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Abstract

This paper proposes an original three-part sequential testing procedure (STP) with which to

test for contagion using a multivariate model. First, conditional on breaks in the conditional

mean, the procedure identifies distinct structural breaks in the volatility of a given set of

countries. A further structural break test applied to the correlation matrix identifies and

then dates the potential contagion mechanisms. As a third element, the STP tests for the

distinctiveness of the break dates previously found. As a result of using multi-dimensional

data, the STP has high testing power and is able to locate the dates of contagion more pre-

cisely. The application to European long-term interest rates shows that immediate contagion

from Greece does not take place, but the dynamic spillovers are shown to increase after con-

trolling for breaks in the different model parameters. For other countries we find evidence of

both contagion and flight-to-quality mechanisms.
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1. Introduction

The recent European sovereign debt crisis has been characterized by a rapid diffusion

across borders. However, this negative shock has been observed to diffuse differently across

European countries; some countries, particularly Southern European countries such as Italy,

Portugal and Spain, were immediately and negatively affected, whereas the direct impact

on Northern and central European countries such as Germany and Austria has appeared

much less severe. This fact is crucial for policy makers to establish efficient firewalls to stop

the diffusion of such turmoil, and stress the problem of having a European global response

to the crisis. This issue has been the starting point of a revival of empirical studies on

the transmission of shocks and contagion in the euro area (?, ?, ?, ? or ?, to name but a

few). These studies rely on distinct definitions of contagion and methodologies and lead to

different conclusions. This paper proposes to extend these analyses by refining the empirical

methodology to better detect the transmission of crises using time series data.

Since the seminal papers of ?, ? and ?, (shift) contagion has often been considered a

significant increase in the correlation between two countries’ stock market indexes. A key

methodological contribution is ?, in which it is shown that contagion is over-accepted, if

one ignores the changes that occur in the variance when testing for changes in correlation.

Following ??, another strand of literature prefers to focus on the transmission channels

of a crisis and to investigate the stability of the spillovers between two countries’ stock

market indexes. Both approaches are particularly interesting because they adopt different

timing perspectives, either distinguishing abrupt changes in contemporaneous dependence or

changes in dynamic spillovers. We retain this distinction in the remainder of the paper. To be

specific, we use the following terminology. Interdependence refers to existing linkages between

markets. A crisis is turmoil in financial markets that occurs as a result of shocks, and it
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materializes in the form of increased volatility. Contagion in general refers to the situation in

which the degree of interdependence increases beyond its usual level during a crisis. In this

paper, we distinguish between two forms of contagion. Shift contagion refers to breaks in

contemporaneous correlation, i.e., an increase in the immediate shock transmission. Spillover

contagion is associated with breaks in the dynamics of transmission channels; the latter form

of contagion is directional, and typically requires a certain time lag to materialize. Finally, by

flight-to-quality we mean the situation in which the level of interdependence decreases during

a crisis, indicating a decoupling of safe haven countries that are believed to be unaffected by

the crisis.1

Nevertheless, several issues should be taken into account when testing for contagion.

First, many studies consider crisis dating as exogenous. In other words, the break date is

not inferred from the data but imposed by the authors. Several procedures for endogenous

break date determination have been proposed, e.g., in ??, ?, ? or ?.

Second, a typical assumption is the simultaneity of the structural breaks in volatility, typ-

ically representing increased turmoil and the outbreak of the crisis, and correlation breaks,

representing the occurrence of contagion. ? challenge this assumption and observe that dur-

ing the Asian crisis, variance breaks preceded correlation shifts in most cases. The economic

motivation behind this finding is that the intensification of interdependence is not immedi-

ate and takes place only when markets are already stressed. In such situations, assuming

simultaneity between volatility and correlation shifts would lead to a combination of these

two effects and hence to an underestimation of the presence of contagion.

Third, many existing papers such as ?, ?, or ? exclusively analyze pairwise correlations.

As noted by ?, considering a multivariate approach is recommended to correctly apprehend

contagion, whereas bivariate analysis may lead to biased conclusions. Indeed, a shock that

1See inter alii ? for a comparison between contagion and flight-to-quality in the case of stocks and bonds

markets.
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originates in country/market i does not necessarily impact country/market j directly but may

indirectly transit via country/market k. Furthermore, from a purely econometric perspective,

?, ? and ? show that the date of a structural break is estimated more precisely in a

multivariate system than in a univariate regression.

The contribution of this paper is to propose and apply a novel sequential testing approach

for contagion that addresses the abovementioned issues. Relying on the theory developed

in ?, we specify a vector autoregressive model (VAR) that is subject to multiple structural

breaks. The key methodological innovation is to separate the structural breaks in the pa-

rameters for the conditional mean, the error variance and the correlation between the shocks.

Furthermore, the procedure tests whether the inferred breaks are distinct from one another,

in similar spirit to the test proposed in ?. The sequential procedure is performed in a multi-

variate dynamic set-up (of dimension 10) to benefit from high testing power and more precise

estimates of the break dates and thereby to better evaluate the presence of contagion.

The idea of decomposing mean, variance and correlation breaks is similar to the one

proposed by ?, who study structural breaks in cross-country inflation relations. Still, the

Sequential Testing Procedure (hereafter STP) presents the advantage of decomposing the

covariance matrix before testing and not after finding a break in the variance-covariance

matrix. The procedure therefore requires breakpoint tests for fewer parameters, resulting in

lower degrees of freedom. This increases the power and efficiency of the applied break tests.

Similarly to ?, ?, ?, ?, ? and ?, we analyze the 10-year bond yield spreads over Germany.

Our analysis confirms previous conclusions regarding the absence of shift contagion between

Greece and other countries. Furthermore, we are able to identify and date the sequence of

shocks to the European sovereign bond markets. We observe that volatility breaks occur

simultaneously in the whole system but are distinct from the structural breaks of the condi-

tional mean parameters, which are again common across all equations. This finding stresses

the coincidence of unrest hitting the euro area economies during the Sovereign Debt Crisis.

The correlation breaks, on the other hand, occur over various dates and are not common
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to all country pairs. Nevertheless, many of the breakpoints in correlations cluster around a

small number of dates, and the distinctiveness tests enable us to identify a few ’contagion

clubs’, i.e., countries that have common correlation breaks. Furthermore, we find strong

evidence of a flight-to-quality mechanism at various stages of the crisis that is associated

with a decrease in correlation. The identified breakpoints and resulting parameter estimates

are also very useful for analyzing the spillovers in a manner similar to that in ?? and ?.

Indeed, we demonstrate that the spillover indexes show significant time variation and that

the distinct breakpoints translate into a well-interpretable evolution over time. In this case,

the role of Greece appears different because there is evidence of spillover contagion at various

times during the crisis.

The paper is structured as follows. Section 2 motivates and explains the model and the

STP methodology. Section 3 describes the empirical application of our method to the case of

the European crisis. Concluding remarks are made in Section 4. The appendix contains some

technical details and complementary results, while Monte Carlo simulations on the method’s

properties can be found in an online appendix.

2. Methodology

2.1. The multivariate model

Our analysis of financial contagion builds on the following vector autoregressive model

(VAR) for a vector of financial time series yt = [y1,t, . . . , yn,t]′,

yt = B0,t +
p∑
i=1
Bi,tyt−1 +Bx,txt + εt. (1)

Here t = 1, . . . , T , xt is a vector of q exogenous variables, and the coefficient matrices Bi,t

and Bx,t as well as the intercept vector B0,t are potentially time-varying. The n-dimensional

vector of error terms εt = [ε1,t, ε2,t, . . . , εn,t]′ follows some (unknown) distribution with co-

variance matrix Σt. Assumptions about the innovations are mild; they allow for the typical
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features observed in financial returns, in particular conditional heteroscedasticity and auto-

correlation, and can be found in Appendix A.1.

The parameters in equation (1) are allowed to be time-varying by being subject to struc-

tural breaks at unknown points in time. To be precise, below we explain how to test for and

date structural breaks in the conditional mean, in the conditional variance and in conditional

correlations in a manner similar to that described in ?. The estimated breakpoints and the

corresponding changes in parameter estimates in turn allow us to infer whether and to what

extent contagion occurred.

2.2. Contagion in the multivariate model

For the moment, let us ignore any time variation in parameters of the conditional mean

equation. Shift contagion is detected when the correlation between markets increases beyond

its pre-crisis level. Because contemporaneous dependence is not part of the conditional mean

model, it is captured by the covariance matrix Σt of the errors εt. Thus, testing for contagion

boils down to testing for an increase in the dependence among the residuals ε̂t. However,

as noted by ?, a change in the covariance matrix Σt does not allow for the identification of

contagion. The origin of a shift in a covariance term σij = σiρijσj would be unclear because

it could result from an increase in the correlation or from a rise in the variance, where the

latter is typically a sign of crisis outbreak or intensification. Therefore, we decompose the

covariance matrix as follows:

Σt = StRtSt. (2)

Rt is the matrix of n(n − 1)/2 correlation coefficients ρij,t and St is a diagonal matrix

containing n standard deviations σi,t, for i, j = 1, . . . , n.

A test for (shift) contagion consists in detecting an increase in the elements of the corre-

lation matrix Rt, which measure contemporaneous interdependence only. However, during a

financial crisis, some elements of the St matrix are likely to increase due to increased market

risk. Moreover, there is no a priori reason to believe that the outbreak of a crisis in multiple
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countries occurs simultaneously but that contagion occurs in a sequential manner. In fact, it

is likely that this contagious transmission may occur several periods after the initial outbreak

of the crisis. Therefore, assuming concordance between shifts in volatility and dependence is

overly restrictive and can lead to imprecise or even biased estimates of the unknown time of

structural changes. In our approach, breaks in volatility and correlation are not assumed to

be simultaneous, but we challenge this assumption and test whether these breakpoints are

the same.

Table 1 illustrates a hypothetical crisis scenario that can be identified using our procedure.

The crisis breaks out in market 1 first, which increases the standard deviation σ1. Market 3

then enters a high-volatility crisis state, followed by market 2. The last standard deviation

break occurs simultaneously with shift contagion between the first three markets, which

means that the three correlation coefficients ρ12, ρ13 and ρ23 shift to higher values. Finally,

the fourth market is not affected by the crisis in any way; nevertheless, its covariance with the

other markets changes. A test seeking instability in, for example, the covariance σ13 = σ1ρ13σ3

would produce a biased break date estimate in between the three distinct breaks. Instability

in σ13 may be caused by changes in either the standard deviation or by a change in correlation.

A direct test for a structural break in the covariance matrix would not be able to identify the

source of instability. Furthermore, the number of parameters breaking is much smaller than

the number of affected covariances. A test on the covariances would thus have more degrees

of freedom, which would affect the power of the test.

To summarize, our test for shift contagion is a test for a structural break in the correlation

matrix at an unknown point in time conditional on structural breaks at (possibly distinct)

unknown dates in the series’ volatility. However, the VAR coefficients in equation (1) are

also likely to be subject to structural breaks; see ? and ?. Therefore, prior to testing for

and estimating structural breaks in correlations and variances, we test for breakpoints in the

VAR parameters B0,t, Bi,t and Bx,t, which are collected in the coefficient matrix Bt. A test

for multiple structural breaks in the parameters of the conditional mean and covariance of
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Table 1: Example of a sequence of crisis events

σ
(1)
1 0 0 0
0 σ

(1)
2 0 0

0 0 σ
(1)
3 0

0 0 0 σ4


 1 ρ

(1)
12 ρ

(1)
13 ρ14

ρ
(1)
12 1 ρ

(1)
23 ρ24

ρ
(1)
13 ρ

(1)
23 1 ρ34

ρ14 ρ24 ρ34 1


σ

(1)
1 0 0 0
0 σ

(1)
2 0 0

0 0 σ
(1)
3 0

0 0 0 σ4

=

σ
2(1)
1 σ

(1)
12 σ

(1)
13 σ

(1)
14

σ
(1)
12 σ

2(1)
2 σ

(1)
23 σ

(1)
24

σ
(1)
13 σ

(1)
23 σ

2(1)
3 σ

(1)
34

σ
(1)
14 σ

(1)
24 σ

(1)
34 σ2

4

 = Σ(1)

Variance break in series 1σ
(2)
1 0 0 0
0 σ

(1)
2 0 0

0 0 σ
(1)
3 0

0 0 0 σ4


 1 ρ

(1)
12 ρ

(1)
13 ρ14

ρ
(1)
12 1 ρ

(1)
23 ρ24

ρ
(1)
13 ρ

(1)
23 1 ρ34

ρ14 ρ24 ρ34 1


σ

(2)
1 0 0 0
0 σ

(1)
2 0 0

0 0 σ
(1)
3 0

0 0 0 σ4

=

σ
2(2)
1 σ

(2)
12 σ

(2)
13 σ

(2)
14

σ
(2)
12 σ

2(1)
2 σ

(1)
23 σ

(1)
24

σ
(2)
13 σ

(1)
23 σ

2(1)
3 σ

(1)
34

σ
(2)
14 σ

(1)
24 σ

(1)
34 σ2

4

= Σ(2)

Variance break in series 3σ
(2)
1 0 0 0
0 σ

(1)
2 0 0

0 0 σ
(2)
3 0

0 0 0 σ4


 1 ρ

(1)
12 ρ

(1)
13 ρ14

ρ
(1)
12 1 ρ

(1)
23 ρ24

ρ
(1)
13 ρ

(1)
23 1 ρ34

ρ14 ρ24 ρ34 1


σ

(2)
1 0 0 0
0 σ

(1)
2 0 0

0 0 σ
(2)
3 0

0 0 0 σ4

=

σ
2(2)
1 σ

(2)
12 σ

(3)
13 σ

(2)
14

σ
(2)
12 σ

2(1)
2 σ

(2)
23 σ

(1)
24

σ
(3)
13 σ

(2)
23 σ

2(2)
3 σ

(2)
34

σ
(2)
14 σ

(1)
24 σ

(2)
34 σ2

4

= Σ(3)

Variance break in series 2 and correlation breaks between series 1, 2 and 3σ
(2)
1 0 0 0
0 σ

(2)
2 0 0

0 0 σ
(2)
3 0

0 0 0 σ4


 1 ρ

(2)
12 ρ

(2)
13 ρ14

ρ
(2)
12 1 ρ

(2)
23 ρ24

ρ
(2)
13 ρ

(2)
23 1 ρ34

ρ14 ρ24 ρ34 1


σ

(2)
1 0 0 0
0 σ

(2)
2 0 0

0 0 σ
(2)
3 0

0 0 0 σ4

=

σ
2(2)
1 σ

(3)
12 σ

(4)
13 σ

(2)
14

σ
(3)
12 σ

2(2)
2 σ

(3)
23 σ

(2)
24

σ
(4)
13 σ

(3)
23 σ

2(2)
3 σ

(2)
34

σ
(2)
14 σ

(2)
24 σ

(2)
34 σ2

4

= Σ(4)

Note: Example of crisis and contagion events resulting in four covariance matrix regimes Σ(d), d = 1, . . . , 4. The left side of the
term indicates the decomposed covariance matrix, SRS = Σ. All parameter changes are highlighted in bold. Crisis breaks out
in market 1 first, then in market 3 and reaches market 2 last, whereas contagion occurs at the same time as the crisis outbreak
in market 2. Market 4 remains completely unaffected.

a multivariate system is proposed in ?, and we adopt this approach. ? propose an iterative

procedure for separating breaks in the coefficients and the covariance matrix. We adapt this

procedure to our setting, the difference being that we additionally allow for distinct breaks

in correlations and volatilities. Our testing procedure operates as follows.

1. Determine the number of breakpoints in the VAR coefficients mB, and estimate the

break dates T̂ (B)
1 , . . . , T̂ (B)

mB
. Estimate the coefficients B̂t for the corresponding regimes.

2. Compute the residuals ε̂t, and conditional on the breakpoints from Step 1, determine

the number of breakpoints mS in the standard deviations in St and the corresponding

break dates T̂ (S)
1 , . . . , T̂ (S)

mS
. Estimate the regime-specific standard deviations σ̂it.

3. Compute the standardized residuals ε̃it = ε̂it/σ̂it. Conditional on the breakpoints from

Steps 1 and 2, determine the number of breakpoints mR in the correlation matrix Rt

and the corresponding break dates T̂ (R)
1 , . . . , T̂ (R)

mR
.
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4. Conditional on the breakpoints in Rt, re-do Step 2.

5. Conditional on the breakpoints in St and Rt re-do Step 1.

6. Iterate between Steps 1 to 5 until the number of breakpoints and the estimated break

dates do not change.

A few remarks must be made concerning the details of the algorithm. (i) All tests are

based on (pseudo) likelihood ratio (LR) statistics relying on a multivariate normal distribu-

tion, as in ?. Note that this does not mean that we assume a normal distribution or that the

data are iid. Deviations from normality are accounted for by the asymptotic distribution of

the resulting test statistics. Critical values are obtained by simulation. (ii) The maximum

number of breakpoints m of each type must be set prior to the analysis. Furthermore, a min-

imum regime length between two breakpoints and at the boundaries of the sample must be

chosen. In our application we allow for a maximum m = 3 breakpoints per model parameter

and restrict each regime to contain at least 10% of all observations. (iii) The location of the

multiple break locations can be estimated efficiently using the algorithms proposed in ?. (iv)

In Step 5, conditional on the breakpoints in the covariance matrix Σt, a feasible generalized

least squares estimator is applied to estimate the VAR; see ? for details. (v) Confidence

intervals for the break dates are obtained using a block bootstrap procedure. (vi) Although

the break dates in Bt, St and Rt are allowed to occur at distinct dates, all parameters within

each type are assumed to share common breakpoints. This strong assumption results in

favorable properties for the breakpoint test. However, when this assumption is violated the

breakpoint test may not detect any structural change due to low power, or the break date

estimates may be biased. In the next section, we discuss how to address this problem.

Until now we have described how to test for shift contagion, which is identified via an

increase in correlations. Likewise, a decrease in correlation is a sign of a flight-to-quality

behavior of investors. However, the combined structural breaks in mean, variance and corre-

lations also help in studying the evolution of spillovers as measured by the dynamic spillover
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index of ??, which we explain in Appendix A.2. An increase in the spillover index indicates

the presence of what we termed spillover contagion. This concept identifies the direction of

contagion and captures contagion that occurs with a time lag.

2.3. Testing for common breakpoints

One of the motivations for applying our test for contagion to multivariate data instead of

relying on a bivariate analysis is that in the former case breakpoint tests have more power

and produce more reliable estimates of the break dates (see ?, ? and ?). We illustrate

these properties for the case of breakpoints in volatility and correlations in our Monte Carlo

simulations in an online appendix of the paper. However, to exploit the advantages of having

common breakpoints over a large set of parameters and equations, it is recommended that

this assumption actually be questioned.

For each type of parameter we suggest testing whether the breakpoints in each equation

can be assumed to occur at a common date.2 A test for the coincidence of breakpoints in

different model parameters is proposed by ?. For the breakpoints in Bt, St and Rt, we test

H0 : All parameters share a common breakpoint

against the alternative that the breakpoints are specific to each equation for Bt and St and

for each variable pair in the case of the correlations in Rt. This null hypothesis can be tested

using a likelihood ratio test. The restricted likelihood assumes common breakpoints, whereas

under the alternative, the number of breakpoints and their locations are determined for each

equation/variable pair separately. Critical values are obtained using the following bootstrap

algorithm.

1. Assuming common breakpoints, determine the number of structural breaks m and their

2In the case of correlations, we test whether all breakpoints in pairwise correlations occur at the same

date.
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dates T̂1, . . . , T̂m. Compute the log-likelihood under H0, LL0. Furthermore, determine

the number of breakpoints, the break dates and the resulting log-likelihood LL1 under

the alternative. Compute the likelihood ratio statistic LR = −2(LL1 − LL0).

2. Using the common breakpoints from Step 1, resample the multivariate observations

using a block bootstrap scheme for each regime separately, i.e., T1 observations from

t = 1, . . . , T1, T2 − T1 observations from t = T1 + 1, . . . , T2, etc.

3. Using the re-sampled data, determine the number of breaks, their locations and the

log-likelihood under H0 and H1, and compute the bootstrap test statistic LR∗.

4. Repeat Steps 2 and 3 a large number of times to obtain the bootstrap distribution of

the likelihood ratio statistic.

Note that in Step 2 the data are resampled either from the raw data, from ε̂t or from ε̃t,

when testing the equality of the breaks in Bt, St and Rt, respectively.

If the null hypothesis of common breaks is rejected, we suggest studying the estimated

breakpoints and their confidence intervals to determine subsets of the data that do share

common breaks. Breakpoints in different parameters lying close to each other are an in-

dication of common breaks in the corresponding subset of parameters. Although it is not

possible to define what ’close’ means in this situation, we suggest considering common breaks

whenever the confidence intervals overlap. The presence of subsets with common breakpoints

yields the same benefits in terms of the power and efficiency of the tests for structural breaks

for the relevant subsets of parameters. Furthermore, the information pertaining to which

variables/variable pairs can be grouped in the change point analysis is economically relevant

information and may allow for interesting interpretations.

Although the search for subsets of the data that can be grouped is relevant from a

statistical point of view, as well for the interpretation of results, the search does require

the researcher to make a number of decisions. Most importantly, an initial guess for the

grouping must be made. Furthermore, there may be mutually exclusive groupings, and the
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researcher must chose one of them. The restrictions maximizing the overall likelihood should

be considered in the case of conflicting groupings. Finally, overall, our procedure requires a

large number of hypothesis tests, implying potential problems of multiple testing. Therefore,

it is important to use conservative test sizes to control the overall size of the procedure.

Because the number of hypothesis tests to be performed is not known prior to the analysis,

we use a size of 1% in our application, but we note that in basically all cases we rejected a

hypothesis the p-values were virtually equal to zero.

A complete Monte Carlo analysis that illustrates the small sample testing properties

relevant to the STP is available in an online appendix of the article. It demonstrates some of

the advantages of our approach. First, using multivariate systems when testing for contagion

leads to higher power and a more reliable identification of the break dates. However, it is

also observed that beyond a certain number of time series the rejection frequencies under

an alternative hypothesis is decreasing; therefore, a certain saturation effect arises. Second,

simulations illustrate that separating variance and correlation breaks is the recommended

approach when the two do not break simultaneously.

3. Empirical Study

3.1. Contagion during the European debt crisis

We consider daily 10-year sovereign bond yield spreads of the 10 euro area countries

Austria (AUS), Belgium (BEL), Finland (FIN), France (FRA), Greece (GRE), Ireland (IRE),

Italy (ITA), the Netherlands (NET), Portugal (POR) and Spain (SPA) over the yield of

Germany (GER). Data are extracted from Thomson Reuters datastream, and the sample

covers the period Jan. 2, 2009 until Aug. 1, 2014. A preliminary analysis reveals that the

unit root hypothesis cannot be rejected, and thus, the first differences in bond yield spreads

are considered.

Concerning our model specification, p = 1 lag is chosen in the VAR considering the

Bayesian Information Criterion (BIC). Because our sample covers the European debt crisis,
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q = 2 exogenous variables are included to control for systemic risks. As in ?, ? and other

studies, the Chicago Board Options Exchange Index (VIX) is included with one lag as a

measure of global risk. Similarly to ?, ? and ?, the lagged spread between the Euribor

3-month lending rate and the overnight reference rate EONIA is additionally included as a

measure of European financial market stress.

Given our large sample length of T = 1, 456, a moderate trimming κ = 0.1 has been

considered, allowing for a minimal regime length of h = dκT e = 146 days. As noted above,

we allow for a maximum of m = 3 breaks in each type of parameter, which corresponds to

the number of (common) breakpoints found in ?. As previously described, we sequentially

search for structural breaks assumed to be common within each class of parameters. Thus,

in Step 1, we search for a maximum of three simultaneous co-breaks in n(n + 1 + 2) = 130

regression coefficients, Step 2 looks for a maximum of three simultaneous co-breaks in n = 10

standard deviations (conditional on the breaks found in Step 1), and Step 3 looks for a

maximum of three simultaneous co-breaks in n(n−1)
2 = 45 correlation coefficients (conditional

on the breaks found in Steps 1 and 2).

Table 2 reports the results of the break tests in mean coefficients as well as in the variances.

Note that the results presented are the final results obtained after iterating the breakpoint

detection until convergence, as explained in Section 2. The STP detects three significant

common breaks in both cases. Several remarks must be made: First, the three breaks in

the conditional mean equations are common across all equations (at a p-value of 0.18), i.e.,

the assumption of common breakpoints in B cannot be rejected. Second, the breaks in the

variances can also be assumed to be common across all equations (p-value of 0.32). As a

result of having common breakpoints, the confidence intervals around the break dates tend

to be relatively narrow, which is predicted by theory and by our simulation results. Third,

the null hypothesis that the breaks in variances and means are located at common dates is

rejected with a p-value of 0. This finding supports our intuition that the breaks in different

types of parameters occur at distinct times. Therefore, assuming their synchronicity would
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Table 2: Breakpoint analysis of conditional mean and variance

Mean regression mB = 3 breaks
max LR 1010.63

99% critical value 470.71
p-value 0

Break date estimates 15-Aug-2011 12-Mar-2012 02-Oct-2012
95% confidence intervals [20-Apr-11,19-Aug-11] [27-Feb-12,12-Mar-12] [02-Oct-12,13-Jan-14]

Covariates coefficient change coefficient change coefficient change
Const -3.635 +3.709 -0.161

AUSt−1 +1.757 -4.764 +5.308
BELt−1 +0.447 +5.577 -4.478
FINt−1 +8.131 -7.895 -0.838
FRAt−1 -0.001 -1.139 +1.357
GREt−1 +0.646 -0.453 + 0.297
IREt−1 -0.740 -1.776 +1.032
ITAt−1 -2.741 + 1.557 -0.493
NETt−1 -13.218 +10.529 +2.320
PORt−1 -0.063 +0.016 -0.279
SPAt−1 + 3.189 -2.425 -0.354
V IXt−1 + 0.066 -0.099 + 0.027

(Euribor − EONIA)t−1 2.538 -0.869 -1.100

Standard deviations mS = 3 breaks
max LR 6877.00

99% critical value 1222.76
p-value 0

Break date estimates 22-Jan-2010 05-Jul-2011 01-Oct-2012
95% confidence intervals [30-Oct-09,11-Mar-10] [22-Apr-11,01-Aug-11] [03-Sep-12,25-Oct-12]

Series standard deviation change standard deviation change standard deviation change
AUS -0.001 +0.028 -0.034
BEL +0.020 +0.036 -0.057
FIN -0.002 +0.009 -0.011
FRA +0.004 +0.040 -0.039
GRE +0.242 +1.303 -1.421
IRE +0.084 +0.012 -0.099
ITA +0.022 +0.095 -0.088
NET -0.002 +0.010 -0.013
POR +0.116 +0.092 -0.140
SPA +0.045 +0.068 -0.077

Note: Test results, estimated break dates and corresponding changes in coefficients for the conditional mean parameters (upper
panel) and the standard deviations (lower panel). 95% confidence intervals we obtained via a block bootstrap. For breaks in the
mean regression, changes in coefficients are summarized for each regressor listed in the first column: The shifts in the estimated
regression coefficients are sums across all equations.
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lead to substantial biases in the estimated break dates and the regime specific parameter

estimates. However, it is noteworthy that two out of the three estimated breaks lie very close

to each other, namely the breaks in July and August 2011 and the ones in October 2012,

which differ only by one day. This suggests that the rejection of common breaks is only

driven by one of the three break dates differing.

The three breaks in conditional means (August 2011, March 2012 and October 2012)

represent important systemic changes in Europe: the issuance of 4.6 billion euros to assist

Ireland and Romania, as well as several meetings of the Ecofin and the first meeting of the

European Systemic Board are associated with the August 2011 break. The March 2012 and

October 2012 breaks can be associated with the different positive speeches of M. Draghi and

O. Rehn and the first IMF/ECB/EC reports about the improvement of financial stability

in the euro area. A change in the conditional mean parameters implies a change in the

transmission mechanisms of a shock and can be associated with systemic risk deterioration

or improvements.

The following findings reveal that all euro area countries faced three main breaks in

volatility. The first one occurring in January 2010 was common to all European countries

and was initiated by the Eurostat report questioning the Greek figures on public debt and

deficit. Financial markets became concerned regarding the potential default of Greece, asking

for a higher risk premium for holding Greek public bonds. Nevertheless, whereas this shock

was associated with an increase in volatility for most of the countries, volatility actually

decreased (by a small margin) for Austria, Finland and the Netherlands. This fact signals

the heterogeneity across the different European countries: Volatility increases over the entire

area except in these three countries, which are often considered the most virtuous ones in

term of public debt. The next volatility break is found in July 2011, when the Eurogroup

meeting stated a new financial plan to support Greece. Volatility in the bond markets was

again exacerbated. Finally, in October 2012 we notice a return to a quieter regime and lower

volatility following the IMF/EC reports signaling that Ireland and Portugal will satisfy the
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objectives conditioning the safety plans. Both breaks are common in terms of timing and

directions of volatility change among all European countries.

The third step of the STP consists in testing for the presence of breaks in the correlation

coefficients conditional on those previously found in the mean and the variance. Ultimately,

no common break is detected in the correlation matrix of all euro area countries. The p-

value is equal to 0.36 testing the null of no breaks versus the alternative of the m = 1

single break hypothesis. This finding clearly indicates that Europe is heterogeneous, with

some countries observing a decrease in the yield spread, indicating a lower risk premium,

whereas others face an increase in refinancing capacities, and highlights that the diffusion

(or contagion) of the shocks is not the same across the euro area. Therefore, we pursue

our analysis by re-considering the nature of the correlation breaks. To be specific, in a first

step, we analyze the pairwise correlations and study the different breaks corresponding to all

country pairs. Not only is this information interesting in its own right; the procedure used

to obtain the information is also a preliminary stage required to begin with the multivariate

investigation of contagion. Using the results of the first step helps us to identify suitable

groups of countries to test for the presence of contagion clubs, i.e., subsets of countries that

have common correlation breaks. Therefore, we try to identify subsets of countries that

may in fact be characterized by common correlation breaks. We consider several clusters

of countries as candidates based on the estimated break dates of pairwise correlations3 and

perform the test for common breakpoints in correlation against the alternative of distinct

breaks in pairwise correlations introduced in Section 2.3. Due to the high computational

burden, the test results are based on 100 bootstrap replications. Several clusters of countries

emerge. First, common correlation breaks cannot be rejected for AUS–POR–SPA at a p-value

of 0.35. The correlations move in the same direction for the first two breaks between these

3The candidates for the clusters are BEL–FIN–FRA–ITA–NET, AUS–POR–SPA, BEL–FRA–NET,

BEL–FIN–ITA, BEL–ITA–NET, FIN–FRA–NET, BEL–FIN–FRA, and BEL–FIN–NET
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Table 3: Breakpoints in correlations part 1

AUS BEL FIN FRA GRE

AUS

(0.646)
+0.231
−0.052
−0.320
(0.505)

0.497

0.644
+0.182
−0.475
+0.461

0.811

0.278

BEL

09-Jan-2012
[26-May-12,13-Jan-12]

07-Aug-2012
[31-Jul-12,07-Aug-12]

27-Feb-2013
[27-Feb-13,09-Jan-14]

0.287
+0.471
−0.365
+0.039

0.432

0.725
−0.020
+0.222
−0.332

0.595

0.335

FIN -

03-Aug-2009
[24-Jul-09,05-Aug-09]

25-Feb-2010
[23-Feb-10,28-Mar-12]

07-Nov-2012
[02-Dec-10,18-Oct-13]

0.356
+0.163
+0.340
−0.413

0.446

0.175

FRA

04-Nov-2010
[20-Oct-09,05-Mar-12]

21-May-2013
[27-May-11,21-May-13]

11-Dec-2013
[11-Dec-13,09-Jan-14]

26-Feb-2010
[06-Aug-09,22-Feb-11]

02-Mar-2012
[20-Sep-10,16-Mar-12]

08-Oct-2012
[24-Sep-12,03-Jan-14]

11-Aug-2009
[24-Jul-09,14-Sep-09]

06-Apr-2010
[03-Mar-10,09-Apr-10]

01-Nov-2013
[27-Oct-10,13-Nov-13]

0.293

GRE - - - -

IRE

31-Mar-2010
[31-Aug-09,16-Jun-11]

13-Jun-2013
[04-Nov-10,29-May-13]

08-Jan-2014
[03-Jan-14,09-Jan-14]

- -

28-May-2010
[26-Oct-09,16-Sep-11]

10-Apr-2013
[21-Dec-10,06-May-13]

29-Nov-2013
[31-Oct-13,09-Jan-14]

-

ITA -

03-Aug-2009
[24-Jul-09,05-Aug-09]

25-Feb-2010
[23-Feb-10,28-Mar-12]

07-Nov-2012
[02-Dec-10,18-Oct-13]

03-Aug-2009
[24-Jul-09,05-Aug-09]

25-Feb-2010
[23-Feb-10,28-Mar-12]

07-Nov-2012
[02-Dec-10,18-Oct-13]

- -

NET -

26-Feb-2010
[06-Aug-09,22-Feb-11]

02-Mar-2012
[20-Sep-10,16-Mar-12]

08-Oct-2012
[24-Sep-12,03-Jan-14]

28-Jul-2009
[24-Jul-09,04-Aug-09]

03-Mar-2010
[17-Feb-10,16-Aug-12]

01-Apr-2013
[28-Sep-10,26-Dec-13]

26-Feb-2010
[06-Aug-09,22-Feb-11]

02-Mar-2012
[20-Sep-10,16-Mar-12]

08-Oct-2012
[24-Sep-12,03-Jan-14]

-

POR

13-Aug-2009
[24-Jul-09,03-Sep-09]

31-Mar-2010
05-Mar-10,09-Apr-13]

30-Dec-2013
[02-Nov-10,09-Jan-14]

-

11-Aug-2009
[24-Jul-09,21-Aug-09]

02-Apr-2010
[04-Mar-10,04-Dec-13]

03-Mar-2010
[04-Aug-09,31-Aug-10]

29-Apr-2011
[28-Sep-10,10-Aug-11]

01-Mar-2012
[08-Dec-11,30-Jul-13]

-

SPA

13-Aug-2009
[24-Jul-09,03-Sep-09]

31-Mar-2010
05-Mar-10,09-Apr-13]

30-Dec-2013
[02-Nov-10,09-Jan-14]

12-Jan-2011
[24-Jul-09,12-Jan-11]

04-Aug-2011
[04-Aug-11,09-Nov-11]

31-May-2012
[24-Feb-12,01-Jan-14]

27-Jul-2009
[24-Jul-09,25-Aug-09]

02-Apr-2010
[16-Feb-10,05-Aug-10]

28-Feb-2011
[25-Oct-10,06-Dec-13]

- -

Note: This table should be read jointly with Table 4. Correlation breaks obtained by applying sequential procedure from Section
2. Break date point estimates (95% confidence intervals obtained by a block bootstrap in parentheses) for correlation breaks
are reported in the lower triangle, whereas the upper triangle reports the correlation before the first break, the changes in
correlations corresponding to the breakpoints and the correlation after the last break.
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Table 4: Breakpoints in correlations part 2

IRE ITA NET POR SPA

AUS

0.547
−0.244
+0.191
−0.276

0.217

0.511 0.561

0.611
+0.064
−0.375
−0.068

0.232

0.464
+0.294
−0.281
−0.154

0.323

BEL 0.436

0.641
+0.157
−0.053
−0.282

0.463

0.741
−0.229
+0.088
−0.154

0.446

0.434

0.643
+0.217
−0.176
−0.264

0.421

FIN 0.262

0.244
+0.392
−0.352
−0.019

0.265

0.294
+0.535
−0.224
−0.256

0.348

0.194
+0.388
−0.401

0.181

0.206
+0.443
−0.247
−0.196

0.206

FRA

0.557
−0.251
+0.234
−0.291

0.249

0.555

0.708
−0.036
−0.041
−0.159

0.472

0.621
−0.165
−0.335
+0.215

0.337

0.509

GRE 0.375 0.410 0.205 0.466 0.389

IRE 0.553

0.465
−0.319
+0.340
−0.289

0.197

0.543 0.544

ITA -

0.521
+0.227
−0.259
−0.191

0.298

0.759
−0.313
+0.286

0.732

0.515
+0.359
−0.058
+0.077

0.893

NET

15-Oct-2010
[13-Oct-09,28-Jun-11]

10-Apr-2013
[08-Jun-11,19-Jun-13]

09-Jan-2014
[31-Oct-13,09-Jan-14]

05-Aug-2009
[24-Jul-09,05-Aug-09]

25-Feb-2010
[25-Feb-10,08-Sep-10]

31-Mar-2011
[20-Sep-10,27-Aug-13]

0.504
+0.153
−0.278
−0.205

0.174

0.743
−0.363
−0.255
+0.282

0.376

POR -

25-Nov-2010
[24-Aug-10,22-Feb-11]

30-Dec-2013
[22-Jun-11,09-Jan-14]

11-Aug-2009
[24-Jul-09,11-Aug-09]

03-Mar-2010
[03-Mar-10,23-Aug-10]

15-Mar-2011
[27-Sep-10,29-Jun-12]

0.528
+0.242
−0.259
+0.258

0.769

SPA -

01-Oct-2009
[13-Aug-09,10-Dec-09]

03-Nov-2011
[23-Apr-10,14-Mar-13]

28-Oct-2013
[21-Jan-13,25-Dec-13]

03-Mar-2010
[18-Sep-09,23-May-10]

05-Nov-2012
[23-Sep-10,16-Nov-12]

10-Jun-2013
[29-May-13,09-Jan-14]

13-Aug-2009
[24-Jul-09,03-Sep-09]

31-Mar-2010
05-Mar-10,09-Apr-13]

30-Dec-2013
[02-Nov-10,09-Jan-14]

Note: This table should be read jointly with Table 3. Correlation breaks obtained by applying sequential procedure from Section
2. Break date point estimates (95% confidence intervals obtained by a block bootstrap in parentheses) for correlation breaks
are reported in the lower triangle, whereas the upper triangle reports the correlation before the first break, the changes in
correlations corresponding to the breakpoints and the correlation after the last break.
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countries, while the last break on Dec. 30, 2013 is a sign of shift contagion between Portugal

and Spain but of flight-to-quality towards Austria. The second cluster found is BEL–FRA–

NET at a p-value of 0.85. This second cluster stresses the potential contagion between this

core of European countries, which share strong cross-border banking activities (Dexia, ING,

etc.). Finally, we observe a third cluster composed of BEL–FIN–ITA at a p-value of 0.4.

For all the remaining candidate clusters, the null hypothesis of common correlation breaks

is rejected with a p-value of 0.

Tables 3 and 4 gather the results of the breakpoint analysis in the correlations. The

restrictions of common breakpoints from the identification of clusters have been imposed on

these results. The tables should be read jointly, forming a 10×10 matrix with estimated break

dates in the lower triangular part and the estimated correlations, as well as their changes, in

the upper triangular part. In Table 5, we summarize the timeline of the estimated structural

breaks in all parameters, which contains the same qualitative information as the previous

three tables but likely makes it easier for the reader to extract the pertinent information.

To interpret the results of these tables, it is worth recalling that the presence of breaks

among the correlations can either be associated with a decrease or with an increase in cor-

relation. The first case suggests that an increase in the yield spread of a particular country

coincides with a cheaper refinancing rate in another one. This virtuous transmission is usu-

ally labeled as flight-to-quality. In the opposite case of a synchronous upward movement in

the yield spread of the other country, contagious transmission is thus supported.

We have already observed several breaks in correlation for 13 country pairs in and around

August 2009, before the first estimated volatility break of January 2010. All changes in corre-

lation are positive, providing preliminary evidence of the danger of contagion. Interestingly,

the correlation between Portugal and Spain rises by 0.318 to a high 0.841 on July 29, 2009,

and the correlation between Italy and Spain rises by 0.359 to a remarkable level of 0.874 on

Oct. 1, 2009. It thus appears that the European sovereign debt crisis had already begun in

2009 before the occurrence of the first variance break, as a consequence of government bailouts
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Table 5: Timeline of estimated structural breaks

Date Break Countries
2009 Jul 27 ↑ R FIN–SPA

28 ↑ R FIN–NET
Aug 03 ↑ R BEL–FIN–ITA
Aug 05 ↑ R ITA–NET

11 ↑ R FIN–FRA, FIN–POR,
NET–POR

13 ↑ R AUS–POR–SPA
Oct 01 ↑ R ITA–SPA

2010 Jan 22 ↑ S BEL, FRA, GRE, IRE,
ITA, POR, SPA

↓ S AUS, FIN, NET
Feb 25 ↓ R BEL–FIN–ITA, ITA–NET

26 ↓ R BEL–FRA–NET

Mar 03 ↓ R FIN–NET, FRA–POR,
NET–POR, NET–SPA

31 ↓ R AUS–IRE, AUS–POR–SPA
Apr 02 ↓ R FIN–POR, FIN–SPA

06 ↑ R FIN–FRA
May 28 ↓ R FRA–IRE
Oct 15 ↓ R IRE–NET
Nov 04 ↑ R AUS–FRA

25 ↓ R ITA–POR
2011 Jan 12 ↑ R BEL–SPA

Feb 28 ↓ R FIN–SPA
Mar 15 ↓ R NET–POR

31 ↓ R ITA–NET
Apr 29 ↓ R FRA–POR
Jul 05 ↑ S euro area
Aug 04 ↓ R BEL–SPA

15 B euro area
Nov 03 ↓ R ITA–SPA

Date Break Countries
2012 Jan 09 ↑ R AUS–BEL

Mar 01 ↑ R FRA–POR
02 ↑ R BEL–FRA, BEL–NET

↓ R FRA–NET
12 B euro area

May 31 ↓ R BEL–SPA
Aug 07 ↓ R AUS–BEL
Oct 01 ↓ S euro area

02 B euro area
08 ↓ R BEL–FRA–NET

Nov 05 ↓ R NET–SPA
07 ↓ R BEL–ITA, FIN–ITA

↑ R BEL–FIN
2013 Feb 27 ↓ R AUS–BEL

Apr 01 ↓ R FIN–NET
10 ↑ R FRA–IRE, IRE–NET

May 21 ↓ R AUS–FRA
Jun 10 ↑ R NET–SPA

13 ↑ R AUS–IRE
Oct 28 ↑ R ITA–SPA
Nov 01 ↓ R FIN–FRA

29 ↓ R FRA–IRE
Dec 11 ↑ R AUS–FRA

30 ↑ R ITA–POR, POR–SPA
↓ R AUS–POR, AUS–SPA

2014 Jan 08 ↓ R AUS–IRE
09 ↓ R IRE–NET

Note: This table summarizes the results from Tables 2 to 4. B, S and R represent breaks in parameters for the conditional
mean, the variance and the correlation, respectively. The arrows indicate whether the parameters have increased or decreased
at the corresponding breakpoints.
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during the Global Financial Crisis and growing concerns about accumulated high debt levels,

following the financial distress of countries such as Latvia or Hungary. This interpretation

is supported by several reports, such as the one published by the European Commission on

January 2009, which gave rise to concerns about debt sustainability (? and ?). Following the

first volatility break in January 2010, in early 2010 we observe correlation breaks in a total

of 19 country pairs. Almost all of those correlation breaks are associated with a decrease

in correlations. The breaks clearly indicate the presence of a flight-to-quality mechanism,

in favor of Austria, Finland and the Netherlands, which benefit from a decrease in their

yield spread and thus more interesting refinancing conditions.4 As previously mentioned,

this result highlights a high level of heterogeneity among euro area countries, supporting the

conclusions of ? and ?, who find that the EMU periphery mainly spread to other periphery

countries as well as to France and Belgium, but not to Austria, Finland or the Netherlands.

In the second half of 2010 and the first half of 2011, several further breaks in correlations

occur; thus, the flight-to-quality mechanisms appears to persist.

After the second volatility break in July 2011, which signals the entry into a higher

volatility period, the evolution of the correlation becomes ambiguous. The STP detects only

a few breaks in bilateral correlations, both positive and negative ones. It can be envisioned

that market participants realize that the euro area is not particularly homogeneous and

begin to make arbitrage between countries, leading to various effects on correlations. Similar

conclusions can be drawn after the third variance shock in October 2012, after which relatively

few breaks in correlation are observed. In late 2013 and early 2014, again several breaks are

observed over a short period, involving 10 country pairs. Correlations among periphery

countries are rising (POR–SPA or POR–ITA), but there is also evidence of an amplification

of the flight-to-quality mechanism involving mostly Austria and the Netherlands.

4It is important to note that we are considering yield spreads over the German 10-year bond, and therefore,

Germany itself is not considered in this study.
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A further noteworthy observation are the correlation breaks involving France beginning in

2012 and lasting until late 2013. Most breaks were negative, but there were also positive ones.

Interestingly, France had two breaks with each the Netherlands and Belgium in 2012 and two

breaks with each Austria and Ireland in 2013. These findings highlight the uncertainty

concerning the role of France in the crisis and specific problems associated with the French

economy.

Another interesting and striking result is that STP does not detect any correlation break

involving Greece and only very few ones involving Ireland (only with Austria, France and

the Netherlands), implying that we reject contagion from Greece/Ireland to the rest of the

European countries. It appears that the contemporaneous shock transmission to the rest of

Europe is not intensified, i.e., that no shift contagion is observed. Formally, this corroborates

our idea of separating the dates of breaks in conditional means, variances and correlations.

Furthermore, the important de-leveraging of the German and Dutch banks of their Greek

assets (see ?), as well as the regulation measures taken by the Irish government, may explain

such an independence of the Greek/Irish yield spread. The consequence of such a finding is

that a Greek default5 will most likely not be characterized by contagion to the rest of Europe.

This result has radical policy consequences and before being accepted should be assessed by

further studies relying on complementary contagion approaches.

3.2. Spillovers vs shift contagion

To better understand the situation of Greece, but also to gain additional insight con-

cerning other problematic countries, we rely on the spillover approach developed by ?? and

implemented in the same context as ours by ?. The authors calculate indexes based on

the analysis of the forecast error variance decomposition and conclude that contagion is

supported when abrupt changes (i.e., breaks) in spillovers are observed. This approach is de-

5The situation in Ireland has sharply improved in recent years, prompting us not to consider the default

of Ireland as a credible case.
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Spillover in the Euro Area
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Figure 1: Total spillover index, 20-step-ahead forecast, between 02 January 2009 and 01 August 2014. Either following
a model without breaks, with breaks in the mean parameters B as estimated by the STP and allowing covariance breaks
at the same dates, or with distinct breaks in the mean parameters B, the variances S and the correlation coefficients R
according to the STP.

tailed in Appendix A.2. We consider a 20-step-ahead forecast error variance decomposition6,

corresponding to approximately one trading month, which is calculated for each country

(transmitting or receiving) and the euro area as a whole.

Three VAR models are considered to compute spillover indexes: The first one is the VAR

model without any structural breaks. The second one follows the approach of ?. In particular,

the model assumes common breaks in the conditional mean and the covariance matrix of the

errors. The third model is the most complete one, which is obtained by applying the STP and

assuming distinct breaks in the conditional means, variances and correlations. The breaks

within the correlation matrix are also distinct, and common correlation breaks are only used

for the groups of countries identified by our tests for the abovementioned common correlation

breaks. As a consequence, a large number of regimes are observed, which leads to notable

time variation in the spillover indexes. This number of regimes guarantees a more refined

interpretation of the results because distinct events can be separated. Figure 1 represents

the total spillover index, calculated as the sum of either all transmitted spillover indexes or

6The results for other forecast horizons such as 10 steps are virtually identical to the ones reported here.
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all received spillover indexes, excluding each own variation share. The figure reveals that

spillover from other countries explains more than 60% of the interest rate dynamics, which

is extremely high. In addition, this figure illustrates the additional information gained by

allowing for distinct breaks in variance and correlation as done by the STP. When considering

the VAR model without breaks, we obtain a spillover index of approximately 60%, whereas

the complete model with break leads to spillovers explaining more than 70% of the forecast

error variance. Furthermore, separating the break dates in conditional means, variances and

correlations (solid line in the graph) yields notably different results from the model that

assumes common breakpoints in all parameters (dashed line).7 This result unambiguously

suggests that not considering the presence of breaks leads to an underestimation of the

importance of spillovers, whereas setting unjustified restrictions on the break dates may

severely affect the resulting dynamics in the spillover index. Considering the VAR model

with distinct breaks, we observe a time-varying path of the spillover index. The changes in

the index correspond to the breakpoints identified in the previous section and allow us to

assess their importance in terms of shock transmissions. The index appears to be particularly

high between mid-2011 and mid-2012 (with a value around 75%), a period during which

the crisis was particularly intense, but then decreases to stabilize at approximately 70%.

The break observed in mid-2011 supports the idea of contagion. Still, we must be careful

in comparing with the concept of contagion developed in the previous subsection. In this

case, the concept corresponds to an abrupt increase in dynamic spillovers, i.e., the spillover

contagion, whereas previously it corresponded to an increase in contemporaneous correlation,

which is typically labeled shift contagion. The increase in spillover associated with no break

in correlation implies that contagion is not immediate but takes time before occurring. Again,

this difference in results supports our intuition of separating the different types of breaks to

7These differences also appear when looking at the directional spillovers for individual countries; detailed

results are available from the authors upon request.
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Directional spillover indexes for Greece
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Figure 2: Directional spillovers of Greece, 20-step-ahead forecast, between 02 January 2009 and 01 August 2014, following
a model with distinct breaks in the mean parameters B, the variances S and the correlation coefficients R according to
the STP. Spillover transmitted from Greece to other countries, spillover transmitted from other countries to Greece, and
net spillover transmitted from Greece to other countries.

obtain a more refined picture of the situation.

Now, focusing on the specific case of Greece8, Figure 2 reports the directional spillover

indexes obtained for this country. We observe a positive net transmission from Greece to

the other countries, indicating that the linkages to Greece are structural sources of spillovers

among European countries. Beginning in 2010, several of the structural breaks show that the

transmission from Greece has increased severely, before decreasing sharply in late 2012. This

result confirms the previous findings of ? and ?. However, this finding also illustrates that

even if we have not obtained any evidence for an increase in contemporaneous correlation

between Greece and the rest of Europe most recently, the spillover index remains extremely

high (around 10), even after having decreased in 2012. From a political perspective, the

message is thus more pessimistic than the one gathered from the previous subsection. A

default of Greece may not immediately affect the other countries because contemporaneous

correlations are not subject to breaks, but still the transmission should take place soon after.

The positive result is that even if the negative wave were to hit the European countries,

8Results for all the other countries can be found in Appendix A.3.
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authorities would have some time left to set up firewalls.

A positive net transmission is also observed for three other periphery countries (Italy,

Spain and Portugal), which decreased in the middle of the sample followed by an increase in

late 2012. Although the directional transmission indexes of these countries are lower than the

Greek index (5 for Italy and Portugal and 2.5 for Spain), we observe that the indexes have

increased since mid-2012, and according to the contagion analysis they belong to clusters

involving European core countries. This result suggests that a default, or to a lesser extent a

higher tension of repayment of the sovereign debt, could immediately impact European core

countries (via a break in correlation) but would also transmit dynamically. This result thus

suggests that European authorities should implement specific policies to limit this potential

transmission.

Finally, we remark on the situation of Ireland, for which the net transmission has declined

sharply in mid-2011, confirming that the financial markets have recognized the successful

crisis management in this country.

4. Conclusion

This paper proposes a new approach to testing for contagion that has three distinct fea-

tures. First, the approach distinguishes breaks in conditional mean, volatility, and correlation

using a sequence of tests, allowing for distinct dates of breaks. Second, the approach is im-

plemented within a multivariate system, instead of relying on bivariate systems as in many

other studies. The tests rely on the techniques developed in ?. Third, although structural

breaks are generally assumed to occur at distinct dates, we test whether some parameters

share a common breakpoint using an approach similar to that proposed in ?. This procedure

can lead to a simpler model and to more reliable testing results but also allows the researcher

to challenge restrictive assumptions concerning the equality of break dates. The setup of the

STP is supported by the analysis of small sample properties, which favor multivariate break

testing as long as the breaks in fact occur simultaneously.
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The application of our approach to the recent European debt crisis offers new insight into

the way the crisis has spread over the region. The implementation of STP indicates that mean

breaks are common over the euro area countries. The same is true for the volatility breaks.

Still, these two types of breaks are observed to occur at distinct dates. Conditional on these

two types of breaks, a large number of distinct breaks in bivariate correlations occur. Many

of these breaks cluster around a few dates and common correlation breaks can be assumed

to occur within a few small groups of countries. We observe some contagion clubs but notice

that Greece and Ireland belong to none of them. This finding is particularly interesting for

Greece, which constitutes a case study for European authorities. Such findings support the

idea that it is not recommendable to assume all structural breaks are coincident, as it is

currently assumed in most of the literature. Crisis periods begin with mean and volatility

breaks, and shocks are transmitted to other markets with some delay. However, there is

also evidence of sudden increases in correlation, indicating the presence of immediate (shift)

contagion. To refine our conclusions, we consider the spillover index proposed by ??. We

notice that global spillovers vary significantly over time due to the break dates estimated by

our algorithm. A high level of spillover is observed between mid-2011 and mid-2012 during

the peak of the turmoil. More specifically, periphery countries transmit an enormous part

of their shock to the rest of Europe, the most important country being Greece, with a net

spillover index of up to 40. This finding demonstrates that even if Greek distress may not

necessarily be contagious contemporaneously, it does transmit to the rest of Europe, hence

confirming the findings of ?.

Some guidelines for European policy can be derived from the results of this paper. First,

a default or a higher risk premium on the Greek debt will not immediately affect the yield

spreads of other euro area countries. Such shocks will, however, spill over eventually, which

leaves authorities some time to set up firewalls or a bail-out plan. In the case of Italy, Spain

and Portugal, the spillover index is lower than that for Greece, suggesting a lower trans-

mission. Nevertheless, these countries are potentially contagious for Europe, as correlations
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between these countries have abruptly increased during the crisis and stayed on high lev-

els. This highlights a potential threat in the event of a debt shock originating from these

countries. In conclusion, the European sovereign bond market is heterogeneous, and credible

threats are still present. Specific regulations and policy actions are thus required to reduce

systemic risks.
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A. Appendix

A.1. Assumptions

We make the following assumptions about the error term, adapted from assumptions A4

and A5 in ?. They are formulated with respect to regimes, as εt ∼ (0,Σj), for [λj−1T ] + 1 ≤

t ≤ [λjT ], with break fractions λj = tj/T , λ0 = 0, λm+1 = 1. The assumptions cover the

typical features observed in financial returns. In particular, the presence of conditional hete-

roscedasticity is allowed. Assumption A3 guarantees asymptotic distinctiveness of stability

regimes.

• Assumption A1: Let Ft = σ − field{. . . , εt−2, εt−1}. εt is weakly stationary within

each segment and (a) {εt,Ft} forms a strongly mixing (α-mixing) sequence with size

−4r/(r − 2) for some 8 > r > 2, (b) E(εt) = 0 and supt ||εt||2r+δ < M < ∞ for some

δ > 0 and M > 0, where ||X||r = (∑
i

∑
j E|Xi,j|r)1/r, for r ≥ 1, is the Lr-norm of a

random matrix X, (c) let Sk,j(l) = ∑T 0
j−1+l+k
T 0

j−1+l+1(εtε′t), j = 1, . . . ,m, for each e ∈ R
n of

length 1, var(〈e, Sk,l(0)〉) ≥ v(k) for some function v(k)→∞ as k →∞ (with 〈·〉, the

usual inner product).

• Assumption A2: {εtε′t − Σ0
j} satisfies the conditions stated for εt in Assumption A1.

• Assumption A3: 0 < λ0
1 < . . . < λ0

m < 1, where T 0
j = [Tλ0

j ], j = 1, . . . ,m+ 1.

A.2. The spillover index

Our procedure is based on tests for detecting contagion using the structural breaks in

volatility and correlations. Recently, ?? provide an additional tool for analyzing the re-

lationships between financial markets via spillovers. They construct spillover indexes that

build on the structural, dynamic model linkages between countries. A VAR model framework

such as ours enables the computation of the indexes; see ? for an applications closely related

to ours. An index increase indicates spillover contagion. Also, shift contagion analysis can

be enhanced, as each previously detected data regime delimited by structural breaks can be
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associated with a spillover index value. Then, directional spillover values provide information

about the source and destination of dynamic shock transmission at the time.

Let λhij be the h-step-ahead forecast error variance decomposition, i.e., the fraction of

the forecast error variance for forecasting variable i that is due to shocks to variable j.

Variance decomposition requires orthogonal innovations, and ? suggest using the generalized

impulse response framework of ? and ?, which is invariant to the ordering of the variables.

Furthermore, the λhij are normalized to satisfy ∑n
j=1 λ

h
ij = 1 and ∑n

i=1
∑n
j=1 λ

h
ij = n. The

total spillover index is defined as the fraction of overall forecast error variance that is due to

shocks to other markets. Formally,

TSh = 100 ·
∑n
i=1

∑n
j=1,j 6=i λ

h
ij∑n

i=1
∑n
j=1 λ

h
ij

. (3)

Furthermore, directional spillover indexes are defined as the spillover transmitted from i

to all other markets,

DSh←i = 100 ·
∑n
j=1,j 6=i λ

h
ji

n
, (4)

and as the spillover received by i from the other markets,

DSh→i = 100 ·
∑n
j=1,j 6=i λ

h
ij

n
. (5)

Finally, the net spillover by market i is defined as

NShi = DSh←i −DSh→i. (6)

The spillover index depends on the VAR coefficients and on the covariance matrix of the

residuals. We compute (and plot) these indexes by taking into account the structural breaks

of each parameter type identified using our procedure described above. This yields an easily

interpretable summary of the effects the various parameter changes of the model have and

allows the researcher to assess whether spillover contagion has occurred.
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A.3. Spillover in the euro area

Directional spillover indexes for Austria
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Figure 3: Directional spillovers of Austria, 20-step-ahead forecast, between 02 January 2009 and 01 August 2014, following
a model with distinct breaks in the mean parameters B, the variances S and the correlation coefficients R according to
the STP. Spillover transmitted from Austria to other countries, spillover transmitted from other countries to Austria, and
net spillover transmitted from Austria to other countries.
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Directional spillover indexes for Belgium
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Figure 4: Directional spillovers of Belgium, 20-step-ahead forecast, between 02 January 2009 and 01 August 2014, following
a model with distinct breaks in the mean parameters B, the variances S and the correlation coefficients R according to the
STP. Spillover transmitted from Belgium to other countries, spillover transmitted from other countries to Belgium, and
net spillover transmitted from Belgium to other countries.

Directional spillover indexes for Finland
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Figure 5: Directional spillovers of Finland, 20-step-ahead forecast, between 02 January 2009 and 01 August 2014, following
a model with distinct breaks in the mean parameters B, the variances S and the correlation coefficients R according to
the STP. Spillover transmitted from Finland to other countries, spillover transmitted from other countries to Finland, and
net spillover transmitted from Finland to other countries.
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Directional spillover indexes for France
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Figure 6: Directional spillovers of France, 20-step-ahead forecast, between 02 January 2009 and 01 August 2014, following
a model with distinct breaks in the mean parameters B, the variances S and the correlation coefficients R according to
the STP. Spillover transmitted from France to other countries, spillover transmitted from other countries to France, and
net spillover transmitted from France to other countries.

Directional spillover indexes for Ireland
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Figure 7: Directional spillovers of Ireland, 20-step-ahead forecast, between 02 January 2009 and 01 August 2014, following
a model with distinct breaks in the mean parameters B, the variances S and the correlation coefficients R according to
the STP. Spillover transmitted from Ireland to other countries, spillover transmitted from other countries to Ireland, and
net spillover transmitted from Ireland to other countries.
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Directional spillover indexes for Italy
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Figure 8: Directional spillovers of Italy, 20-step-ahead forecast, between 02 January 2009 and 01 August 2014, following
a model with distinct breaks in the mean parameters B, the variances S and the correlation coefficients R according to
the STP. Spillover transmitted from Italy to other countries, spillover transmitted from other countries to Italy, and net
spillover transmitted from Italy to other countries.

Directional spillover indexes for the Netherlands

Dates t

D
ir
ec
ti
o
n
a
l
sp
il
lo
ve
r
in
d
ex
es

2009 2010 2011 2012 2013 2014
−10

−5

0

5

10

15

20
Transmission from the Netherlands to others
Transmission from others to the Netherlands
Net transmission from the Netherlands to others

Figure 9: Directional spillovers of the Netherlands, 20-step-ahead forecast, between 02 January 2009 and 01 August
2014, following a model with distinct breaks in the mean parameters B, the variances S and the correlation coefficients
R according to the STP. Spillover transmitted from the Netherlands to other countries, spillover transmitted from other
countries to the Netherlands, and net spillover transmitted from the Netherlands to other countries.
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Directional spillover indexes for Portugal
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Figure 10: Directional spillovers of Portugal, 20-step-ahead forecast, between 02 January 2009 and 01 August 2014,
following a model with distinct breaks in the mean parameters B, the variances S and the correlation coefficients R
according to the STP. Spillover transmitted from Portugal to other countries, spillover transmitted from other countries
to Portugal, and net spillover transmitted from Portugal to other countries.

Directional spillover indexes for Spain
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Figure 11: Directional spillovers of Spain, 20-step-ahead forecast, between 02 January 2009 and 01 August 2014, following
a model with distinct breaks in the mean parameters B, the variances S and the correlation coefficients R according to
the STP. Spillover transmitted from Spain to other countries, spillover transmitted from other countries to Spain, and net
spillover transmitted from Spain to other countries.
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