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MEASURE OF LOCATION-BASED ESTIMATORS
IN SIMPLE LINEAR REGRESSION
August 15, 2013

XIJIA LIUT AND DANIEL PREVE?

ABSTRACT. In this note we consider certain measure of location-based estimators (MLBEs) for
the slope parameter in a linear regression model with a single stochastic regressor. The median-
unbiased MLBEs are interesting as they can be robust to heavy-tailed samples and, hence,
preferable to the ordinary least squares estimator (LSE). Two different cases are considered as
we investigate the statistical properties of the MLBESs. In the first case, the regressor and error is
assumed to follow a symmetric stable distribution. In the second, other types of regressions, with
potentially contaminated errors, are considered. For both cases the consistency and exact finite-
sample distributions of the MLBESs are established. Some results for the corresponding limiting
distributions are also provided. In addition, we illustrate how our results can be extended to
include certain heteroskedastic and multiple regressions. Finite-sample properties of the MLBEs
in comparison to the LSE are investigated in a simulation study.

1. INTRODUCTION

In regression analysis, an important question is how to obtain suitable estimators for the slope
parameter 5 in the simple linear regression

yi = o+ Bz + u;. (1)
An example of such an estimator is the LSE for 3, given by

s 2@ =)y —y) L Yin (i — @) (u — 1)
Brs = 7 ——— =0+ ST w22

Y1 (@i — @) 2)

which is consistent under quite general assumptions. A justification for the LSE is provided
by the Gauss-Markov theorem which states that if the explanatory variable is non-stochastic
and the regression errors are uncorrelated random variables with zero mean and common finite
variance, then BLS has the minimum variance of all linear unbiased estimators for 5. However,
the method of ordinary least squares is sensitive to large values of the error term. For this
reason, alternative estimators such as the LAD estimator (Koenker and Bassett, 1978) that
are less sensitive to outliers have been proposed. Estimators that are robust to heavy-tailed
error distributions can also be obtained using nonparametric (distribution free) techniques, an
example being the Theil-Sen estimator (Sen, 1968b).

In this note we consider robust MLBESs for the slope parameter in and investigate their
finite-sample and asymptotic properties in a parametric setting. These estimators are based
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on measures of location, such as the sample median and trimmed mean. Although our results
are more general, we focus on the case where the explanatory variable, which is assumed to be
stochastic, follows a symmetric stable distribution and the error is either symmetric stable, with
the same index of stability as the explanatory variable, or a normal mixture. We also consider
a conditionally heteroskedastic specification. The MLBESs are similar to the estimator of Preve
and Medeiros (2011) in the sense that they are order statistics of successive ratios between the
response and explanatory variable in a simple linear regression, and that their exact finite-sample
distributions can be obtained for a number of interesting cases.

Stable distributions are a broad class of probability distributions that allow for asymmetry
and heavy-tails. A basic property of stable distributions is that sums of independent stable
random variables, with common index of stability, follow a stable distribution. Moreover, by the
generalized central limit theorem (GCLT), stable distributions are the only possible nondegen-
erate limiting distributions for properly normalized sums of independent, identically distributed
(i.i.d.) random variables. Regressions with symmetric stable errors have been considered by
Blattberg and Sargent (1971), Kadiyala (1972), Smith (1973) and more recently by Nolan and
Ojeda-Revah (2013) and Hallin, Swan, Verdebout and Veredas (2013). A stable, potentially
non-normal, error distribution can be motivated in a number of ways. For example, in econom-
ics, the error u; may be thought of as the sum of a large number of i.i.d. stable random variables
(say, decisions of investors). If the stable assumption is relaxed, in view of the GCLT, the
distribution of u; will be approximately stable. There is a large amount of evidence suggesting
that many economic variables are best described by stable distributions with infinite variances.
Classical examples include common stock price changes and changes in other speculative prices,
cf. Mandelbrot (1963) and Fama (1965)E|

For an example of a MLBE, consider the incomplete pairwise-slope estimator for 8 based on
a sample of size n

BPS:med{yQ_ZUl’y4_y37.”,?/2k_92k—1} (3)
T2 —T1 T4 — T3 Tk — T2k—1

=p +med{21,z2a e ,zk},

where
U2 — U1
zp =
T2i — X251
and med{z1, 2z2,..., 2} is the sample median of zj, 29, .. .,zkﬂ If the z; are i.i.d. continuous

random variables, standard results for order statistics show that the ezact distribution of Spg—f3
when k is odd can be expressed in terms of the incomplete beta function

G(z:k) = FIT(2) Z ( N ) [1-F.(2)]°

s=0 r
_ T(k+1) (BB "
= D201 1) /0 (1 —t)"dt, (4)

lSee also the extensive bibliography on stable distributions compiled by J. P. Nolan, downloadable at
http://academic2.american.edu/~jpnolan.

2The estimator Bps is incomplete in the sense that it uses k = |[n/2| differences, where |n/2| represents the
integer part of n/2, instead of n(n —1)/2 (cf. Sen, 1968b).
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where I'(+) is the gamma function, F,(-) is the cdf of the z; and k = 2r + 1E| See, for example,
David and Nagaraja (2003, p. 10). The incomplete beta function has been tabled extensively and
can easily be evaluated using standard mathematical software packages such as MATHEMATICA
and MATLAB. Another example of a MLBE that we will consider is

BUF—med{ My Y2 — ,Uy ’yn Ny}7 (5)
— P To— P Tp — Mg

where 1, and 1, are location parameters of the y; and x;, respectively. We shall sometimes refer

to this estimator as unfeasible as it requires both j, and p, to be known, which for most cases

will not be realistic (cf. the b(« ) estimators of Blattberg and Sargent, 1971)

Now consider any estimator ﬁ for B that can be decomposed into B B+med{z1, 22, ..., 2k},
where the z; are i.i.d. continuous random variables with zero median and k is odd. Then, in
view of , it is readily shown that the median of B [ also is zero. Hence, B is a median-
unbiased estimator for 5. If, in addition, the density of the zi 18 symmetric about zero, then
so is that of B ﬂ This tells us that the distribution of B is centered about the unknown
parameter 3. Furthermore, if the median of z; is unique (in general, the median may be an
interval instead of a single number), then the sample median is a consistent estimator for the
population median (e.g. Jiang, 2010, p. 5) and ﬁ converges in probability to S as k tends to
infinity. Of course, as an alternative to the sample median, one could instead use a symmetrically
trimmed mean in equations and , cf. Section |l Such an estimator could potentially have
a higher asymptotic relative efficiency (ARE), see Oosterhoff (1994). The main focus of this
note is to establish different conditions under which and are consistent, median-unbiased
estimators with exact distributions that can be expressed in terms of , and exact densities
that are symmetric about 5.

The remainder of this note is organized as follows. In Section [2| we establish the consistency
and exact finite-sample distributions of the MLBESs given by equations (3) and (j5)) in a symmetric
stable regression. In doing so, we give conditions under which the median of the ratio of two
independent symmetric stable random variables is unique and zero. In Section [3| we discuss how
our results can be extended to include other types of regressions, with potentially contaminated
errors. In Section [ we illustrate how these results can be further extended to include certain
types of conditionally heteroskedastic regressions. Section [5| reports the simulation results of
a Monte Carlo study comparing the finite-sample performance of the MLBEs to each other,
and to the LSE. In this study, we also consider feasible versions of . Section |§| concludes.
Mathematical proofs are collected in the Appendix. An extended Appendix available on request
from the authors contains some results mentioned in the text but omitted from the note to save
space.

2. A SYMMETRIC STABLE REGRESSION

We shall initially assume that both the explanatory variable and error in are symmetric
stable random variables with common index of stability. This ensures that also the response
variable is symmetric stable. More specifically, for this specification both the unconditional and
the (on z;) conditional distribution of y; follow a symmetric stable distribution, such as the

3The corresponding expression when k is even is
G = 28 [ Er - R0 — - Rz - 0] )0

where f.(-) is the pdf of the z; and k = 2r (Desu and Rodine, 1969).
4See Proposition 1 in the extended Appendix.
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FIGURE 1. Densities of four S(a, 0,1, d) distributed random variables, with com-
mon location parameter d = 2. Tails become progressively heavier as a decreases.

normal or Cauchy distributions. As we shall see, although the conditional mean of y; may not
exist, the conditional median of y; always exists for this specification.

The distribution of a stable random variable is described by four parameters, here denoted
by a,b,c and d. The parameter a, the indexr of stability, is confined to the interval (0,2].
The skewness parameter b is confined to [—1,1]. The scale parameter ¢ > 0, and the location
parameter d can take on any real value. There exists a number of different parametrizations for
symmetric stable distributions. Here we will use the S(a,b, ¢,d) parametrization in Definition
1.7 of Nolan (2013).

For the remainder of this section, we will focus our attention on the class of symmetric stable
random variables. This class may be defined by the characteristic function,

(,O(t) _ E(eitv) _ efc“|t|a+idt7 (6)

where ¢ is a real number. A random variable v is S(a,0, ¢, d) distributed if its characteristic
function is given by @ While there is no general closed form expression for the density of
a symmetric stable random variable, a great deal is known about their theoretical properties.
Lemma |l|in the Appendix (given here without a proof) lists a selected few of these. The reader
is referred to Nolan (2013), Nolan (2003) and Zolotarev (1986) for details.

There are only two known cases for which closed form expressions for the density of a
S(a,0,c,d) distributed random variable exists. These are the Gaussian (¢ = 2) and Cauchy
(a = 1) densities, where the latter is given by

1 c

- —00 < < 00
2+ (v —d)? oSS

In general, all we have is integral representations of the density. Figure [I] shows the densities
of four symmetric stable random variables with different indexes of stabilityﬂ

5Figure was generated using the MATLAB function stblpdf of M. Veillette, downloadable at
http://math.bu.edu/people/mveillet/research.html.
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To establish the median-unbiasedness, consistency and finite-sample distributions of our
MLBESs for the slope parameter in a symmetric stable regression, we make the following as-
sumption.

Assumption 1. Let y; (i =1,2,...,n) be given by , with median p,,. Suppose that
(1) the x; are independent S(a,0, ¢y, i),
(73) the u; are independent S(a,0, ¢y, 0),
(t4i) x; and uj are independent for each i and j,
(tv) the sample size is odd, n = 2k + 1.

Here a < 2 is a typical setting in which the, on the explanatory variable, conditional mean and
variance of the LSE for S may not existﬁ For example, if a = 1 the conditional distribution of
(2) is Cauchy. With this assumption in place, we can prove the following proposition.

Proposition 1. Let G(-) be given by . Under Assumption .'

(1) Bur & B as n — oo and the exact distribution of (@ is given by P(BUF —B <2 =
G(z;n), with

(ca/cu)z poo
R = [ [ s

where f() is the density of a S(a,0,1,0) distributed random variable. For each k, the
density of Bur — B is symmetric about zero.

(13) If k = 2r 4+ 1 is odd, Bps B B asn — oo and the ezact distribution of (@ s given by
P(Bps — B < z) = G(z; k), with F.(z) as in (i). For each r, the density of Bps — 3 is
symmetric about zero.

Although there is no closed form expression for F,(z) in Proposition 1| in general, like the
normal distribution, the cdf can be efficiently and accurately evaluated using numerical integra-
tion (Nolan, 1997). The values of a,c, and ¢, are not needed to estimate the slope parameter
B, but would be to construct confidence intervals. In practice, these nuisance parameters can
be estimated using the explanatory variable and the residuals é; = y; — Bwi, where ¢; = a + u;,
and consistent estimators for the index of stability and scale parameters of a stable distribution.
See Fama and Roll (1971), McCulloch (1986) and more recently Garcia, Renault and Veredas
(2011) for examples of consistent estimators for stable distributions.

We end this section with two examples of F,(z) in Proposition Table [1| reports results
for different symmetric stable ratio distributionsh We consider Cauchy (a = 1) and Gaussian
(a = 2) distributions for the error and explanatory variable. For the latter specification, F,(z
is the cdf of a Cauchy distribution. Here the limiting distribution of Bur (and é ps) is normal
The asymptotic variance of the ordinary least squares (and maximum likelihood) estimator for
B is 02 /02 whereas that of fyp is (7/2)%02/02. Hence, the ARE of this MLBE with respect
to the, asymptotically efficient, LSE is (2/m)? ~ 0.405 for the Gaussian specification. For the
Cauchy specification, F,(z) is an integral which, for computational purposes, can be expressed
in terms of the polylogarithm (dilogarithm) function.

3. A CONTAMINATED NORMAL REGRESSION

So far we have restricted our analysis to symmetric stable random variables. In this section
we outline how our results can be extended to include other types of regressions, with potentially

6See Proposition 2 in the extended Appendix.
See Proposition 3 in the extended Appendix.
8¢f. Proposition [2| with p = 0.
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TABLE 1. Symmetric stable ratio distributions (a = 1, 2).

Distribution Distribution Ratio Distribution Ratio Distribution

s T zi = ui [ (T — pa) zi = (u2i — u2i—1) /(20 — T2i-1)
2 2

S(1,0, cu,0) S(1,0, ca, i) Fo(z) = 2 [eo/ca? WO gy p(z) = L, [leo/ow= In() g

Cauchy Cauchy

8(2,0,0u/v2,0) 8(2,0,00/V2,pz) F.(2) = & + X arctan (Z—Zz) F.(z) = 3 + + arctan (g—:z)
Gaussian Gaussian

contaminated errors. As an important special case, we derive the exact distributions of and
in a contaminated normal regression.
The regression we consider is

U; = (1 - bi)vi + bi\ﬁvi
where x; is normally distributed, b; is Bernoulli distributed with success parameter p, v; is

normally distributed with mean zero and variance o2, v > 1, and z;,b; and v; are mutually
independent. For this specification,

E(u;) =0, E(uf)=[1+ (v~ 1)ploy, (8)

and the density of u; is symmetric about zero. The contamination parameters p and 7 are
potentially unknown. Here a ‘small’ value of p and a ‘large’ value of 7y is a typical setting in which
the finite-sample performance of the LSE for 8 may be poor. For p = 0 there is no contamination
and is a special case of , with x; ~ S(2,0,0./v2, piz) and u; ~ S(2,0,0,/v/2,0).

To establish the median-unbiasedness, consistency, finite-sample and limiting distributions of
our MLBEs for the slope parameter in a contaminated normal regression, we make the following
assumption.

Assumption 2. Lety; (i =1,2,...,n) be given by @, with py, = E(y;). Suppose that

(i) the x; are independent N (i, 02),

(ii) the b; are independent Bernoulli distributed, with success parameter p,
(iii) the v; are independent N'(0,02) and v > 1,

(iv) x4, bj and vy are independent for each i, j and l,

(v) the sample size is odd, n = 2k + 1.

With this assumption in place, we can prove the following proposition.
Proposition 2. Let G(-) be given by . Under Assumption @
(1) Bur & B as n — oo and the exact distribution of (@) s given by P(BUF —B <2 =
G(z;n), with

F.(2) = (1 = p)Fr(2) + pFr(2/\7),  Fr(z) = % + %amtan <?Z)

For each k, the density of BUF — B is symmetric about zero. The limiting distribution of
Bur is normal,

VilBur — B) 5 N (0, 42001 7Y), £.(0) = [1 " <1 _ﬁ*ﬁ> p]

Oz

To,
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(i) If k = 2r + 1 is odd, Bpg EN B as n — oo and the exact distribution of @) s given by
P(Bps — B < z) = G(z; k), with

Fy(2) = (1= p)°Fo(2) + 2p(1 = p) Fr(v/2/ (7 + 1)2) + P Er(2/ V),

and F.(z) as in (i). For each r, the density of Bps — B is symmetric about zero. The
limiting distribution of Bpg is normal,

2
5 d 2/0)\]—1 2 2 p Ox
- 08) = N(0,4f2(0 0)=1[(1—- 2p(1 — —+ — .
Vilfes = 8) % NO U, £0) = [0 =pP + 20—y g+ L) 2
By the proof of Proposition [2| it is clear that similar results can be obtained for higher order
mixtures and for a wide variety of cases where x; and/or v; are non-normally distributed, with
finite first and second moments, and the density of v; is symmetric about zero.

4. A HETEROSKEDASTIC REGRESSION

In this section we illustrate how our results can be extended to include certain types of
conditionally heteroskedastic regressions. The regression we consider is
{yi=a+ﬁf€i+uz‘ ()
with e.g. AM(x) = (z — pz)?, M) = |x — pz| or A(z) = 1. We shall assume that the x; are i.i.d.
and the distribution of the i.i.d. v; is symmetric about zero. We shall also assume that x; and
v; are independent for each ¢ and j. Under the assumptions of Lemma [2| this implies that the
distribution of the i.i.d. u; also is symmetric about zeroﬂ For ease of exposition, we consider
Bur and note that similar results can be obtained for Spg. The case when A(z) = |& — pg| is
special. Here i, = o + B, assuming all expectations exist, and the exact distribution of Bur
when n is odd is given by P(Byr — 8 < z) = G(z;n) with F.(z) = F,(z), where F,(-) is the cdf
of the UZ‘ Hence, the distribution of BU r does not depend on the distribution of the z;. The
consistency and asymptotic normality of ﬁU F can be established under the usual assumptions
for FZ()H For another example, suppose A(z) = (z — pz)? and the x; and v; are independent
N (pie,02) and N(0,02), respectively. In this case Syp consistently estimates 3 and F(z) can
be expressed as an integral of a modified Bessel function of the second kind, multiplied by a
normalizing constant. More specifically, the exact distribution of BU F when n is odd is given by
P(Bur — B < z) = G(z;n) with F,(2) = (n0,0,)" J7 . Ko (|t|(0z0,)7") dt, where Ko(:) is the
modified Bessel function of the second kind of order zero[™ The above results are summarized
in Table 21

5. SIMULATION STUDY

In this section we report simulation results concerning the estimation of the slope parameter
B = 3 in the regression y; = 7+ 3z; + u; (i = 1,2,...,n). We consider sample sizes of
n = 27,55,111, 223 and 447 to ensure that both n and |n/2| are odd numbers, cf. assumptions
and [2, where |-| is the integer part function. These sample sizes are used to illustrate the relation
between k£ and r in propositions 1-2. We emphasize that the consistency of the estimators we
consider does not rely on the values of n or k, however, our exact distributional results in sections

9Hence, if E(u;) exists, E(u;) = 0.

10gee Proposition 5 in the extended Appendix.
Hgee the proof of Proposition

12g6¢ Proposition 6 in the extended Appendix.
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TABLE 2. Symmetric ratio distributions.

Heteroskedasticity Distribution Distribution Ratio Distribution

Ax) T Vi zi = Maxi)vi /(s — pz)

| — pal Absolutely continuous, Absolutely continuous, and F,(z) = Fy(z)
with finite mean p, symmetric about zero

(x — pz)? N (g, 02) N(0,02) F.(2) = Migv 7. Ko (Jl’iv) dt
Gaussian Gaussian

2 through 4 dom Table |3| shows simulation results for various specifications of the explanatory
variable and error. We report the empirical bias and mean squared error (MSE) of the estimators
BUF, BFE, Bpg and BLS- The estimator /S’FE, described below, is a feasible version of BUF- Each
table entry is based on 1000000 simulated samples. Symmetric stable pseudo-random numbers
were generated using Theorem 1.19 (a) in Nolan (2013).

Symmetric Stable Regression. Panels A-D of Table [3] report simulation results when the
x; and u; are i.i.d. §(a,0,1,1) and S(a,0,1,0), respectively, for a = 1,1.25,1.5 and 1.75. To
estimate the location parameters p, and p, when constructing a feasible version of BU r for the
symmetric stable regression in Section [2] we use the symmetrically trimmed mean

[np2]

fo = FmlTw] 2. S
i=|np1 |+1

with py = 0.25 and ps = 1 — p1. Here z(;) < x9) < -+ < x(y) is the ordered sample of size n.
The proportions p; and 1 — py represent the proportion of the sample trimmed at either ends.
According to Fama and Roll (1968), the symmetrically trimmed mean performs very well over
the entire range 1 < a < 2 for this choice of p; and ps. In all four experiments, the bias and
MSE of BUF and B rE is reasonable. B ps also performs reasonably well, but has a much larger
MSE. As expected, the performance of B 1.5 is unacceptable for values of a close to 1.

Contaminated Normal Regression. Panels E-F of Table |3| report simulation results when
the errors u; = (1 — b;)v; + b;\/yv; are contaminated normal. In these two experiments the x;
and v; are i.i.d. N(1,1) and N(0,1), respectively, and the b; are i.i.d. Bernoulli with success
parameter p = 0.05 and 0.1. The contamination parameter v = 36, implying that the error
variance, given by , is 2.75 for p = 0.05 and 4.5 for p = 0.1. To estimate p, and p, when

constructing a feasible version of By for the contaminated normal regression in Section |3| we
use the sample mean, fi, = n~! Yooy xi. In both experiments, the results indicate that the

MSE of BUF and ﬁFE is considerably smaller than that of BLS- However, the MSE of Bps is
considerably higher than that of the LSE.

Heteroskedastic Regression. Finally, panels G-H of Table [3| report simulation results when
the errors u; = A(z;)v; are conditionally heteroskedastic. We consider the last example of Section

where \(z) = (z — p12)?, when the z; and v; are i.i.d. N(1,02) and N(0, 1), respectively, for

2:

Oy

1 and 2. To estimate u, and p, when constructing a feasible version of Syr we use the
13The former statement is also supported by a simulation study reported in Table 1 of the extended Appendix,
which shows that the decreasing trend of the MSE for Sps and Byr observed in Table [3|is maintained when n
and k are even numbers.
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sample mean. In general, the bias of the MLBESs is similar in magnitude to that of the LSE,
however, the MLBEs appear to have a much smaller MSE.

6. CONCLUSIONS AND EXTENSIONS

In this note we have established the consistency and exact finite-sample distributions of two
median-unbiased MLBEs for the slope parameter in a simple linear regression model when (1) the
explanatory variable and error are symmetric stable random variables, and (2) the explanatory
variable is normal and the error is contaminated normal. These exact distributions may be
used for statistical inference. In addition, we have illustrated how our results can be extended
to include certain heteroskedastic regressions. Our simulation study indicated that the MLBESs
can have superior finite-sample properties compared to the LSE.

Because of their robustness and ease of computation, along the lines of Hinich and Talwar
(1975), B ps or B rE can also be used as a starting point for a more sophisticated method. For
example, in the context of numerical maximum likelihood estimation in a symmetric stable linear
regression, to search for a global optimum, B ps (or ,5’ rE) could be used as a easily computable
starting point for the numerical methodE A well chosen starting point may lead to a drastic
decrease in computational time Kadiyala and Murthy (1977), for example, use BLs as a
starting point. In light of our simulation results, this is a poor choice.

The exact distributional results in this note are based on the assumption that the sample size
n and k = |[n/2]| are odd numbers, however, the consistency of the MLBEs does not rely on
whether n and k are even or odd. Analogous exact distributional results for the case when n
and k are even numbers can be obtained using Equation (2.1) in Desu and Rodine (1969).

We have aimed for clarity at the expense of generality. For example, results analogous to those
of Proposition [I] can be obtained for MLBEs of the slope parameters in a general, symmetric
stable, linear regression with two or more statistically independent explanatory variablesm For
another example, it appears that our results can be extended to allow for serially correlated errors
using existing results for m-dependent samples (e.g. Sen, 1968a)ﬂ Finally, results analogous
to those of propositions [1] and [2| can be obtained for a simple unit root process, y: = y+—1 + us,
with symmetric stable or contaminated normal errors. This is work in progress.
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APPENDIX

The following lemmas are applied in the proof of Propositions 1-2.
Lemma 1 (Properties of Symmetric Stable Variates). Ifv ~ S(a,0, ¢y, dy) andw ~ S(a, 0, ¢y, dy)
are independent, then

(1) v is absolutely continuous, with a continuous and unimodal density,

(73) the density of v is symmetric about d,, and the support of v is (—o0,0),

(7i1) if 1 < a <2, the mean of v is finite and equal to d,,

(v) if 0 < a < 2, the variance of v does not exist,
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(v) for any a # 0 and real B, o+ pv ~ S(a,0,|5|cy, @ + Bdy),

(vi) v+ w ~ 8(a,0,c,dy + dy), where ¢ = & + c,.
Lemma 2 (Symmetric Product and Ratio Distributions). Suppose v and w are two independent
absolutely continuous random variables, and v is symmetrically distributed about zero. Then,
the product p = vw and ratio r = v/w are absolutely continuous and symmetrically distributed
about zero, with pdf’s

oo 1 oo
) = [ i ad 0= [ 000 (10)
where f,(+) and f,(-) are the pdf’s of v and w, respectively.

Proof. By theorems 3.1 and 7.1 in Curtiss (1941), the cdf’s of p and r are absolutely continuous.
Moreover, the pdf’s of p and r exist almost everywhere and are given by . Since v is

symmetrically distributed about zero, f,(s) = f,(—s) for all real s. The result now follows by
noting that f,(p) = fp(—p) and f,.(r) = fr(—r) for all real p and r. O

Lemma 3 (Uniqueness of the Median of a Ratio of Symmetric Stable Variates). Suppose that
v ~ 8(a,0,1,0) and w ~ S(a,0,1,0) are independent, then the median of r = v/w is unique
and zero.

Proof. Let € > 0 be arbitrary. By Lemma 2] the density of 7 is symmetric about zero. Hence,
to show that the median is not an interval, it is enough to show that

/06 fr(t)dt = F,(€) — F(0) = F.(e) — § > 0.

= Larctan(e) > 0. For 0 < a < 2

For a = 2 the ratio is standard Cauchy, hence, F,.(¢) — %

Theorem 1 in Shcolnick (1985) gives

1

sin (%az) “

sin (52(1 — z))

where z ~ §(1,0,1,0) and y are independent, 2 denotes equality in distribution, and z is

uniformly distributed on (0,1). Hence,
PO<r<e)=P0<zy<e)>P0<z<el<y<l)=P0<z<e)PO<y<l).

As z is standard Cauchy, P(0 < 2 < €) = L arctan(e). Next we show that P(0 <y < 1) = 1/2.
Since P(0 < z < 1) = 1, we only consider solutions 0 < z < 1 to 0 < y(z) < 1. For this subset,
0 <y < 1if and only if

sin (Z2(1 — z)) — sin (5z) = 2cos (%) sin (22 — %*z) > 0.
It follows that P(0 <y < 1) = P(0 < z < 1/2) = 1/2. Thus,
F.(e) — 3 = P(0 <r <¢) > 5 arctan(e) > 0.

d [
r=xy, Y=

Lemma 4 (Symmetric Ratio Mixture Distribution). Suppose that
v v
z=(1-b)—+b/y—,
(1 =)= + by
where b is Bernoulli distributed with success parameter p, v and w are independent absolutely

continuous random wariables, v is symmetrically distributed about zero and v > 0. Then the
ratio mizture z is absolutely continuous and symmetrically distributed about zero, with pdf

f2(2) = (1 =p)fr(2) + p(1/ V) e (2/ V),
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where f,(-) is the ratio density of Lemma [

Proof.

Zfzb Z k Z( )1 r kfz|b k( )

=( p)f ()+p(1/f)fr(2/\f)

where we have used Lemma [2| and that the pdf of h = /v is (1//7)fs(h//7), which is
symmetric about zero. Since f,(r) = f.(—r) for all real r, the result now follows by noting that

f2(2) = f.(—2) for all real z. ]

Proof of Proposition First we will show that

Y2i — Y2i—1 d Yi — Uy d /¢
2 = - — = —= — B = (== 7"*7 ].1
Y @y — w9 Ti — P (Cm) ’ ()

where 7; is the ratio of two independent S(a,0,1,0) random variables. Since p, = a + Bz, we
have

*Myzﬁ(xi_uz)+ui:ﬁ+ U;
Ty — Hg Ty — g Ty — Uy
In view of Lemma
U; d Vi d
4 ey,

— Mg ws
where v; and w; are independent S(a, 0, ¢,,0) and S(a, 0, ¢, 0) variates, respectively. Similarly,
Y2i — Y2i-1 4 U2j — U2i—1

- 9
T2 — T2i—-1 X — X241
where
Ui — U1 d Vi d
= = (Cu)ria
T2 — T2i—1 w;

and v; and w; here are independent S(a,0,2Y%c,,0) and S(a, 0,2'/%¢c,,0) variates, respectively.
This shows . By Lemma [2| the pdf of r; is symmetric about zero and the cdf of r; is given

by
= [ [ s,

where f(-) is the pdf of a S(a,0,1,0) variate. Hence, the density of z; is symmetric about zero
and the distribution of z; is given by

(ca/cu)z 00
Fu(2) = Fo(caz/ey) = /_ /_ (417 (st) f()dtds.

It follows that P(Bpg — B < z) = P(2¢41) < 2), where k = 2r + 1 and 2(,41) is the sample
median of the i.i.d. sequence {z1, 29, ..., 2 }. Standard results for order statistics gives us the
exact distribution of z(,, ) in terms of F,(z). The consistency of Bpg follows from Lemma
This proves (ii). The proof of (i) is analogous.
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Proof of Proposition 2, Since p, = a + S, we have

yimpy _PEimpe) g
Ly — fg Ly — fg

where

zi = (1= bi)ri + bi/yri,
and r; = v;/(x; — pg). It follows that P(BUF — B < z) = P(2(41) < 2), where n = 2k + 1 and
Z(k+1) is the sample median of the i.i.d. sequence {#z1,22,...,2n}. By Lemma {4} the pdf of z; is
symmetric about zero, and the cdf of z; is given by

Fo) = [ £t = (1= p)F(a) + PF /),

where F.(-), the cdf of r;, can be obtained using Lemma [2| For the particular case when both
x; and v; are assumed to be normal, r; is §(1,0, 0, /04,0) distributed, with
F.(z)= 1 + 1 arctan <%z)
2w Oy
Hence, since F) is strictly increasing, the unique solution to F,(§) = 1/2 is £ = 0. Standard
results for order statistics gives us the exact distribution of 2(;1) in terms of F, (z). This proves
the first part of (). For the second part, note that the continuous pdf f,(z) of z; is given by

o8 ﬂav
1— Ov AYARAdCh
F;(Z) — ( p) Oy b oz

+7 )
TGP T ()

1I- \ﬁ Oz

0)=|1 .

ror= [ (S37) 0] 7

Since also the derivative of f,(z) is continuous, standard results (Cramér, 1946, p. 369) gives us
the limiting distribution in terms of f,(0),

A d —
VaBur = B) = Vnzgir) = N0, [4F2(0)] 7).
This proves the second part of (7). The proof of (i7) is analogousﬁ O

with

185e¢ Proposition 4 in the extended Appendix.
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ABSTRACT. This extended Appendix provides a technical supplement with supporting results
and proofs to complement the original note.

EXTENDED APPENDIX
Proposition 1. Suppose that the estz’matorﬁ for B can be decomposed mtoﬁ = fB+med{z1, 22,..., 2k},
where the z; are i.i.d. continuous random variables with zero median. Then,
(i) the median of B — B is zero (i.e. B is median-unbiased) and

(ii) if, in addition, the density of z; is symmetric about zero, then so is the density ofB —B.

Proof. Let C =T'(k+1)/T2(r + 1) . Then, in view of (4), since F,(0) = 1/2
1/2 _ 1/2
G(0; k) = C/ (1 — )t S —C’/ - ““ds—c/ "(1— 5)"ds.
1/2

Seeing that the sum of the first and last integral is one, it follows that G(0;k) = 1/2. This
proves (i). For the proof of (ii), note that F,(z) =1 — F,(—z) as the density of z; is symmetric
about zero. Hence,

Fz(z 1-F,(—=2) _ F,(—
Gz k) C/ (1 — t)dt = c/ (1 — ) de S _c/ _ s)sTds
1

Fy(—
=C s"(1—s)"ds = l—C’/ sr(l—s)rds: 1—G(—z;k).
Fz(_z) 0

This proves (). O

Proposition 2. Under Assumption 1: (i) the conditional distribution of BLS 18 symmetric stable
with index of stability a, (ii) the conditional mean of frs does not exist if 0 < a < 1, and (iii)
the conditional variance of Brs does not exist if 0 < a < 2.

Proof. By (2), the LSE for § can be decomposed into

2 iz (i — 7)(ui — 1)

s =P oy

=B+ (c1 —ur + (c2 — ug + - + (e — C)un,

where

T;i — T
> iy (i — T)?2

t Uppsala University. ¥ City University of Hong Kong. Address correspondence to Xijia Liu, Department of
Statistics, Uppsala University, Box 513, 751 20 Uppsala, Sweden; e-mail: xijia.liu@statistics.uu.se.
1

C; =



2 XIJIA LIU AND DANIEL PREVE

Hence, conditional on the x;, BLS — B is a linear combination of independent, identically
S(a,0, ¢, 0) distributed random variables which, in view of Lemma 1, is symmetric stable with
index of stability a. This proves (i). Standard results for stable distributions (Nolan, 2013, p.
15) show (i7) and (éi7). O

Proposition 3. Under Assumption 1, F,(z) in Proposition 1 is given by

1 [lea/ew)z In(¢2 11 .
F.(2) = 2/ t;l(—idt’ ifa=1, and F,(z) = 3 + ;arctan (Z—z), if a=2.

—0o0

Proof. Since S(2,0,0/v/2,u) = N(u,0?), we have

(7% d (Oy
=\— 7,
Ti — Mz Oz

where r; is the ratio of two independent A/(0,1) random variables. Hence, r; is C(0,1) where
C(0,1) denotes the standard Cauchy distribution. Similarly,

Ui —U2i—1 d Vi d (%)

— = — = T4,

T2; — T2i—1 W Oz

where v; and w; are independent A'(0,202) and N(0,202) variates, respectively. As the cdf of a
standard Cauchy variate is % + % arctan(z), the results on the second row in Table 1 now follow.
To show the results on the first row, note that S(1,0, ¢, u) = C(p, ¢). In view of Lemma 1,
Uj d Vi d <Cu)
= —=\—)"r,
Ti — Mz Wy Cy
where v; and w; are independent C(0, ¢,) and C(0, ¢,) variates, respectively, and r; is the ratio
of two independent C(0,1) random variables. Similarly,
Ugi — U2i—1 d Vi d (Cu>
= —=\—)r
T — T2i—1 Wi

Cy

where v; and w; here are independent C(0, 2¢,) and C(0, 2¢,,) variates, respectively. By Theorem
3.1 in (Curtiss, 1941), the density of the ratio of two independent standard Cauchy variates
exists almost everywhere and is given by

© /11 11 1 [ 2t
f’"(r):/_mm <7r1+(rt)2> (771+t2>dt:772 . areeare)™

ds.

SRR/

St fy (L+r2s)(1+s)
It is readily seen that f,(r) is equal to 1/72 for » = £1, and is divergent for r» = 0. For r # +1
partial fraction decomposition yields,

R et ) () ),
" 2 Jo (14+72s)(1+s) ™ Jo 1+7r2s  1+s

.1 1 1+r%t 1 In(r?)
=lm < |—5—|In = — .
t=oo 2 \ 12 — 1 1+t m2r2—1

A closer analysis shows that f.(r) is continuous at » = 1. Hence, the ratio density f, is
continuous on (—o0,0) and (0, 00), with a pole at zero. The results on the first row in Table 1
now follow. n
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Proposition 4. Let y; = o+ Ba; +u; (i = 1,2,...,n), where u; = (1 — b;)v; + biy/yv;, with
py = E(y;). Suppose that

(i) the x; are independent N (py,02),
(ii) the b; are independent Bernoulli distributed, with success parameter p,
(iii) the v; are independent N'(0,02) and v > 1,
(iv) x4, bj and vy are independent for each i, j and l,
(v) the sample size is odd, n = 2k + 1.

If E=2r+1 is odd, Bpg 2 B as n — oo and the exact distribution of (3) is given by
. (k4 1) F.(z)
P —B<Lz2)= ——F t"(1—1t)"dt
(51)5 ﬁ = Z) F2(7"—|— 1)/0 ( ) )
with
Fy(2) = (1= p)*F(2) + 2p(1 = p)F:(V2/ (v + 1)2) + p*Fy(2//7)
and

1 1
F.(z)= 3 + = arctan <?z>.
v

For each r, the density of Bps — B is symmetric about zero. The limiting distribution of Bpg i
normal,

2
VilBes = 8) 5 NO. 1O, 2(0)= [(1 SR RN p} o

Proof. Since iy = a + Bz, we have

Yoi — Y2i—1 BT — T2i—1) + ugi — Ui—1
= =B+,
Toi — Ti—1 To; — Ti—1

where
Cugg —ugi—r (1= boi)vai + bai/Av2i — (1 — bai—1)v2i—1 — b2i—14/v2i—1

Z = =
T2 — T2i—1 T2 — T2i—1

It follows that P(Bpg — B < z) = P(2¢41) < 2), where k = 2r + 1 and 2(,41) is the sample
median of the i.i.d. sequence {z1, 22,...,2t}. The cdf of z; is given by

F.(z)=P(z<2) = ZP boi = L,bai1 = m)P(z; < zlbyi = 1,byi1 = m),

where [, m = 0,1 and

P(ZZ' S Z’bgi = 0, bgi_l = O) =P

Hence,
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where

1 1
F.(z) = 3 + = arctan <?2>.
v

Since F, is strictly increasing, the unique solution to F,(§) = 1/2 is £ = 0. Standard results for
order statistics gives us the exact distribution of z(,,1) in terms of F .(z). This proves the first
part of (i7). For the second part, note that the continuous pdf f.(z) of z; is given by

Fl(z) = (1= p)*fr(2) + 2p(1 = p)v/2/ (v + 1) £ (\/2/ (v + 1)2) + (0% /) (2] V),

where

1 oy /0y

fr(z) = 7 (0p/02)% + 22
It follows that f.(z) = f.(—z) for all real z and, hence, that the density of z; is symmetric about
zero. Since also the derivative of f,(z) is continuous, standard results (Cramér, 1946, p. 369)
gives us the limiting distribution in terms of f.(0),

Vi(Bps — B) = vz 2 N0, [4£2(0)] 1),

£.00) = [(1 = p2 + 201 - p) 52-+p2]“x.
N y+1 ] moy

This proves the second part of (ii). O

where

Proposition 5. Let y; = a+ fx; +u; (i =1,2,...,n), where u; = |x; — pg|v;. Suppose that
(1) the x; are independent absolutely continuous random variables with finite mean ji,,
(ii) the v; are independent absolutely continuous random variables with cdf F,(v) satisfying
Fy(v) =1— F,(—v),
(#i1) the u; have finite mean,
(iv) z; and v are independent for each i and j,
(v) the sample size is odd, n = 2k + 1.
Then the exact distribution of (5) is given by
) Fy(2)
P(fur —B<2) = m%} th(1 = t)kat.
For each k, the density of BUF — B is symmetric about zero. The consistency and asymptotic

normality of Bur can be established under the usual assumptions for Fy(-).

Proof. Since x; has finite mean iz, 1y = o + B, + E(u;). Moreover, since the distribution of
v; is symmetric about zero, by Lemma 2, so is the distribution of w; = |x; — u;|v;. Hence, as
E(u;) exists, E(u;) =0 and py = a + Bp,. Thus,

Yyi—ty _ B — pa) gl M g
Ti — Mg Ti — Mg Ti — Mg
where,
Uj |z; — pha _
z = = Vi = Tiv;,
Ti — My Ti — Hx
and
|xi _Mx’
T, =
Ti — My

Thus r; is two-point distributed,

., — _1a xi_,ux<0
v 1, xz—uxZO
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If r; = —1, then z; = —v; and the corresponding conditional density is

fz|r:fl(z) = fou(2) = fu(2),
where the last equality follows since the distribution of v; is symmetric about zero. Similarly,
fz\r:l(z) = fv(z)' Hence,
fz(z) :fz,r(za_1)+fzr( ) P(""

)fz|'r*—l( ) + P(T = 1)fz|r:l(z)

= [P(r=—1)+ P(r = 1)|fu(2) = fu(2).
It follows that P(BUF — B < 2) = P(2(441) < 2), where n = 2k + 1 and 241 is the sample
median of the i.i.d. sequence {z1, 29, ...,2,}. Standard results for order statistics gives us the
exact distribution of z(;1) in terms of F,(z) = Fy(2). O

Proposition 6. Let y; = o+ B +u; (i = 1,2,...,n), where u; = (x; — pz)?v;. Suppose that
(i) the z; are independent N (g, 02),

(ii) the v; are independent N(0,02),

(tii) x; and v; are independent for each i and j,

(tv) the sample size is odd, n = 2k + 1.
Then Bup % B as n — oo and the ezact distribution of (5) is given by

A L(n+1) (=6, k
P —B<2) = (1 —t)"dt
(or=8<2) = @i [ #1-1

with F.(z) = (to,0,) 7" [*_ Ko (|t|(0200) 1) dt, where Ko(-) is the modified Bessel function of
the second kind of order zero. For each k, the density of Byr — B is symmetric about zero.

Proof. Since the z; and v; are independent N (u,,02) and N(0,02), respectively, u, = o + B,
and

Yi— by _ B — pa) + U _ 54

Li — Mg Li — Mg LTi — Mg

_/8+217

where
Ug

Tg — Mg
Thus, z; is the product of two independent, zero-mean normal random variables with variances
o2 and o2, respectively. By Theorem 5 in Springer and Thompson (1970), the density f,(-) of
z; can be expressed in terms of a Meijer G—functionﬂ More specifically,

1 20 2°
fo(2) = 27TO'xO'UG <4 2 2’0 O)

where Ggg() is a Meijer G-function which exists for z # 0 (Mathai, 1993, p. 63). Since f.(z) =
f2(—z), the density is symmetric about zero. Moreover, by Equation (4) on p. 216 in Erdélyi

(1953),
? ? ||
e 10,0 ) = 2K (24— | = 2K
(402 2’ ) O( 40202 "\ og0, )

where Ky(-) is the modified Bessel function of the second kind of order zero. Hence

f(z) = ! K0< = >

= (v — p1z)v;

Zi =

TO20y oo

INote that there are typos in the statement of Theorem 5 in Springer and Thompson (1970). See the corresponding
proof for details.
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It follows that P(Byp — 8 < 2) = P(z(k41) < 2), where n = 2k + 1 and 2(341) is the sample
median of the i.i.d. sequence {z1,29,...,2,}. Standard results for order statistics gives us the
exact distribution of z( 1) in terms of F(z) = (wo00) " [Z_ Ko (|t|(020,)7") dt. Finally, since
Ky(+) is continuous, positive and decreasing on (0, 00) (Olver, Lozier, Boisvert and Clark, 2010,
pp. 251 and 254), and since f.(z) = (70,0,) ' Ko (|z|(020,)7!) is symmetric about zero, the
unique solution to F,(§) = 1/2 is £ = 0. The consistency of Bur now follows. O

Proposition 7. Let y; = a + 25:1 Bjxji +wi (i =1,2,...,n), with median p,,. Suppose that

(i) the xj; are independent S(a,0, ¢y, fiz; ),

(73) the u; are independent S(a,0, ¢y, 0),

111) x4 and u; are independent for each i, j and l,

J

(iv) the sample size is odd, n = 2k + 1.
For ease of exposition, consider the extended unfeasible estimator and, for ease of notation,
denote it by

@zmed{ yl_/iy’ y2_ﬂy’.”’ Yn — My }
Tj1 — Mz Tj2 — Hag; Lin — Ha;
Then ﬁj TN Bj asn—o00 (j=1,...,q) and the exact distribution of ﬁj s given by
5 I(n+1) Fz;(2) & &
PB;i—0;,<z)= —=——= t"(1 —t)%dt
(BJ /B] — Z) F2(l€+ 1) /0 ( ) )

with

(cz; /es)z oo
F.(2) = / / £ (st) £ (1) s,

—0o0

where f(-) is the density of a S(a,0,1,0) distributed random variable and ¢ = CZ—!—Zm#Wm et

T *
For each k, the density of ﬁj — Bj is symmetric about zero. If a = 2 the limiting distribution of
Bj is normal,

5 d
V(B = B) = N (0, [m(cj/cay) /2]%).
Proof. In view of Lemma 1, p, = o + Z?ZI Bjtiz;, hence,
yi —py P — pe) + o+ B — pay) 0 + BT — pay) + U
= Bj + Zji.

Let r;; denote the ratio of two independent S(a,0,1,0) random variables. By assumption,

Zm;ﬁj Bm(xmz - M:Bm) + U d Vji d (C]' )T‘
= = ViR

Zji = —
Lji — Ha; Wi

Ca;
where vj; and wj; are independent S(a,0,c;,0) and S(a,0,c;;,0) variates, respectively, and
cd =+ Zm#|ﬂm|%gm. By Lemma 2, the pdf of rj; is symmetric about zero and the cdf of

J
rj; is given by

o= [ [ eoraas

where f(-) is the pdf of a S(a,0,1,0) variate. Hence, the density of zj; is symmetric about zero
and the distribution of zj;; is given by

(o o) oo
F.(2) = Fy(ca,2/c) = / / 181 F(st) £ () dtds.

—00 —00
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It follows that P(5; — B; < z) = P(zj41) < 2), where zj(,4 1 is the sample median of the i.i.d.
sequence {zj1,2j2, ..., 2jn}. Standard results for order statistics gives us the exact distribution
of 2j(441) in terms of F,;(2). The consistency of 3; follows from Lemma 3. This proves the first
part of the proposition. For the second part, note that if a = 2 the numerator and denominator
of zj; are independent Gaussian random variables. Hence, zj; is Cauchy distributed with zero
median, scale parameter c;/c;; (cf. Nolan, 2013, p. 23), and cdf
1 1 Cx.
F, (z) = = + —arctan <ﬁz)

7 2 7 Cj

The continuous pdf f..(z) of zj; is given by

(¢j/ca;)

F! (2) = ,

5 () = e fen 2 7 2
with o
J(0) = L.
v

Since also the derivative of f,;(z) is continuous, standard results (Cramér, 1946, p. 369) gives
us the limiting distribution in terms of f.,(0),

5 d _
Vi(B; = B;) = Vnzjgn) = N0, [4£2(0)] 7).
This proves the second part of the proposition. O
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TABLE 1. Each table entry, based on 1000000 simulated samples, reports the empirical bias/mean squared error of different estimators for the
slope parameter 3 = 3 in the simple linear regression y; = 7 + 3z; + u;. The following estimators are considered: The unfeasible (UF), feasible (FE),
incomplete pairwise slope (PS) and ordinary least squares (LS) estimator. Panels A-D: z; ~ S(a,0,1,1) and u; ~ S(a,0,1,0) (Symmetric Stable
Regression). Panels E-F: z; ~ N(1,1) and u; = (1 — b;)v; + b;/36v;, where b; is Bernoulli with success parameter p and v; ~ N(0,1) (Contaminated
Normal Regression). Panels G-H: x; ~ N'(1,02) and u; = (z; — 1)%v;, where v; ~ N(0,1) (Heteroscedastic Normal Regression). Different sample sizes

(n), indices of stability (a), success parameters (p) and regressor variances (¢2) are considered.

Bur BFE Bps BLs

n Bias MSE Bias MSE Bias MSE Bias MSE
Panel A (a=1)
40 0.000 0.027 -0.007 0.039 0.000 0.106 0.001 3.791 x103
80 0.000 0.009 -0.003 0.011 0.000 0.029 0.100 6.762 x102
160 0.000 0.003 -0.001  0.004 0.000 0.009 0.050 4.850 x103
320 0.000 0.001 -0.001 0.001 0.000 0.003 0.104 9.360 x102
640 0.000 0.001 0.000 0.001 0.000 0.001 -0.003  3.497 x102
Panel B (a = 1.25)
40 0.000 0.038 -0.008 0.046 0.000 0.119 0.005 6.714 x10!
80 0.000 0.015 -0.004 0.016 0.000 0.040 0.016 1.997 x102
160 0.000 0.006 -0.002 0.007 0.000 0.015 0.006 5.482 x10%
320 0.000 0.002 -0.001  0.003 0.000 0.006 0.007 4.407 x10!
640 0.000 0.001 0.000 0.001 0.000 0.003 0.001 3.366
Panel C (a =1.5)
40 0.000 0.048 -0.008 0.053 0.000 0.131 0.001 5.097
80 0.000 0.021 -0.004 0.022 0.000 0.050 0.003 5.816
160 0.000 0.010 -0.002 0.010 0.000 0.022 0.001 1.539
320 0.000 0.004 -0.001 0.004 0.000 0.010 0.001 0.803
640 0.000 0.002 0.000 0.002 0.000 0.004 0.000 0.147
Panel D (a = 1.75)
40 0.000 0.057 -0.007 0.062 0.000 0.144 0.000 0.431
80 0.000 0.027 -0.004 0.028 0.000 0.060 0.001 0.261
160 0.000 0.013 -0.002 0.013 0.000 0.027 0.000 0.082
320 0.000 0.006 -0.001  0.006 0.000 0.012 0.000 0.032
640 0.000 0.003 0.000 0.003 0.000 0.006 0.000 0.010

Bur BFE Bprs BLs
Bias MSE Bias MSE Bias MSE Bias MSE
Panel E (p = 0.05)

0.009 0.079 0.008 0.086 0.001 0.228 0.002 0.114
0.007 0.038 0.006 0.039 0.003 0.097 0.002 0.055
0.005 0.019 0.004 0.019 0.002 0.045 0.002 0.045
0.002 0.009 0.002 0.009 0.001 0.022 0.001 0.013
0.001  0.005 0.001 0.005 0.000 0.011 0.000 0.007
Panel F (p=0.1)

0.011 0.096 0.009 0.114 0.002 0.348 0.003 0.206
0.007 0.046 0.007 0.050 0.003 0.139 0.003 0.099
0.005 0.022 0.005 0.023 0.003 0.063 0.003 0.049
0.002 0.011 0.002 0.011 0.001 0.030 0.001 0.024
0.001 0.005 0.001 0.005 0.001 0.015 0.001 0.012
Panel G (o0 =1)

0.003 0.006 0.004 0.084 0.002 0.078 -0.003 0.327
0.002 0.002 0.003 0.034 0.003 0.033 0.000 0.174
0.001 0.001 0.002 0.014 0.002 0.015 0.002 0.090
0.000 0.000 0.001 0.006 0.001 0.007 0.001 0.046
0.000 0.000 0.000 0.002 0.000 0.003 0.000 0.023
Panel H (64 = /hv

0.005 0.011 0.005 0.168 0.003 0.156 -0.004 0.654
0.003 0.004 0.004 0.068 0.005 0.065 -0.001 0.348
0.002 0.002 0.003 0.028 0.003 0.029 0.003 0.181
0.001 0.001 0.002 0.011 0.002 0.013 0.001 0.092
0.000 0.000 0.001  0.005 0.001 0.006 0.000 0.046
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