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Abstract

Recursive structures de�ned on DAGs (or Bayesian networks) are about
the most general class of graphs, in the sense of highest graph density, on
which causal models can be based. We develop an identi�cation result based
on relative variances that recovers the recursive causal graph for a collec-
tion of random variables placed at the vertices. The recursive structure
assumption can be untenable for some applications. Hence, we extend our
results to partially recursive structures, which are recursive between di¤er-
ent blocks of a partition of the vertices, but without any edges between
vertices belonging to the same block. Inferences are developed for recursive
and restricted recursive structures based on panel data on random variables
considered as panel units. The results also precisely highlight the exact
role that permutations and Cholesky decomposition play in identi�cation
of macroconomic models. Applied to data on stock returns across several
countries, our methods uncover interesting new evidences on the (contem-
poraneous) causal linkages between the markets.
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1 Introduction

The central topic of this paper is the identi�cation of causal networks between
units: economic agents or spatial units within a network, macroeconomic variables
or cross-section units in panel data. Causal inferences can only be drawn if the
units form a DAG (directed acyclic graph), also called a Bayesian network.

De�nition 1 (Harary, 1994). A directed acyclic graph (DAG) is a �nite
directed graph with no directed cycles, that is, it consists of �nitely many vertices
(or units) and edges (or causal links), with each edge directed from one vertex to
another, such that there is no way to start at any vertex � and follow a consistently-
directed sequence of edges that eventually loops back to � again.

There are no causal loops in a DAG (Harary, 1994; Pearl, 2009) and hence
causal inferences can be drawn. However, such inferences require knowledge of the
causal links. Inferences on the causal links themselves is a more complex problem
(Tian and Pearl, 2002; Evans, 2017) and has been a less active area in the liter-
ature. One speci�c DAG for which such identi�cation results and corresponding
algorithms are available is the causal poly-tree; see, for example, Rebane and Pearl
(1987) and Dasgupta (1999). This is the main reason why poly-trees have been
prominent in Bayesian networks (Cowell et al., 1999) and causal graphs (Pearl,
2009).

De�nition 2 (Rebane and Pearl, 1987). A polytree is a DAG whose underlying
undirected graph is a tree. In other words, if we replace its directed edges with
undirected edges, we obtain an undirected graph that is both connected and acyclic.

However, in many application contexts, the de�nition of a poly-tree is quite
narrow. In a tree, any two vertices are connected by exactly one path, and thus
a poly-tree has only a limited number of edges. This can be restrictive because
the underlying causal patterns may be supported on a larger number of links, and
hence causal e¤ects inferred on poly-trees may be exaggerated.
At the other end of the spectrum, we have a recursive DAG, which we de�ne as

a graph that represents a recursive ordering. A directed graph is a DAG if and only
if it has a topological ordering, an ordering of the vertices such that the starting
endpoint of every edge occurs earlier in the ordering than the ending endpoint
of the edge (Sedgewick and Wayne, 2011, p.598-9). In general, the topological
ordering of a graph is not unique.

De�nition 3 Let G denote a DAG that supports a unique topological ordering
of its vertices. Then, the corresponding recursive DAG (R-DAG) is de�ned
as the transitive closure of G. The transitive closure of a directed graph is the
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graph with the most directed edges that represents the same reachability relation.
In other words, it has an edge for every related pair u � � of distinct elements in
the reachability relation of G; that is, it has an edge u! � whenever u can reach
�.

Thus, a recursive DAG has the most complete set of directed edges consist-
ent with its (unique) topological ordering. This corresponds exactly to recursive
structural equations models and identi�cation schemes in econometrics; we will
provide a speci�c de�nition in the context of our models later. Recently, Basak et
al. (2017) provided an identi�cation result for the recursive ordering of variables
or units. However, in practise, recursive networks too appear to be too restrictive.
Hence we propose an alternate causal structure based on a partial ordering of the
vertices.

De�nition 4 Let G� denote a DAG that does not have a unique topological or-
dering of its vertices, but which supports a partition of the vertices (into several
blocks) with unique topological ordering between these blocks. In other words, the
k vertices of G� are supported by a partition y[R] =

�
y[1]; : : : ; y[r]

�
, with r � k,

such that the following reachability relations hold: (a) u � � if and only if u 2 y[i]
and � 2 y[j] such that i < j; and (b) u and � are not reachable from each other
(u <> �) if they belong to the same partition, that is fu; �g 2 y[i]. Then, the
corresponding partially recursive DAG (PR-DAG) is de�ned as the transitive
closure of G�.

In many applications, data are consistent with there being multiple units or
variables that occupy the same place in the recursive order, and it is often very
di¢ cult to infer on the relative order of these units. It would then appear that
a PR-DAG (partially recursive DAG) may often be appropriate, where the obser-
vation units are partitioned into several blocks, and there is inter-block recursive
ordering while within each block, there are no directed edges; we will provide a
more speci�c de�nition in the context of our models later in the paper.
In this paper, we develop identi�cation results for recursive and partially re-

cursive networks and corresponding inference using panel data. We provide several
motivating examples in section 2, followed by technical treatment for the general
case in section 3. Section 4 develops an application to data on weekly stock returns
across 19 di¤erent markets worldwide, and section 5 concludes.

2 Context and motivation

In this section, we provide some broader context and intuition to our work. First,
we specialise the context to panel data, using an illustrative example, focusing on
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asset return spillovers across global equity markets. The application considered
later in the paper relate to the same example. We also draw connections with struc-
tural macroeconometric and spatial econometrics literatures. Second, we provide
intuition for our identi�cation results using a hypothetical example of two urban
housing markets, which leads into the following section on identi�cation results.

2.1 Structural ordering in SVAR models

This paper proposes identi�cation of causal recursive and partially recursive DAG
structures using panel data and based on a structural vector autoregressive (SVAR)
model (Hamilton, 1994; Stock and Watson, 2001). Panel data are not really ne-
cessary for our identi�cation and inference methods; here, the temporal dimension
only provides replications. There is a long and established tradition in struc-
tural macroeconomic modelling where SVARs are used to identify the endogenous
relationship between variables. In some contexts, the underlying macroeconomic
variables are latent and represented by statistical factors accumulating information
from a large number of underlying variables; in this case, we have factor-augmented
(structural) vector autoregression models (Bernanke et al., 2005; Mumtaz and
Surico, 2009). The resulting SVAR and FAVAR-SVAR models are widely used for
studies in �nancial market contagion, macroeconomics analyses and policy design;
see, for example, Christiano et al. (2007), Bekaert et al. (2009), Diebold and
Yilmaz (2009) and Mumtaz and Surico (2009).
Di¤erent identi�cation structures are used for the contemporaneous structural

part of such SVAR models: commonly recursive schemes (Grilli and Roubini,
1995; Eichenbaum and Evans, 1995; Christiano et al., 1999, 2007) or nonrecursive
schemes with zero restrictions (Cushman and Zha, 1997; Kim and Roubini, 2000;
Uhlig, 2005; Christiano et al., 2007). To be more speci�c, consider a SVAR(p)
model

A0yt = a+

pX
j=1

Ajyt�j + "t; t = 1; : : : ; T; (1)

where yt is an k�1 vector, "t a k�1 vector white noise process, normally distributed
with mean zero and variance-covariance matrix � = diag (�21; : : : ; �

2
k) is a k � k

positive de�nite diagonal matrix. Note that we assume the idiosyncratic structural
shocks to be uncorrelated, as is common in the SVAR literature. The structural
parameters A0; A1; : : : ; Ap are (at least partially) unknown k�k matrices, and a is
an unknown k � 1 vector. Following convention, we rescale the model to allow for
heteroscedastic variances by setting the diagonal elements of A0 to unity. Then,
we write A0 = Ik �W , where Ik is the k � k identity matrix and W is a k � k
structural matrix with zero diagonal elements.
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The reduced form VAR representation of the model (1) is

yt = b+

pX
j=1

Bjyt�j + ut; (2)

where b = A�10 a, Bj = A�10 Aj, for j = 1; : : : ; p, ut = A�10 "t, and E (utu
0
t) =


 = A�10 �
�
A�10

�0
. Under fairly general conditions, the reduced form parameters

b; B1; : : : ; Bp are usually identi�ed. But identi�cation of the underlying structural
parameters a;A0; A1; : : : ; Ap require assumptions on the structure of the SVAR,
typically either recursive or nonrecursive zero restrictions. Speci�cally, one needs
to impose constraints to identify the underlying contemporaneous structural mat-
rix (A0 = Ik �W ) of the SVAR(p) model (1).
In the recursive scheme, the contemporaneous impulse response matrix, or the

impact matrix, A�10 , is lower triangular. As an illustrative example, Mumtaz and
Surico (2009) study the impact of external shocks on the UK economy based on
FAVAR-SVARmodels with the following variables: a �foreign�block f�Y �t ;��t ;�M�

t ; R
�
tg,

where �Y �t represents an international real activity factor, �
�
t denotes an inter-

national in�ation factor, �M�
t is an international liquidity factor, and R

�
t denotes

comovements in international short-term interest rates; a �domestic�block, where
the dynamics of the UK variables are captured by domestic factors FUKt ; and the
UK short-term interest, Rt. Then, their recursive identi�cation scheme posits the
following structural implication in the reduced form VAR errors:0BBBBBB@

u�Y �
u��
u�M�

uR�
uFUK
uR

1CCCCCCA =

26666664
1 0 0 0 0 0
� 1 0 0 0 0
� � 1 0 0 0
� � � 1 0 0
� � � � 1 0
� � � � � 1

37777775

0BBBBBB@
"�Y �
"��
"�M�

"R�
"FUK
"R

1CCCCCCA : (3)

The marks ���represent freely estimated parameters. It is clear that the recurs-
ive model (3) implies the following topological ordering: �Y �t ! ��t ! �M�

t !
R�t ! FUKt ! Rt. Recursive identi�cation in small-scale models is typically asso-
ciated with a number of anomalies such as the price and liquidity puzzles, and the
exchange rate and forward discount puzzles. These empirical facts are anomalies
because they are inconsistent with the predictions of a number of, though not all,
theories. A possible interpretation of the anomalies is that the recursive scheme is
unsuited for recovering correctly a policy shock, and in this context our proposed
partially recursive ordering can be useful. In the context of our model (1), the
above kinds of topological ordering are exactly re�ected in the structural matrix
W . This connection is made precise in the following de�nition.
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De�nition 5 Consider a structural VAR model (1). The collection of units (or
variables) in y is said to have a recursive structure if there exists some per-
mutation of the elements, say y[P ] =

�
y[1]; : : : ; y[k]

�
, for which the corresponding

spatial weights matrix W [P ] is a lower triangular k � k matrix with zero diagonal
elements and non-zero principal subdiagonal. That is,

W [P ] =
��
w
[P ]
ij : w

[P ]
ij = 0 if j � i and w

[P ]
ij 6= 0 if j = i� 1

��
i;j=1;:::;k

:

Now, consider the partially recursive structure. Here, we have a partition of
the k units into r blocks as y[1] ! y[2] ! : : :! y[r], where recursive ordering holds
between the blocks but within each partition, all elements of W are zeroes. In other
words, we have:

W [P ] =

26664
W1 0 : : : 0
� W2 : : : 0
...

...
. . .

...
� � : : : Wr

37775 ;Wi = 0 if i = 1; : : : ; r:

Note that a block can constitute a single unit as well, and recursive ordering simply
refers to the case where all blocks have unit cardinality.

Clearly, the restrictions underlying the partially recursive structure are less
stringent that those for the recursive structure. As discussed in section 1, the
above R-DAG assumption may be too strong in many applications. Speci�cally,
there may be situations where some of the units may occupy similar positions
in the causal order, but it may be di¢ cult to order the variables unambiguously
based on �nite sample data. Thus, in order to improve the identi�cation of the
monetary shock, several authors have proposed alternative schemes ranging from
nonrecursive to sign restrictions. For example, Mumtaz and Surico (2009) consider
the following nonrecursive scheme:0BBBBBB@

u�Y �
u��
u�M�

uR�
uFUK
uR

1CCCCCCA =

26666664
1 0 0 0 0 0
� 1 0 0 0 0
� � 1 � 0 0
0 0 � 1 0 0
� � � � 1 0
� � � � � 1

37777775

0BBBBBB@
"�Y �
"��
"MD�

"MS�

"FUK
"R

1CCCCCCA : (4)

Following Sims and Zha (2006), the third and fourth rows identify money demand
and money supply shocks in the rest of the world, respectively. There are consid-
erable contemporaneous causal implications of the nonrecursive scheme (4). The
transmission of shocks originate from world activity and then pass on to world
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in�ation. World money demand and money supply occupy middle positions in the
causal order, but their relative ordering is ambiguous. The shocks then pass on to
the domestic economy, followed �nally by the policy rate. Then, this suggests a
weaker notion of partially recursive ordering.
Speci�cally, in section 3 we show that, for a SVAR(0) model with no lags, but

with recursive contemporaneous causation, and with idiosyncratic shocks that are
homoscedastic across the variables, the position at the top of the causal order is
taken by the variable with the smallest variance. Once this variable is partialled
out, the second position is occupied by the variable with the smallest partial vari-
ance; and so on. Further, ties in the variances at the top of the causal order at any
stage of the iterative procedure correspond to variables (or units) that lie within
the same partition, that is fu; �g 2 y[i].
However, the homoscedasticity assumption may be strong in many applications.

Then, we also show that, for an SVAR(p) model with PR-DAG contemporaneous
dependence, the standard deviation of the idiosyncratic shocks can be inferred from
Cholesky decompositions of the error covariance matrix of a reduced form VAR
computed over all permutations of the units. Clearly, this corresponds closely to
the use of permutations and Cholesky decompositions in the modeling of structural
orders in the current literature, towards which we now turn.

2.1.1 Contagion across �nancial markets

There is substantial recent research interest in using panel data to estimate spillovers
and contagion e¤ects in stock returns and volatilities across di¤erent countries and
markets. Bekaert et al. (2009) documented return spillovers across 23 countries,
while Diebold and Yilmaz (2009) developed a spillover index based on VAR mod-
els, and used this to study the evolution of return and volatility spillovers across
19 stock markets. They argue that the variance decompositions de�ne weighted
and directed networks, and hence this is closely related to our work. Our empir-
ical analysis is based on the context and data from Diebold and Yilmaz (2009),
which we brie�y discuss to highlight the approach and context of using Cholesky
decompositions and permutations across di¤erent orderings of endogenous units.
Consider a reduced form VAR representation of the data as above (2). By

covariance stationarity, the moving average representation of the VAR exists and
is given by

yt = �(L)ut = A(L)"t

�(L) = (I � �L)�1 ;A(L) = �(L)Q�1t ;

where E ("t"0t) = I and Q�1t is the "unique" lower-triangular Cholesky factor of
the covariance matrix of ut. In the literature, this relation is then often used to
justify interpreting "t as the underlying structural shocks. If this interpretation
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were correct, one could then potentially go ahead with constructing an index of
spillovers or, for that matter, structural interpretation of the models. However,
the uniqueness of Q�1t depends on two additional conditions. First, it requires
the assumption that there is an underlying recursive ordering of variables in the
nature of a R-DAG. Second, and even more precisely, one would need to assume
that the order of units in yt is indeed the correct causal ordering.
Of course, in practise, one cannot ensure a correct ordering, except through

theory or, as in this paper, through appropriate inference on the recursive order.
Hence, in their e¤ort to construct a spillover index, Diebold and Yilmaz (2009)
consider averaging over all the possible permutations. This is computationally very
intensive, since the number of possible permutations, 19!, is very large. Hence, they
consider a small number of (randomly chosen) permutations, and verify that their
empirical �ndings are robust. In later work, Klößner and Wagner (2013) argue
that handling a large number of permutations is not impossible, and they provide
an algorithm to explore all VAR orderings.
The above application is only illustrative at this stage, but it is very use-

ful in introducing our data and context, as well as in emphasizing current best
practise in the area. Indeed, the above idea of Cholesky factorisation over �all�
permutations is standard in the literature. However, it misses the central point
that the methodology relies crucially on an underlying SVAR model with recursive
structure. Further, it does not emphasize enough, in our view, why the Cholesky
decomposition is useful. We make these issues more clear through our identi�ca-
tion results. Speci�cally, we pose the question: is the recursive ordering, and the
weaker partially recursive ordering, identi�ed from the data?

2.1.2 Structural macroeconomics and spatial econometrics

The close connections of our work with current structural macroeconometric mod-
elling is clear from the above discussions. We note two further aspects of this
connection. First, structural assumptions are necessary for identi�cation. How-
ever, such assumptions are not easily veri�able. Mumtaz and Surico (2009) use
identi�cation based on recursive, nonrecursive and sign restrictions, while being
somewhat agnostic about which of these is most appropriate in their context.
Then, this paper contributes to the current debate within the literature as to

empirical validation of structural assumptions underlying panel data and macroe-
conomic models. There is some resurgence of research in this area; see, for example,
Giacomini and Kitagawa (2015) and Stock and Watson (2015). Our identi�cation
results contribute to this literature by providing inferences on the speci�c recursive
or partially recursive ordering that is supported by the data.
Second, our identi�cation result for R-DAG and PR-DAG are based on relative

variability of the variables in the SVAR. In this sense, our work is related to
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previous literature on identi�cation by relative variances and also to conventional
wisdom in SVAR modelling that variables with smaller variances should appear
towards the top of the causal order (Rubio-Ramírez et al., 2010; Sims, 2012); see
also Lippi and Reichlin (1994).
Finally, identi�cation of causal order relates to the structure of W , and this

also has connections with inferences on spatial weights in the recent spatial econo-
metrics literature. This literature has highlighted that the spatial weights matrix
W is in general not identi�ed except under structural assumptions, such as sym-
metry (Bhattacharjee and Jensen-Butler, 2013), sparsity (Bailey et al., 2016) or
moment conditions (Bhattacharjee and Holly, 2013). Our work shows that W is
also identi�ed under recursive and partially recursive structures and further, that
the ordering itself is identi�ed from the data; see also Basak et al. (2017).

2.2 A tale of two cities

To provide intuition for our identi�cation results, we consider �rst a hypothetical
question in the simple case with k = 2. Consider house prices in two neighbouring
cities, say Edinburgh and Glasgow, denoted yE and yG respectively. There is
potential for price spillover between the two cities, and such spillovers are captured
by an index, similar to Diebold and Yilmaz (2009), and denoted w. Initially, we
assume zero autocorrelation (p = 0) and homoscedasticity of the innovations:
�2E = �2G = �2. Under the assumption of recursive structure, and ignoring the
time subscript, the true model is either�

yE
yG

�
=

�
aE
aG

�
+

�
0 0
w 0

��
yE
yG

�
+

�
"E
"G

�
; E (""0) = �2I;

or, �
yE
yG

�
=

�
aE
aG

�
+

�
0 w
0 0

��
yE
yG

�
+

�
"E
"G

�
; E (""0) = �2I:

But, which one is it? It is clear that, if Edinburgh precedes Glasgow in causal
ordering (the former model), then V (yE) = �2 � �2 (1 + w2) = V (yG), with the
equality holding if and only if w = 0. On the other hand, if yE follows yG in
causal ordering then, V (yE) > V (yG) if w 6= 0. The case w = 0 is also interesting
because this corresponds to partially recursive ordering. Here, the variances would
be exactly equal, that is, V (yE) = V (yG).
Admittedly, the above analysis ignores potential di¤erences in the variance

of idiosyncratic errors (that is, �2E 6= �2G), as well as temporal dynamics (p >
0). Using methods described below, we can obtain estimates �E and �G using a
reduced form VAR(p) model for yC and yE, subject to starting with the correct
ordering in the �rst place. Then, iterating over all possible permutations, as in
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Klößner and Wagner (2013), we can estimate the standard deviations. Assuming
p = 1, we have

�
yEt=b�E
yGt=b�G

�
=

�
aE=b�E
aG=b�G

�
+W

�
yEt=b�E
yGt=b�G

�
+B

�
yE;t�1=b�E
yG;t�1=b�G

�
+

�
"E=b�E
"G=b�G

�
;

W =

�
0 w b�Eb�C
0 0

�
or

�
0 0

w b�Cb�E 0

�
:

We are now back to the homoscedasticity case, and now contemporaneous
causation can be inferred from the estimated covariance matrix of the scaled vector�
yEt=b�E
yGt=b�G

�
. So, we can conclude whether the appropriate R-DAG is yE ! yG or

yG ! yE. Further, we can also examine whether the true model is indeed the PR-
DAG where neither yE nor yG contemporaneously cause the other. Also, estimates
of the above VAR(1) model indicate whether either of the two Granger cause the
other, or the other way round, or indeed whether Granger causation runs both
ways. With this backdrop, we can now proceed to our identi�cation results.

3 Models and methodology

Consider again the SVAR(p) model (1) but now expressed in terms of the structural
matrix W :

yt = a+Wyt +

pX
j=1

Ajyt�j + "t; E ("t"
0
t) = � = diag

�
�21; : : : ; �

2
k

�
;

where W is a k� k matrix with zero diagonal elements. Then the reduced form is
the following:

yt = (Ik �W )�1 a+
pX
j=1

(Ik �W )�1Ajyt�j + ut;

E (utu
0
t) = (Ik �W )�1� (Ik �W )�1

0
:

Now, we make one of the following two structural assumptions required for our
identi�cation result.

Assumption 1. (Recursive Structure) There exists some permutation of the vari-
ables in yt, say y

[P ]
t , for which the corresponding spatial weights matrix W

[P ] is a
lower triangular k � k matrix with zero diagonal elements and non-zero principal
subdiagonal, which implies a recursive DAG (R-DAG).

10



Alternatively, we may consider the following weaker assumption.
Assumption 1a. (Partially Recursive Structure) There exists some partition of
the variables in yt, say y

[R]
t , for which the transitive closure network graph is a

partially recursive DAG (PR-DAG).

Under eitherAssumption 1 orAssumption 1a,W [P ] is a lower triangular k�
k matrix with zero diagonal elements. That is,W [P ] =

��
w
[P ]
ij : w

[P ]
ij = 0 if j � i

��
i;j=1;:::;k

.

Then, we have an important result.

Lemma 1. (Ik �W )�1 = Ik +
Xk�1

i=1
W i:

The lemma is useful for later results. Further, it is also very useful for calcu-
lating "direct and indirect e¤ects". Note further that, under Assumption 1 (or
Assumption 1a), the reduced form is always identi�ed. This is because W k = 0,
and hence (I�W )�1 = I+W +W 2+ : : :+W k�1 always exists. Hence, for identi-
�cation, we do not need the spatial granularity condition (Pesaran, 2006), which is
standard in the literature and closely related to conditions for spatial stationarity
in Kelejian and Prucha (1998) and Lee (2004). However, this condition is similar
to ergodicity and is useful for obtaining asymptotic normality results. In practise,
this requires that strong dependence in the data are modelled a priori, using for
example, a factor structure (Bai, 2009; Pesaran and Tosetti, 2011). Then, under
the pure-SAR model (??), denoting covariance matrix by Cov(:), we have:

Cov(Yt) = Cov[(I �W )�1�t]
= (I �W )�1[Cov(�t)]((I �W )0)�1

= (I �W )�1��((I �W )0)�1 (5)

where �� is the covariance matrix of �t. Since the components of �t are independent
by assumption, �� = diag (�21; �

2
2; : : : ; �

2
k).

Assumption 2. (Spatial granularity condition): The row and column norms of
W are bounded (in absolute value) by 1.

Now, following the relative variances intuition in the k = 2 case from the
previous section, we can present our �rst main result.

Proposition 1. Consider the SVAR( p) model (1) with k > 2, with no lag struc-
ture ( p = 0), homoscedasticity of the shocks (�21 = : : : = �2k = �2), and where
Assumption 1 holds. Then the variable with the smallest variance ( y[1]) comes
at the top of the causal order. Construct the partial covariance matrix of the other
variables, after partialling out y[1]. The variable with the smallest partial variance
( y[2]) occupies the second position in the causal order. This iterative procedure

recovers the causal order y[P ]t =
�
y
[1]
t ; : : : ; y

[k]
t

�
for the entire vector yt in the case
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that the underlying causal structure is R-DAG. Further, if the causal structure
were PR-DAG, then the variances at the top of the order will be equal at the
corresponding steps of the iterative procedure. Then, this procedure identi�es the
correct PR-DAG partition as well.
Proof. First consider the case k = 3. Consider the recursive structure

W =

24 0 0 0
� 0 0
v w 0

35 :
Then, by Lemma 1

E (yy0) = �2
�
I +W +W 2

� �
I +W 0 +

�
W 2
�0�

= �2

24 1 0 0
� 1 0

v + �w w 1

3524 1 � v + �w
0 1 w
0 0 1

35
= �2

24 1 � v + �w
� 1 + �2 � (v + �w) + w

v + �w � (v + �w) + w 1 + (v + �w)2 + w2

35 :
It is clear that the variable with the smallest variance comes at the top of the
causal order. However, the relative order of the other two variables is not clear.
Partialling out the �rst �rst variable, we have

E
�
y[�1]

�
y[�1]

�0�
= �2

8>><>>:
�

1 + �2 �(� + �w) + w

�(� + �w) + w 1 + (� + �w)2 + w2

�
�
�

�
� + �w

��
� � + �w

�
9>>=>>;

= �2
�
1 w

w 1 + (� + �w)2

�
:

It is now clear that the second position in the causal order is taken by the second
variable. Hence, the procedure recovers the correct causal order. In the general
case, we run a proof by induction. This is done in two parts. First, we show that,
at any step of the iteration, once the correct element at the top of the causal order
has been identi�ed, partialling this element from the covariance matrix provides
the correct covariance matrix for the remaining elements, Second, we show that
the smallest diagonal element of this partial covariance matrix corresponds to the
�rst element in the true causal (recursive) order for the remaining elements.
For the �rst part, the proof is not speci�c to which step the iterative process of

inferring the order the procedure is currently in. Hence without loss of generality,
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we consider the �rst step. We have identi�ed the �rst element in the true recursive
order, that is y[1]. We partition the vector y[P ] as y[P ] =

�
y[1] y[�1]

0 �0 and
correspondingly partition W as

W =

�
0 00

w1 W2

�
;

where 00 is a (1 � k � 1) row vector of zeroes, w1 is a (k � 1 � 1) column vec-
tor with arbitrary elements, and W2 is a (k � 1 � k � 1) lower triangualer mat-

rix with zero diagonal elements. Denote W � =
Xk�2

j=0
W2

j, and also note that

(I �W )�1 =
�
I +W +W 2 + : : :+W k�1� since W j = 0 if j � k. Correspond-

ingly, the covariance matrix of the reduced form errors is given by

� = �2 (I �W )�1 (I �W )�1 0

= �2
�
I +W +W 2 + : : :+W k�1� �I +W 0 + W 2 0 + : : :+ W k�1 0

�
= �2

�
1 00

W �w1 I +W �W2

� �
1 w01 W

� 0

0 I +W 0
2 W

� 0

�

= �2

24 1 w01 W
� 0

W �w1
I +W �W2 +W

0
2 W

� 0

+W � [w1w
0
1 +W2W

0
2]W

� 0

35 :
Then, partialling out the �rst element, we have

�2:1 = �2
�
I +W �W2 +W

0
2 W

� 0 +W �W2W
0
2 W

� 0�
= �2 (I +W �W2) (I +W

�W2)
0

= �2
�
I +W2 +W

2
2 + : : :+W

k�1
2

� �
I +W2 +W

2
2 + : : :+W

k�1
2

�0
= �2

�
I +W2 +W

2
2 + : : :+W

k�2
2

� �
I +W2 +W

2
2 + : : :+W

k�2
2

�0
= �2 (I �W2)

�1 (I �W2)
�1 0 ;

where the penultimate step follows because W k�1
2 = 0. The proof of the �rst part

follows by noting that �[�1] is the covariance matrix of y[�1] �w1y[1] = W2y
[�1] +

"[�1].
For the second part, consider the (r+1)th step of the iteration. The �rst r positions

of y[P ] have previously been inferred in their correct recursive order; denote this
order by y(1). The object is to show that the (r + 1)th step correctly identi�es
y[r+1] as being in the (r + 1)th position. Partition y[P ] =

�
y(1)

0
y(2)

0 �0 and
" =

�
"(1)

0
"(2)

0 �0; correspondingly partition W as

W =

�
W (1)

r�r 0
W (21)

(k�r)�r W (2)
(k�r)�(k�r)

�
:
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Partialling y(1) from y(2), and using the �rst part, we obtain:

y[2:1] = y(2) � w1y(1)

= W2y
(2) + "(2):

We denote elements of y[2:1] as y[2:1] =
�
y
[2:1]
1 y

[2:1]
2 : : : y

[2:1]
k�r

�
and correspond-

ing variances as V [2:1]1 ; V
[2:1]
2 ; : : : ; V

[2:1]
k�r . Then, since W has a triangular (recursive)

structure, we have:

y
[2:1]
1 = "

(2)
1 ; y

[2:1]
2 = W

(2)
21 y

[2:1]
1 + "

(2)
2 ; : : :

and recursively

y
[2:1]
j =

j�1X
i=1

W
(2)
ji y

[2:1]
i + "

(2)
j :

Correspondingly,

V
[2:1]
1 = �2;V

[2:1]
2 = �2

�h
W

(2)
21

i2
+ 1

�
;

V
[2:1]
3 = �2

�h
W

(2)
31

i2
+
h
W

(2)
32

i2�h
W

(2)
21

i2
+ 1

�
+ 1

�
; : : :

and recursively

V
[2:1]
j = �2

 
1 +

j�1X
i=1

h
W

(2)
ji

i2
V
[2:1]
i

!
:

This implies that y[2:1]1 = y[r+1] has the smallest partial variance, and the result is
proved.
The second part shows that, at any step of the iterative procedure, the element

that is next in the true causal order has the smallest partial variance, and the �rst
part showed that the partial covariance matrix retains the required recursive causal
order. This recursion runs until the order reduces to 2, and the true recursive order
is recovered. The identi�cation for PR-DAG follws simply by noting that within
each block of the partition, the partial variances of each unit in the block is exactly
equal.

There are two important implications to note. First, the partial covariances
matrices can be easily estimated by OLS. Hence, in practise, at every step we
regress the remaining units on the units above it in the causal order and simply
compute the residual covariance matrix. Second, here identi�cation is through
relative variances, which is reminiscent of the macroeconomics literature; see, for
example, Rubio-Ramírez et al. (2010) and Sims (2012).
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The following proposition extends the context to a lag structure and heterosce-
dastic errors. It provides methodology to estimate the idiosyncratic error variances.

Proposition 2. Consider the SVAR( p) model (1) with any number of variables
and any lag structure. The innovations are potentially heteroscedastic. We make
either Assumption 1 (recursive structure) or Assumption 1a (partially recurs-
ive structure), and further that the variables are in their correct recursive order.
Denote the Cholesky decomposition of the reduced form error covariance matrix
E
�
u
[R]
t u[R]

0
t

�
= 
 in (2) as 
 = LL0. Then, the standard deviations of the

idiosyncratic shocks constitute the diagonal elements of L.
Proof. Consider for simplicity p = 1. Then model (1) can be written in vector
notation as

Yt = WYt + �Yt�1 + �t; (6)

where � = diag(�1; �2; : : : ; �k) is a diagonal matrix, and f�tg is potentially het-
eroscedastic, that is, �� = diag (�21; �

2
2; : : : ; �

2
k), . Then, the reduced form of (6) is

given by

Yt = (I �W )�1 �Yt�1 + (I �W )�1 �t = AYt�1 + ut;
A = (I �W )�1 �; Cov(ut) = (I �W )�1�� (I �W )�1

0
: (7)

The reduced form (7) can be estimated as a vector autoregressive (VAR) model
(Hamilton, 1994; Stock and Watson, 2001). The reduced form (VAR) estimates
provide bA and Cbov(ut). Note that the diagonal elements of (I �W )�1 are ones,
and � is a diagonal matrix. Then, the ith diagonal element of � must be the cor-
responding diagonal element of A � ((aij))i;j=1;:::;k; that is, �i = aii; i = 1; : : : ; k.
This implies that a consistent estimator for (I �W )�1 can be obtained by dividing
each column of bA by the corresponding diagonal element. In other words, construct
a matrix A� �

��
a�ij
��
i;j=1;:::;k

as follows

a�ij = baij=bajj; i; j = 1; : : : ; k:
Then, A� = (I � cW )�1 has unit diagonal elements and constitutes a consistent
estimator of (I �W )�1, and therefore, A� �1 = (I �cW ) is a consistent estimator
of (I �W ).
Now, consider Cbov(ut). Since Cov(ut) = (I �W )�1�� (I �W )�1 0, the diagonal
elements of (I�cW )Cbov(ut)(I�cW )0 provide consistent estimators for the elements
of ��, that is, b�21; b�22; : : : ; b�2k.
Corollary 1. Suppose we obtain a consistent estimator b
. Then, the idiosyncratic
error standard deviations are consistently estimated by the corresponding diagonal
elements of bL.
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Obtaining the consistent estimator b
 is simple, needing estimation of the re-
duced form VAR in standard ways, typically by seemingly unrelated regressions,
collecting residuals and compute the residual covariance matrix. Then, Propos-
ition 2 clearly emphasizes the precise role of the Cholesky decomposition and
permutations. Speci�cally, with the correct ordering, the Cholesky factorisation
correctly identi�es the standard deviations of the idiosyncratic shocks. However,
the correct ordering is likely unknown a priori. Hence there is the (potential) need
for permutations, or otherwise, consideration of a probability distribution on the
space of all permutations.
Finally, the next result provides identi�cation of causal order based on scaled

variables.

Proposition 3. Consider the SVAR( p) model (1) with k > 2, with arbitrary
lag structure ( p = 0), arbitrary heteroscedasticity of the innovations, and where
Assumption 1 holds. Scale each variable by its standard deviation estimated using
Proposition 2. That is: y[S]1t = y1t=b�1; : : : ; y[S]kt = ykt=b�k. Estimate the error
covariance matrix from the reduced form VAR( p) model based on the standardised
variables. Then the variable with the smallest variance ( y[1][S]) comes at the top of
the causal order. Construct the partial covariance matrix of the other variables,
after partialling out y[1][S]. The variable with the smallest partial variance ( y

[2]
[S])

occupies the second position in the causal order. This iterative procedure recovers
the causal partition y[R][S]t for the entire vector yt:

Proposition 6 Proof. Note that, by Assumption 1 (or Assumption 1a),
and the fact that the variables are in their true order, W is lower triangular. Now,
the reduced form error covariance matrix is E (uu0) = (I �W )�1� (I �W )�1 0.
Consider the Cholesky decomposition of the covariance matrix as: E (uu0) = LL0,
where L is a unique lower triangular matrix. Since (I �W )�1 is lower triangular
and with 1�s on the diagonal, and since � is a diagonal positive de�nite matrix,
it must be the case that L = (I �W )�1�1=2. Since the diagonal elements of
(I �W )�1�1=2 are the idiosyncratic error standard deviations, the result follows.

Note that, Proposition 3 only holds when the units are in their correct re-
cursive order. Hence, consider the following de�nition.

De�nition 7 In the context of Propositions 2 and 3 and an underlying ordering
assumption (R-DAG or PR-DAG, Assumption 1 or Assumption 1a), a speci�c
permutation is admissible if we start with this permutation, apply Proposition
2, and it is then found to consistent with the partition (and corresponding partial
order) estimated using Proposition 3.
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One crucial implication of Propositions 2 and 3 is that it allows us to restrict
attention to a small set of admissible permutations. We start with a candidate
permutation in Proposition 2 and then this permutation is admissible if, and
only if, it matches with the ordering recovered by Proposition 3. Then, one can
check consistency of structural implications under all such admissible orderings,
and if there is only one, this ordering is unique; in this case the corresponding
causal model is a R-DAG. In the PR-DAG case, there will be multiple admissible
orderings, but they should all be consistent with the underlying correct PR-DAG
partition. One can also average over all such admissible orderings, or place a
(Bayesian) prior over these depending, for example, on how closely they line up
with underlying theory. This is clearly in line with DSGE-VAR (Del Negro and
Schorfheide, 2004, 2009). As discussed earlier, validation of structural assumptions
underlying panel data and macroeconomic models is of considerable importance;
for recent discussions, see Diebold and Yilmaz (2014), Giacomini and Kitagawa
(2015) and Stock andWatson (2015). Our work contributes towards this literature.
The above results provide identi�cation of causal ordering not only under re-

cursive ordering, but also under the assumption of partially recursive structure,
which is less restrictive than recursive ordering but richer than poly-trees. Hence,
this structure may be quite useful in applications like the one we consider in the
following section. Note also that the partial order recovered here is scale invariant,
and the standardization in Proposition 3 is only to ensure that we are comparing
"like-for-like".
The identi�cation results here are based on second moments and hence infer-

ence on ordering achieves
p
n-consistency under reasonable conditions. Inferences

under the selected models is straightforward. In fact, under both R-DAG and PR-
DAG assumptions, simple OLS delivers consistent and asymptotically Gaussian
estimates. The technical results are a bit complex and rely on identi�able unique-
ness of the models selected by the above identi�cation results. Then, Pötscher and
Prucha (1997) provide an excellent collection of results for M-estimation that can
be applied in standard ways to deliver teh above inference results; see also Basak
et al. (2017).

4 Data and results

We use the same data as Diebold and Yilmaz (2009) and Klößner and Wagner
(2013). The weekly data on returns of 19 stock indices are reported in the data
aarchive corresponding to Klößner and Wagner (2013), and we also use their al-
gorithm for exploring all 19! permutations. Since the data are large; T = 829
weeks, running consecutively from the week ending Friday, 10 January 1992 to 23
November 2007. Given the large number of observations, we use 1 percent signi-
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�cance level for all statistical tests. First, we estimate reduced form VAR models
using lag selection to choose a VAR(4) model. Next we iterate over all permuta-
tions, applying Propositions 2 and 3 in turn, to reduce attention to a selection
of admissible partial orders. For the application of Proposition 3, we need tests
for equality of variances. Since we assume Gaussian errors, the standard F-test
is optimal in our context (Faust, 1992). However, the literature also points out
that the test due to Levene (1960) can perform better in many circumstances and
we also use this test for robustness check; see, for example, Lim and Loh (1996).
This procedure turns out to be very e¤ective in this application. The unique
PR-DAG partition consistent with all admissible permutations is the following
(country codes correspond to Table 1):

CHI ! fUS; TAI; JPNg ! PHL! fFRA;ARGg ! fSGP; TUR;AUSg
! MY S ! THA! fUK;GER;MEX;HKGg ! IDN ! BRA! KOR:

Table 1: Model estimates
SVAR: W ' CHI US TAI JPN PHL FRA ARG SGP TUR AUS MYS THA UK GER MEX HKG
Chile 0 0.133 1.051 0.171 0.109
US-DJIA 0 0.926 0.992 0.209 0.254 0.603
Taiwan 0 0.168
Japan 0 0.089 0.039 0.075
Philippines 0 0.117 0.291
France 0 0.120 1.055 -0.379 0.483 0.913
Argentina 0 0.024 0.011 0.135
Singapore 0 0.635 0.822 0.393
Turkey 0
Australia 0 0.192 1.329 1.460
Malaysia 0 0.122
Thailand 0
UK-FTSE 0
Germany 0
Mexico 0
Hong Kong 0
Indonesia
Brazil
Korea
SVAR: Lags CHI US TAI JPN PHL FRA ARG SGP TUR AUS MYS THA UK GER MEX HKG
Chile [1]
US-DJIA [2,3,4] [3] [1,2] [1] [1,4] [3] [4] [2,3,4] [1]
Taiwan [1] [3] [1,2]
Japan [1] [4]
Philippines [1] [1] [2] [3,4] [1]
France [1,3] [2] [4] [1] [2] [2]
Argentina [1] [1,2] [3] [1]
Singapore [1] [2] [1] [1] [2]
Turkey [4] [1] [1]
Australia [2] [3] [1,3] [1] [3,4]
Malaysia [1] [1,3,4] [3] [1] [3] [2] [1,2,4] [1,3,4] [4] [3] [1]
Thailand [1] [1]
UK-FTSE [1,4] [1,3]
Germany [1] [4] [1] [1,2,3,4]
Mexico [3] [3] [2,4] [1,3]
Hong Kong [1] [1,2] [1] [1,2] [1] [1,2] [2,4] [1] [1,2] [1.2]
Indonesia [3] [1] [3] [4] [1,3]
Brazil [2]
Korea [2] [2,3]
Model Fit: R2 CHI US TAI JPN PHL FRA ARG SGP TUR AUS MYS THA UK GER MEX HKG

- SVAR 0.144 0.560 0.434 0.323 0.313 0.696 0.421 0.545 0.434 0.667 0.557 0.325 0.809 0.889 0.668 0.541
- VAR 0.144 0.548 0.433 0.321 0.300 0.570 0.374 0.417 0.407 0.579 0.516 0.226 0.530 0.619 0.512 0.370

In this speci�c geographical �nance context, this partial order makes very good
sense. First, the recursive ordering assumption is not supported by the data, and
relaxing this to a partially recursive assumption clearly makes sense. Second, the
selected partial order or PR-DAG partition also makes good sense, identifying oder
of in�uence in the network. Very importantly, the estimated partial order relates
well both to geographical proximity and size of markets, but equally to the diurnal

18



order in which di¤erent markets open and close. In fact, our results capture in a
nice way the so-called �meteor shower�phenomenon documented �rst in volatility
by Engle et al. (1990) and in returns by Hamao et al. (1990); see also Ibrahim
and Brzeszczyński (2009). Next, we estimate a SVAR model under the structural
(zero) assumptions implied by the above PR-DAG partition. The estimates are
reported in Table 1.
In the estimates of the structural network weights matrix W (reported as W 0)

in Table 1, the yellow shaded lower triangle represents the partial order that would
have been estimated, using the identi�cation results in Banerjee et al. (2017), if the
assumption of R-DAG recursive order were made. However, there are substantial
di¤erences of this model from the PR-DAG model above, and these di¤erences are
highlighted in the green shaded cells above the diagonal. Further, the statistical
signi�cance of estimates of the instantaneous impulse response or contemporan-
eous network interaction matrix W also indicate some support for yet further
rationalisation of the partition. This provides an alternate partition

CHI ! fUS; TAI; JPN; PHLg ! fFRA;ARGg ! fSGP; TUR;AUSg
! fMY S; THA;UK;GER;MEXg ! fHKG; IDN;BRA;KORg ;

which is highlighted in blue colour in Table 1. However, combining tests for equal-
ity of variances together with the weights estimated by OLS/SURE raises a critical
issue related to the Behrens-Fisher problem in this case; see, for example, Moser
and Stevens (1992). Hence, we do not impose zeroes implied by this �nal parti-
tion on our estimates. The estimates of the network structure (W ) imply strong
in�uences arising from the stock markets of France, US, Australia, Singapore and
Chile, which represents di¤erent geographical hotspots with both local in�uences
and global contagion e¤ects. There may also be some potential spatial strong
dependence issues (Pesaran, 2006) which we have not addresed at the moment.
While the above weights relate to contemporaneous Rubin causation or the

potential outcome model (Rubin, 2005), Granger (1969) or temporal causation
can be inferred from the estimates of the VAR part of the model. As expected,
a predominance of statistically signi�cant lags along the diagonal re�ect strong
autoregressive e¤ects. However, strong cross-border in�uences are also observed
for some markets, such as Malaysia, Hong Kong and the US. Overall, the estim-
ates make good sense and provide exciting new inferences on spillovers in stock
returns. Finally, the goodness-of-�t of the PR-DAG model is much improved over
the benchmark reduced form VAR, as indicated by comparison of R2 values. The
MSE of the RR_DAG model is also reduced, in-sample, by 17 percent, which is
very promising from a �nance point of view.
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5 Conclusion

The recent literature has placed considerable attention on the identi�cation of net-
works through which spillovers in �nancial markets happen. We propose a partially
recursive DAG (PR-DAG) as an alternative to the rather more stringent recursive
DAG model considered recently in the literature. This represents a good balance
against the poly-tree which potentially provides far too sparse a network in many
application context. Under the PR-DAG causal structure, we develop inferences
on the partial causal order as a directed partition of the units or variables. Ap-
plication to weekly data on stock price returns across several markets worldwide
provide exciting new evidences on the nature and magnitude of spillover e¤ects and
the structure of the network. While the inferences are motivated ny panel data,
the methods are also potentially useful for identi�cation and inferences on struc-
tural vector autoregressions and factor-based data-rich models in macreoceonomic
contexts.
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