, [4f2
z (0)]−1), fz(0) =

[
(1− p)2 + 2p(1− p)

√
2

γ + 1
+

p2

√
γ

]
σx
πσv

.

Proof. Since µy = α+ βµx, we have

y2i − y2i−1

x2i − x2i−1
=
β(x2i − x2i−1) + u2i − u2i−1

x2i − x2i−1
= β + zi,

where

zi =
u2i − u2i−1

x2i − x2i−1
=

(1− b2i)v2i + b2i
√
γv2i − (1− b2i−1)v2i−1 − b2i−1

√
γv2i−1

x2i − x2i−1
.

It follows that P (β̂PS − β ≤ z) = P (z(r+1) ≤ z), where k = 2r + 1 and z(r+1) is the sample
median of the i.i.d. sequence {z1, z2, . . . , zk}. The cdf of zi is given by

Fz(z) = P (zi ≤ z) =
∑
l,m

P (b2i = l, b2i−1 = m)P (zi ≤ z|b2i = l, b2i−1 = m),

where l,m = 0, 1 and

P (zi ≤ z|b2i = 0, b2i−1 = 0) = P
( v2i − v2i−1

x2i − x2i−1
≤ z
)

=
1

2
+

1

π
arctan

(σx
σv
z
)
,

P (zi ≤ z|b2i = 0, b2i−1 = 1) = P
(v2i −

√
γv2i−1

x2i − x2i−1
≤ z
)

=
1

2
+

1

π
arctan

(σx
σv

√
2

γ + 1
z
)
,

P (zi ≤ z|b2i = 1, b2i−1 = 0) = P
(√γv2i − v2i−1

x2i − x2i−1
≤ z
)

=
1

2
+

1

π
arctan

(σx
σv

√
2

γ + 1
z
)
,

P (zi ≤ z|b2i = 1, b2i−1 = 1) = P
(√γv2i −

√
γv2i−1

x2i − x2i−1
≤ z
)

=
1

2
+

1

π
arctan

(σx
σv

z
√
γ

)
.

Hence,

Fz(z) = (1− p)2Fr(z) + 2p(1− p)Fr(
√

2/(γ + 1)z) + p2Fr(z/
√
γ),
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where

Fr(z) =
1

2
+

1

π
arctan

(σx
σv
z
)
.

Since Fz is strictly increasing, the unique solution to Fz(ξ) = 1/2 is ξ = 0. Standard results for
order statistics gives us the exact distribution of z(r+1) in terms of Fz(z). This proves the first
part of (ii). For the second part, note that the continuous pdf fz(z) of zi is given by

F ′z(z) = (1− p)2fr(z) + 2p(1− p)
√

2/(γ + 1)fr(
√

2/(γ + 1)z) + (p2/
√
γ)fr(z/

√
γ),

where

fr(z) =
1

π

σv/σx
(σv/σx)2 + z2

.

It follows that fz(z) = fz(−z) for all real z and, hence, that the density of zi is symmetric about
zero. Since also the derivative of fz(z) is continuous, standard results (Cramér, 1946, p. 369)
gives us the limiting distribution in terms of fz(0),

√
n(β̂PS − β) =

√
nz(r+1)

d→ N (0, [4f2
z (0)]−1),

where

fz(0) =

[
(1− p)2 + 2p(1− p)

√
2

γ + 1
+

p2

√
γ

]
σx
πσv

.

This proves the second part of (ii). �

Proposition 5. Let yi = α+ βxi + ui (i = 1, 2, . . . , n), where ui = |xi − µx|vi. Suppose that

(i) the xi are independent absolutely continuous random variables with finite mean µx,
(ii) the vi are independent absolutely continuous random variables with cdf Fv(v) satisfying

Fv(v) = 1− Fv(−v),
(iii) the ui have finite mean,
(iv) xi and vj are independent for each i and j,
(v) the sample size is odd, n = 2k + 1.

Then the exact distribution of (5) is given by

P (β̂UF − β ≤ z) =
Γ(n+ 1)

Γ2(k + 1)

∫ Fv(z)

0
tk(1− t)kdt.

For each k, the density of β̂UF − β is symmetric about zero. The consistency and asymptotic
normality of β̂UF can be established under the usual assumptions for Fv(·).

Proof. Since xi has finite mean µx, µy = α + βµx + E(ui). Moreover, since the distribution of
vi is symmetric about zero, by Lemma 2, so is the distribution of ui = |xi − µx|vi. Hence, as
E(ui) exists, E(ui) = 0 and µy = α+ βµx. Thus,

yi − µy
xi − µx

=
β(xi − µx) + ui

xi − µx
= β +

ui
xi − µx

= β + zi,

where,

zi =
ui

xi − µx
=
|xi − µx|
xi − µx

vi = rivi,

and

ri =
|xi − µx|
xi − µx

.

Thus ri is two-point distributed,

ri =

{
−1, xi − µx < 0

1, xi − µx ≥ 0.
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If ri = −1, then zi = −vi and the corresponding conditional density is

fz|r=−1(z) = f−v(z) = fv(z),

where the last equality follows since the distribution of vi is symmetric about zero. Similarly,
fz|r=1(z) = fv(z). Hence,

fz(z) = fz,r(z,−1) + fz,r(z, 1) = P (r = −1)fz|r=−1(z) + P (r = 1)fz|r=1(z)

= [P (r = −1) + P (r = 1)]fv(z) = fv(z).

It follows that P (β̂UF − β ≤ z) = P (z(k+1) ≤ z), where n = 2k + 1 and z(k+1) is the sample
median of the i.i.d. sequence {z1, z2, . . . , zn}. Standard results for order statistics gives us the
exact distribution of z(k+1) in terms of Fz(z) = Fv(z). �

Proposition 6. Let yi = α+ βxi + ui (i = 1, 2, . . . , n), where ui = (xi − µx)2vi. Suppose that

(i) the xi are independent N (µx, σ
2
x),

(ii) the vi are independent N (0, σ2
v),

(iii) xi and vj are independent for each i and j,
(iv) the sample size is odd, n = 2k + 1.

Then β̂UF
p→ β as n→∞ and the exact distribution of (5) is given by

P (β̂UF − β ≤ z) =
Γ(n+ 1)

Γ2(k + 1)

∫ Fz(z)

0
tk(1− t)kdt

with Fz(z) = (πσxσv)
−1
∫ z
−∞K0

(
|t|(σxσv)−1

)
dt, where K0(·) is the modified Bessel function of

the second kind of order zero. For each k, the density of β̂UF − β is symmetric about zero.

Proof. Since the xi and vi are independent N (µx, σ
2
x) and N (0, σ2

v), respectively, µy = α+ βµx
and

yi − µy
xi − µx

=
β(xi − µx) + ui

xi − µx
= β +

ui
xi − µx

= β + zi,

where

zi =
ui

xi − µx
= (xi − µx)vi.

Thus, zi is the product of two independent, zero-mean normal random variables with variances
σ2
x and σ2

v , respectively. By Theorem 5 in Springer and Thompson (1970), the density fz(·) of
zi can be expressed in terms of a Meijer G-function.1 More specifically,

fz(z) =
1

2πσxσv
G2,0

0,2

(
z2

4σ2
xσ

2
v

; 0, 0

)
,

where G2,0
0,2(·) is a Meijer G-function which exists for z 6= 0 (Mathai, 1993, p. 63). Since fz(z) =

fz(−z), the density is symmetric about zero. Moreover, by Equation (4) on p. 216 in Erdélyi
(1953),

G2,0
0,2

(
z2

4σ2
xσ

2
v

; 0, 0

)
= 2K0

(
2

√
z2

4σ2
xσ

2
v

)
= 2K0

(
|z|
σxσv

)
,

where K0(·) is the modified Bessel function of the second kind of order zero. Hence

fz(z) =
1

πσxσv
K0

(
|z|
σxσv

)
.

1Note that there are typos in the statement of Theorem 5 in Springer and Thompson (1970). See the corresponding
proof for details.



6 XIJIA LIU AND DANIEL PREVE

It follows that P (β̂UF − β ≤ z) = P (z(k+1) ≤ z), where n = 2k + 1 and z(k+1) is the sample
median of the i.i.d. sequence {z1, z2, . . . , zn}. Standard results for order statistics gives us the
exact distribution of z(k+1) in terms of Fz(z) = (πσxσv)

−1
∫ z
−∞K0

(
|t|(σxσv)−1

)
dt. Finally, since

K0(·) is continuous, positive and decreasing on (0,∞) (Olver, Lozier, Boisvert and Clark, 2010,
pp. 251 and 254), and since fz(z) = (πσxσv)

−1K0

(
|z|(σxσv)−1

)
is symmetric about zero, the

unique solution to Fz(ξ) = 1/2 is ξ = 0. The consistency of β̂UF now follows. �

Proposition 7. Let yi = α+
∑q

j=1 βjxji + ui (i = 1, 2, . . . , n), with median µy. Suppose that

(i) the xji are independent S(a, 0, cxj , µxj ),
(ii) the ui are independent S(a, 0, cu, 0),

(iii) xji and ul are independent for each i, j and l,
(iv) the sample size is odd, n = 2k + 1.

For ease of exposition, consider the extended unfeasible estimator and, for ease of notation,
denote it by

β̂j = med
{ y1 − µy
xj1 − µxj

,
y2 − µy
xj2 − µxj

, . . . ,
yn − µy
xjn − µxj

}
.

Then β̂j
p→ βj as n→∞ (j = 1, . . . , q) and the exact distribution of β̂j is given by

P (β̂j − βj ≤ z) =
Γ(n+ 1)

Γ2(k + 1)

∫ Fzj (z)

0
tk(1− t)kdt,

with

Fzj (z) =

∫ (cxj /cj)z

−∞

∫ ∞
−∞
|t|f(st)f(t)dtds,

where f(·) is the density of a S(a, 0, 1, 0) distributed random variable and caj = cau+
∑

m 6=j |βm|acaxm.

For each k, the density of β̂j − βj is symmetric about zero. If a = 2 the limiting distribution of

β̂j is normal,
√
n(β̂j − βj)

d→ N
(
0, [π(cj/cxj )/2]2

)
.

Proof. In view of Lemma 1, µy = α+
∑q

j=1 βjµxj , hence,

yi − µy
xji − µxj

=
β1(x1i − µx1) + · · ·+ βj(xji − µxj ) + · · ·+ βq(xqi − µxq) + ui

xji − µxj
= βj + zji.

Let rji denote the ratio of two independent S(a, 0, 1, 0) random variables. By assumption,

zji =

∑
m6=j βm(xmi − µxm) + ui

xji − µxj
d
=
vji
wji

d
=
(
cj
cxj

)
rji,

where vji and wji are independent S(a, 0, cj , 0) and S(a, 0, cxj , 0) variates, respectively, and
caj = cau +

∑
m 6=j |βm|acaxm . By Lemma 2, the pdf of rji is symmetric about zero and the cdf of

rji is given by

Fr(r) =

∫ r

−∞

∫ ∞
−∞
|t|f(st)f(t)dtds,

where f(·) is the pdf of a S(a, 0, 1, 0) variate. Hence, the density of zji is symmetric about zero
and the distribution of zji is given by

Fzj (z) = Fr(cxjz/cj) =

∫ (cxj /cj)z

−∞

∫ ∞
−∞
|t|f(st)f(t)dtds.
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It follows that P (β̂j − βj ≤ z) = P (zj(k+1) ≤ z), where zj(k+1) is the sample median of the i.i.d.
sequence {zj1, zj2, . . . , zjn}. Standard results for order statistics gives us the exact distribution

of zj(k+1) in terms of Fzj (z). The consistency of β̂j follows from Lemma 3. This proves the first
part of the proposition. For the second part, note that if a = 2 the numerator and denominator
of zji are independent Gaussian random variables. Hence, zji is Cauchy distributed with zero
median, scale parameter cj/cxj (cf. Nolan, 2013, p. 23), and cdf

Fzj (z) =
1

2
+

1

π
arctan

(cxj
cj
z
)
.

The continuous pdf fzj (z) of zji is given by

F ′zj (z) =
(cj/cxj )

π[(cj/cxj )
2 + z2]

,

with

fzj (0) =
cxj
πcj

.

Since also the derivative of fzj (z) is continuous, standard results (Cramér, 1946, p. 369) gives
us the limiting distribution in terms of fzj (0),

√
n(β̂j − βj) =

√
nzj(k+1)

d→ N (0, [4f2
z (0)]−1).

This proves the second part of the proposition. �
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