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Abstract

Multinomial and ordered Logit models are quantitative techniques used in many disciplines
nowadays. When applying these techniques, practitioners usually select a single model by
information-based criteria or pretesting. In this paper, we consider the alternative strategy of
combining models instead of selecting a single model. Our strategy of weight choice for the
candidate models is based on the minimization of a plug-in estimator of the asymptotic squared
error risk of the model average estimator. Theoretical justifications of this model averaging
strategy are provided, and a Monte Carlo study shows that forecasts produced by the proposed
strategy are often more accurate than those produced by other common model selection and
model averaging strategies, especially when the regressors are only mildly to moderately corre-
lated and the true model contains few zero coefficients. An empirical example based on credit
rating data is used to illustrate the proposed method. To reduce the computational burden we also
consider a model screening step that eliminates some of the very poor models before averaging.

Keywords and phrases: asymptotic squared error risk; local mis-specification; model screening;
Monte Carlo; plug-in estimator

JEL classifications: C51; C52

1 Introduction

In the past two decades there has been a substantial deal of interest on modeling and forecasting
using discrete choice models such as the Logit and Probit regression models. These models are
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now commonplace tools for studying brand choice and consumer satisfaction in marketing research.
They are also used frequently in other fields including biomedicine, economics and sociology. A
long-standing practice in much of regression analysis, whatever the functional form of the underly-
ing model, is that a multitude of models, each involving a different combination of regressors, are
tried until a model with all the favourable statistical measures of performance is found. Variable
searching is considered necessary in practice because there is almost always a long list of variables
to consider. Preliminary testing procedures, by which a regressor variable is either dropped or re-
tained based on the outcome of a hypothesis test, and information criteria-based model selection
strategies, whereby each candidate model is given a certain information score, are routinely applied
for selecting regressor variables in practice. The popular ”general-to-specific” econometric model-
ing methodology (Hendry and Richard, 1982) also involves extensive use of pretesting and model
selection strategies. Typically, after arriving at the final model, the researcher would report standard
errors of the estimates, construct confidence intervals of the unknowns, and conduct hypothesis tests
on the basis of this final model as if it were known all along.

An often raised criticism of model selection is the lack of explicit recognition and understanding
of the effects of the model uncertainty on any inferences made. That is, once a model is chosen it is
used as if there were no randomization concerning the choice, and the results are treated as though
they are unconditional as well. A disturbing effect is that reported variance estimates are smaller
than what they really should be, resulting in over-optimistic confidence intervals of the unknowns.
Furthermore, being discontinuous functions of the data, pretest and post-model selection estimators
are well-known to have very poor sampling properties (Judge and Bock, 1984; Danilov and Magnus,
2004; Leeb and Pötscher, 2008). Instability is another major drawback of model selection. It is well-
known that when ranking models by an information criterion, a small perturbation in the data can
often alter the ranking, which in turn alters model selection. This problem is particularly serious
when an ample sampling of observations is not available. Consequently, the variability of forecasts
produced by this model selection strategy can often be very high.

An alternative procedure that offers promise for incorporating model selection uncertainty and
reducing prediction errors is model averaging. This latter approach smoothes across a set of can-
didate models, and by so doing takes into account the uncertainty, and alleviates the instability
associated with selecting a single model. The final estimator is a weighted combination of estima-
tors from each model. Bayesian model averaging (BMA) has long proven to be a very successful
tool, and has given rise to a large body of literature over the past two decades. Hoeting, Madigan,
Raftery and Volinsky (1999) provided a review of BMA. For recent applications of BMA in con-
junction with Logit or Probit regressions, see Viallefont, Raftery and Richardson (2001), Hobcraft
and Sigle-Rushton (2005), and Burda, Harding and Hausman (2008). While we do not review the
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extensive collection of BMA literature, we draw attention here to the fact that BMA also has dis-
advantages. In particular, the necessity of assigning prior probabilities to individual models, which
is often done in an ad hoc manner, holds the potential for generating too many conflicting prior
probabilities when applying multiple models to a single parameter. This disadvantage is one factor
that has led to the development of model averaging informed by frequentist considerations. A large
part of this literature is concerned with ways of weighting models. Unlike BMA where models are
usually weighted by their posterior model probabilities, the method of determining weights for fre-
quentist model averaging (FMA) is a more intricate issue. Many of the FMA weighting strategies
are formed using scores of information criteria. The studies of Buckland, Burnham and Augustin
(1997), Claeskens, Croux and van Kerckhoven (2006), Zhang and Liang (2011), and Zhang, Wan
and Zhou (2012) fall into this category. Other FMA strategies that have been developed include
adaptive regression mixing by Yang (2001), Mallows model averaging (MMA) by Hansen (2007,
2008) and Wan, Zhang and Zou (2010), optimal mean square error averaging by Liang, Zou, Wan
and Zhang (2011), and Jackknife model averaging (JMA) by Hansen and Racine (2012) and Zhang,
Wan and Zou (2013). While the majority of this literature focuses on averaging estimators in the
context of the linear regression model, FMA strategies have also been developed for the binary
logit model (Claeskens, Croux and van Kerckhoven, 2006), the hazard regression model (Hjort and
Claeskens, 2006), the partially linear semi-parametric model (Zhang and Liang, 2011; Wang, Zou
and Wan, 2012), and the censored regression model (Zhang, Wan and Zhou, 2012).

This article develops an FMA strategy for the multinomial and ordered Logit models, with an
eye to using this strategy in forecasting. The multinomial and ordered Logit models are widely
used for marketing research data. Guadagni and Little (1983, reprinted in 2008) is arguably the best
known study in brand choice using the multinomial Logit model, and Katahira’s (1990) method of
constructing perceptual map based on the ordered Logit model is widely considered to be seminal
in the marketing literature. Recent papers in marketing research involving the multinomial and/or
ordered Logit models include Brangule-Vlagsma, Pieters and Wedel (2002), Bodapati and Drolet
(2005), Mantrala, Seetharaman, Kaul, Gopalakrishna and Stam (2006), Fiebig, Keane, Louviere,
Wasi (2010), among others. We propose a FMA method that selects the model weights by minimiz-
ing a plug-in estimator of the asymptotic squared error risk of the model average estimator. This
FMA method is similar in spirit to the method of Liang, Zou, Wan and Zhang (2011) (referred to
as LZWZ hereafter), but there is one important technical difference being that the latter method
selects weights by minimizing an approximately unbiased estimator of the asymptotic risk, whereas
our method minimizes a plug-in estimator of the asymptotic risk. We show that our proposed FMA
method is approximately optimal asymptotically under the local mis-specification set-up (Hjort and
Claeskens, 2003). To date, the literature is virtually devoid of any optimality theorem of FMA
methods applicable to discrete choice models; to the best of our knowledge, our results are the first
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theoretical results for model averaging with an explicit emphasis on Logit models. Model averag-
ing for the related binary Logit model was considered by Claeskens, Croux and van Kerckhoven
(2006), but their weight choice method was based on information criterion scores and they gave no
theoretical justification for their method. Although LZWZ’s method is applicable to Logit models,
their proof of asymptotic optimality is limited to linear models. Similarly, the optimality theorems
established for the MMA and JMA methods are valid only for linear estimators. These existing
analyses might be extended to the Logit models, but the extent to which theoretical results may be
forthcoming is likely to be limited in view of the fact that maximum likelihood (ML) estimators of
Logit coefficients are non-linearly related to the response variable.

In addition to providing a theoretical justification for our proposed method, we demonstrate
through a Monte Carlo study that gains in forecast efficiency in small samples can frequently result
by adopting the proposed method over the LZWZ and other information criterion-based FMA and
model selection methods for the two types of Logit models considered. In particular, our results
show that the advantages offered by the proposed method are most pronounced when the regressors
are mildly to moderately correlated and the true model contains few zero coefficients. While the
method described here is illustrated in terms of the multinomial and ordered Logit models, the
asymptotic theory of the method applies to any model subject to the regularity conditions within the
local mis-specification set-up. To reduce the computational burden we also consider an information
criterion-based model screening step that removes some of the very poor models prior to averaging.

The remainder of this article is structured in the following way. In Section 2, we introduce
the notations and describe the local mis-specification set-up and the multinomial and ordered Logit
models. In Section 3, we introduce the proposed FMA strategy and establish its asymptotic proper-
ties. Results of a Monte Carlo study that investigates the forecasting performance of the proposed
method are reported in Section 4. This is followed by a real data application in Section 5. We offer
our conclusions in Section 6, and provide the proof of the main theorem in an Appendix.

2 Notations, framework and the choice models

2.1 Notations and the local mis-specification framework

Let Y1, ..., Yn be i.i.d. observations generated from the density f . The narrow and extended models
take the form f(y, θ) and f(y, θ, γ) respectively, where θ and γ are unknown vectors of dimensions
p × 1 and q × 1. When γ is known and equal to γ0, f(y, θ) = f(y, θ, γ0). In the setting of local
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mis-specification (Hjort and Claeskens, 2003), the true density is specified to be

ftrue(y) = f(y, θ, γ) = f(y, θ, γ0 + δ/
√
n), (1)

where δ is a q × 1 unknown vector that represents the extent to which a model deviates from the
narrow model. For the models described in Subsections 2.2 and 2.3, γ0 is equal to zero. The cru-
cial assumption of the local mis-specification described in (1) is that γ, and hence the true model,
depends on the sample size, and that the effects of γ decrease as n grows, eventually vanishing as
n approaches infinity. Although there have been debates concerning the realism of the local mis-
specification set-up (Hjort and Claeskens, 2003a; Raftery and Zheng, 2003), this set-up is neverthe-
less very plausible. Technically, it has the advantage of yielding exchangeable quantities of squared
bias and variance, both of order O(n−1). This latter property greatly facilitates the derivation of
precise limiting distribution results (Hjort and Claeskens, 2003).

When considering the submodels for selection and averaging, we assume that all submodels
contain θ, but each model can have some or all of the elements of γ restricted to 0. Thus, there
are 2q submodels to consider, each corresponding to the subset S ⊂ {1, ..., q} such that δj = 0 for
j ∈ SC, the complement of S. We let θ̂s and γ̂s be the ML estimators of θ and γ in the s-th submodel
that corresponds to the subset S. Note that some of the elements of γ̂s would be 0 by default if
there were no corresponding elements of γ in the s-th submodel. We define the full model as the
submodel that contains all q elements of γ in addition to θ. The narrow model that contains only θ

is also known as the null model.

We will apply the above set-up to develop a FMA weighting strategy and establish an asymptotic
theory for the FMA estimator resulting from this strategy in Section 3. In the remaining parts of the
current section we will describe the multinominal and ordered Logit models.

2.2 Multinomial Logit model

Consider a general discrete choice model with n independent individuals, denoted by subscript i,
and J nominal alternatives denoted by subscript j, numbered from 1 to J . Let Yi be the choice
made by individual i. Thus, Yi = j if individual i selects alternative j. The usual assumption
leading to the multinomial Logit model is that the log odds of category j relative to the reference
category is determined by a linear combination of regressor variables. Analogous to the set-up in
Subsection 2.1, we categorize the regressor variables as either mandatory or optional, represented
by Xi and Zi respectively; the mandatory regressors by definition are those that must be included,
while the optional regressors can be excluded in any given model. The choice probabilities for the
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i-th individual may then be written as pij = P (Yi = j|Xi, Zi) =
exp(αj+X′

iβj+Z′
iγj)

1+
∑J−1

l=1 exp(αl+X′
iβl+Z′

iγl)
for j = 1, . . . , J − 1,

piJ = P (Yi = J |Xi, Zi) =
1

1+
∑J−1

l=1 exp(αl+X′
iβl+Z′

iγl)
,

(2)

where (α1, β
′
1, . . . , αJ−1, β

′
J−1)

′ and (γ′
1, . . . , γ

′
J−1)

′ correspond to θ and γ of Subsection 2.1 respec-
tively, and we set γ0 to zero. Note that the division of regressors into Xi and Zi induces no loss
of generality as Xi can be an empty set. Here, the J-th category is designated as the reference
category. The unknown parameters are usually estimated by ML, with the solution obtained by an
iterative procedure such as the Newton-Raphson algorithm. It is straightforward to see that the sum
of the pil’s over the J alternatives is one for any individual i.

Let α̂(s)
1 , . . . , α̂

(s)
J−1, β̂(s)

1 , . . . , β̂
(s)
J−1, and γ̂

(s)
1 , . . . , γ̂

(s)
J−1 be the ML estimators of the unknown

parameters in the s-th submodel; some elements of γ̂(s)
1 , . . . , γ̂

(s)
J−1 would be zero by default if the

corresponding variables in Zi are excluded from the s-th submodel. Common approaches to model
selection in the multinomial Logit model include model deviance and information criteria-based
methods such as the AIC and BIC. Now, let (X0, Z0) be the regressor variables for a new individual
with an unknown response Y0. The predicted choice probabilities for this individual based on the
s-th submodel are p̂

(s)
0j = P̂ (Y0 = j|X0, Z0) =

exp(α̂
(s)
j +X′

0β̂
(s)
j +Z′

0γ̂
(s)
j )

1+
∑J−1

l=1 exp(α̂
(s)
l +X′

0β̂
(s)
l +Z′

0γ̂
(s)
l )

for j = 1, . . . , J − 1,

p̂
(s)
0J = P̂ (Y0 = J |X0, Z0) =

1

1+
∑J−1

l=1 exp(α̂
(s)
l +X′

0β̂
(s)
l +Z′

0γ̂
(s)
l )

.
(3)

2.3 Ordered Logit model

The multinomial Logit model assumes no ordering in the response categories, and that the results
are impervious to changes in their order. If the response categories are ranked, say, from “least
favored” to “most favored”, then a more appropriate model framework to adopt is the ordered Logit
model which is usually described in terms of cumulative probabilities. Write Fij =

∑j
l=1 pil as the

cumulative probability that the individual i chooses a response category lower than or equal to j,
and let the log odds be determined by log [Fij/(1− Fij)] = αj+X ′

iβ+Z ′
iγ, j = 1, . . . , J−1. Then

we have {
P (Yi ≤ j|Xi, Zi) =

exp(αj+X′
iβ+Z′

iγ)

1+exp(αj+X′
iβ+Z′

iγ)
for j = 1, . . . , J − 1,

P (Yi ≤ J |Xi, Zi) = 1,
(4)

where the intercept coefficient αj varies across the different equations, but the slope coefficients of
the regressor variables are common for all equations. Note that (α1, . . . , αJ−1, β

′)′ and γ in equation
(4) correspond to θ and γ in Subsection 2.1 respectively.
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The cumulative probabilities provide a basis for working out the probability of selecting a par-
ticular category; for example, for the individual with X0 and Z0 as regressor variables, based on the
s-th submodel, the probability of selecting the j-th category is calculated to be

p̂
(s)
0j = P̂ (Y0 ≤ j|X0, Z0)− P̂ (Y0 ≤ j − 1|X0, Z0)

=
exp(α̂

(s)
j +X′

0β̂
(s)+Z′

0γ̂
(s))

1+exp(α̂
(s)
j +X′

0β̂
(s)+Z′

0γ̂
(s))

− exp(α̂
(s)
j−1+X′

0β̂
(s)+Z′

0γ̂
(s))

1+exp(α̂
(s)
j−1+X′

0β̂
(s)+Z′

0γ̂
(s))

for j = 1, . . . , J − 1,

p̂
(s)
0J = 1− P̂ (Y0 ≤ J − 1|X0, Z0)

= 1− exp(α̂
(s)
J−1+X′

0β̂
(s)+Z′

0γ̂
(s))

1+exp(α̂
(s)
J−1+X′

0β̂
(s)+Z′

0γ̂
(s))

,

(5)

where α̂(s)
1 , . . . , α̂

(s)
J−1, β̂(s), and γ̂(s) are be ML estimators of the unknown parameters under the s-th

submodel. Again, some of the γ̂(s) may be zero by default as not every variable in Z is contained in
all submodels.

3 A theory of model averaging

3.1 A general strategy for parametric models

Here, we develop a general model averaging theory that is applicable to any parametric model setting
that assumes local mis-specification, then illustrate this FMA strategy in the contexts of the multino-
mial and ordered Logit models. Now, in the setting of Subsection 2.1, let L(θ, γ) be the likelihood

function under the full model, Jn,full = − 1
n

∂2 logL(θ,γ)
∂(θ′,γ′)′∂(θ′,γ′)

=

(
Jn,00 Jn,01

Jn,10 Jn,11

)
be the corresponding

(p+ q)× (p+ q) information matrix,

(
J00 J01

J10 J11

)
be the limiting information matrix, and Jij the

limiting value of Jn,ij , i, j = 0, 1. Unless otherwise stated, all limiting processes are with respect
to n → ∞. Denote πs as the projection matrix mapping the vector v = (v1, ..., vq)

′ to its subvector
πsv = vs that consists of vj with j ∈ S.

Let µ = µ(θ, γ) = µ(θ, γ0 + δ/
√
n) be the estimand of interest. The FMA estimator of

µ is µ̂(w) =
∑2q

s=1wsµ̂s, where ws’s are the weights, w = (w1, . . . , w2q)
′, and µ̂s is the ML

estimator of µ in the s-th submodel. Write K = (J11 − J10J
−1
00 J01)

−1, Ks = (πsK
−1π′

s)
−1,

Hs = K−1/2π′
sKsπsK

−1/2, and ω = J10J
−1
00 ∂µ/∂θ − ∂µ/∂γ, with the partial derivatives evalu-

ated at the null point (θ, γ0). Define H1 as the null matrix of size q × q, and δ̂full =
√
n(γ̂full − γ0).

The following results are obtained using results of Hjort and Claeskens (2003):

δ̂full
d−→ D ∼ Nq(δ,K), (6)
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√
n(µ̂s − µ)

d−→ Λs ≡
(
∂µ

∂θ

)′

J−1
00 M + ω′(δ −K1/2HsK

−1/2D), (7)

and

√
n(µ̂(w)− µ)

d−→ Λ ≡
(
∂µ

∂θ

)′

J−1
00 M + ω′{δ − δ̂(D)}, (8)

where “ d−→” denotes convergence in distribution, M ∼ Np(0, J00) is independent of D, and δ̂(D) =

K1/2
{∑2q

s=1wsHs

}
K−1/2D ≡ K1/2H(w)K−1/2D. Thus, the asymptotic risk of µ̂(w) under

squared errors is given by

Ra(µ̂(w)) = E(Λ2) = τ 20 + E
(
ω′δ̂(D)− ω′δ

)2
= τ 20 + ω′K1/2H2(w)K1/2ω + (ω′K1/2L(w)K−1/2δ)2, (9)

where τ 20 =
(
∂µ
∂θ

)′
J−1
00

(
∂µ
∂θ

)
and L(w) = Iq − H(w). Our goal here is to seek w that minimizes

Ra(µ̂(w)), the asymptotic risk of µ̂(w).

Write W =
{
w ∈ [0, 1]2

q

:
∑

sws = 1
}

, a general weight set. We define the optimal weight
vector as

wopt = argmin
w∈W

Ra(µ̂(w)). (10)

Thus, the estimator µ̂(wopt) has the minimum asymptotic risk under squared errors among the class
of estimators defined by µ̂(w). The problem with µ̂(wopt) is that it is infeasible because ω and K in
Ra(µ̂(w)) are unknown. A feasible version of µ̂(wopt) may be obtained by replacing these unknowns
by their consistent estimators. A consistent estimator of K is K̂ ≡ (Jn,11 − Jn,10J

−1
n,00Jn,01)

−1.
Also, since the ML estimators θ̂full and γ̂full based on the full model are consistent estimators of their
respective unknowns, we can use ω̂ = ω |Jfull=Jn,full,θ=θ̂full,γ=γ̂full

to estimate ω consistently. Let

δn = E(δ̂full). (11)

When δ̂full is absolutely integrable, we have, from (6),

δn → δ. (12)

Now, only the second and third terms in the expression of Ra(µ̂(w)) in (9) are related to w, and
these two terms may be estimated by

A(w) = ω̂′K̂1/2Ĥ2(w)K̂1/2ω̂ + (ω̂′K̂1/2L̂(w)K̂−1/2δn)
2, (13)
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where Ĥ(w) and L̂(w) have the same expressions as H(w) and L(w) respectively, except that K is
replaced by K̂ everywhere. Similarly, Ĥs has the same expression as Hs, except that K is replaced
by K̂ everywhere. Denote

ŵopt = argmin
w∈W

A(w). (14)

The following theorem shows that under some regularity conditions, ŵopt converges to the optimal
weight vector wopt in probability.

THEOREM 3.1 When n → ∞, provided that (12) holds and Ra(µ̂(w)) has an identifiable unique1

minimizer wopt on W , then

ŵopt p−→ wopt. (15)

Proof: See the Appendix.

Note that the computation of A(w) requires knowledge of the unknown quantity δn. If we
replace δn in A(w) by an estimator δ̂n such that δ̂n − δn

p−→ 0, then the weight vector that results
from (14) still converges to wopt in probability. However, it is difficult if not impossible to find the
estimator δ̂n under the assumption of local mis-specification. In view of (11), we suggest to estimate
δn by its unbiased estimator δ̂full obtained based on the full model. Let

Ã(w) = ω̂′K̂1/2Ĥ2(w)K̂1/2ω̂ + (ω̂′K̂1/2L̂(w)K̂−1/2δ̂full)
2 (16)

be the objective function that results after replacing δn by δ̂full. The weight vector that minimizes
Ã(w) is

w̃opt = argmin
w∈W

Ã(w). (17)

This weight vector is a feasible version of ŵopt. We propose to construct FMA estimators based on
w̃opt, and we call it the “approximately optimal” (A-opt) weight choice.

It is worth noting that this FMA strategy is similar in spirit to that proposed by LZWZ (2011), but
there is one important technical difference: LZWZ (2011) selects w by minimizing an approximately
unbiased estimator of the asymptotic risk (see formula (33) in their paper), whereas in the present
paper we selects w by minimizing a plug-in estimator of the asymptotic risk (9).

Define Ψ as a 2q×2q matrix with Ψsr = ω̂′K̂1/2ĤsĤrK̂
1/2ω̂+ω̂′K̂1/2(Iq−Ĥs)K̂

−1/2δ̂fullω̂
′K̂1/2(Iq−

Ĥr)K̂
−1/2δ̂full as its sr-th element. It is readily seen that Ã(w) = w′Ψw. Thus, the minimization of

Ã(w) with respect to w is a quadratic programming problem. Computational routines available from
various software packages (e.g., Matlab and SAS) can be used to obtain solutions to this problem,
and they generally work effectively and efficiently even when 2q is large.

1Readers may refer to Definition 3.3 of White (1994) for the definition of identifiable uniqueness.
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3.2 Specialization to multinomial and ordered Logit models

For the multinomial Logit model (2), θ = (α1, β
′
1, . . . , αJ−1, β

′
J−1)

′ and γ = (γ′
1, . . . , γ

′
J−1)

′.
Let η = (η′1, . . . , η

′
J−1)

′ = (α1, β
′
1, γ

′
1, . . . , αJ−1, β

′
J−1, γ

′
J−1)

′ and Π be a project matrix such as
(θ′, γ′)′ = Πη. Straightforward calculations show that for model (2),

∂2 logL(θ, γ)
∂ηj1∂η

′
j2

= −
n∑

i=1

pij1 [I(j1 = j2)− pij2 ] (1, X
′
i, Z

′
i)

′(1, X ′
i, Z

′
i) ≡ Ξj1j2 , (18)

where I(·) is the usual indicator function. Let Ξ be a matrix with Ξj1j2 as its j1j2-th block. Thus, for
the multinomial Logit model (2), Jn,full = − 1

n
ΠΞΠ′. The unknowns pij in Ξ are estimated by the full

model. Given Jn,full, Ψsr can be calculated directly using the procedure described in Subsection 3.1.
Thus, w̃opt can be obtained by minimizing w′Ψw. The quadprog function of Matlab can be utilized
to solve this minimization problem.

The calculations and the steps involved are largely similar for the ordered Logit model (4),
except that for this model,

Jn,full = − 1

n

∂2 logL(θ, γ)
∂η∂η′

= − 1

n

n∑
i=1

{
p−1
iyi

[
(1− 2Ciyi)ξiyih

′
iyi
hiyi − (1− 2Ciyi−1)ξiyi−1h

′
iyi−1hiyi−1

]
−p−2

iyi
(ξiyih

′
iyi

− ξiyi−1h
′
iyi−1)(ξiyih

′
iyi

− ξiyi−1h
′
iyi−1)

′} , (19)

where (y1, . . . , yn) are realizations of (Y1, . . . , Yn), pij = P (Yi = j), Cij = P (Yi ≤ j), ξij =

Cij − C2
ij , and hij = (I(j = 1), . . . , I(j = J − 1), (X ′

i, Z
′
i)I(1 ≤ j < J)). As in the case of the

multinomial model, the unknowns pij in Jn,full are estimated based on the full model.

4 A Monte Carlo study

In this section, an examination of the finite sample performance of the proposed model averaging
strategy is undertaken in a number of Monte Carlo experiments with designs that include both the
multinomial and ordered Logit models. Our study has the following specific objectives: i) compare
the proposed A-opt weight choice model averaging scheme with some alternative FMA and common
model selection schemes, and ii) examine the effects of the changing magnitude and sparsity level
of non-zero coefficients on the various strategies’ performance.

Included for comparison are post-model selection estimators based on AIC and BIC, and model
average estimators based on the smoothed-Focused Information criterion (S-FIC) (Claeskens, Croux
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and van Kerckhoven, 2006), the optimal mean square error (o-MSE) criterion (LZWZ, 2011) and the
equal weight criterion. The AIC and BIC are penalized versions of the attained log likelihood, and
arguably the most widely applied model selection criteria in practice. The S-FIC strategy assigns
the weight

exp{−FICs/(2ω̂
′K̂ω̂)}/(

∑
s∗

[exp{−FICs∗/(2ω̂
′K̂ω̂)}])

to the s-th submodel, where FICs is the FIC score achieved by the s-th submodel. The FIC, in-
troduced by Claeskens and Hjort (2003), is an approximately unbiased estimator of the asymptotic
squared error risk of the unknown coefficient vector in the s-th submodel2. The o-MSE criterion, de-
veloped by LZWZ (2011), is based on the minimization of an approximately unbiased estimator of
the asymptotic squared error risk of the FMA estimator 3. The equal weighted model average simply
assigns to each model a weight that equals the reciprocal of the total number of models contained in
the average.

We consider two schemes for computing a model average. The first one combines all 2q can-
didate models, whereas the second one combines only the subset of models that survive an initial
screening step. Model screening has the advantage of narrowing down the array of models before
combining and thus saving computing cost. Here, we adopt the “top m model screening proce-
dure” (Yuan and Yang, 2009) that selects m(< 2q) leading models using a model selection criterion;
specifically, it eliminates all but the m models with the smallest values of an information crite-
rion. In our simulations, we use the BIC as the criterion for model elimination and inclusion and
choose m = 5. Another model screening procedure that could be adopted is backward elimination
(Claeskens, Croux and van Kerckhoven, 2006). One drawback of this latter procedure is that it al-
ways includes exactly one model of each size in the final set of models for averaging. This means
even if the best model of a given size may be worse than the second best model of another size, the
procedure will include the former model but exclude the latter.

The experimental designs of our Monte Carlo experiments can be summarized as follows:

Design 1: The responses are generated based on the set-up of a multinomial Logit model (2) with the
following specifications: J = 3, Xi = 0 (i.e., no mandatory regressors), each of (Zi1, . . . , Zi8)

′ ∼
N(0,Ω), where Ω = (Ωij) and Ωij = ρ|i−j| for i ̸= j and ρ = 0, 0.3, and 0.6, (α1, α2) = κ(0.3, 0.5),
and γ1 and γ2 chosen according to the following scenarios:

Scenario 1 : γ1 = κ(1.4, 0.9, 1.3, 1.5, 1.5, 1.2, 0.9, 0); γ2 = κ(1.0, 1.2, 1.1, 0.9, 0.7, 1.1, 1.0, 0)

Scenario 2 : γ1 = κ(1.4, 0.9, 1.3, 1.5, 1.5, 0, 0, 0); γ2 = κ(1.0, 1.2, 1.1, 0.9, 0.7, 0, 0, 0)

2See equation (3.3) of Claeskens and Hjort (2003).
3See equation (33) of LZWZ (2011). This criterion allows for both fixed and random weights. In our computation,

we assume that the weights are fixed.
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Scenario 3 : γ1 = κ(1.4, 0.9, 0, 0, 0, 0, 0); γ2 = κ(1.0, 1.2, 0, 0, 0, 0, 0)

The parameter κ is used to control the magnitude of the coefficients, and we let it vary in the set
{0.5, 1, 2}. The three scenarios also represent different sparsity levels of non-zero coefficients. Un-
der Scenario 1, the true model is almost the full model, and thus the majority of models in the model
average are under-fitted. Scenario 3 contains many zero coefficients resulting in a large number of
over-fitted models in the model average. Scenario 2 represents an intermediate scenario. With q = 8,
there are 28 = 256 submodels to combine. On the other hand, if the above mentioned top m model
screening procedure is applied, then the model average only combines the m = 5 submodels that
attain the smallest BIC values.

Design 2: This experimental design has the same specifications as the previous design, except that
here we generate the pijs’ based on the ordered Logit model in (4), and the following scenarios
determine the choice of γ:

Scenario I : γ = κ(1.0, 1.2, 0.9, 1.4, 1.1, 0.8, 0.9, 0)

Scenario II : γ = κ(1.0, 1.2, 0.9, 1.4, 1.1, 0, 0, 0)

Scenario III : γ = κ(1.0, 1.2, 0, 0, 0, 0, 0, 0)

All of our Monte Carlo simulations are based on 1000 replications. We generate 100 observa-
tions as training data and 10 observations as test data. Our objectives are to evaluate the accuracy
of the out-of-sample forecasts produced by the coefficient estimates. We assess the accuracy of
forecasts based on the mean squared error forecast error (MSFE):

MSFE =
1

10000

∑1000

r=1

∑10

t=1

∑J

j=1
(p̂

[r]
tj − p

[r]
tj )

2 (20)

and the mean absolute forecast error (MAFE):

MAFE =
1

10000

∑1000

r=1

∑10

t=1

∑J

j=1
|p̂[r]tj − p

[r]
tj |, (21)

where p̂
[r]
tj is the forecast of p[r]tj , the probability of the t-th test observation resulting in choice j for

the r-th replication. Some representative results are shown in Tables 1 - 3. As the results based
on the screening and non-screening versions of the model averages are quite similar, to conserve
space, we choose to report only those based on the screening version. In the tables, AIC and BIC
denote the two post-model selection estimators, and S-FIC, LZWZ, EW, A-opt and opt denote the
FMA estimators based on S-FIC weighting, o-MSE weighting, equal weighting, our proposed w̃opt

weight choice, and the (infeasible) optimal weight ŵopt respectively. The opt estimator is of no
practical utility and used only as a benchmark for assessing other estimators’ efficiency. To facilitate
readability, the opt estimators’ forecast errors are shown in brackets in all cases, and the best and
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worst estimators (excluding the infeasible opt estimator) in each case are flagged by a ”†” and a ”⋆”
respectively. At the bottom of each table a summary is provided for the percentages of cases of the
various estimators producing the best and worst forecasts, and the A-opt estimator yielding superior
forecasts to the other strategies. We also apply the Morgan-Granger-Newbold (MGN) test (Granger
and Newbold, 1977) to test for equal accuracy in forecasts between the A-opt and other methods; a
forecast accuracy figure is highlighted in bold if it differs significantly from the corresponding A-opt
figure at the 10% level.

The following conclusions may be drawn from the Monte Carlo results:

First, it can be seen that in the majority of cases forecasts produced by the four model averaging
strategies are superior to forecasts obtained by model selection. Other things being equal, model
averaging appears to work better when κ is small or moderate (Tables 1 and 2) than when it is large
(Table 3). This result is not unexpected, because when κ is small, the non-zero coefficients in the
true model are all close to zero, making it difficult to distinguish the truth from a false model that
contains many zeros. As model selection criterion scores can be quite similar for different models,
the choice of models becomes unstable. On the other hand, when κ is large, the absolute values of
the non-zero coefficients are also large, and a model selection criterion can more readily identify
a non-zero coefficient. This reduces the forecast variability of the post-model selection estimator.
For example, when κ = 0.5 (Table 1), the worst forecast is invariably produced by either one of
the two model selection strategies, but when κ = 2 (Table 3), the two model selection strategies
together produce over half of the best forecasts across all cases in both MSFE and MAFE terms.
These results reinforces the intuition that model averaging is more credible when the uncertainty in
finding the best model is high, but less suitable when there is little instability in selection.

Second, for small to moderate κ (Tables 1 and 2), the proposed A-opt estimator most frequently
delivers the best forecast. In most cases the A-opt estimator is preferred to the S-FIC and LZWZ
averaging strategies. This is an encouraging finding given the merits of S-FIC and LZWZ demon-
strated in other contexts. The bold figures in the tables indicate that in the majority of cases the
differences in forecast performance between the A-opt and other methods are statistically signifi-
cant at the 10% level. It also appears that the value of ρ which controls the degrees of regressor
collinearity has some bearings on the performance of the A-opt forecast. There is generally a higher
frequency of the A-opt estimators yielding better (worse) forecasts when ρ is small (large) than when
it is large (small), suggesting that the advantages of the A-opt estimators may be stronger when the
collinearity of regressors is small to moderate than when it is large. The advantages of the A-opt
estimator are also more pronounced under Scenarios 1 and 2 where the true model contains few
zero coefficients than Scenario 3 where the true model contains only a small number of non-zero
coefficients. Under the latter scenario the BIC estimator which favors parsimony exhibits frequent
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empirical superiority over other strategies, especially when κ is large.

Third, the results show that the simple equal weighted model average is often a strong competitor
that out-compete other strategies. This strong showing of the EW averaging scheme is a surprising
feature of our results. It is usually under Scenario 3 that EW outperforms the proposed A-opt
method. Interestingly, even for κ = 2 (Table 3) where selection is arguably the preferred strategy,
EW has the ability to produce the best forecast and outperforms the A-opt estimator in a large
number of cases, although the latter estimator has an overall advantage when other values of κ are
also considered.

Fourth, all of the above comments regarding the relative merits and shortcomings of the various
strategies apply to both the multinomial and ordered Logit models. We do not observe any major
difference in the pattern of the Monte Carlo results under Designs 1 and 2. Although we do not
report the results here, the non-screening versions of the various model average estimators generally
exhibit behavior very similar to their screening counterparts.

5 An empirical application

In this section, we consider an application of the proposed model averaging strategy to real data.
The dataset, taken from Compustat, and used by Ashbaugh-Skaife, Collins and LaFond (2006) and
Verbeek (2007), contains observations of Standard and Poor’s credit ratings of 921 U.S. firms in
2005. The ratings range from AAA (highest rating) to D (lowest rating). We analyze this dataset by
the binary and ordered Logit models. The binary model is a special case of both the multinomial
and ordered Logit models.

The dependent variable used in our binary Logit analysis has the value of 1 if the firm’s rating
is above BB+ (investment-grade rating), and 0 otherwise (speculative-grade rating). The following
explanatory variables are available: working capital of the firm (wc), which proxies the firm’s short-
term liquidity; retained earnings (re) and earnings before interest and taxes (ebit), which proxy
historical profitability and current profitability respectively; book leverage (bl), the ratio of the firm’s
debt to assets; and log sales volume (ls) which proxies the firm’s size. We scale the first three of
these variables by total assets (ta) in our analysis. All of the explanatory variables are treated as
optional. This results in 25 = 32 binary Logit submodels. As in the Monte Carlo study, we set m,
the number of models to be retained after model screening, to 5. We estimate the models using the
first 460 observations according to the sequence listed in Verbeek (2007), and use the remaining 461
observations for forecast evaluation purpose. The predicted value of an observation is 1 (0) if the
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predicted probability score of the observation taking on 1 is greater (smaller) than 0.5. We evaluate
the forecasts by the hit-rate, obtained by dividing the number of correct predictions by the the size
of the evaluation sample.

Panel I of Table 4 presents the coefficient estimates produced by the AIC and BIC model selec-
tion and the screening versions of the various model averaging methods. The AIC and BIC methods
yield the same coefficient estimates as both methods select the full model that contains all five ex-
planatory variables. The four model averaging methods also produce very similar estimates between
themselves and to those obtained by model selection. Panel II of Table 4 shows that all methods per-
form well in terms of out-of-sample hit-rates, with the EW method having a slight edge over its
competitors.

For the ordered Logit analysis, we use a dependent variable with seven categories indexed by
integer values ranging from 1 (lowest credit rating) to 7 (highest credit rating), and the same in-
dependent variables as in the binary Logit analysis. Again, we treat all explanatory variables as
optional, estimate the model based on the first 460 observations and evaluate forecasts using the last
461 observations. An observation has a predicted value of j (1 ≤ j ≤ 7) if the predicted probability
of the observation taking on j is the highest among the seven predicted probability values. Table
5 reports the estimates of coefficients and the hit-rates, where intercept-j’s, j = 1, .., 6, denote the
intercepts of the first six equations as described in (5). All six methods yield similar estimates, but
the A-opt and LZWZ methods produce the most accurate out-of-sample hit-rates. The deterioration
in hit-rates for all methods relative to those observed under binary Logit analysis is expected due to
the much larger grouping of choice categories in the ordered Logit analysis.

6 Conclusions

Model averaging has advantages over model selection in that it guards against the selection of a very
poor model. These advantages hold the potential to produce estimates and forecasts that improve
those obtained by model selection. In this paper we have developed a FMA weight choice criterion
by minimizing a plug-in estimator of the FMA estimator’s asymptotic risk. Our proposed method
shares the spirit of a similar method devised by Liang, Zou, Wan and Zhang (2011), but there are
also important differences as discussed in Section 3. Although this paper focuses on the multinomial
and ordered Logit model, the proposed method can be applied to any parametric model. We have
proved that the proposed method has an approximate asymptotic optimality property under the local
mis-specification set-up. Our Monte Carlo results demonstrate that the method frequently delivers
more accurate forecasts than other model model selection and averaging methods; the superiority of
the proposed method is most marked when there is small to moderate collinearity among regressors
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and high uncertainty in identifying the best model.

One surprising feature of our Monte Carlo results is the strong showing of the simple equal
weighted average estimator. Bates and Granger (1969) showed that when all forecasts are uncorre-
lated and have identical variances, the equal weighting method has an optimal property. While this
result is not directly applicable to the present context, the frequent empirical superiority exhibited
by the equal weighted estimator should perhaps reinvigorate thinking about how best to combine
estimators in general. This remains for future research.

Also, the bulk of this paper only addresses issues relating to the efficiency of estimators and
forecasts obtained from model averaging. By comparison, little attention has been paid to matters of
inference. Our work in progress explores the inferential aspects of model averaging in the context
of the types of Logit models being analyzed in this paper, as well as extending the analysis to other
discrete choice models including the nested Logit and ordered Probit models.

Appendix: Proof of Theorem 3.1

Let Ao(w) = ω′K1/2H2(w)K1/2ω+(ω′K1/2L(w)K−1/2δ)2. By (10) and recognising that τ 20 is
unrelated to w, we have

wopt = argmin
w∈W

Ao(w). (A.1)

Let Φo and Φn be 2q × 2q matrices with their respective sr-th elements being

Φo
sr = ω′K1/2HsHrK

1/2ω + ω′K1/2(Iq −Hs)K
−1/2δω′K1/2(Iq −Hr)K

−1/2δ

and

Φn,sr = ω̂′K̂1/2ĤsĤrK̂
1/2ω̂ + ω̂′K̂1/2(Iq − Ĥs)K̂

−1/2δnω̂
′K̂1/2(Iq − Ĥr)K̂

−1/2δn.

Recognising that θfull

p−→ θ, γfull

p−→ γ, Jn,full → Jfull, and δn → δ, we obtain

sup
w∈W

(A(w)− Ao(w)) = sup
w∈W

2q∑
s=1

2q∑
r=1

wswr(Φn,sr − Φo
sr)

≤ sup
w∈W

2q∑
r=1

|Φn,sr − Φo
sr| =

2q∑
r=1

|Φn,sr − Φo
sr| = op(1). (A.2)

Hence

A(w)
p−→ Ao(w) (A.3)

uniformly for w ∈ W . Now, from (14), (A.1), (A.3), the identifiable uniqueness stated in Theorem
3.1, and Theorem 3.4 of White (1994), we obtain ŵ

p−→ wopt.
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Table 1: κ = 0.5

MSFE MAFE
ρ Scenario AIC BIC S-FIC LZWZ EW A-opt (opt) AIC BIC S-FIC LZWZ EW A-opt (opt)

Design 1
0 1 0.061 0.075⋆ 0.061 0.055 0.069 0.055† (0.037) 0.316 0.344⋆ 0.313 0.299 0.339 0.297† (0.237)

2 0.058 0.063⋆ 0.048 0.047 0.052 0.046† (0.029) 0.309 0.323⋆ 0.285 0.283 0.300 0.280† (0.213)
3 0.045⋆ 0.030 0.029 0.037 0.027† 0.037 (0.017) 0.271⋆ 0.224 0.223 0.251 0.217† 0.251 (0.168)

Design 2
1 0.057 0.085⋆ 0.056 0.045 0.065 0.043† (0.033) 0.262 0.336⋆ 0.257 0.230 0.282 0.225† (0.197)
2 0.052 0.069⋆ 0.051 0.044 0.058 0.043† (0.034) 0.253 0.303⋆ 0.256 0.237 0.276 0.232† (0.200)
3 0.030 0.033⋆ 0.027† 0.028 0.028 0.028 (0.017) 0.199 0.212⋆ 0.197 0.196 0.203 0.195† (0.152)

Design 1
0.3 1 0.073 0.089⋆ 0.066 0.065 0.072 0.063† (0.042) 0.339 0.381⋆ 0.327 0.324 0.345 0.318† (0.250)

2 0.062 0.065⋆ 0.048† 0.051 0.049 0.050 (0.030) 0.314 0.325⋆ 0.278† 0.289 0.283 0.285 (0.214)
3 0.043⋆ 0.032 0.028 0.037 0.026† 0.037 (0.017) 0.268⋆ 0.234 0.218 0.253 0.211† 0.253 (0.169)

Design 2
1 0.040 0.058⋆ 0.044 0.035 0.052 0.034† (0.027) 0.215 0.269⋆ 0.227 0.202 0.249 0.197† (0.175)
2 0.041 0.059⋆ 0.041 0.037 0.045 0.036† (0.026) 0.226 0.275⋆ 0.227 0.214 0.241 0.209† (0.181)
3 0.027 0.032⋆ 0.024 0.026 0.023† 0.026 (0.014) 0.186 0.208⋆ 0.181† 0.185 0.181 0.185 (0.140)

Design 1
0.6 1 0.080 0.082⋆ 0.061† 0.070 0.063 0.067 (0.044) 0.355 0.364⋆ 0.315† 0.335 0.322 0.327 (0.259)

2 0.060⋆ 0.059 0.042 0.052 0.041† 0.050 (0.029) 0.317 0.318⋆ 0.268 0.298 0.264† 0.292 (0.220)
3 0.048⋆ 0.037 0.030 0.041 0.027† 0.041 (0.017) 0.292⋆ 0.250 0.228 0.269 0.219† 0.271 (0.173)

Design 2
1 0.038 0.046⋆ 0.041 0.037 0.045 0.036† (0.024) 0.207 0.234⋆ 0.214 0.202 0.225 0.197† (0.159)
2 0.038 0.041⋆ 0.036 0.035 0.038 0.034† (0.021) 0.206 0.215⋆ 0.199 0.197 0.204 0.191† (0.152)
3 0.038⋆ 0.032 0.030 0.035 0.030† 0.035 (0.017) 0.214⋆ 0.204 0.200 0.213 0.199† 0.211 (0.152)

[1] 0 0 17 0 33 50 N.A. 0 0 17 0 28 56 N.A.
[2] 28 72 0 0 0 0 N.A. 22 78 0 0 0 0 N.A.
[3] 100 78 50 78 56 N.A. N.A. 100 78 56 83 56 N.A. N.A.

Notes:
[1]: Percentage of cases with the best forecast
[2]: Percentage of cases with the worst forecast
[3]: Percentage of cases with an inferior forecast to A-opt
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Table 2: κ = 1

MSFE MAFE
ρ Scenario AIC BIC S-FIC LZWZ EW A-opt (opt) AIC BIC S-FIC LZWZ EW A-opt (opt)

Design 1
0 1 0.075 0.100⋆ 0.077 0.077 0.085 0.072† (0.054) 0.308 0.363⋆ 0.316 0.315 0.338 0.304† (0.256)

2 0.062 0.083⋆ 0.057† 0.065 0.060 0.062 (0.043) 0.272 0.323⋆ 0.268† 0.289 0.277 0.281 (0.228)
3 0.044⋆ 0.041 0.030 0.039 0.028† 0.040 (0.017) 0.259⋆ 0.244 0.221 0.254 0.217† 0.259 (0.172)

Design 2
1 0.037 0.049 0.043 0.037 0.049⋆ 0.035† (0.029) 0.191 0.221 0.209 0.193 0.228⋆ 0.188† (0.172)
2 0.028† 0.032⋆ 0.029 0.030 0.030 0.029 (0.019) 0.163† 0.173⋆ 0.166 0.167 0.172 0.166 (0.140)
3 0.024⋆ 0.015† 0.017 0.022 0.016 0.024 (0.013) 0.168 0.143 0.143 0.164 0.140† 0.171⋆ (0.132)

Design 1
0.3 1 0.077 0.096⋆ 0.071 0.073 0.077 0.069† (0.052) 0.300 0.346⋆ 0.299 0.302 0.314 0.293† (0.243)

2 0.057† 0.082⋆ 0.057 0.065 0.059 0.062 (0.044) 0.260† 0.316⋆ 0.267 0.283 0.274 0.276 (0.224)
3 0.038 0.040⋆ 0.028 0.039 0.026† 0.039 (0.017) 0.245 0.243 0.215 0.253 0.210† 0.256⋆ (0.170)

Design 2
1 0.037 0.063⋆ 0.033 0.030 0.037 0.028† (0.023) 0.171 0.236⋆ 0.174 0.163 0.194 0.156† (0.141)
2 0.038† 0.045⋆ 0.041 0.040 0.044 0.039 (0.026) 0.178 0.194 0.186 0.178 0.196⋆ 0.175† (0.147)
3 0.028⋆ 0.020 0.019 0.024 0.018† 0.025 (0.015) 0.178⋆ 0.147† 0.152 0.171 0.149 0.176 (0.135)

Design 1
0.6 1 0.099 0.113⋆ 0.080† 0.085 0.083 0.082 (0.054) 0.352 0.373⋆ 0.319† 0.329 0.329 0.323 (0.257)

2 0.052† 0.069⋆ 0.053 0.060 0.053 0.058 (0.037) 0.262† 0.303⋆ 0.266 0.284 0.269 0.278 (0.216)
3 0.049⋆ 0.030† 0.035 0.047 0.032 0.047 (0.022) 0.278 0.216† 0.239 0.281⋆ 0.232 0.280 (0.193)

Design 2
1 0.039 0.049⋆ 0.036 0.033 0.039 0.031† (0.026) 0.157 0.188⋆ 0.165 0.152 0.177 0.147† (0.132)
2 0.034† 0.042⋆ 0.037 0.038 0.039 0.036 (0.023) 0.153† 0.181⋆ 0.161 0.158 0.167 0.154 (0.130)
3 0.021 0.016† 0.019 0.023 0.018 0.023⋆ (0.010) 0.157 0.133† 0.151 0.164 0.150 0.167⋆ (0.111)

[1] 28 17 11 0 17 28 N.A. 22 17 11 0 17 33 N.A.
[2] 22 67 0 0 6 6 N.A. 11 56 0 6 11 17 N.A.
[3] 61 78 39 72 50 N.A. N.A. 50 67 39 72 50 N.A. N.A.

Notes:
[1]: Percentage of cases with the best forecast
[2]: Percentage of cases with the worst forecast
[3]: Percentage of cases with an inferior forecast to A-opt
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Table 3: κ = 2

MSFE MAFE
ρ Scenario AIC BIC S-FIC LZWZ EW A-opt (opt) AIC BIC S-FIC LZWZ EW A-opt (opt)

Design 1
0 1 0.090 0.114⋆ 0.085† 0.105 0.090 0.093 (0.088) 0.268† 0.317⋆ 0.273 0.301 0.289 0.284 (0.276)

2 0.070 0.066 0.064† 0.079⋆ 0.064 0.078 (0.050) 0.250 0.246 0.239† 0.264 0.240 0.265⋆ (0.215)
3 0.039⋆ 0.023 0.022 0.032 0.020† 0.034 (0.015) 0.226⋆ 0.166 0.170 0.203 0.164† 0.211 (0.151)

Design 2
1 0.040† 0.040† 0.041 0.044 0.046⋆ 0.042 (0.030) 0.155 0.152† 0.167 0.169 0.189⋆ 0.166 (0.144)
2 0.030⋆ 0.025 0.024 0.027 0.023† 0.028 (0.022) 0.143⋆ 0.132 0.130† 0.137 0.130 0.140 (0.125)
3 0.032⋆ 0.018† 0.020 0.025 0.018 0.028 (0.016) 0.171⋆ 0.129† 0.139 0.154 0.135 0.162 (0.124)

Design 1
0.3 1 0.090 0.113⋆ 0.085† 0.100 0.088 0.091 (0.079) 0.268† 0.317⋆ 0.270 0.290 0.279 0.277 (0.257)

2 0.078 0.076 0.073 0.089⋆ 0.072† 0.087 (0.056) 0.263 0.261 0.253† 0.280⋆ 0.254 0.277 (0.222)
3 0.039⋆ 0.024 0.023 0.033 0.021† 0.035 (0.017) 0.222⋆ 0.169 0.171 0.204 0.164† 0.213 (0.156)

Design 2
1 0.033† 0.050⋆ 0.042 0.041 0.046 0.039 (0.034) 0.136† 0.157 0.157 0.153 0.172⋆ 0.149 (0.140)
2 0.028 0.023† 0.025 0.029 0.026 0.030⋆ (0.022) 0.127 0.116† 0.118 0.127 0.122 0.129⋆ (0.115)
3 0.024⋆ 0.014† 0.016 0.021 0.015 0.022 (0.011) 0.145⋆ 0.116† 0.121 0.136 0.117 0.141 (0.106)

Design 1
0.6 1 0.083† 0.105⋆ 0.087 0.095 0.087 0.090 (0.075) 0.252† 0.292⋆ 0.274 0.283 0.276 0.275 (0.246)

2 0.080 0.066† 0.070 0.085⋆ 0.071 0.079 (0.049) 0.258 0.232† 0.252 0.275⋆ 0.258 0.264 (0.207)
3 0.038⋆ 0.020† 0.025 0.037 0.023 0.037 (0.016) 0.219 0.162† 0.183 0.217 0.181 0.220⋆ (0.150)

Design 2
1 0.052 0.070⋆ 0.051 0.044 0.055 0.041† (0.038) 0.142 0.183⋆ 0.160 0.140 0.174 0.135† (0.132)
2 0.027† 0.030 0.029 0.031 0.031⋆ 0.029 (0.020) 0.105† 0.115 0.118 0.117 0.128⋆ 0.113 (0.097)
3 0.020⋆ 0.013 0.013 0.016 0.013† 0.017 (0.010) 0.129⋆ 0.105† 0.108 0.116 0.106 0.121 (0.096)

[1] 22 33 17 0 28 6 N.A. 28 39 17 0 11 6 N.A.
[2] 39 28 0 17 11 6 N.A. 33 22 0 11 17 17 N.A.
[3] 50 33 11 56 22 N.A. N.A. 39 33 22 50 39 N.A. N.A.

Notes:
[1]: Percentage of cases with the best forecast
[2]: Percentage of cases with the worst forecast
[3]: Percentage of cases with an inferior forecast to A-opt
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Table 4: Binary Logit analysis for credit rating application

AIC BIC S-FIC LZWZ EW A-opt
Panel I: estimates of coefficients

intercept -6.924 -6.924 -7.726 -7.284 -8.378 -7.265
bl -4.497 -4.497 -4.290 -4.177 -2.384 -4.198

ebit/ta 6.778 6.778 6.705 6.177 5.352 6.226
ls 0.939 0.939 1.019 0.946 1.023 0.946

re/ta 3.863 3.863 4.018 4.104 4.000 4.081
wc/ta -4.375 -4.375 -3.971 -4.143 -2.297 -4.155

Panel II: Out-of-sample hit-rates
0.824 0.824 0.824 0.833 0.839 0.829

Table 5: Ordered Logit models for credit rating application

AIC BIC S-FIC LZWZ EW A-opt
Panel I: estimates of coefficients

intercept-1 -1.814 -1.814 -1.614 -1.693 -0.194 -1.700
intercept-2 3.655 3.655 3.780 3.779 4.891 3.768
intercept-3 6.127 6.127 6.326 6.284 7.273 6.271
intercept-4 8.449 8.449 8.742 8.637 9.537 8.624
intercept-5 11.549 11.549 11.947 11.785 12.620 11.772
intercept-6 13.374 13.374 13.820 13.619 14.419 13.614

bl 3.226 3.226 3.184 3.247 1.727 3.258
ebit/ta -6.322 -6.322 -6.125 -6.020 -4.892 -6.034

ls -0.793 -0.793 -0.852 -0.798 -0.868 -0.798
re/ta -3.746 -3.746 -3.874 -3.859 -3.908 -3.852
wc/ta 3.279 3.279 3.051 3.144 1.738 3.150

Panel II: out-of-sample hit-rates
0.479 0.479 0.484 0.503 0.484 0.503
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