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Abstract

We propose a new solution for discrete exchange economies and resource-allocation
problems, the exclusion core. The exclusion core rests upon a foundational idea in
the legal understanding of property, the right to exclude others. By reinterpreting
endowments as a distribution of exclusion rights, rather than as bundles of goods, our
analysis extends to economies with qualified property rights, joint ownership, social
hierarchies, and production. The exclusion core is characterized by a generalized top
trading cycle algorithm in a large class of economies, including those featuring private,
public, and mixed ownership. It is neither weaker nor stronger than the strong core.
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There is a striking contrast between the simplicity of endowments in economic models

and the complexity of property in practice. In the former, endowments define what agents

own with little elaboration. In practice, ownership is hardly so straightforward. Co-owners

of a house may be tenants in common or joint tenants under bespoke arrangements. Socially

recognized, but formally undocumented, claims to land are common in the developing world.

Blocking patents, patent pools, and patent “thickets” typify the complexity of intellectual

property (Shapiro, 2000). In light of such cases, the interpretation of an endowment and its

relation to usual understandings of property is elusive, and little studied.

In this paper, we study an exchange economy that places complex endowments at the

forefront. An agent may own multiple goods, none at all, or be a co-owner with others. As

in practice, property rights may be clearly defined, caught in a web of competing claims,

or qualified by relationships or social obligations. In the face of these complications, the

economy’s core, a traditional benchmark solution, may be empty (for the strong core) or

include unintuitive outcomes (weak core).1

Our key contribution is the development of a new solution concept, which we call the

exclusion core. The exclusion core’s foundation is a reinterpretation of endowments in an

exchange economy as a distribution of exclusion rights, rather than as bundles of things to

trade. A simple idea—the ability to exclude others from goods in one’s own endowment—

offers reallocation possibilities that are absent from traditional core solutions and is at the

heart of the exclusion core’s rationale and predictive power. We analyze the exclusion core’s

properties in economies with single-unit demand, indivisible goods, and no transfers. Beyond

its practical importance (see below), this setting lets us emphasize the variables of interest,

including complex, hierarchical, and qualified forms of property rights.

At a high level, the exclusion core bridges two foundational insights, one in the legal

understanding of property and the other in the economic theory of exchange. First, the

exclusion core draws on one defining principle of property—the right to exclude others.

This right is a classic tenet of property, with roots in the mid-eighteenth century writings

of William Blackstone and others (Merrill, 1998). The United States Supreme Court has

called this right among “the most essential sticks in the bundle of rights that commonly

characterize property.”2

Second, we show that the exclusion core has a close association with David Gale’s top

1We define the strong and weak cores in Section 1 and more formally again in Section 2. Care is required
as both strong and weak cores have been called “the core” by different authors. The strong core is defined
with weak domination allowing for indifference. The weak core is defined with strong (or strict) domination.

2Kaiser Aetna v. United States, 444 U.S. 164 (1979).
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trading cycle (TTC) algorithm (Shapley and Scarf, 1974). Beyond its theoretical elegance,

the TTC algorithm is of substantial practical importance. Suitably generalized, it underpins

implemented or proposed solutions to many market-design problems, including transplant

organ exchange (Roth et al., 2004), student-school assignment (Abdulkadiroğlu and Sönmez,

2003), airport landing-slot allocation (Schummer and Vohra, 2013), and refugee resettlement

(Delacrétaz et al., 2016). A generalized TTC algorithm characterizes the exclusion core in a

large class of economies, including those with private, public, and mixed ownership. Thus,

the exclusion core’s relevance to the above applications is immediate, though its logic applies

broadly.

In the following section we propose a simple example that conveys the essence of our

solution while also highlighting the limitations of classic approaches. More importantly, we

also explain how the ability to exclude governs many allocation problems. By focusing on

the distribution of exclusion rights, it is possible to analyze economies with well-defined,

conditional, and even conflicting claims to goods using a common toolkit.

We divide our main analysis into two parts that differ in the relative complexity of the

prevailing property rights. In Section 2 endowments are an exogenous primitive, the typical

case in economic analysis. This familiar setting allows us to introduce the direct exclusion

core and its refinement, the exclusion core. The latter is our focus. The exclusion core

coincides with the strong core in Shapley and Scarf’s (1974) “house market,” a benchmark

case. Generally, however, the exclusion core is neither a subset nor a superset of the strong

core. Unlike the strong core, the exclusion core is never empty in our model and, unlike the

weak core, its outcomes are always efficient.

In Section 3 we apply the exclusion core solution to situations where social or legal con-

straints introduce conflicting claims to goods. To model these cases, we introduce relational

economies where priorities over objects encode relationships among agents and conditional

endowments describe an endogenous distribution of exclusion rights. We adopt the term

“priorities” to acknowledge a technical parallel with centralized allocation problems, par-

ticularly those concerning student-school assignment (Abdulkadiroğlu and Sönmez, 2003).

However, priorities play a novel role in our model. They are not a rationing device in a cen-

tralized assignment scheme. Rather, they indirectly govern exclusion rights by constraining

the economy’s endowment system. We propose three versions of our solution applicable to

relational economies, the strong, weak, and unconditional exclusion cores. These all stand

on the behavioral foundation developed in Section 2, but differ only in how priorities map

into endowments and exclusion rights. When the priority structure is acyclic, the strong
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and weak exclusion cores coincide. In this case, and unlike the strong or weak core, they are

characterized by a generalized TTC algorithm and are stable solutions in the sense of von

Neumann and Morgenstern (1944). Acyclic priority structures are common in practice, and

include economies with private, public, and mixed ownership.

Though our analysis primarily considers exchange economies and allocation problems, our

proposal is also relevant for production. In Section 4 we apply the exclusion core concept

to a production economy by defining endowments and exclusion rights over existing and

potential goods. We illustrate this application in a generalized “house exchange” economy

where coalitions of agents additionally own firms that engage in production.

While we reference the related literature throughout our exposition, we offer a more

structured survey in Section 5. Our paper contributes to the study of exchange economies

by proposing the exclusion core, a new solution clarifying the foundations of exchange. Our

solution’s inspiration in the right to exclude also lets us contribute to a debate primarily

among legal scholars on the conceptual understanding of property. Finally, our results also

have implications for the practice of market design. We do not pursue this objective, although

we do offer a new rationale for the use of trading cycle algorithms in applications, including

those cited above. Trading cycle procedures identify outcomes that are robust to the exercise

of exclusion rights, which are closely tied to a classic characterization of property.

With the exception of some immediate corollaries, we relegate all proofs to the Appendix.

An Online Appendix contains the formal analysis pertaining to production economies.

1 A Motivating Example

To motivate our argument, it is useful to examine a simple instance of our model. It highlights

the limitations of existing theories and hints at the power of our emphasis on exclusion.

Example 1 (The Kingdom). There are three agents—i, j, and k—and two indivisible goods,

called houses—h1 and h2. At most one agent can live in a house and each agent has use

for at most one house. Everyone strictly prefers h1 to h2 and there is no other medium of

exchange. Assume that agent k, whom we call the King, initially owns both houses.

Which final allocation of houses will, or should, arise in this economy? First, since the

King owns both houses, he will surely live in h1. As he cannot live in more than one house,

h2 should be occupied by either i or j. Either outcome is efficient. Finally, one agent, again

either i or j, will remain homeless as there are fewer houses than agents. Thus, either of the

4
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two allocations is intuitive and efficient and, therefore, easiest to justify.3

It is surprising that neither the strong core nor the weak core, two prominent solutions

for exchange and assignment economies, is able to converge on the preceding outcomes. An

allocation belongs to the strong core if no coalition of agents can reallocate the goods they

own such that no coalition member is made worse off and at least one coalition member

becomes strictly better off. In the above example, the strong core is empty. Every allocation

can be improved upon, or blocked, by some coalition. For example, if k is assigned to h1, i

to h2, and j is homeless, j and k can together reallocate h2 to benefit j. If h1 is occupied

by k and h2 is occupied by j instead, i and k can together reallocate h2 to benefit i.4

The weak core is not empty, but it is also dissatisfying. An allocation belongs to the

weak core if no coalition of agents can reallocate the goods they own such that all coalition

members are made strictly better off. In the above example, the weak core is too large. In

fact, any assignment where agent k inhabits h1 belongs to the weak core. This includes the

odd situation where h2 is vacant and both i and j are homeless. Neither i nor j can access

h2 since that house’s owner gains nothing from the move. Given the lack of externalities or

information asymmetries, this inefficient outcome seems implausible.5

The Kingdom’s troubles are neither special to the example, nor are they technical anoma-

lies. The cores’ deficiencies can be traced to faulty presumptions concerning agents’ desire

and ability to form a blocking coalition. The strong core is empty because agents who are

indifferent among allocations always agree to join a blocking coalition. Two arguments try

to justify this behavior. The first is altruism—an unaffected agent should help others. This

is at best an incomplete behavioral justification. Aiding one party often harms another,

which is hardly an altruistic disposition. The second is not-modeled side payments. An

agent who benefits, the reasoning goes, can bribe those who remain indifferent to enforce a

reassignment. This argument is unconvincing. Equally well a side payment can be extorted

from a potentially harmed agent to prevent a reassignment, an often ignored possibility.

3The example’s phrasing follows that of our model. An alternative framing is inspired by kidney exchange
(Roth et al., 2004). Agent k has two kidneys, h1 and h2, and has resolved to be a live organ donor. There
are two compatible recipients, i and j, who are equally deserving to receive a donated organ. Clearly, k will
keep one kidney and either i or j will get the transplant.

4A possible remedy for the strong core’s emptiness is to assume, additionally, that the King prefers h2 to
be given to a specific agent. Regrettably, allowing for preferences over allocations, i.e. externalities, begets
more problems in general. Even the weak core can be empty (Mumcu and Saglam, 2007).

5The core concepts’ deficiencies are not due to the economy’s housing shortage. Adding a third, universally
least-preferred house h3, which is also owned by the King, does not change the example’s conclusions.
Problems occur even if i and j disagree about the relative merits of h2 and h3 with, say, j preferring h3 over
h2. The inefficient allocation where h2 is assigned to j and h3 to i is in the weak core.

5
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The weak core is immune to the questionable incentives that plague the strong core, but

it suffers from the opposite ailment. Often, it is too difficult for a blocking coalition to form

because agents who benefit from a reallocation cannot induce those who remain indifferent

to cooperate. Consequently, unintuitive and inefficient outcomes persist.

The exclusion core avoids the above shortcomings. An allocation is in the (direct) ex-

clusion core if no coalition can strictly benefit from a reassignment of houses in which any

agents hurt by the reassignment are excluded (i.e. evicted) from houses in the coalition’s

endowment. In the Kingdom, only the two intuitive and efficient outcomes pass this test. In

that economy, exclusion rights are vested in agent k. If i or j occupies h2, k gains nothing by

evicting him and thus is unwilling to do so. Conversely, allowing either of i and j to occupy

a previously empty h2 does not harm k and he has no reason to prevent this move.

Associating endowments with exclusion rights proved insightful in the preceding example.

Importantly, this reinterpretation extends to economies where the rules surrounding property

are less definite. The complexities (and headaches) surrounding joint or ill-defined ownership

immediately come to mind. Aside from legal prescriptions, status and social conventions also

influence how goods are exchanged or allocated. These variables define property rights in

practice, often implicitly. The role of exclusion rights is readily apparent. Bigger kids

usually take the best toys unless an adult intervenes. An elderly man may expect a teenager

to yield him a seat on a bus, though he would not demand similar deference from a blind

passenger. And doctors often seek family members’ permission before transplanting organs

from deceased relatives, even when the deceased had consented to donation prior to death.6

Though the next of kin did not inherit their relative’s organs, they are often conferred

the right to exclude others from benefiting from them. By interpreting endowments as a

distribution of exclusion rights, the exclusion core unifies many exchange and allocation

problems under a common analytic umbrella.

2 Simple Economies

A simple economy 〈I,H,≻, ω〉 consists of agents, goods, preferences, and an endowment

system. I = {i1, . . . , in} is a finite set of agents whom we sometimes denote by i, j, or k.

H = {h1, . . . , hm} is a finite set of indivisible objects, called houses, that can be allocated

among the agents. Each agent may live in at most one house and each house h ∈ H may

6We thank Al Roth for bringing this practice to our attention via his blog. In the United Kingdom,
family objections blocked 547 transplants from 2010 to 2016 (Quinn, 2016). See also Downie et al. (2008).
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take in at most one agent. A house may be vacant and an agent need not be assigned to a

house. We model this latter outcome by the agent’s assignment to an outside option h0 /∈ H ,

which has unlimited capacity.7 An allocation µ : I → H ∪ {h0} is an assignment of agents

to houses such that |µ−1(h)| ≤ 1 for all h ∈ H . We interpret an allocation as the outcome

of some centralized or decentralized assignment, bargaining, or exchange process, which we

do not model directly. We write µ(C) to denote
⋃

i∈C µ(i) for any C ⊆ I.

Each agent has a strict and rational preference defined over H ∪{h0}. If agent i prefers h

to h′, then h ≻i h
′. We write h �i h

′ if h ≻i h
′ or h = h′. We often define ≻i by listing houses

in preferred order, i.e. ≻i : h, h
′, . . .. Unlisted houses are worse than the outside option.

An endowment system specifies the houses owned by each coalition. It is a function

ω : 2I → 2H satisfying three properties.

(A1) Agency: ω(∅) = ∅.

(A2) Monotonicity: C ′ ⊆ C =⇒ ω(C ′) ⊆ ω(C).

(A3) Exhaustivity: ω(I) = H .

Condition (A1) restricts ownership to agents or groups. Condition (A2) states that a coalition

has in its endowment anything that belongs to any sub-coalition. Finally, (A3) says that the

grand coalition jointly owns everything.

In this section, we further assume that the endowment system satisfies

(A4) Non-contestability: For each h ∈ H , there exists Ch ⊆ I, Ch 6= ∅, such that h ∈

ω(C) ⇐⇒ Ch ⊆ C.

We call Ch the minimal controlling coalition of house h. Condition (A4) guarantees that

each house has a set of one or more “co-owners” without opposing and mutually exclusive

claims. We relax (A4) in Section 3.8

Many economies satisfy (A1)–(A4), including the Kingdom (Example 1), as well as those

examined by Shapley and Scarf (1974) and Hylland and Zeckhauser (1979), which we discuss

below. These latter two cases bracket a class of economies where each house’s minimal

controlling coalition is either a singleton (and the house is privately owned) or the grand

coalition (and the house is part of the social endowment). Economies in this class have been

used to model the allocation of dormitory rooms (Abdulkadiroğlu and Sönmez, 1999) and

transplant organs (Roth et al., 2004).

7The outside option is not required for our conclusions when there are sufficiently many acceptable houses.
8Example 4 presents an economy that satisfies (A1)–(A3) but not (A4).

7
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In the preceding section we explained why the strong and weak cores may fail to provide

satisfactory guidance, even in simple problems. As suggested above, these solutions can be

defined as allocations that cannot be “blocked” by any coalition. They rely on two variants

of blocking, whose definitions we record for completeness.

Definition 1. A non-empty coalition C ⊆ I can weakly block the allocation µ with allocation

σ if (a) σ(i) �i µ(i) for all i ∈ C, (b) σ(i) ≻i µ(i) for some i ∈ C, and (c) σ(C) ⊆ ω(C)∪{h0}.

Definition 2. A non-empty coalition C ⊆ I can strongly block the allocation µ with alloca-

tion σ if (a) σ(i) ≻i µ(i) for all i ∈ C and (b) σ(C) ⊆ ω(C) ∪ {h0}.

The strong core is the set of allocations that cannot be weakly blocked by any coalition.

The weak core is the set of allocations that cannot be strongly blocked by any coalition.

Strong-core allocations are Pareto efficient. That is, no agent can be made strictly better

off without harming anyone. The strong core is a subset of the weak core.

2.1 The Direct Exclusion Core

Acknowledging the problems encountered by classic versions of the core, we propose an

alternative solution. Our proposal reverts to a fundamental tenet of property, the right to

exclude others. By preventing others from using property in his endowment, an agent can

secure and preserve his wellbeing. We explain this idea’s implications in two steps. First,

we define the direct exclusion core to show the immediate power of the right to exclude.

Second, we build on this solution by considering exclusion’s indirect implications, leading to

the exclusion core.

As motivation, consider an economy with three agents and three houses. Each house hk

is owned by agent ik and the agents’ preferences are

≻i1 : h2, h3, h1 ≻i2 : h1, h2 ≻i3 : h1, h3 .

Consider the allocation

µ(i1) = h3 µ(i2) = h2 µ(i3) = h1 .

The coalition C = {i1, i2} can strongly block µ with the allocation

σ(i1) = h2 σ(i2) = h1 σ(i3) = h3 .

8
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The traditional interpretation of the move from µ to σ is that the coalition (strictly) gains

by reallocating the houses in its endowment, ω(C) = {h1, h2}. This is true, but another

feature of this reallocation is noteworthy. The only agent harmed by the change was i3. He

was excluded from µ(i3) = h1—a house in the coalition’s endowment. In fact, the eviction of

i3, or the repossession of h1, is a prerequisite for i1 and i2 to reallocate h1 among themselves.

This feature hints at an alternative feasibility condition for blocking. A coalition can block

an assignment whenever each member strictly gains from an alternative and anyone harmed

by the reallocation is excluded from a house belonging to the coalition.

Definition 3. A non-empty coalition C ⊆ I can directly exclusion block the allocation µ

with allocation σ if (a) σ(i) ≻i µ(i) for all i ∈ C and (b) µ(j) ≻j σ(j) =⇒ µ(j) ∈ ω(C).

The direct exclusion core is the set of allocations that cannot be directly exclusion blocked

by any coalition. Thus, no coalition can gainfully destabilize a direct exclusion core alloca-

tion by drawing on their collective exclusion rights. This logic differs from the rhetoric of

“enforcement” or “exchange within a coalition” ascribed to the classic notions of blocking.

Though only a waypoint in our analysis, the direct exclusion core enjoys some appealing

properties.

Lemma 1. For any economy 〈I,H,≻, ω〉 where ω satisfies (A1)–(A4), the direct exclusion

core is a non-empty subset of the weak core.

Moreover, direct exclusion core allocations are Pareto efficient.9 This is because any Pareto-

improving reallocation of houses can be invoked by its beneficiaries to directly exclusion

block an allocation.10 In the Kingdom (Example 1), the direct exclusion core coincides with

the two intuitive and focal allocations, as explained above. The strong core is not necessarily

contained in the direct exclusion core, as demonstrated by Example 3 below.

2.2 The Exclusion Core

Direct exclusion blocking requires all blocking coalition members to strictly benefit from the

new allocation. This requirement is seemingly constraining as many desirable reallocations

require the acquiescence of unaffected third parties who coincidentally (co-)own a reassigned

house. However, assuming indifferent parties always join a blocking coalition is misguided.

9The direct exclusion core does not generally coincide with the set of Pareto efficient, weak-core alloca-
tions. In Example 3, µ is a Pareto efficient weak-core allocation, but it can be directly exclusion blocked.

10If σ Pareto dominates µ, condition (b) in Definition 3 holds vacuously since σ(i) �i µ(i) for all i.

9
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The resulting solution would be stronger than the strong core and vulnerable to the same

criticisms concerning incentives. Instead, we can rationalize the cooperation of third parties

by inductively extending the logic of exclusion. An example illustrates the idea.

Example 2. There are six agents and six houses. Agent ik owns only house hk. The agents’

preferences are:

≻i1 : h3, h4, h1 ≻i2 : h1, h2 ≻i3 : h2, h5, h3

≻i4 : h2, h4 ≻i5 : h6, h5 ≻i6 : h3, h6

.

Figures 1(a) and 1(b) illustrate this economy’s two direct exclusion core allocations, µ and σ.

In each figure, there is a directed link from each house to its owner and from each agent to his

assignment. Both allocations belong to the weak core; σ is the only strong-core allocation.

Agents i1 and i3 strictly prefer their assignment under σ over their assignment under

µ. To directly exclusion block µ with σ, i1 must move to h3 and i3 must move to h2, as

illustrated in Figure 1(c). The first move is feasible for the coalition. Agent i3 owns h3 and

can veto i6’s assignment to h3 as mandated by µ. Thereafter, h3 is available for i1. The

second move is not feasible since h2 = µ(i4) ≻i4 σ(i4) but h2 /∈ ω({i1, i3}). Thus, i1 and i3

cannot directly exclusion block µ.

Whereas i1 and i3 do not own h2, we argue that they enjoy a form of indirect control

over it. House h2 is owned by i2 for whom µ(i2) = σ(i2) = h1 and h1 is in the coalition’s

endowment. Agent i2 is indifferent between µ and σ, but his wellbeing depends on the

coalition’s continued accommodation. Agents i1 and i3 can press i2 to evict i4 from h2

by threatening to displace him from h1. Acknowledging the power asymmetry at µ, i2

would reasonably accept this demand. By exploiting i2’s dependency, i1 and i3 can forge a

repossession chain giving them an indirect veto over h2’s assignment at µ.

The story is entirely different when the prevailing allocation is σ (Figure 1(d)). The

coalition {i4, i5, i6} would like to block σ. However, houses h2 and h3 are inaccessible since

the coalition lacks leverage over those houses’ owners. In fact, the pattern of exchange

implied by σ insulates i1, i2, and i3 from the coalition’s direct and indirect exclusion power.

Therefore, σ seems more compelling than µ as a final allocation in this economy.

Example 2 shows that the right to exclude can be a powerful, though subtle, stick.

Importantly, the chain of exclusion and repossession need not stop with one link, as in

the example. By exploiting the interdependencies implied by exchange, a coalition can

inductively relay credible threats of exclusion and eviction to all agents who are indirectly

linked to its endowment ω(C). First, (µ−1 ◦ω)(C) is the set of agents who are assigned by µ

10
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i1

h1

i2

h2

i4

h4

i3

h3

i5

h5

i6

h6

(a) Allocation µ.

i1

h1

i2

h2

i4

h4

i3

h3

i5

h5

i6

h6

(b) Allocation σ.

i1

h1

i2

h2

i4

h4

i3

h3

i5

h5

i6

h6

(c) A repossession chain at µ. The coalition
{i1, i3} can indirectly access h2.

i1

h1

i2

h2

i3

h3

i4 i5

i6

h4

h5

h6

(d) Absence of a repossession chain at σ. The
coalition {i4, i5, i6} cannot access h2 or h3.

Figure 1: Direct exclusion core allocations in Example 2.

to houses in ω(C). Thus, with one step of influence, coalition C secures direct and indirect

control over ω(C1) where C1 = C ∪ (µ−1 ◦ω)(C). At two steps of influence, it secures control

over ω(C2) where C2 = C1∪(µ
−1◦ω)(C1). And so on. The recursive formulation ensures that

a collectively owned house is included once all co-owners are deemed (indirectly) dependent

on the coalition’s endowment.

Definition 4. The extended endowment of coalition C at allocation µ is Ω(C|ω, µ) :=

ω (
⋃∞

k=0Ck) where C0 = C and Ck = Ck−1 ∪ (µ−1 ◦ ω)(Ck−1) for every k ≥ 1.

A coalition’s extended endowment does not bestow upon the group more property rights.

Rather, it better reflects agents’ power when exclusion, or threats thereof, underpin interac-

tion. By allowing a coalition to exclude others from houses in its extended endowment, we

arrive at the following strengthening of Definition 3.

Definition 5. A non-empty coalition C ⊆ I can indirectly exclusion block the allocation µ

with allocation σ if (a) σ(i) ≻i µ(i) for all i ∈ C and (b) µ(j) ≻j σ(j) =⇒ µ(j) ∈ Ω(C|ω, µ).

The indirect exclusion core or, for simplicity, the exclusion core is the set of allocations that

cannot be indirectly exclusion blocked by any coalition.

11
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The following theorem is implied by results derived in Section 3 in a more general model.

Theorem 1. For any economy 〈I,H,≻, ω〉 where ω satisfies (A1)–(A4), the exclusion core

is not empty.

Exclusion core allocations belong to the direct exclusion core. Thus, they are Pareto efficient

and also belong to the weak core.

2.3 Private and Public Ownership

Both private and public ownership are common in practice and in economic analysis. In a

private-ownership economy, every house has a single owner. That is, for every h ∈ H there

exists an agent i such that h ∈ ω(i). An agent may own multiple houses, as in Example 1,

but no house is owned collectively.

Proposition 1. In a private-ownership economy, the strong core is a (possibly empty) subset

of the exclusion core.

Shapley and Scarf (1974) analyze a particular private-ownership economy where each

agent ik owns exactly one house, i.e. ω(ik) = {hk}, and h ≻ik h0 for each ik and h 6= h0.

They present an algorithm, attributed to David Gale, that selects a strong-core allocation

in their market. We generalize this algorithm in Section 3 and summarize it here.

Algorithm 1 (Top Trading Cycles (TTC)). Initially, all agents and houses are unassigned.

In step t ≥ 1 of the algorithm, each unassigned house points to its owner and each unassigned

agent points to his most preferred unassigned house. As there is a finite number of agents

and houses, there is at least one cycle of the form h → i → · · · → h′ → i′ → h. (A cycle

may be formed by one agent and one house.) Pick any cycle and to each agent in the cycle

assign the house that he is pointing to. Remove the assigned agents and houses from the

market. This process continues until all agents and houses have been assigned.

The TTC algorithm identifies the economy’s unique strong-core allocation (Roth and

Postlewaite, 1977) and this allocation can be supported as a competitive equilibrium (Shapley

and Scarf, 1974). Ma (1994) proves that the TTC mechanism is the unique mechanism

satisfying individual rationality,11 Pareto efficiency, and strategy-proofness.12 Furthermore,

11If µ is an individually rational allocation, then µ(i) �i h for all h ∈ ω(i) ∪ {h0} and for every agent i.
12A (direct) mechanism is strategy-proof if it is a dominant strategy for each agent to truthfully communi-

cate his preferences to the mechanism. In each step of the TTC mechanism, each agent is assumed to point
to his most-preferred available house. He cannot improve his final assignment by pointing elsewhere.

12
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the strong-core allocation is “stable” under multiple definitions (Roth and Postlewaite, 1977;

Wako, 1984, 1991; Kawasaki, 2015). All things considered, the strong-core allocation is this

market’s most compelling outcome.

Proposition 2. The exclusion core and the strong core coincide in Shapley and Scarf’s

(1974) economy.

The antipode of a private-ownership economy is the public-ownership economy where all

houses belong only to the social endowment, i.e. ω(C) = ∅ for all C ( I and ω(I) = H .

Hylland and Zeckhauser (1979) consider this assignment problem.13 This economy’s strong

core equals the set of Pareto efficient allocations.

Proposition 3. In a public ownership economy, the exclusion core equals the strong core.

Equivalently, the exclusion core equals the Pareto frontier.

In the above cases, the strong core was a subset of the exclusion core. However, the strong

core is not necessarily a subset of the exclusion core, as confirmed by the next example. The

example is an instance of a “house-allocation problem with existing tenants” (Abdulkadiroğlu

and Sönmez, 1999) where some houses are privately owned and others belong only to the

social endowment.

Example 3. There are four agents and four houses. For each k ∈ {1, 2, 3}, ω(ik) = {hk}.

House h4 is owned collectively, i.e. h4 ∈ ω(I) and h4 /∈ ω(C) for all C ( I. The agents’

preferences are:

≻i1 : h2, h1 ≻i2 : h4, h3, h2 ≻i3 : h2, h3 ≻i4 : h1, h4, h3 .

There are three strong-core allocations, µ, ν, and σ, as illustrated in Figure 2. In the figure,

each house is pointing to its owner (if it has one) and each agent is pointing to his assigned

house. Only ν and σ constitute the exclusion core. The coalition C = {i1, i2, i4} can directly

(and, hence, indirectly) exclusion block µ with the allocation σ.

3 Relational Economies

In the previous section, we reinterpreted the endowment system ω as a distribution of ex-

clusion rights. Despite the added generality, our analysis has so far glossed over much of

13See also Koopmans and Beckmann (1957).
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(a) Allocation µ.
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(b) Allocation ν.
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h1
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i3
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i4
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(c) Allocation σ.

Figure 2: Strong-core allocations in Example 3. Only ν and σ are in the exclusion core.

the complexity of ownership rights in practice. These are often layered with caveats and

qualifications. A variant of a prior example illustrates the practical limitations of a simple

economy in describing these situations.

Example 4 (The Diarchy). Recall the Kingdom from Example 1. There are three agents

and two houses. Everyone agrees that h1 is the best house, and h2 is second best. Suppose,

however, that agents j and k are “co-kings” and “co-own” everything. Agent i remains a

property-less peasant. Two allocations are focal. In the first, j takes h1, k settles for h2,

and i receives nothing. In the second, the kings swap houses. Both outcomes are efficient

and equally plausible given the economy’s symmetry.

Perhaps surprisingly, this situation cannot be convincingly modeled as a simple economy.

The problem concerns the correct endowment system. There are two natural options. The

first places all houses only in the kings’ joint endowment: ω(i) = ω(j) = ω(k) = ∅ and

ω({j, k}) = {h1, h2}. This endowment system satisfies (A1)–(A4) and the preceding section’s

analysis applies. Regrettably, the exclusion core includes outcomes that are implausible given

the context. For instance, the allocation where k claims h1, i takes h2, and j—a king—is

homeless belongs to the exclusion core.

The obvious alternative places both houses in each king’s personal endowment: ω(j) =

ω(k) = {h1, h2} and ω(i) = ∅. This endowment system satisfies (A1)–(A3) but not (A4).

The exclusion core is empty since every allocation can be blocked by the king who does not

receive h1.

The Diarchy’s problems stem from the proposed endowment systems’ immutability and

insensitivity to the agents’ identities and relationships. These can only be accounted for in a

more contract-like arrangement: “If the peasant occupies a house, either king can evict him.

However, a king cannot do likewise to a co-monarch.” Such conditional property rights are

rare in economic models and differ from mere “co-ownership.” Each king’s exclusion rights

are derived from his regal status, yet are qualified by the identity of a house’s occupant.

14
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3.1 Priorities

To analyze situations with conditional and simultaneous claims, we appeal to the exclusion

core, but we posit that endowments, i.e. exclusion rights, are endogenously determined.

To further this idea, we first amend our definition of an economy. A relational economy

〈I,H,≻,⊲〉 consists of agents, houses, preferences, and a priority structure. The first three

components are defined as before. The new primitive is the priority structure ⊲ = (⊲h)h∈H ,

which is a family of orders that describe pre-existing social, legal, or economic relationships

among agents in relation to the economy’s goods. It may be formally codified by law or

it may be informally set by social conventions, relative status, or historical context. In

our understanding, priorities embody a minimal constraint that any property rights in a

relational economy must respect in the following sense: If i⊲h j, then i should enjoy rights

no less than j with respect to house h.14

Formally, each ⊲h is a strict partial order (i.e. an irreflexive and transitive relation) of

the set of agents. We write iDh j if i⊲h j or i = j. Many situations suggest natural priority

structures.15 If a house is publicly owned, no agent has priority over others, i.e. i ⋫h j for all

i and j. If one agent ⊲h-dominates all others, it is natural to call him the house’s “owner.”

A diarchic structure occurs if two agents ⊲h-dominate others, but not one another. More

exotic cases are possible too. For instance, a case like i⊲h j ⊲h k and ℓ⊲h k (with no other

⊲h-dominances) may describe relationships within a family or a social group. We assume

that the relation ⊲h0
is empty and i⊲h ∅ for all i ∈ I and h ∈ H .

Priorities feature in many assignment problems, particularly those concerning student-

school matching. We adopt the same terminology to highlight a technical parallel that

will be evident below. However, our use of priorities to encode social, legal, or economic

relationships in a (possibly decentralized) market differs from their use in a centralized

assignment problem. For example, in a school-choice problem priorities are administratively

defined rankings of students (the agents) that help ration places at desirable schools (the

houses). Abdulkadiroğlu and Sönmez (2003) offer two interpretations of priorities in this

context. First, they may impose an inviolable fairness requirement, no justified envy, on

the final assignment.16 Priorities do not have this meaning in our model. Second, priorities

may define relative opportunities. A student with a higher priority at a school should have

a “better opportunity” to attend that school than someone with a lower priority. Though

14See Campbell (1992) on how hierarchical relations may qualify property rights.
15Ehlers and Erdil (2010) model some of these situations with non-strict partial orders.
16A student feels justified envy if he prefers to attend a school that enrolled a lower-priority student.
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still distinct, our use of priorities is closer in spirit to this second meaning.

Our use of priorities bears some similarity to Piccione and Rubinstein’s (2007) strength

relation in their model of a “jungle economy.” Their strength relation is a linear order of all

agents, while priorities in our model are good-specific and possibly incomplete. Furthermore,

the link between priorities and agents’ rights in a relational economy is mediated through

the prevailing endowment system, which we turn to next.

3.2 Endowments in Relational Economies

In a relational economy, exclusion rights should reflect the context conveyed by the priority

structure. To do so convincingly, they may need to be qualified by the prevailing allocation,

as suggested by the Diarchy (Example 4). We use the term conditional endowment to

emphasize when this occurs. Noting these desiderata, we propose three natural definitions

of an endowment system in a relational economy. These lead to the strong, weak, and

unconditional exclusion cores.

The Strong Exclusion Core The simplest definition of an endowment system in a rela-

tional economy places house h in a coalition’s (conditional) endowment if one of its members

Dh-dominates that house’s occupant. We define a relational economy’s weak conditional

endowment system at µ, ωµ : 2
I → 2H , as follows. For every h ∈ H and C ⊆ I, h ∈ ωµ(C)

if and only if i Dh µ−1(h) for some i ∈ C. Weak conditional endowments plug seamlessly

into the definition of exclusion blocking, without otherwise changing its behavioral rationale.

The following definition parallels Definition 5, with “ωµ” replacing “ω” in point (b).

Definition 6. A non-empty coalition C ⊆ I can indirectly exclusion block the allocation µ

with allocation σ given ωµ if (a) σ(i) ≻i µ(i) for all i ∈ C and (b) µ(j) ≻j σ(j) =⇒ µ(j) ∈

Ω(C|ωµ, µ).

The allocation µ belongs to a relational economy’s strong exclusion core if and only if µ

cannot be indirectly exclusion blocked given ωµ.

The intuitive derivation of ωµ gives the strong exclusion core great appeal. Regrettably,

the strong exclusion core can be empty.

Example 5. Let I = {i, j, k} and H = {h1, h2}. Suppose i⊲h1
j ⊲h1

k, k ⊲h2
j ⊲h2

i and

≻i : h2, h1 ≻j : h1 ≻k : h1, h2 .
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Any assignment µ where µ(j) = h1 can be exclusion blocked by either i or k. But, if

µ(j) = h0, efficiency demands that µ(i) = h2 and µ(k) = h1. This assignment can be

exclusion blocked given ωµ by j.

The root of the preceding example’s problem is the economy’s cyclic priority structure.

Whether encountered in a consumer’s preference or in committee voting, cyclic relations

are a well-known challenge for economic analysis. The simplest strategy to address this

complication is to restrict the priority structure accordingly. A priority structure ⊲ is acyclic

if for all h ∈ H and agents i, j, and k,

[i⊲h j & i 4h k] =⇒ k ⊲h′ j for all h′ 6= h, h0. (1)

Our definition of acyclicity is specifically phrased to accommodate incomplete relations;

however, (1) reduces to Ergin (2002) acyclicity when each ⊲h is a linear order of all agents.17

It is related to strong acyclicity, which was proposed by Ehlers and Erdil (2010) as an

extension of Ergin’s (2002) definition to non-strict priority rankings. See also Kesten (2006).

The next result is implied by Lemma 2 and Theorem 3, which are stated below.

Theorem 2. For any relational economy with an acyclic priority structure, the strong ex-

clusion core is not empty.

Acyclic priority structures are common. If house h is privately owned there is an agent

i, the house’s owner, such that i ⊲h j for all j 6= i and j ⋫h k for all j, k ∈ I \ {i}.

Conversely, if house h is publicly owned, i ⋫h j for all i and j. Any economy featuring a

combination of privately and publicly owned houses has an acyclic priority structure.18 The

Diarchy (Example 4) can also be modeled with an acyclic priority structure: both j and k

⊲h-dominate i for each h ∈ H , but not each other. Its strong exclusion core contains only

the two focal allocations where the kings claim both houses.

The Weak Exclusion Core The strong exclusion core presumes a fairly liberal distri-

bution of exclusion rights. A more conservative distribution may be preferable when the

priority structure is not acyclic. To simplify notation, we say that CDh j if and only if iDh j

for some i ∈ C. And, we write C ⊲h j if C Dh j but j /∈ C. We define a relational economy’s

17An Ergin (2002) cycle occurs if for distinct houses h and h′ and distinct agents i, j, and k, k⊲hi⊲hj⊲h′k.
A priority structure is Ergin (2002) acyclic if it does not contain an Ergin (2002) cycle. If ⊲h is a linear
order for each h, then (1) becomes k ⊲h i⊲h j =⇒ k ⊲h′ j. Hence, an Ergin (2002) cycle cannot occur.

18To confirm this fact, note that the antecedent in (1), i⊲h j & i 4h k, is never satisfied.
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strong conditional endowment system at µ, ω∗
µ : 2

I → 2H , as follows. For every h ∈ H and

C ⊆ I, h ∈ ω∗
µ(C) if and only if

(a) C Dh µ
−1(h) and

(b) [C ⊲h µ
−1(h) & C 4h k] =⇒ k ⊲h′ µ−1(h) for all h′ 6= h, h0.

Condition (a) says that if h ∈ ω∗
µ(C), then i Dh µ−1(h) for some i ∈ C. This is identical

to the condition defining the weak conditional endowment system above. Condition (b)

ensures that the socially recognized exclusion rights, as defined by ω∗
µ, do not inherit the

problematic cycles found in the priority structure. Intuitively, it can be interpreted as a

“conditional acyclicity” requirement noting its resemblance to (1).19 The strong conditional

endowment system does not recognize (potential) exclusion rights that are vulnerable to

cyclic challenges or counterclaims at the prevailing allocation.

Replacing “ωµ” with “ω∗
µ” in Definition 6 leads to the corresponding version of the ex-

clusion core. The allocation µ belongs to a relational economy’s weak exclusion core if and

only if µ cannot be indirectly exclusion blocked given ω∗
µ. Since ω∗

µ(C) ⊆ ωµ(C) for all C,

the strong exclusion core is a subset of the weak exclusion core.

Lemma 2. If the priority structure is acyclic, the weak and strong exclusion cores coincide.

Theorem 3. For any relational economy, the weak exclusion core is not empty.

In Example 5, the strong exclusion core was empty. The unique weak exclusion core

allocation assigns i to h2 and k to h1.

The Unconditional Exclusion Core Both weak and strong conditional endowments

are functions of the prevailing allocation µ. Whether a coalition has exclusion rights with

respect to house h depends on its occupant. Though warranted in situations like the Diarchy

(Example 4), we can naturally expunge this conditionality. We define a relational economy’s

unconditional endowment system, ω∗∗ : 2I → 2H , as follows. For all h ∈ H and C ⊆ I,

h ∈ ω∗∗(C) if and only if C includes every ⊲h-maximal agent in the economy.20 By replacing

“ωµ” with “ω∗∗” in Definition 6, we define the unconditional exclusion core of a relational

economy as the set of allocations that cannot be indirectly exclusion blocked given ω∗∗. For all

µ and C, ω∗∗(C) ⊆ ω∗
µ(C) ⊆ ωµ(C).21 Thus, a relational economy’s unconditional exclusion

19For added intuition, suppose C = {i}. In this case, part (b) becomes [i ⊲h µ−1(h) & i 4h k] =⇒
k ⊲h′ µ−1(h) for all h′ 6= h, h0. Now, agent µ

−1(h) plays the role of agent j from (1).
20Agent i ∈ I is ⊲h-maximal if there is no j ∈ I such that j ⊲h i.
21If h ∈ ω∗∗(C), then C Dh µ−1(h). Point (b) in the definition of ω∗

µ(·) holds since C 4h k is impossible.
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core is not empty and contains its weak and strong exclusion cores. The unconditional

exclusion core connects simple and relational economies, as explained in Section 3.4.

3.3 Generalized Top Trading Cycles

We prove Theorem 3 in Appendix A. Our proof is constructive and relies on the algorithm

introduced below. The algorithm identifies a weak exclusion core allocation. When the

priority structure is acyclic, Lemma 2 implies this algorithm’s output is a strong exclusion

allocation, thus proving Theorem 2. Our algorithm builds upon several precursors. The TTC

algorithm identifies the unique exclusion core assignment in Shapley and Scarf’s (1974) econ-

omy. Similarly, a Pareto efficient allocation in Hylland and Zeckhauser’s (1979) market can

be identified with a serial dictatorship.22 A mechanism that nests both the TTC algorithm

and the serial dictatorship is the “You Request My House—I Get Your Turn” (YRMH-

IGYT) mechanism of Abdulkadiroğlu and Sönmez (1999). Our algorithm is also a direct

descendant of the TTC algorithm with a tie-breaker of coarse priorities, as applied to the

school-choice problem (Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu et al., 2009).23

Our algorithm reduces to each of the above cases when the environment is appropriately

restricted. This connection binds the exclusion core to well-known applications.

Algorithm 2 (Generalized Top Trading Cycles (GTTC)). Given 〈I,H,≻,⊲〉, let ⊲̃h be a

linear order of agents such that i⊲h j =⇒ i ⊲̃h j for each h ∈ H . We call ⊲̃ an extension of

⊲.24 Let I1 := I and H1 := H . In step t ≥ 1 the algorithm proceeds as follows with inputs

I t and H t.

Step t. Let I t and H t be the sets of unassigned agents and houses, respectively, at step t.

Construct a directed graph as follows. The set of vertices is I t ∪ H t ∪ {h0}. Draw an arc

from i ∈ I t to h ∈ H t ∪ {h0} if and only if h is agent i’s most preferred house among those

in H t ∪ {h0}. For each h ∈ H t, draw an arc from h to the ⊲̃h-maximal agent in I t.

(a) If there exists an agent i who is pointing to h0, assign him to the outside option, i.e. set

µ(i) = h0, and remove him from the market. Set Ĩ t = {i} and H̃ t = ∅.

22In a serial dictatorship all agents are ordered. The first agent is assigned his most-preferred object.
The second agent is assigned his most-preferred object from those remaining. And so on. The resulting
assignment is Pareto efficient if preferences are strict.

23The main difference is our algorithm’s accommodation of a more general class of priority structures than
typically encountered in school-choice problems.

24An extension ⊲̃ always exists by the Szpilrajn Extension Theorem. It is tempting to view ⊲̃ as a priority
structure supplemented by a tie-breaking rule (Ehlers, 2014). While compatible with our model, we hesitate
to emphasize this interpretation. If i ⋫h j and j ⋫h i, agents i and j are not necessarily “equal” in our
economy. For instance, it may be true that i⊲h k but j ⋫h k.
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(b) Otherwise, the constructed graph contains at least one cycle. Choose any cycle and carry

out the implied assignments. That is, if i → h in the cycle then set µ(i) = h. Remove

the associated agents, Ĩ t ⊆ I t, and their assigned houses, H̃ t ⊆ H t, from the market.

Let I t+1 := I t \ Ĩ t and H t+1 := H t \ H̃ t.

The above process continues until I t = ∅. Any remaining houses are left unassigned.

An example in Appendix B illustrates the operation of Algorithm 2. As there is a finite

number of agents and at least one agent is removed from the market in each step, the

algorithm terminates in a finite number of steps. Furthermore, the algorithm is strategy-

proof. This fact is a corollary to results by Roth (1982), Abdulkadiroğlu and Sönmez (1999),

Roth et al. (2004), and (in particular) Abdulkadiroğlu and Sönmez (2003), who extend the

TTC algorithm to an assignment problem with priorities. Though priorities have a different

meaning in our model, the argument is essentially identical and we omit the proof.

Algorithm 2 is parameterized by the extension ⊲̃. By varying the extension, Algorithm

2 identifies a family of exclusion core outcomes.

Theorem 4. Every strong exclusion core allocation in the relational economy 〈I,H,≻,⊲〉

can be identified by Algorithm 2 with some extension of ⊲.

While Algorithm 2 can find all strong exclusion core allocations, it cannot find all weak

exclusion core allocations.25 Allocations identified by Algorithm 2 need not belong to the

strong exclusion core when the economy’s priority structure is not acyclic (see Example 5).

The next corollary follows from Lemma 2 and Theorems 3 and 4.

Corollary 1. Denote the weak exclusion core by WEC, the strong exclusion core by SEC,

and the range (over all extensions of the priority structure) of Algorithm 2 by GTTC.

(a) Given an arbitrary priority structure, SEC ⊆ GTTC ⊆ WEC.

(b) If the economy’s priority structure is acyclic, SEC = GTTC = WEC.

We can highlight several further properties of the strong and weak exclusion cores. For

instance, they enjoy a natural stability property when the priority structure is acyclic.

25Consider the following example. The agents’ preferences are ≻i : h1, h2, h3, ≻j : h1, h2, h3, and
≻k : h1, h3, h2. Agents j and k jointly own h1: j ⊲h1

i and k ⊲h1
i. Agent i owns h2 and h3: i ⊲h j

and i ⊲h k for h ∈ {h2, h3}. Otherwise, the agents are not ⊲·-comparable. There are three weak exclusion
core allocations. In two allocations, i takes h2 and either j or k claims h1. The third allocation—µ(i) = h1,
µ(j) = h2, and µ(k) = h3—cannot be identified by Algorithm 2.
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Proposition 4. The strong (or weak) exclusion core of a relational economy with an acyclic

priority structure is stable in the sense of von Neumann and Morgenstern (1944).26

The exclusion core also exhibits intuitive comparative statics with respect to ⊲. Changes

in ⊲ may reflect changing legal or social norms. We call ⊲′ a coarsening of ⊲ if for all h ∈ H

and i, j ∈ I, i ⊲′
h j =⇒ i ⊲h j. Intuitively, ⊲′ coincides with ⊲ except some hierarchical

relations among agents are possibly expunged.

Proposition 5. If ⊲′ is a coarsening of ⊲, the strong/weak/unconditional exclusion core of

〈I,H,≻,⊲′〉 contains the strong/weak/unconditional exclusion core of 〈I,H,≻,⊲〉.

3.4 Simple and Relational Economies

We introduced relational economies to offer a more sophisticated model of collective or

qualified ownership. We conclude this section by linking relational economies to the simple

economies of Section 2 where an endowment system, rather than a priority structure, is the

primitive.

Consider the simple economy 〈I,H,≻, ω〉 with an endowment system ω satisfying (A1)–

(A4). The priority structure ⊲ represents ω if for each h ∈ H , i ⊲h j if and only if i ∈

Ch and j /∈ Ch. Theorem 1 is a corollary to the next lemma.

Lemma 3. Let ω be an endowment system satisfying (A1)–(A4). Suppose ⊲ represents ω.

(a) The exclusion core of the simple economy 〈I,H,≻, ω〉 coincides with the unconditional

exclusion core of the relational economy 〈I,H,≻,⊲〉.

(b) If 〈I,H,≻, ω〉 is a simple economy where every house is either privately or publicly owned,

then its exclusion core coincides with the strong, weak, and unconditional exclusion cores

of the relational economy 〈I,H,≻,⊲〉.

Lemma 3 lets us revisit the cases of private and public ownership introduced in Section

2.3. The following result, due to Sönmez (1999), helps connect the exclusion core and the

strong core in a private-ownership economy.

Theorem 5 (Sönmez (1999)). Suppose there exists a Pareto efficient, individually rational,

and strategy-proof mechanism ϕ for the class of private-ownership economies.

26A set of allocations A is von Neumann-Morgenstern stable if it is (a) internally stable: every µ ∈ A is
not “dominated” by any σ ∈ A; and, (b) externally stable: every µ /∈ A is “dominated” by some σ ∈ A. In
our case, σ “dominates” µ if some coalition can indirectly exclusion block µ with σ given ωµ (or ω∗

µ).
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(a) The strong core of any such economy is either empty or a singleton.

(b) If the strong core of that economy is not empty, its unique element is identified by ϕ.

Noting that the GTTC algorithm satisfies the conditions of Theorem 5, two corollaries follow.

Corollary 2. In a private-ownership economy, if the exclusion core contains more than one

allocation, the strong core is empty.

Corollary 3. In a private-ownership economy, the exclusion core equals the strong core

whenever the latter is not empty.

Corollaries 2 and 3 together imply Proposition 1. Corollary 3 also implies the coincidence

of the exclusion and strong cores in Shapley and Scarf’s (1974) economy (Proposition 2).

An economy with both private and public ownership is the house-allocation problem with

existing tenants (Abdulkadiroğlu and Sönmez, 1999). In this problem, every house is either

owned by exactly one agent or belongs to the social endowment. No agent owns more than

one house. Such an economy’s exclusion core may differ from its strong core (see Example

3). In this setting, the GTTC algorithm reduces to Abdulkadiroğlu and Sönmez’s (1999)

YRMH-IGYT mechanism. The following is a corollary to Theorem 4 and Lemma 3.

Corollary 4. In the house-allocation problem with existing tenants, the exclusion core coin-

cides with the set of all possible allocations identified by the YRMH-IGYT mechanism.

Corollary 4 provides a new characterization of the YRMH-IGYT mechanism, complementing

its axiomatization by Sönmez and Ünver (2010).

4 Production Economies

By defining the distribution of exclusion rights, i.e. the endowment system, over existing and

potential goods, we can apply the exclusion core concept to production economies. Now a

coalition may modify a firm’s production decision by leveraging the dependence of the firm’s

owners on the coalition’s extended endowment.

Consider the following generalization of the simple economy from Section 2. A simple

economy with production is a tuple 〈(I, F ), (H0,H ),≻, ω〉. The set of agents I is augmented

by a finite set of firms F = {f1, . . . , fn′}. The set of houses is replaced by an existing housing

stock H0 and a collection H = {H1, . . . ,Hn′} of production sets, one for each firm. The
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production set of firm fk is a non-empty menu of production plans, Hk = {Hk,1, . . . , Hk,mk
}.27

The set of houses produced by firm fk under plan j isHk,j. Each firm’s production technology

satisfies the following assumption:

(A5) Differentiated production plans: If (k, j) 6= (k′, j′), then Hk,j ∩Hk′,j′ = ∅.

Condition (A5) captures the idea that a firm faces tradeoffs in production due to a resource

constraint. To produce a new house, a firm must modify all other houses that it produces

to secure the required inputs. Even minor modifications lead to distinct outputs.28

The set of all possible houses in the economy is H := H0 ∪
(
⋃

k,j Hk,j

)

. Each agent’s

strict preference ≻i is defined over H ∪ {h0}. As before, h0 /∈ H is an outside option.

Finally, ω : 2I → 2H is an endowment system satisfying (A1)–(A4). Recall that assump-

tion (A4) says that each house h ∈ H has a minimal controlling coalition Ch. We extend

this idea to production processes by assuming

(A6) Production non-contestability: For k 6= 0, {h, h′} ⊆
⋃

j Hk,j =⇒ Ch = Ch′

.

Assumption (A6) says that all goods that can be produced by firm fk have the same minimal

controlling coalition. In everyday language, we may call this coalition the firm’s owners. It

is notable that the set ω(C) may include goods that exist in the market and goods that can

exist, if they are produced.

An outcome (µ, ρ) consists of an allocation µ and a production plan ρ. An allocation

µ : I → H ∪ {h0} is defined as before. A production plan ρ : F →
⋃

k Hk is a function

such that ρ(fk) ∈ Hk for each fk ∈ F . It defines what each firm produces. Let Hρ :=

H0 ∪ (
⋃

k ρ(fk)) be the set of available houses given ρ. An outcome (µ, ρ) is feasible if

µ(I) ⊆ Hρ ∪ {h0}.

The only novelties in the next definition are the qualifications concerning feasibility.

Definition 7. A non-empty coalition C ⊆ I can indirectly exclusion block the feasible

outcome (µ, ρ) with the feasible outcome (σ, ρ′) if (a) σ(i) ≻i µ(i) for all i ∈ C and (b)

µ(j) ≻j σ(j) =⇒ µ(j) ∈ Ω(C|ω, µ).

The exclusion core of a simple economy with production is the set of feasible outcomes that

cannot be indirectly exclusion blocked. Note that Definition 7 allows a blocking coalition

to change the economy-wide production plan, including altering the output of firms that it

27For instance, it is natural to assume that inaction is possible, i.e. ∅ ∈ Hk. When Hk = {∅} for each k,
a simple economy with production reduces to the model of Section 2.

28For example, a worker might spend less time working on a house, thus slightly degrading its quality.
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Simple Economies Relational Economies

Exogenous
Endowment
System (ω)

EC

Priorities (⊲)
︷ ︸︸ ︷

Unconditional
Endowments (ω∗∗)

⊆
Strong Conditional
Endowments (ω∗

µ)
⊆

Weak Conditional
Endowments (ωµ)

UEC ⊇ WEC ⊇ GTTC ⊇ SEC

=
Acyclic ⊲

=
⊲ Represents ω

=
Private and/or Public Ownership

Figure 3: Summary of select results. Key: EC—Exclusion Core; UEC—Unconditional Ex-
clusion Core; WEC—Weak Exclusion Core; SEC—Strong Exclusion Core; GTTC—Range
of Algorithm 2 over all extensions of the economy’s priority structure.

does not “own.” Traditional definitions of the core in a production economy usually restrict

a coalition’s use of firms’ production capacities (Kreps, 2013, p. 369).

Theorem 6. The exclusion core of a simple economy with production satisfying (A1)–(A6)

is not empty.

We prove Theorem 6 in the Online Appendix. The proof is similar to the proof of Theorem

3. To construct an exclusion core outcome, we introduce a modification of Algorithm 2 that

jointly identifies the consumption allocation and the economy-wide production plan. As

before, exclusion core outcomes are Pareto efficient.

5 Summary and Related Literature

Property plays a pivotal role in markets, but its relation to endowments within economic

analysis has been taken for granted. Drawing on a classic characterization of property, the

exclusion core interprets endowments as a distribution of exclusion rights over the economy’s

goods. These rights may be held individually, shared, or even qualified by relationships.

Our main analysis has two parts, simple and relational economies, and we have introduced

four variants of the exclusion core. These ideas are juxtaposed in Figure 3. Endowments in

simple economies are exogenous primitives. In contrast, endowments in relational economies

are derived from a priority structure, which models relationships between agents in rela-

tion to the economy’s goods. The most generous allocation of exclusion rights leads to the
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strong exclusion core, which may be empty if priority cycles induce too many conflicting

claims. These conflicts are settled by the weak exclusion core, which tightens the criteria

for a coalition to “own” a house. Both strong and weak exclusion cores rely on conditional

endowments, where the distribution of exclusion rights changes with the prevailing alloca-

tion. The unconditional exclusion core dismisses this conditionality and provides a logical

connection to the paradigm of simple economies where priorities play no role. All four ex-

clusion core variants coincide when each house is either privately owned or part of the social

endowment, two familiar possibilities.

Our study of property rights with the aid of a house-exchange economy allows our analysis

to bridge two literatures. First, we contribute to the study of discrete exchange economies.

And second, we complement scholarship in law and economics on the nature of property.

We conclude by addressing each contribution in turn.

Discrete Exchange Economies Shapley and Scarf (1974) were the first to study the core

of a discrete exchange economy and they introduced David Gale’s TTC algorithm, which

Algorithm 2 generalizes. Formally, Algorithm 2 belongs to the class of hierarchical exchange

mechanisms introduced by Pápai (2000). Such mechanisms rely on an alternative definition

of endowments, termed inheritance trees. Pycia and Ünver (2017) introduce inheritance

structures in their generalization of Pápai’s (2000) model. An inheritance structure defines

how unassigned houses are inherited or transferred during a multi-step assignment process.

Svensson and Larsson (2005) introduce endowment rules, which are similar.

The extensions ⊲̃ in Algorithm 2 play the role of inheritance structures in our argument.

Like inheritance structures, ⊲̃ defines contingent control within a sequential assignment

process. Despite this similarity, these extensions are purely technical devices in our analysis

and characterize neither property nor endowments. Endowments in our model describe a

distribution of exclusion rights and are independent of any particular trading protocol.

Several studies rely on hierarchical exchange mechanisms to propose new variants of the

core. These definitions combine weak blocking (Definition 1) with alternative specifications

of endowments. Ekici (2013) calls an allocation reclaim proof if it cannot be weakly blocked

by any coalition whose endowment is a combination of the pre-trade endowment and the

ex post allocation. Svensson and Larsson (2005), and later Tang and Zhang (2016), define

endowments in terms of houses a coalition would have feasibly inherited during trade given

a prevailing endowment rule or inheritance structure. Unlike these studies, our definitions

avoid the problematic incentives underlying weak blocking (see Section 1). Our derivations
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and interpretations of endowments are distinct as well.

Many variants of Shapley and Scarf’s (1974) model have been considered. Konishi et al.

(2001) show that the weak core may be empty if agents can consume multiple goods. As

the exclusion core is a subset of the weak core, we cannot offer new positive results for

this class of problems. To limit confounds, we assumed a strict preference domain, integral

endowments, and deterministic final outcomes. Each of these assumptions has been relaxed

by many authors.29 Farsighted solutions have also been considered (Klaus et al., 2010). We

defer investigating these extensions to future research.

Walrasian equilibrium is another solution commonly applied to exchange economies. The

possible absence of personal endowments precludes the application of standard price equi-

librium definitions to our setting. Richter and Rubinstein (2015) introduce the notion of a

“primitive equilibrium,” which does not rely on budget sets nor endowments. Instead, they

observe that equilibria induce an ordering of goods, from more to less desirable. Exclusion

core allocations identified by the GTTC algorithm, which orders goods based on the step in

which the good is assigned, satisfy Richter and Rubinstein’s (2015) equilibrium definition.

Endowments and Property Rights The interpretation of endowments and property

that we advance is narrow. It is derived from a basic principle, the right to exclude others.

We cannot hope to account for this principle’s philosophical, historical, and legal development

here. Penner (1997), Merrill (1998), Merrill and Smith (2001b), and Klick and Parchomovsky

(2017), among many others, elaborate on these points in detail. Though property rights

are a touchstone for our analysis, the questions we consider are distinct from the bilateral

externalities examined by Coase (1960) or the literature on contracts and control following

Grossman and Hart (1986).

To simplify exposition, we split our analysis into two parts. Section 2 examined simple

economies with exogenous endowments. Section 3 introduced relational economies and con-

ditional endowments. This division corresponds to different conceptual understandings of

property among legal scholars, which can be framed as a spectrum running between in rem

and in personam paradigms (Merrill and Smith, 2001a,b).30 The model of Section 2 can be

interpreted as embodying an in rem interpretation of property. A coalition’s exclusion rights

are universal, valid against all others, and embodied in their ownership of a specific thing.

29For richer preference domains, see Alcalde-Unzu and Molis (2011), Jaramillo and Manjunath (2012), and
Saban and Sethuraman (2013). Kesten (2009), Athanassoglou and Sethuraman (2011), and Aziz (2018) study
fractional endowments. Abdulkadiroğlu and Sönmez (1998) and Carroll (2014) examine random outcomes.

30Merrill and Smith (2001b) examine this distinction with particular reference to economic analysis. See
also Campbell (1992), Merrill (1998), and Klick and Parchomovsky (2017) and the citations therein.
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Arruñada (2012) argues that in rem rights allow for impersonal exchange to be possible.

The conditional endowments introduced in Section 3 channel an in personam interpre-

tation of property. Under this paradigm, an agent’s rights are defined by his relationships

with others, which we model with priorities. Exclusion rights are constrained by the priority

structure, directed at specific persons, and qualified by the prevailing allocation, almost in

a contract-like manner. An agent’s ability to participate in such markets anonymously is

necessarily limited, and often impossible.

Our analysis provides a new formal comparison of in rem and in personam paradigms. In

fact, Lemma 3 provides a connection between them. Nevertheless, our model’s sparsity masks

some notable differences. For example, Merrill and Smith (2001a) argue that the information

burden accompanying in rem and in personam rights is different. Though absent from our

analysis, this consideration affects a market’s operation and scalability in practice. Further

investigation of this distinction is likely to be fruitful.

A Proofs

Proof of Lemma 1. Theorem 1 implies the direct exclusion core’s non-emptiness. Suppose

coalition C can strongly block the allocation µ with σ. This implies σ(C) ⊆ ω(C)∪{h0}. It

is sufficient to show that C can directly exclusion block µ. Consider the allocation σ̂ where

σ̂(i) = σ(i) for all i ∈ C, σ̂(i) = h0 if i /∈ C and µ(i) ∈ σ(C) \ {h0}, and σ̂(i) = µ(i)

otherwise. Observe that σ̂(i) ≻i µ(i) for all i ∈ C. Furthermore, if µ(j) ≻j σ̂(j), then

µ(j) ∈ σ(C) \ {h0} ⊆ ω(C). Hence, C can directly exclusion block µ with σ̂.

Proof of Proposition 1. Let µ be a strong-core allocation. Assume toward a contradiction

that µ can be indirectly exclusion blocked by C ⊆ I with σ. Without loss of generality,

σ(i) ≻i µ(i) if and only if i ∈ C. Moreover, if i ∈ C, then σ(i) = µ(j) 6= h0 for some j ∈ I.

Else, the allocation µ would not be Pareto efficient, a contradiction.

To derive a contradiction, we provide an algorithm that identifies a coalition C ′ that can

weakly block µ. Choose i0 ∈ C and consider house σ(i0) = h0. This gives the sequence

(i0, h0), the algorithm’s initial input. In step k ≥ 0 the algorithm proceeds as follows with

input (i0, h0, . . . , ik, hk), which is a sequence of distinct agents and houses such that: (i)

hℓ ∈ ω(iℓ+1) for all ℓ < k and hk 6= h0 (the outside option), (ii) if iℓ ∈ C, then hℓ = σ(iℓ),

and (iii) if iℓ /∈ C, then hℓ = µ(iℓ). (Note that (i0, h0) satisfies these conditions.)

Step k. Given (i0, h0, . . . , ik, hk), one of four cases must apply.
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Case 1. If hk ∈ ω({i0, . . . , ik}), the coalition C ′ = {i0, . . . , ik} can weakly block µ with

any allocation σ̂ such that σ̂(ik
′

) = hk′. This is because, by construction, σ̂(C ′) =

{h0, . . . , hk} ⊆ ω(C ′), σ̂(iℓ) �iℓ µ(i
ℓ) for all iℓ ∈ C ′, and σ̂(i0) ≻i0 µ(i

0) for i0 ∈ C ′.

Otherwise, if hk /∈ ω({i0, . . . , ik}), then there exists some ik+1 /∈ {i0, . . . , ik} such that

hk ∈ ω(ik+1). There are three remaining possibilities.

Case 2. If ik+1 /∈ C and µ(ik+1) = h0, then we are done. Specifically, set hk+1 = µ(ik+1) = h0.

This gives the sequence (i0, h0, . . . , ik, hk, ik+1, hk+1). The coalition C ′ = {i0, . . . , ik+1}

can weakly block µ with any allocation σ̂ such that σ̂(iℓ) = hℓ for each iℓ ∈ C ′.

Case 3. If ik+1 ∈ C, set hk+1 = σ(ik+1). There are two sub-cases.

(a) If hk+1 /∈ {h0, . . . , hk}, append (ik+1, hk+1) to the original sequence to get

(i0, h0, . . . , ik+1, hk+1), which satisfies conditions (i)–(iii). Go to step k + 1.

(b) Else, if hk+1 = hk′ for some k′ ≤ k, then we are done.

Specifically, consider the subsequence starting at k′+1, (ik
′+1, hk′+1, . . . , ik+1, hk+1).

Now consider the coalition C ′ = {ik
′+1, . . . , ik+1} and an allocation σ̂ such that

σ̂(iℓ) = hℓ for each iℓ ∈ C ′. By construction, hℓ ∈ ω(iℓ+1) for all ℓ = k′+1, . . . , k

and hk+1 = hk′ ∈ ω(ik
′+1). Hence, σ̂(C ′) = {hk′+1, . . . , hk+1} ⊆ ω(C ′). More-

over, σ̂(iℓ) �iℓ µ(i
ℓ) for all iℓ ∈ C ′ and σ̂(ik+1) ≻ik+1 µ(ik+1). Thus, coalition C ′

can weakly block µ.

Case 4. If ik+1 /∈ C and µ(ik+1) ∈ H , set hk+1 = µ(ik+1). There are two sub-cases.

(a) If hk+1 /∈ {h0, . . . , hk}, append (ik+1, hk+1) to the original sequence to get

(i0, h0, . . . , ik+1, hk+1), which satisfies conditions (i)–(iii). Go to step k + 1.

(b) Else, if hk+1 = hk′ for some k′ ≤ k, then we are done.

First, observe that σ(ik
′

) = hk′. (If µ(ik
′

) = hk′, then µ would not be a

valid allocation since µ(ik+1) = µ(ik
′

) and ik+1 6= ik
′

.) Since hk+1 = hk′ =

µ(ik+1) ≻ik+1 σ(ik+1), hk′ ∈ Ω(C|ω, µ). Thus, starting at hk′, the subsequence

(hk′, ik
′+1, . . . , hk, ik+1) must contain an agent j ∈ C. If this was not the case,

µ(iℓ) = hℓ for each ℓ = k′ + 1, . . . , k + 1, which implies hk′ /∈ Ω(C|ω, µ).

Now consider the coalition C ′ = {ik
′+1, . . . , ik+1} and an allocation σ̂ such that

σ̂(iℓ) = hℓ for each iℓ ∈ C ′. By construction, hℓ ∈ ω(iℓ+1) for all ℓ = k′ +

1, . . . , k and hk+1 = hk′ ∈ ω(ik
′+1). Hence, σ̂(C ′) = {hk′+1, . . . , hk+1} ⊆ ω(C ′).
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Moreover, σ̂(iℓ) �iℓ µ(iℓ) for all iℓ ∈ C ′, and σ̂(j) ≻j µ(j) for at least one

j ∈ C ′ ∩ C. Thus, coalition C ′ can weakly block µ.

As there is a finite number of agents, the preceding algorithm must terminate. It does so

only in Case 1, Case 2, Case 3b, and Case 4b after identifying a blocking coalition C ′.

Remark A.1. When each house has at most one owner, it is simple to verify that Ω(C|ω, µ) =
⋃∞

k=0(ω ◦ µ−1)k(ω(C)). We use this simplified expression in the following proof.

Proof of Proposition 2. By Proposition 1, the unique strong-core allocation belongs to the

exclusion core. Conversely, suppose µ is an exclusion core allocation. This allocation can

be represented as a directed graph where each hk ∈ H points to its owner, say hk → ik,

and each agent points to his assignment, i.e. ik → µ(ik). As all houses are acceptable and

|I| = |H|, µ(I) = H . The resulting graph partitions I ∪H into disjoint cycles K1, . . . , KT .

Observe that i ∈ Kt if and only if ω(i) ∈ Kt if and only if µ(i) ∈ Kt. Hence, if i ∈ Kt and

h ∈ Kt, h ∈
⋃∞

k=0(ω ◦ µ−1)k(ω(i)).

Suppose coalition C = {i0, . . . , ik−1} can weakly block µ with σ. Thus, σ(i) �i µ(i) for all

i ∈ C, σ(i) ≻i µ(i) for some i ∈ C, and σ(C) ⊆ ω(C)∪{h0}. Clearly, the final condition can

be strengthened to σ(C) = ω(C). Furthermore, without loss of generality we may assume

that σ assigns the houses in ω(C) cyclically among the members of C. That is,

i0 → h1 → · · · → ik−1 → h0 (A.1)

where hℓ = ω(iℓ) and σ(iℓ) = hℓ+1 (mod k).31

Let C ′ = {i ∈ C|σ(i) ≻i µ(i)} and consider the allocation σ̂ where σ̂(i) = σ(i) for all

i ∈ C ′, σ̂(i) = h0 if i /∈ C ′ and µ(i) ∈ σ(C ′), and σ̂(i) = µ(i) otherwise.

By construction, σ̂(i) ≻i µ(i) for all i ∈ C ′. Pick any j such that µ(j) ≻j σ̂(j). This

implies µ(j) ∈ σ̂(C ′) = σ(C ′). Let Kj be the cycle, as defined above, for which j ∈ Kj and

µ(j) ∈ Kj . Furthermore, let i ∈ C ′ be such that σ̂(i) = µ(j). Without loss of generality,

suppose i = i0, according to the enumeration in (A.1). There are two cases. First, if i0 ∈ Kj ,

then µ(j) ∈
⋃∞

k=0(ω ◦ µ−1)k(ω(i0)). Alternatively, and second, if i0 /∈ Kj , then there exists

it ∈ C ′ ⊆ C such that it ∈ Kj . To see why, note that µ(j) ∈ σ(C ′) ⊆ σ(C) = ω(C).

Thus µ(j) points to some j′ ∈ C ∩ Kj . If j′ ∈ C ′, we are done. Otherwise, we must

have µ(j′) = σ(j′), which in turn implies that µ(j′) must point to another member of

31If σ induces multiple cycles, they are necessarily disjoint. Without loss of generality we may focus on
any one of them involving an agent i ∈ C such that σ(i) ≻i µ(i).
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C. Eventually, if none of the members of C forming this chain is also in C ′, then for all

i ∈ (i1, . . . , ik−1), σ(i) = µ(i). This implies µ(ik−1) = h0 ∈ Kj . But, h0 = ω(i0) and hence

i0 ∈ Kj , which is a contradiction.

Together, the preceding cases imply that µ(j) ∈
⋃∞

k=0(ω ◦µ−1)k(ω(C ′)). As the choice of

j was arbitrary, we conclude that coalition C ′ can indirectly exclusion block µ with σ̂, which

contradicts µ being an exclusion core allocation.

Proof of Proposition 3. As exclusion core allocations are Pareto efficient, it is sufficient to

show that no Pareto efficient allocation µ can be indirectly exclusion blocked. Suppose the

contrary. If coalition C can indirectly exclusion block µ with σ, there exists j /∈ C such

that µ(j) ≻j σ(j) and µ(j) ∈ Ω(C|ω, µ). Necessarily, C ( I, which implies ω(C) = ∅,

ω(C ∪ (µ−1 ◦ ω)(C)) = ∅, and so on. But then Ω(C|ω, µ) = ∅—a contradiction.

Proof of Lemma 2. It is sufficient to verify ωµ(C) ⊆ ω∗
µ(C) when the priority structure is

acyclic. Let h ∈ ωµ(C). Thus, there exist i ∈ C such that iDhµ
−1(h). Therefore, CDhµ

−1(h).

Now suppose C⊲h µ
−1(h) and C 4h k. This implies there exists i ∈ C such that i⊲h µ

−1(h)

and i 4h k. Acyclicity implies that k ⊲h′ µ−1(h) for all h′ 6= h, h0. Hence, h ∈ ω∗
µ(C).

Proof of Theorem 3. Let µ be the assignment identified by Algorithm 2 for some extension

⊲̃ of ⊲. We note that Algorithm 2 constructs µ sequentially by removing sets of agents

(Ĩ1, Ĩ2, . . .) and associated houses (H̃1, H̃2, . . .). To derive a contradiction, suppose coalition

C can indirectly exclusion block µ with σ given ω∗
µ. Thus, and without loss of generality,

σ(i) ≻i µ(i) if and only if i ∈ C and

µ(j) ≻j σ(j) =⇒ µ(j) ∈ Ω(C|ω∗
µ, µ). (A.2)

We organize the proof’s remainder as a series of claims.

Claim 1. Suppose i ∈ C and i ∈ Ĩ ti. Then σ(i) ∈ H̃ t for some t < ti.

Proof of Claim 1. At each step of the algorithm, each remaining agent points to his favorite

house that remains in the market. Thus, if house σ(i) was not yet assigned at step ti and

σ(i) ≻i µ(i), agent i should have been pointing to some h �i σ(i) ≻i µ(i) at step ti rather

than at µ(i). Hence, σ(i) ∈ H̃ t for some t < ti. ⋄

Claim 2. Let J ⊆ I and suppose h ∈ ω∗
µ(J). If h ∈ H̃ t, then there exists i ∈ J such that

i ∈ Ĩ ti for some ti ≤ t.
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Proof of Claim 2. Suppose the contrary. Fix h ∈ H̃ t, but assume ti > t for all i ∈ J . That

is, each agent in J is assigned (strictly) after house h by Algorithm 2 given ⊲̃.

First suppose that µ(j) = h and j is ⊲̃h-maximal at step t. Since h ∈ ω∗
µ(J), there

exists i ∈ J such that i Dh µ
−1(h) = j. As every agent in J is assigned after step t, i 6= j.

Thus, i ⊲h µ−1(h) = j and therefore, as ⊲̃h extends ⊲h, i⊲̃hj, which contradicts j being

⊲̃h-maximal at step t.

Suppose instead that house h is assigned as part of a cycle that involves multiple agents

and houses. Let · · · → h′ → j0 → h → j1 → · · · be part of this cycle, where µ(j0) = h,

j0 (resp. j1) is ⊲̃h′-maximal (resp. ⊲̃h-maximal) among agents in I t. (Recall that I t is the

set of agents who remain in the market at the beginning of step t of Algorithm 2.) Clearly,

j0 4h j1. Since h ∈ ω∗
µ(J), J Dh j0. Since every agent in J is assigned a house at a later

step, j0 = µ−1(h) /∈ J . This implies J ⊲h j
0. Since h → j1 at step t, i 4h j1 for every i ∈ J .

This implies J 4h j1. Because h ∈ ω∗
µ(J), [J ⊲h j

0 & J 4h j1] imply j1 ⊲h′ µ−1(h) = j0. So

j1 ⊲̃h′ j0, which is a contradiction since j0 was ⊲̃h′-maximal among agents in I t. ⋄

Claim 3. Let ti be the step of Algorithm 2 where agent i is assigned a house, i.e. i ∈ Ĩ ti.

Let J ⊆ I. There exists i ∈ J such that ti ≤ tj for all j ∈ (µ−1 ◦ ω∗
µ)(J).

Proof of Claim 3. Let j ∈ (µ−1 ◦ ω∗
µ)(J). Observe that µ(j) ∈ ω∗

µ(J) and µ(j) ∈ H̃ tj . By

Claim 2, there exists i ∈ J such that i ∈ Ĩ ti and ti ≤ tj . As the number of agents is finite,

there exists some i ∈ J who is assigned before all agents in (µ−1 ◦ ω∗
µ)(J). ⋄

Henceforth, consider the earliest cycle occurring in Algorithm 2 given ⊲̃ that contains

an agent j0 such that µ(j0) ≻j0 σ(j0). It has to be the case that µ(j0) ∈ H . Suppose this

cycle is removed at step t0. Let Ĩ t0 and H̃ t0 be the sets of agents and houses, respectively,

removed from the market at this step.

Claim 4. If i ∈ C, then i ∈
⋃

t>t0
Ĩ t, i.e. C ∩ (

⋃

t≤t0
Ĩ t) = ∅.

Proof of Claim 4. First, suppose there exists j1 ∈ C ∩ (
⋃

t≤t0
Ĩ t). If there are multiple

such agents, choose one who is assigned during the earliest cycle occurring in Algorithm

2. Let the cycle containing j1 be removed at step t1 ≤ t0. By Claim 1, σ(j1) ∈ H̃ t2 for

some t2 < t1 ≤ t0. Let j2 ∈ Ĩ t2 be such that µ(j2) = σ(j1). In particular, this implies

that µ(j2) 6= σ(j2). If µ(j2) ≻j2 σ(j2), this would contradict the way j0 was chosen. If

σ(j2) ≻j2 µ(j
2), this would contradict the way j1 was chosen. Thus, we must conclude that

in fact C ∩ (
⋃

t≤t0
Ĩ t) = ∅. ⋄

Continuing with the same agent j0 and his assignment µ(j0) as above, we now argue that

µ(j0) /∈ Ω(C|ω∗
µ, µ). This will contradict (A.2) and therefore prove the theorem. Recall that
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Ω(C|ω∗
µ, µ) := ω∗

µ (
⋃∞

k=0Ck) where C0 = C and Ck = Ck−1∪(µ−1 ◦ω∗
µ)(Ck−1). As Ck−1 ⊆ Ck,

it is sufficient to show that µ(j0) /∈ ω∗
µ(Ck) for each k.

First, suppose µ(j0) ∈ ω∗
µ(C). Thus, there exists some i ∈ C = C0 such that iDµ(j0) j

0.

Furthermore, Claim 2 implies that there is some i′ ∈ C = C0, such that i′ ∈ Ĩ ti′ and ti′ ≤ t0.

By Claim 4, no members of C are assigned a house at step t0, or earlier. Hence, we have

arrived at a contradiction.

Continuing by induction, suppose µ(j0) /∈ ω∗
µ(Ck′) for all k

′ < k. Suppose µ(j0) ∈ ω∗
µ(Ck).

By definition, Ck = Ck−1∪(µ
−1◦ω∗

µ)(Ck−1). Again, Claim 2 implies that there is some i′ ∈ Ck,

such that i′ ∈ Ĩ ti′ and ti′ ≤ t0. However, repeated application of Claim 3 implies that the

agent in Ck who is assigned a house earliest is necessarily a member of C0 = C. By Claim

4, no members of C are assigned at step t0, or earlier, of Algorithm 2—a contradiction.

Proof of Theorem 4. Let µ be a strong exclusion core allocation. We will construct an ex-

tension ⊲̃ such that Algorithm 2 outputs µ. The argument proceeds as follows. We define

a sequence of directed graphs. In each graph, we identify a set of agents who are assigned

their most-preferred house among those in the graph. We then order the agents such that

each set is “cleared” together by Algorithm 2.

Let I1 := I,H1 := H . Construct a graph Γ1 with vertices I1 ∪H1 ∪ {h0}. Draw an arc

from i ∈ I1 to h ∈ H1 ∪ {h0} if and only if µ(i) = h. Draw an arc from each h ∈ H1 to

i ∈ I1 if and only if i is ⊲h-maximal among agents I1. Finally, draw an arc from the outside

option h0 to every i ∈ I1.

Let τ 1(i) denote the highest-ranked house in i’s preference order among H1 ∪ {h0}.

Claim 1. The graph Γ1 contains at least one cycle in which each agent i points to τ 1(i).

Proof of Claim 1. If τ 1(i) = h0 for some i, then µ(i) = h0. If the outside option is an agent’s

most-preferred assignment, he is always able to block any allocation that does not assign

him to h0. Thus, the cycle i → h0 → i satisfies the claim.

Instead, suppose τ 1(i) 6= h0 for all i. Note that for each i, house τ 1(i) must be occupied

by some agent at µ. Otherwise, if τ 1(i) is vacant, agent i would be able to indirectly exclusion

block µ unilaterally. Assume toward contradiction that there is no cycle satisfying the above

claim. Construct an alternating sequence of agents and houses as follows. First, fix some

enumeration of all agents in I1 = {i1, i2, . . .}. (This index can be arbitrary, but it must be

fixed.) Start with some agent i0 ∈ I1 and let h0 = τ 1(i0). Continuing by induction, given

a sequence (i0, h0, . . . , ik−1, hk−1), let ik be the agent with the lowest index number (given

the fixed enumeration) such that (a) ik Dhk−1 µ−1(hk−1) and (b) ik is ⊲hk−1-maximal among
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agents in I1.32 Let hk := τ 1(ik). As there is a finite number of agents and houses, the

sequence (i0, h0, . . .) must eventually flow into a cycle. Relabeling as necessary, and without

loss of generality, let (i0, h0, . . . , ik−1, hk−1) be that cycle. Thus, i0 Dhk−1 µ−1(hk−1).

Let C be the set of agents in this cycle such that τ 1(iℓ) ≻iℓ µ(i
ℓ). It follows that C 6= ∅.33

Given the cycle (i0, h0, . . . , ik−1, hk−1) and the fact that hℓ ∈ ωµ(i
ℓ+1 (mod k)) for all ℓ, it

follows that {h0, . . . , hk−1} ⊆ Ω(C|ωµ, µ). Thus, coalition C can indirectly exclusion block

µ by reallocating their most preferred houses among themselves, which is a contradiction.

Therefore, there exists at least one cycle in Γ1 where each agent i points to τ 1(i). ⋄

Noting Claim 1, if Γ1 contains a cycle where i → h0 → i and µ(i) = τ 1(i) = h0, let

K1 = (i, h0). Otherwise, let K1 = (i0, h0, . . . , ik−1, hk−1) be a cycle in Γ1 in which each agent

i points to τ 1(i) 6= h0. By definition of Γ1, τ 1(i) = µ(i) for each agent i in K1.

Now, define I2 := I1 \ (K1∩I1) and H2 := H1 \ (K1∩H1). We can construct a graph Γ2,

with vertices I2∪H2∪{h0}, using the same procedure as for Γ1. It is straightforward to adapt

the argument of Claim 1 to conclude that Γ2 has a cycle K2 where each agent i ∈ K2 ∩ I2

is pointing to τ 2(i) = µ(i) and τ 2(i) is agent i’s most preferred house among those in

H2 ∪ {h0}. Continuing in this manner we can define a sequence of cycles (K1, K2, . . . , KT )

until no agents remain in ΓT . (The outside option h0 is always a member of ΓT .)

Next, we use the sequence of defined cycles to define an extension ⊲̃ of ⊲. Consider cycle

K1. If K1 = (i, h0), there is nothing to do and we can move to K2. Otherwise, suppose K1

defines a cycle of the form i0 → h0 → i1 → · · · → hk−1 → i0. For each hℓ let iℓ+1 (mod k)

be the (unique) maximal element under ⊲̃hℓ, i.e. iℓ+1 (mod k)⊲̃hℓj for all j 6= iℓ+1 (mod k). The

rest of ⊲̃hℓ can be defined in any way not violating ⊲hℓ .

Continuing by induction, consider cycle Kt. If Kt includes the outside option, i.e. Kt =

(i, h0), there is nothing to do and we can move to Kt+1. Otherwise, suppose Kt defines a

cycle of the form i0 → h0 → i1 → · · · → hk−1 → i0. For each hℓ define ⊲̃hℓ as follows. First,

identify all agents j ∈ I ∩
(⋃

τ<tK
τ
)
such that j ⊲hℓ iℓ+1 (mod k). Let J be this set. Order

these agents in an arbitrary manner not violating ⊲hℓ . Place iℓ+1 (mod k) in the ⊲̃hℓ order

immediately after all agents in J . Rank all remaining agents J ′ = I \
(
J ∪ {iℓ+1 (mod k)}

)

in an arbitrary manner after iℓ+1 (mod k) such that ⊲hℓ is not violated. The constructed

32Note that such ik always exists. If µ−1(hk−1) is ⊲hk−1-maximal in I1, then ik = µ−1(hk−1). If µ−1(hk−1)
is not ⊲hk−1-maximal in I1, then there exist (possibly multiple) ⊲hk−1-maximal agents dominating µ−1(hk−1)
with respect to ⊲hk−1 . The one with the lowest index number is ik.

33Otherwise (i0, h0, . . . , ik−1, hk−1) would form a cycle in the graph Γ1 where each agent i points to τ1(i).
This situation has been ruled out by assumption.
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extension ⊲̃hℓ should have the following form:

j1 ⊲̃hℓ · · · ⊲̃hℓ jk
′

︸ ︷︷ ︸

J

⊲̃hℓ iℓ+1 (mod k)
⊲̃hℓ jk

′+1
⊲̃hℓ · · ·

︸ ︷︷ ︸

J ′

.

Finally, if house h has not been assigned an extension as part of the preceding steps (and

thus it is unassigned under µ), we can let ⊲̃h be an arbitrary extension of ⊲h.

One can now verify that Algorithm 2 outputs µ when ⊲̃h is the linear extension of ⊲h

for each h ∈ H . In particular, up to the order of cleared simultaneous disjoint cycles or

simultaneous cycles involving h0, K
t is the cleared cycle in step t of the algorithm.

Proof of Proposition 4. The exclusion core’s internal stability is implied by its definition. To

verify external stability, we show that every allocation outside the strong exclusion core can

be indirectly exclusion blocked by some coalition with a strong exclusion core allocation.

Fix a relational economy 〈I,H,≻,⊲〉 with an acyclic priority structure. Let µ be an

allocation not in the strong exclusion core. Let ⊲̃ be an extension of ⊲ such that for each h,

i⊲̃hµ
−1(h) if and only if i ⊲h µ

−1(h).34 In other words, ⊲̃h gives µ−1(h) higher priority for

h relative to any j for whom j ⋫h µ−1(h). Let σ be the allocation identified by Algorithm 2

given ⊲̃. Let Ĩ t be the set of agents assigned to a house in step t of the algorithm. Since ⊲

is acyclic, σ is a strong exclusion core allocation. Let C = {i|σ(i) ≻i µ(i)}. This set is not

empty because σ 6= µ and if µ(i) �i σ(i) for all i, then σ would not be Pareto efficient, a

contradiction. We will show that coalition C can indirectly exclusion block µ with σ given

ωµ.

To derive a contradiction, suppose that C cannot indirectly exclusion block µ with σ.

Thus, ∃ j /∈ C such that µ(j) ≻j σ(j) and µ(j) /∈ Ω(C|ωµ, µ). Among agents satisfying these

conditions, let j0 be among those assigned earliest by the GTTC algorithm, say in step t0

(i.e. j0 ∈ Ĩ t0). Since µ(j0) ≻j0 σ(j
0) �j0 h0, µ(j

0) = h1 for some h1 ∈ H and h1 must have

been assigned before step t0, say in step t1 < t0. Thus, there exists j
1 ∈ Ĩ t1 such that j1D̃h1i

for all i ∈
⋃

t≥t1
Ĩ t. In particular, given the definition of ⊲̃, j1⊲̃h1j0 = µ−1(h1) if and only if

j1 ⊲h1 j0 and thus µ(j0) = h1 ∈ ωµ(j
1).

If σ(j1) ≻j1 µ(j1), then j1 ∈ C and thus µ(j0) ∈ Ω(C|ωµ, µ), which is a contradiction.

If µ(j1) ≻j1 σ(j1) instead, then, since j0 ∈ Ĩ t0 , j1 ∈ Ĩ t1 , t1 < t0 and j0 was chosen to be

the earliest agent assigned by Algorithm 2 for whom both µ(j0) ≻j0 σ(j0) and µ(j0) /∈

Ω(C|ωµ, µ), it follows that µ(j1) ∈ Ω(C|ωµ, µ). Since µ(j0) ∈ ωµ(j
1), this means µ(j0) ∈

Ω(C|ωµ, µ), again a contradiction.

34By assumption i⊲h ∅ for every h ∈ H . Thus, ⊲̃h is defined for all h ∈ H .
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Thus, we conclude h2 = µ(j1) = σ(j1) and h2 is assigned at step t1 of the GTTC

algorithm given ⊲̃. Since more than one house is assigned in step t1, h
2 ∈ H . And so, there

exists an agent j2 ∈ Ĩ t1 , such that j2D̃h2i for all i ∈
⋃

t≥t1
Ĩ t. From j1 ∈ Ĩ t1 , it follows that

j2D̃h2j1, and from j2 6= j1,35 it follows that j2⊲̃h2j1 = µ−1(h2). So, by the construction of

⊲̃, it follows that j2 ⊲h2 j1 = µ−1(h2) and hence h2 ∈ ωµ(j
2).

Following the arguments outlined above, it must be the case that σ(j2) = µ(j2) to avoid

a contradiction.36 Thus we can find an arbitrarily long chain of distinct houses and agents

(h1, j1, h2, j2, . . .) such that they are all cleared (in that order) at step t1 of the algorithm,

µ(jk) = σ(jk) = hk+1 for all k = 1, 2, . . ., and jkD̃hki for all i ∈
⋃

t≥t1
Ĩ t and for all

k = 1, 2, . . .. Note that the chain cannot cycle back to h1 because h1 = µ(j0) and j0 /∈ Ĩ t1 ,

which would contradict the fact that µ(jk) = σ(jk) for all k. This implies that Ĩ t1 contains

infinitely many agents, which is impossible.

Proof of Proposition 5. We prove the proposition for the case of the strong exclusion core.

The other cases follow similarly. It is sufficient to show that for all C ⊆ I and any allocation

µ, ω′
µ(C) ⊆ ωµ(C), where ωµ (resp. ω′

µ) is the weak conditional endowment system in

〈I,H,≻,⊲〉 (resp. 〈I,H,≻,⊲′〉). If h ∈ ω′
µ(C), then i D′

h µ−1(h) for some i ∈ C. And so,

iDh µ
−1(h), which implies h ∈ ωµ(C).

Proof of Lemma 3. (a) When ⊲ represents ω, ω∗∗(C) = ω(C) for all C. The result follows.

(b) Consider a simple economy 〈I,H,≻, ω〉 where every house is privately or publicly

owned. If ⊲ represents ω, then ⊲ is acyclic. By Lemma 2, the weak and strong exclusion

cores of 〈I,H,≻,⊲〉 coincide. Noting part (a), it is sufficient to show that the exclusion core

of 〈I,H,≻, ω〉 is contained in the strong exclusion core of 〈I,H,≻,⊲〉.

Let µ be an exclusion core allocation in 〈I,H,≻, ω〉. Suppose coalition C can indirectly

exclusion block µ with σ given ωµ in 〈I,H,≻,⊲〉. Since µ is Pareto efficient, µ(j) ≻j σ(j)

for some j ∈ I. This implies j /∈ C, µ(j) ∈ Ω(C|ωµ, µ) and, therefore, µ(j) 6= h0. Thus,

there exists a sequence of necessarily distinct agents j, i1, . . . , iK such that µ(j) ∈ ωµ(i
1),

µ(i1) ∈ ωµ(i
2), . . . , µ(iK−1) ∈ ωµ(i

K) and iK ∈ C.

As ⊲ represents ω, h ∈ ω(i) if and only if i⊲h j for all j 6= i; otherwise, agents are not ⊲·-

comparable. Given µ, h ∈ ωµ(i) if and only if (i) h ∈ ω(i), (ii) h = µ(i), or (iii) µ−1(h) = ∅.

35We know j1 6= j2 because as part of the cycle at step t1, h
1 points to j1, h2 points to j2, and h1 6= h2.

36If σ(j2) ≻j2 µ(j2), then j2 ∈ C and, as µ(j1) = h2 ∈ ωµ(j
2), it follows that µ(j1) ∈ Ω(C|ωµ, µ). We

know that µ(j0) = h1 ∈ ωµ(j
1) and so µ(j0) ∈ Ω(C|ωµ, µ), which is a contradiction. If µ(j2) ≻j2 σ(j2)

instead, then, since j0 ∈ Ĩt0 , j2 ∈ Ĩt1 , t1 < t0 and j0 was chosen to be the earliest agent j assigned by the
GTTC algorithm for whom both µ(j) ≻j σ(j) and µ(j) /∈ Ω(C|ωµ, µ), it follows that µ(j2) ∈ Ω(C|ωµ, µ).
Since µ(j0) ∈ ωµ(j

1) and µ(j1) ∈ ωµ(j
2), it follows that µ(j0) ∈ Ω(C|ωµ, µ), which is again a contradiction.
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We have µ(j) ∈ ωµ(i
1) but, as j 6= i1 and µ−1(µ(j)) = j, it follows that µ(j) ∈ ω(i1).

We can extend the same logic to see that we must have µ(j) ∈ ω(i1), µ(i1) ∈ ω(i2), . . . ,

µ(iK−1) ∈ ω(iK). Therefore, µ(j) ∈ Ω(C|ω, µ) and coalition C can indirectly exclusion block

µ in 〈I,H,≻, ω〉, which is a contradiction.

B Generalized Top Trading Cycles: An Example

This example shows the step-by-step operation of Algorithm 2. There are four agents and

four houses. The agents’ preferences are

≻i1 : h2, h1, h4, h3 ≻i2 : h4, h1, h3, h2 ≻i3 : h3, h4, h1, h2 ≻i4 : h3, h1, h2, h4.

The priority structure is as follows: i1⊲h1
{i2, i3, i4}; i4⊲h2

{i1, i2, i3}; i1⊲h3
{i3, i4} & i2⊲h3

{i3, i4}; i4 ⊲h4
{i1, i2, i3}. In words, i1 ⊲h1

-dominates everyone and there are no other ⊲h1
-

dominances. The remaining orders are read similarly. A diarchic structure governs h3.

First, suppose the extension of ⊲ is

⊲̃h1
: i1, i2, i3, i4 ⊲̃h2

: i4, i1, i2, i3 ⊲̃h3
: i1, i2, i3, i4 ⊲̃h4

: i4, i1, i2, i3. (B.1)

Figure B.1 illustrates the operation of Algorithm 2. (We omit the outside option h0 from

the figure.) In step 1, i1 is assigned h2 and i4 is assigned h3. In step 2, i2 is assigned h4.

Finally, i3 is assigned h1 in step 3.

Suppose instead that the extension of ⊲ is

⊲̃
′

h1
: i1, i2, i3, i4 ⊲̃

′

h2
: i4, i1, i2, i3 ⊲̃

′

h3
: i1, i2, i3, i4 ⊲̃

′

h4
: i4, i3, i1, i2. (B.2)

(B.2) is identical to (B.1) except i3 ranks ahead of i1 and i2 in ⊲̃
′

h4
. Figure B.2 illustrates

the operation of Algorithm 2 given (B.2). In step 1, i1 is assigned h2 and i4 is assigned h3.

In step 2, i3 receives h4. In step 3, i2 is assigned h1.

The above allocations are the only possible assignments identified by Algorithm 2 in this

economy. Every other extension will lead to one of these two assignments.
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Figure B.1: Operation of Algorithm 2 given the extension (B.1).

i1i2

i3i4

h1

h2

h3

h4

(a) Step 1.

i1i2

i3i4

h1

h2

h3

h4

(b) Step 2.

i1i2

i3i4

h1

h2

h3

h4

(c) Step 3.

Figure B.2: Operation of Algorithm 2 given the extension (B.2).
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Abdulkadiroğlu, A., Pathak, P. A., and Roth, A. E. (2009). Strategy-proofness versus effi-
ciency in matching with indifferences: Redesigning the NYC high school match. American
Economic Review, 99(5):1954–1978.
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Pápai, S. (2000). Strategyproof assignment by hierarchical exchange. Econometrica,
68(6):1403–1433.

Penner, J. E. (1997). The Idea of Property Law. Oxford University Press, New York.

Piccione, M. and Rubinstein, A. (2007). Equilibirum in the jungle. Economic Journal,
117(522):883–896.
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A Production Economies and the Proof of Theorem 6

To prove Theorem 6, we construct an exclusion core outcome using a modification of the

Generalized Top Trading Cycles algorithm.

Algorithm A.1 (Generalized Top Trading Cycles for a Simple Economy with Production).

Given 〈(I, F ), (H0,H ),≻, ω〉, fix an enumeration of I = {i1, . . . , in} and for each h ∈ H :=

H0 ∪
(
⋃

k,j Hk,j

)

define a linear order of I, ⊲̃h, as follows. First, rank all agents in Ch in

order of their fixed enumeration. Then, rank all remaining agents according to their fixed

enumeration. The resulting order should have the following structure:

ik ⊲̃h · · · ⊲̃h ik′
︸ ︷︷ ︸

Ch

⊲̃h iℓ ⊲̃h · · · ⊲̃h iℓ′
︸ ︷︷ ︸

I\Ch

Given (A6) and the fixed enumeration of agents, we note that ⊲̃h = ⊲̃h′ for all h, h′ ∈
⋃

j Hk,j.

Let I1 := I and H1 := H . In step t ≥ 1 the algorithm proceeds as follows with inputs I t

and H t.

Step t. Let I t and H t be the sets of unassigned agents and houses, respectively, at step t.

Construct a directed graph as follows. The set of vertices is I t ∪ H t ∪ {h0}. Draw an arc
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from i ∈ I t to h ∈ H t ∪ {h0} if and only if h is agent i’s most preferred house among those

in H t ∪ {h0}. For each h ∈ H t, draw an arc from h to the ⊲̃h-maximal agent in I t.

(a) If there exists an agent i who is pointing to h0, assign him to the outside option, i.e. set

µ(i) = h0, and remove him from the market. Set Ĩ t = {i} and H̃ t = ∅.

(b) Otherwise, the constructed graph contains at least one cycle. (Cycles are necessarily

disjoint.) Choose any cycle and carry out the implied assignments. That is, if i → h in

the cycle then set µ(i) = h. Let Ĩ t ⊆ I t be the set of agents from the identified cycle and

let µ(Ĩ t) be the set of assigned houses. For each h ∈ µ(Ĩ t), define the set Ĥ t
h as follows.

(i) If h ∈ H0, set Ĥ
t
h = ∅.

(ii) Else, if h ∈ Hk,j for some k and j, let Ĥ t
h =

⋃

ℓ 6=j Hk,ℓ. Additionally, define

ρ(fk) = Hk,j.

Remove the agents Ĩ t and the houses H̃ t = µ(Ĩ t) ∪
(
⋃

h∈µ(Ĩt) Ĥ
t
h

)

from the market.

Let I t+1 := I t \ Ĩ t and H t+1 := H t \ H̃ t.

The above process continues until I t = ∅. Any remaining houses are left unassigned. If ρ(·)

has not been defined for firm fk before the algorithm’s termination, simply set ρ(fk) to any

feasible production plan in Hk.

Remark A.1. The output of Algorithm A.1 is a feasible outcome. To see this, observe that

prior to being removed from the market, all houses in
⋃

j Hk,j are pointing to the same

agent. If a house h ∈ Hk,j is assigned in step t, all houses in the production plan Hk,j remain

in the market and may therefore be assigned at some future step of the algorithm. It is

impossible for a house in a different production plan belonging to firm fk to be assigned in

step t (otherwise cycles would intersect). These houses, Ĥ t
h =

⋃

ℓ 6=j Hk,ℓ, are removed from

the market at step t. Therefore, they cannot be assigned in any future step of the algorithm.

Thus, the algorithm identifies a unique production plan for each firm.

Proof of Theorem 6. The following parallels the proof of Theorem 3. Let (µ, ρ) be an out-

come identified by Algorithm A.1. The algorithm constructs µ sequentially by removing sets

of agents (Ĩ1, Ĩ2, . . .) and houses (H̃1, H̃2, . . .). Houses that are removed in step t are either

assigned to someone in Ĩ t or belong to a production plan that is not implemented.

To derive a contradiction, suppose coalition C can indirectly exclusion block (µ, ρ) with

the feasible outcome (σ, ρ′). Thus, and without loss of generality, σ(i) ≻i µ(i) if and only if

2
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i ∈ C and

µ(j) ≻j σ(j) =⇒ µ(j) ∈ Ω(C|ω, µ). (A.1)

We organize the proof’s remainder as a series of claims.

Claim 1. Suppose i ∈ C and i ∈ Ĩ ti. Then σ(i) ∈ H̃ t for some t < ti.

Proof of Claim 1. At each step of the algorithm, each remaining agent points to his favorite

house that remains in the market. Thus, if house σ(i) was not yet removed before step ti

and σ(i) ≻i µ(i), agent i should have been pointing to some h �i σ(i) ≻i µ(i) at step ti

rather than at µ(i). Hence, σ(i) ∈ H̃ t for some t < ti. ⋄

Claim 2. Let J ⊆ I and suppose h ∈ ω(J). If h ∈ H̃ t, then there exists i ∈ J such that

i ∈ Ĩ ti for some ti ≤ t.

Proof of Claim 2. Suppose the contrary. Fix h ∈ H̃ t, but assume that for all i ∈ J , ti > t.

That is, each agent in J is assigned strictly after house h. Since h ∈ ω(J), Ch ⊆ J . This

implies that all agents in Ch must be present in the market at step t. In particular, the

top-ranked agent according to ⊲̃h, say j, is present in the market and house h is pointing to

him at step t. But if house h is removed from the market at step t, that implies that either

h or another house h′ with Ch′

= Ch was assigned at that step. All those houses point to j

and therefore j ∈ Ch ⊆ J was assigned a house at step t—a contradiction. ⋄

Claim 3. Let ti be the step of Algorithm A.1 where agent i is assigned a house and removed

from the market, i.e. i ∈ Ĩ ti. Let J ⊆ I. There exists i ∈ J such that ti ≤ tj for all

j ∈ (µ−1 ◦ ω)(J).

Proof of Claim 3. Let j ∈ (µ−1 ◦ ω)(J). Observe that µ(j) ∈ ω(J) and µ(j) ∈ H̃ tj . By

Claim 2, there exists i ∈ J such that i ∈ Ĩ ti and ti ≤ tj . As the number of agents is finite,

there exists some i ∈ J who is assigned before all agents in (µ−1 ◦ ω)(J). ⋄

Henceforth, consider the earliest cycle occurring in Algorithm A.1 that contains an agent

j0 such that µ(j0) ≻j0 σ(j0). It has to be the case that µ(j0) ∈ H . Suppose this cycle is

removed at step t0. Let Ĩ
t0 and H̃ t0 be the sets of agents and houses, respectively, removed

from the market at this step.

Claim 4. If i ∈ C, then i ∈
⋃

t>t0
Ĩ t, i.e. C ∩ (

⋃

t≤t0
Ĩ t) = ∅.

Proof of Claim 4. Suppose there exists j1 ∈ C ∩ (
⋃

t≤t0
Ĩ t). If there are multiple such agents,

choose one who is assigned during the earliest cycle occurring in Algorithm A.1. Let the cycle

3
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containing j1 be removed at step t1 ≤ t0. By Claim 1, σ(j1) ∈ H̃ t2 for some t2 < t1 ≤ t0.

There are two cases:

(a) Suppose σ(j1) is available in the outcome (µ, ρ). Then, there exists some j2 ∈ Ĩ t2 such

that µ(j2) = σ(j1). In particular, this implies that µ(j2) 6= σ(j2). If µ(j2) ≻j2 σ(j2),

this would contradict the way j0 was chosen. If σ(j2) ≻j2 µ(j2), this would contradict

the way j1 was chosen. Either way, we have arrived at a contradiction.

(b) Suppose σ(j1) is not available in the outcome (µ, ρ). Thus, σ(j1) ∈ Hk,ℓ 6= ρ(fk) for some

k. This implies there must exist some j2 ∈ Ĩ t2 such that µ(j2) ∈ ρ(fk). However, this

means that house µ(j2) is not available in outcome (σ, ρ′) and therefore µ(j2) 6= σ(j2).

If µ(j2) ≻j2 σ(j
2), this would contradict the way j0 was chosen. If σ(j2) ≻j2 µ(j

2), this

would contradict the way j1 was chosen. Either way, we have arrived at a contradiction.

Cases (a) and (b) exhaust all possibilities. Thus, C ∩ (
⋃

t≤t0
Ĩ t) = ∅. ⋄

Continuing with the same agent j0 and his assignment µ(j0) as above, we now argue that

µ(j0) /∈ Ω(C|ω, µ). This will contradict (A.1) and therefore prove the theorem. Recall that

Ω(C|ω, µ) := ω (
⋃∞

k=0Ck) where C0 = C and Ck = Ck−1 ∪ (µ−1 ◦ ω)(Ck−1). As Ck−1 ⊆ Ck,

it is sufficient to show that µ(j0) /∈ ω(Ck) for each k.

First, suppose µ(j0) ∈ ω(C0). Claim 2 implies that there is some i′ ∈ C0 = C, such that

i′ ∈ Ĩ ti′ and ti′ ≤ t0. By Claim 4, no members of C are assigned a house at step t0, or earlier.

Hence, we have arrived at a contradiction.

Continuing by induction, suppose µ(j0) /∈ ω(Ck′) for all k
′ < k. Suppose µ(j0) ∈ ω(Ck).

By definition, Ck = Ck−1 ∪ (µ−1 ◦ ω)(Ck−1). Again, Claim 2 implies that there is some

i′ ∈ Ck, such that i′ ∈ Ĩ ti′ and ti′ ≤ t0. However, repeated application of Claim 3 implies

that the agent in Ck who is assigned a house earliest is necessarily a member of C0 = C. By

Claim 4, no members of C are assigned a house at step t0, or earlier, of Algorithm A.1—a

contradiction.
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