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Abstract

This paper identifies the causal impact of U.S. multinationals’ technology advances

on their subsidiaries and the nearby domestic firms’ productivity in China. By combin-

ing firm-level panel data from both U.S. and China, I match U.S. multinationals with

their manufacturing subsidiaries in China and measure the multinationals’ technology

stocks based on their patenting activities. To address potential endogeneity concerns,

I introduce an instrumental variable strategy based on the U.S. state level R&D tax

credit policies. I find multinationals’ technology improvements induce increase in the

output and total factor productivity (TFP) of both their subsidiaries and domestic

firms in local areas. I further find evidence of within-industry technology spillovers,

and spillovers through technological linkages. The magnitude of technology spillovers

hinges on local firms’ absorptive capacities. Last, I show that multinationals’ local

technology spillovers stimulate innovation among the productive domestic firms.
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1 Introduction

Foreign affiliates of multinational corporations (MNCs) accounted for 12% of global produc-

tion in 20141. The expansion of MNCs during the past several decades has been accompanied

by a lengthy debate over the role of MNCs in the global economy, particularly in developing

countries. In principle, international knowledge diffusion stimulates global economic growth

and drives productivity convergence between developing and developed countries (Romer

(1993), Coe and Helpman (1995)); multinational activities are one of the primary channels

through which technology is disseminated globally (Keller (2004)). More specifically, through

the sharing of technology between multinational parents and their foreign subsidiaries, tech-

nological advances in the home countries of the multinationals are transmitted to foreign

countries (Markusen (2002)). Macro-level evidence (for example, Borensztein, Gregorio and

Lee (1998)) also suggests that FDI contributes to the economic growth of these foreign

countries. Potential gains from MNCs technology spillovers spur the adoption of FDI incen-

tive policies, such as tax incentives, financial subsidies, and regulatory exemptions in many

developing countries.

However, the micro-level evidence of technology diffusion through multinational activi-

ties remains mixed and inconclusive (Harrison and Rodrguez-Clare (2010)). Previous studies

have often documented the impact of FDI inflows on domestic firms in the same industries

to be neutral (Haddad and Harrison (1993)) or even negative (Aitken and Harrison (1999)).

On the contrary, domestic firms in the upstream industries may benefit from FDI inflows

through backward linkages (Javorcik (2004)). The role of technology remains obscure in

previous literature: Horizontally, the potential productivity gains could be offset simultane-

ously by their competition; vertically, it is difficult to distinguish the production efficiency

improvements from positive demand shocks from supply chains.

This paper aims to fill the gaps in the literature by examining the impact of multination-

als technological improvements on their subsidiaries and domestic firms in nearby geographic

areas. Firstly, I match the U.S. public companies with their subsidiaries in China based on

the information provided in their annual financial reports (10-K files). I then measure the

1“Multinational enterprises in the global economy”, OECD Report
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impact of the technology shocks from these parent companies on their subsidiaries based on

the citation-weighted patent stocks of the parent companies. I further quantify the tech-

nology shocks of the MNCs on domestic Chinese firms in nearby geographic areas as the

weighted sum of the parent-subsidiary technology shocks. To address potential endogene-

ity problems, I adopt an instrumental variable strategy based on the state-level research

and development (R&D) tax credit policies in the United States (Wilson (2009), Bloom,

Schankerman and Reenen (2013)). The primary analysis focuses on three sets of outcome

variables, namely value-added output, revenue-based total factor productivity estimated fol-

lowing Ackerberg, Caves and Frazer (2015), and labor productivity measured in terms of

value-added per worker.

This paper establishes two main results. Firstly, technological advances of U.S. multina-

tionals are transmitted to their foreign subsidiaries, which improves the value-added outputs

and productivity of these subsidiaries. Secondly, these technology improvements are further

transmitted to domestic firms which are geographically close to the subsidiaries, thereby

precipitating production expansions and productivity gains in these domestic firms. The

results validate the existence of both technology transfers from parent companies to their

foreign subsidiaries within MNCs and local technology spillovers from the MNCs to domes-

tic firms. Further discussion reveals that the revenue-based productivity improvements are

more likely to be driven by production efficiency gains rather than price fluctuations and

may be associated with improvements in local human capital stocks.

To advance our understanding of forms of the local technology spillover effect, I further

investigate the impact of technology shocks through input-output linkages. I demonstrate

that technology shocks yield both production expansions and productivity gains in the do-

mestic firms within the same industry but only production expansions in the upstream and

downstream domestic firms. The results suggest that the multinationals technological im-

provements would diffuse to the nearby domestic firms in the same industries and generate

positive demand and supply shocks to the firms in the upstream and downstream industries.

I further construct measures of industry technology shocks based on the technological

distance between MNCs and local industries (Hall, Jaffe and Trajtenberg (2001)) and ex-

amine two related questions based on the technological linkage-based measure. The first
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question concerns to what extent the technology spillover effect is contingent upon the local

firms absorptive capacity. The second concerns how the technology shocks affect the local

firms innovation decisions. Regarding the first question, I demonstrate that the impact of

technology shocks is more substantial for firms with higher innovation capacity or human

capital stocks and for private-owned enterprises. Regarding the second question, the results

indicate heterogeneous responses of the local firms in their innovation activities; less produc-

tive firms become less likely to innovate, and more productive firms innovate more relative

to less productive counterparts. The results are consistent with a theory which features

both productivity gains and reductions in the fixed cost of imitation resulting from MNCs

technology shocks.

This paper contributes to the literature on the following grounds. Firstly, it supple-

ments prior studies concerning the relationship between multinational parents and foreign

subsidiaries. The models of multinational production commonly presume that multinational

parents and foreign subsidiaries share common technological inputs (for example, Helpman

(1984), Markusen (1995), Helpman (2006), and Antras and Yeaple (2014)). Meanwhile,

empirical research has suggested the existence of technology transfers from multinational

parents to their foreign subsidiaries in the form of patent royalty transactions (Branstetter,

Fisman and Foley (2006)); intra-firm technology diffusion further enhances multinationals

sales growth in the foreign market (Keller and Yeaple (2013), Bilir and Morales (2018)).

This study complements previous theoretical frameworks and empirical findings by provid-

ing direct causal evidence of multinational subsidiaries productivity gains as a result of their

parents technology advances.

My results shed further light on empirical studies concerning multinationals spillover

effects. Common measures of multinational activities in previous literature include industry

shares of employment and output in foreign-owned firms. Based on those measures, on one

hand, studies such as Haddad and Harrison (1993), Aitken and Harrison (1999), Djankov

and Hoekman (2000), Konings (2001), Bwalya (2006), and Tao, Lu and Zhu (2017) report

that foreign capital inflows exert a minimal or negative effect on the productivity of domestic

firms in the same industry2; conversely, domestic firms in the upstream industries are likely to

2For developed countries, however, studies such as Haskel, Pereira and Slaughter (2007) and Keller and
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benefit from foreign capital inflows, which has been suggested by studies including Javorcik

(2004), Kugler (2006), Blalock and Gertler (2008), Javorcik and Spatareanu (2008), Javorcik

and Spatareanu (2011), and Gorodnichenko, Svejnar and Terrell (2014). The classic approach

is appealing in that it reflects the overall impact of multinational activities, but it may also

embed challenges for precise interpretation and causal inference (Keller (2004)). This paper

complements the previous studies through the following means. First, rather than relying

upon the employment shares of FDI, I directly use the parent companies patent stocks to

infer potential technological diffusion to their subsidiaries and domestic firms3. Second, I

introduce an identification strategy which exclusively relies on the policy changes in the

home countries of the multinationals4. The results indicate a substantial positive local

spillover effect of multinationals innovation activities, and the effect also persists in the

within-industry analysis.

Lastly, my analysis also relates to research described in the innovation literature. First,

studies including Henderson, Jaffe and Trajtenberg (1993a), Peri (2005), Henderson, Jaffe

and Trajtenberg (2005), Thompson (2006), Agrawal, Kapur and McHale (2008), and Murata

et al. (2014) illustrate that knowledge spillovers (measured by patent citations) are substan-

tially limited by distance5. The insights are incorporated into the paper by restricting my

analysis on the domestic firms which are geographically near the multinational subsidiaries.

Second, as discussed in Schmookler (1966), Jaffe (1986), and Griliches (1992), the product-

based industry classification system is often insufficient to represent technological boundaries,

and the industry technology shocks based on technology linkages adopted in this study im-

proves upon the previous sectoral FDI spillover measures by linking MNCs knowledge stocks

with their relative importance in the Chinese industries. Third, my results also contribute

to previous research concerning the real effect of innovation (Jones and Williams (1998),

Hall, Mairesse and Mohnen (2010), Hall (2011)) by connecting the innovation outcomes of

Yeaple (2009) find positive horizontal FDI effect.
3An example of using patent data to measure technology spillovers is Bwalya (2006), in which citation counts
are used to infer technology spillovers from Japan to the U.S.

4Some recent studies also adopt other identification strategies. For example, Tao, Lu and Zhu (2017) utilizes
changes of FDI restrictions in China after 2001 for identification; Abebe, McMillan and Serafinelli (2018)
exploits the natural experiment of FDI entry in the local districts.

5Macro-level analysis such as Keller (2002) also suggests the benefits from R&D spillovers are decaying over
distance.
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multinationals with the productivity of the foreign subsidiaries and domestic firms.

The paper is organized as follows: Section 2 introduces my data and the construction

of key variables. Section 3 outlines the main specification and introduces the identification

strategy. Section 4 presents the baseline results, and section 5 lists the related robustness

checks. Section 6 discusses the channels of local technology spillover effects, and extends

the empirical approach to examine the impact of MNCs technology impacts on local firms

innovation decisions. Section 8 concludes.

2 Data and Variable Construction

2.1 Institutional Backgrounds

The Chinese Economic Reform of 1978 aimed to transform a central government planned

economy into a market economy. The reform was initially accompanied by policies that

opened certain regions to international trade and foreign investment. Since 1980, the gov-

ernment has established several designated economic zones that allow for foreign investment,

including cities such as Shenzhen, Zhuhai, Xiamen, Shantou, and the entire Hainan Province.

During the 1980s, the Chinese government also passed several joint venture laws and foreign-

capital laws that supported the institutional environment that protects the property rights of

the foreign investors. The reform was reinforced after 1992, when Deng Xiaoping re-affirmed

the continuation of the economic reform during his southern tour. Between 1993 to 2000, the

government opened major cities such as Beijing and Shanghai to trade and foreign invest-

ment and further minimized tariffs and trade barriers. In 1995, the government published

the Catalogue for the Guidance of Foreign Investment Industries (the Catalogue), a guide

for the local governments to encourage, permit, restrict, or prohibit FDI in certain classified

industries. The classification of industries underwent several rounds of revision after 2000.

The net inflow of FDI skyrocketed in China after 2001, when China accessed the World

Trade Organization (WTO); this increased from less than 50 billion in 2001 to about 250

billion in 2010. Figure 1 illustrates the growth of the U.S. FDI inflows and the major policy

events in China between 1978 and 2010..
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[Figure 1]

The U.S. multinationals FDI in China was initiated early during the Chinese market

reform. The U.S. and the Peoples Republic of China established diplomatic relations in 1979,

and in the following several years, numerous U.S. MNCs established their first subsidiaries

in China, including Coca Cola (1979), Pepsi (1981), Johnson Johnson (1982), and Hewlett-

Packard (1985).6).These early entrants often opted for a Chinese headquarters in major

cities such as Beijing, Shanghai, and Guangzhou, but have more recently expanded their

operations to the other cities. For example, Pepsi first established its headquarters in Beijing

in 1981; however, as of 2000, it has established production factories in regional centers such

as Changchun, Chongqing, Guilin, Nanchang, and Nanjing. Following the growth of U.S.

multinationals Chinese businesses, the U.S. also became the third largest source country of

FDI in China in 2006 (excluding the tax havens) following Japan and South Korea, and the

total amount of FDI inflows in 2006 adds up to 3,061.23 million7).

Rich anecdotal evidence suggests that it is likely that foreign direct investment introduces

technology spillovers to the local companies in China. For decades, the Chinese govern-

ment has been accused of its implicit “technology for markets” policy, under which foreign

companies are required to transfer technology to domestic firms to initiate operations in

China8.Meanwhile, due to the weak enforcement of intellectual property protections, it is

also possible for the domestic firms to imitate or reverse-engineer the products and technol-

ogy of the multinationals. Foreign companies may also voluntarily share technology with

local firms to prevent hold-ups by any single supplier (Blalock and Gertler (2008)). On

the other hand, technology spillovers may exist in many other forms, such as labor pooling

(Poole (2013)).

2.2 Data Sources and Variable Construction

The Chinese data used in this study is based on the Annual Survey of Industrial Enterprises

(ASIE). The data is collected by the Chinese National Bureau of Statistics (NBS), and the

6See Table A1 for examples of U.S. multinationals and their entry years
7See Table A2 for the major origins of FDI inflows in China
8See, for example, Jiang et al. (2018)
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sample includes all state-owned enterprises (SOEs) and non-SOEs with annual sales of over

5 million Chinese yuan (about $604,600 in 2000). The data contains the basic information

of each company, including name, location, industry, ownership structure, and starting year,

and performance variables, including gross output, value added, net income, fixed assets,

intermediate inputs, and employment. Some items which are uncommon in the standard

financial statements are also reported in the ASIE, including value of export, value of new

products, and employee compensation. I primarily focus on two sets of key firm-level outcome

variables, namely value-added output and revenue-based productivity measures (total factor

productivity and labor productivity). Value-added output is constructed directly based on

the data using the logarithm of the reported values. I further estimate a two-factor produc-

tion function (Ackerberg, Caves and Frazer (2015)) with value added as production output

and employment and capital as production inputs9, to estimate the revenue-based total fac-

tor productivity (TFPR)10. I also construct labor productivity defined by log value-added

output per worker as well as other firm-level outcome variables from the data, including

gross output, wage, return on assets, intangible assets, value of exports, etc. The other Chi-

nese data sources used in this study include Chinese patent data from the State Intellectual

Property Office (SIPO), which contains patents granted to individuals and firms by the SIPO

between 1990 and 2015 and the Chinese 1% population census between 2000 and 2005.

In terms of U.S. data sources, I mainly relied upon patent data from the Harvard Patent

Network Dataverse, which was primarily collected from the U.S. Patent and Trademark

Office (USPTO). The data encompasses all patents granted in the U.S. from 1975 to 2010

and contains both information concerning each patent applicant, including names, states,

and assignee numbers, and the characteristics of each patent, including technology class,

application year, and grant year. Furthermore, the database also includes every pair of

cited and citing patents, which is used to construct citation measures. I use the crosswalk

provided by Kogan et al. (2017) to link each patent to U.S. public firms. I also use the

annual Compustat data to access U.S. public firms information. The data compiles financial

statement information of all U.S. public firms. To fulfill the purpose of this study, I construct

9Value-added outputs and employment are directly reported in the data, and I follow Brandt et al. (2017)
to construct capital stocks using perpetual inventory method.

10the estimation procedure is outlined in later sections and in the appendix.
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outcome measures of these U.S. public firms, such as log employment and sales.

2.3 Matching U.S. Public Firms to Their Chinese Subsidiaries

Recent research in both Economics and Finance fields has exhibited increasing interest in

exploiting the textual data of firms’ financial reports to garner the information not pre-

sented in the financial statements11. More specifically, Hoberg and Moon (2017) and Hoberg

and Moon (Forthcoming) use 10-K filings to determine companies exposure to off-shoring

activities and relate such measures to these public companies stock market performance.

This paper expands the existing approaches which utilize financial reports by extracting

exact parent-subsidiary information from the 10-K files. Relative to the other potential

data sources for determining the parent-subsidiary linkages in the literature, such as the

within-company transaction records from confidential data of the U.S. Bureau of Economic

Analysis (BEA)12 or the Name List of Foreign and Domestic Joint Ventures in China from

the Chinas Ministry of Commerce13, the relationship is constructed directly in this paper

based on publicly accessible financial reports and can be combined with rich firm-level panel

data from both the U.S. and China.

The matching of U.S. public companies with their Chinese subsidiaries involves both au-

tomated textual search algorithms and hand-matching. I primarily use the annual 10-K files

from the SEC database to construct these relationships. The 10-K files are annual finan-

cial reports of U.S. public firms required by the SEC, and they contain not only standard

financial reports but also rich textual information about the companies operations and out-

comes. I first download all 10-K files from the SEC Edgar database and then identify the

U.S. firms which mentioned the related keywords in their 10-K files through text scraping.

Specifically, I define the U.S. firms as related if their 10-K files contain “China” or “Chinese”

plus “subsidiary”, “operation”, “facility”, “investment”, or “venture” in the same sentence.

I also randomly select 50 financial reports to validate my search. The validation results

11For example, Hoberg and Phillips (2010) and Hoberg and Phillips (2016) construct 10-K based prod-
uct similarity measures; Loughran and McDonald (2011) construct 10-K based measures of tones, and
Bodnaruk, Loughran and McDonald (2015) construct a 10-K based measure of financial constraints.

12Branstetter, Fisman and Foley (2006), Keller and Yeaple (2013), Bilir and Morales (2018).
13Jiang et al. (2018)
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confirm that the searching algorithm targets the companies that have at least some forms of

operations in China.

Of these potential candidate firms, I manually examine the Exhibit 21 tables (list of

subsidiaries) in the 10-K files to extract the detailed names and locations of their Chinese

subsidiaries if they exist. In cases when the Exhibit 21 tables are missing or do not contain

any Chinese subsidiary information, I also examine the main text of the 10-K files to search

for the related keywords and record the exact forms of operations in China for these firms.

A large proportion of these firms report sales offices, representatives, or business partners in

China rather than manufacturing subsidiaries. I also supplement my list of subsidiaries from

10-Ks with an additional list of Chinese subsidiaries of U.S. companies from the ORBIS

database, which exclusively contains subsidiaries that are currently operating. I exclude

from the list the subsidiaries that were initiated after 2000. I demonstrate that the ORBIS

data adds merely two more U.S. public firms and five more subsidiaries to my final matches,

which indicates that my 10-K-based method of identifying subsidiaries of U.S. public firms

captures a major proportion of possible matches.

I then manually match these subsidiaries (both from 10-Ks and ORBIS) with the ASIE

data one by one. The names are often not precisely identical after translation into Chinese;

I therefore use keyword searches in multiple search engines to determine the exact names

and information of the subsidiaries. For each potential match, I also investigate the name,

location, industry, starting year, and ownership information to ensure that the match is

correct14.

Lastly, I restrict to the subsidiaries from between 2000 and 2007 to eliminate selection

problems as the entry and exit decisions of the subsidiaries could be correlated with the U.S.

parents innovation shocks. I also restrict the parent companies of these subsidiaries to the

U.S. companies that exist (and are not acquired) between 2000 and 2007 in the Compustat

data.

Of all 4,918 U.S. public companies existing between 2000 and 2007, about 20% are as-

sociated with China-related keywords, and I discover 310 U.S. public firms that include

subsidiary information that can be matched to the ASIE data. I examine the main text of

14Figure A.2 shows my name matching procedure using Pepsi Co. as an example
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10-Ks of the other firms and determine that a substantial proportion of them have discussed

their sales office, representatives, or business partners in China when referring to the related

keywords. Therefore, it is unlikely that I overlook a substantial number of U.S. public firms

subsidiaries due to missing information in the 10-Ks. Including firms from the ORBIS data

and restricting them to subsidiaries which existed from 2000 to 2007 yields 236 U.S. public

firms and 460 subsidiaries in China. Matching with the patent data reduce the number of

public firms to 210 and the number of subsidiaries to 370 because some of the U.S. public

firms do not file any patents or were not matched to the patent database. Since I could not

distinguish between the two, I eliminated these firms from my final match15.

The largest MNC in the linkage in 2000 is Motorola Solutions Inc., which employ over

13,000 people total and experience sales of over 34 billion yuan (over 4 billion U.S. dollars)

in 2000. Notably, most of the matched MNCs are in high-tech industries, such as electronics

(Motorola, Flextronics, Emerson, etc.), machinery (United Technologies, General Electric,

Cummins, etc.), and chemistry (DuPont and Procter & Gamble)16.

2.4 Identifying Affected Counties

ASIE does not provide exact address information for each firm; instead, it provides the county

codes for each observation, but this presents two major problems: Firstly, the county codes

change over the course of years, as new counties are added and old counties are eliminated

from the list. Secondly, the county system is an administrative system; therefore, the counties

geographic sizes and shapes differ substantially across the nation. I address the first problem

by constructing a harmonized county code system that remains consistent over the course of

years after examining historical changes in county codes. To resolve the second problem, I

first compute the coordinates of the geographic centers of all counties in the Chinese county

map in the Geographic Information System (GIS). I then apply a distance-based method to

define the counties that were potentially affected by each subsidiary: I define a county as

affected by subsidiary n if its county center is within 20km of the county center where n is

15Table A3 presents the matching rate for each step.
16Table A4 presents the top 15 U.S. MNCs in size from the final match.
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located17. I am able to link 202 Chinese counties with at least one matched subsidiary of

the U.S. multinationals using the above distance-based approach.

2.5 Measuring Technology Stocks

Measuring technology shocks is based on patent stocks of U.S. public firms. I utilize the Har-

vard Patent Dataverse to compute the citation-weighted patent counts and use the crosswalk

provided by Kogan et al. (2017) to match the patents with the Compustat public firms.

The truncation problem presents a classic challenge with using the patent counts and

citation counts (Hall, Jaffe and Trajtenberg (2001)): when closer to the final year of the

patent data, the patent counts are downward-biased due to the absence of applied patents

that have not yet been granted, and the citation counts are also downward-biased because

of the missing citations from patents granted after the final year. I address the truncation

problem by implementing Hall, Jaffe and Trajtenberg (2001) and Hall, Jaffe and Trajtenberg

(2005)’s quasi-structural approach, which estimates the empirical distribution function of the

patent counts and citation counts for each of the six technology categories and adjusts the

counts in late years using the deflators based on the estimation results18.

I apply the perpetual inventory method with a 15% depreciation rate, as suggested in

the previous literature19, to construct the patent stock measures:

KP
mt = (1− η)KP

mt−1 + Pmt

In the equation above, m denotes U.S. MNCs and t denotes years varying from 1975 to

2010; KP is the cumulative patent stock, and Pmt is m’s citation-weighted patent counts in

the application year t. I primarily use citation-weighted patent stock to measure technology

levels of U.S. public firms because this accounts for the importance of each patent.

I use parent company m’s three-year lagged patent stock as a proxy for the potential

17I test my choice of distance in the robustness checks.
18The detailed adjustment procedure is outlined in the appendix
19See, for example, Hall, Jaffe and Trajtenberg (2005), Matray (2014), etc. An alternative choice is to use a

10% depreciation rate as in Keller (2002) and Peri (2005).
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technology transfers from m to its foreign subsidiary n:

TECHsub
mnt = Log(Kmt−3)

After constructing the linkages between local firms and the matched subsidiaries based on

geographical distance, I measure local technology stocks as a weighted sum of the subsidiary-

level technology stocks, with the initial share of subsidiaries’ employment in each county as

weights:

TECH loc
ct = log(

∑
n∈Nc

Km(n)t−3 ·
wn0
Wc0

)

In the equation above, Nc is the set of all matched subsidiaries in county c, Km(n)t−3 is n’s

parent company n(m)’s patent stock at year t − 3, wn0 is the initial employment of n, and

Wc0 is the total employment of firms in county c in the initial year. In other words, I use

the employment share of n in county c as weights to compute the aggregated county-level

technology stocks of MNCs. I use the time-invariant weights to avoid potential endogeneity

problems due to technology-induced changes of subsidiary sizes.

The measure of local technology stocks can be rationalized through a simplified framework

in which local technology diffusion is realized by the connections between workers in the

multinationals and local firms. I first assume that each U.S. subsidiary n with size Ln is

embedded with technology level Tn from their parent company m. In each period, x percent

of employees of n has contact with any other workers in the local firms with equal probability

20. Assuming that the local economy is of size L, each worker in the local firms has an

equal probability of x · Ln

L
of having contact with the employees of n and benefit from the

knowledge spillovers of size Tn. The technology spillovers which originated from subsidiary

n are therefore x · Tn ·Ln

L
, and the overall local technology spillovers are x ·

∑
n∈Nc

Tn·Ln

L
.

By replacing the technology level Tn with lagged citation weighted patent stock Kmt−3 and

size Ln with the initial level of employment sn0, I have rewritten the formula as the local

technology stock measure.

[Figure 2]

20Alternatively, assume in each period x percent of multinationals’ employees randomly flow from those
multinationals to the local firms.
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Figure 2 illustrates the geographic distribution of TECH loc in 2000. Many of the affected

counties are clustered around the four largest cities, namely Beijing, Shanghai, Guangzhou,

and Shenzhen, and more developed provinces, such as Jiangsu, Zhejiang, and Guangdong.

However, the influence of the MNC subsidiaries is also disseminated nationally: Many of the

subsidiaries are located in the northeast, southwest, and central part of China, and some of

these subsidiaries are also linked with the most innovative U.S. parent companies.

I begin with a general measure that reflects the potential local technology spillovers

on all manufacturing firms in nearby counties, which facilitates an understanding of the

overall impact of the multinationals innovation activities on the local economy. The later

section constructs industry-specific measures of local technology stocks based on subsidiaries

industry codes and technological relationships between the multinationals and local firms.

2.6 Productivity Estimation

The primary outcome variables of the analysis include local firms value-added output (va),

revenue-based total factor productivity (tfpr), and labor productivity (lb). Since the con-

struction of value-added output and labor productivity is straightforward, this section briefly

introduces the construction of TFPR.

Since it is not feasible to directly measure firms production efficiency (tfpq) based on

the ASIE data due to the lack of exact input and output price data at the firm level, I

have instead estimated the revenue-based total factor productivity (tfpr) and discussed the

effects on tfpq under specific assumptions.

I mainly apply Ackerberg, Caves and Frazer (2015)’s method (henceforth the ACF

method) to measure firm-level TFPR. First, I assume the following “value-added” Cobb-

Douglas production function:

yit = βkkit + βllit + πit + εit

In this function, yit represents the value of the value-added output, kit represents capital,

and lit represents total employment. Two components comprise the residual term, including

the persistent factor, πit, and the idiosyncratic factor, εit, which consists of transitory shocks
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and measurement errors. The value-added production function assumes that gross output is

Leontief in the intermediate input mit; therefore, the intermediate input is proportional to

the gross output21.

I estimate the production function based on the ACF two-stage method22: in the first

stage, I estimate the output function using a 3-order polynomial of l, k and m, controlling

for a set of fixed effects and most importantly, a set of multinationals’ technology stock

variables constructed in the previous sections, as suggested by Pavcnik (2002); in the second

step, I implement the generalized method of moments (GMM) estimator to recover the

coefficients for capital and labor at the same time. The estimated TFPR is therefore π̂it =

yit − β̂kkit − β̂llit.

2.7 Summary Statistics

[TABLE 1]

Table 1 displays the summary statistics of the key variables in the analysis. Panel A

includes the sample of all matched subsidiaries of the U.S. public firms, and panel B includes

the sample of all local firms in the matched Chinese counties. Panel C indicates the distri-

bution of the technology shock measures. Comparing panel A with panel B demonstrates

that the matched subsidiaries are larger in size and more productive relative to local firms in

nearby geographic areas. The matched subsidiaries experience 191% greater average sales,

employ 214% more people on average, and correspond with 151% higher measured TFPR.

The subsidiaries also pay 201% higher wages to their employees and export 941% more than

the local Chinese firms on average. The differences persist after controlling for county, indus-

try, and ownership-fixed effects. Those dramatic differences not only validate our matches

of U.S. subsidiaries but also indicate that these subsidiaries may induce sizable technology

spillovers for local firms; this is because these subsidiaries are not only large in size but also

experience technological advantages relative to local firms.

21The value-added production function assumption is discussed in, for example, Bruno (1978), Diewert
(1978), and Levinsohn and Petrin (2003).

22the detailed estimation procedure is outlined in the appendix
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3 Specification and Identification Strategy

I estimated the effect of technology shocks exerted by parent companies on their foreign

subsidiaries (the intra-firm technology transfer effect) and the effect of local technology

shocks on domestic firms (the local technology spillover effect) using the following fixed

effect models, respectively:

Ynt = fn + ft + θsubTECHsub
nt +Xnct + εsubnct

Yict = fi + ft + θlocTECH loc
ct +Xict + εlocict

In these equations, n denotes matched subsidiaries, i denotes local Chinese firms, c de-

notes counties, and t denotes years. Y ’s are the outcome variables, and Xct are the control

variables. Firm fixed effects have been included to control for any time-invariant firm char-

acteristics. Year-fixed effects are also controlled to capture any common shocks to all firms

during the year. The general year fixed effect is further divided into industry-year fixed effects

to absorb any industry-specific shocks, such as industry supply or demand shocks in each

year, and ownership-year fixed effects, which is intended to absorb any ownership-specific

shocks, such as the SOE reforms in the 2000s. The robust standard errors are clustered at

the parent company level in the parent-subs diary technology transfer specification, and the

robust standard errors are clustered at the county level in the local technology spillovers

specification. Lastly, the regressions are weighted using the initial employment of the firms

for the following reasons: Firstly, this controls for the heteroskedasticity in the initial firm

size (Greenstone, Hornbeck and Moretti (2010)); second, the estimated coefficients of the

regression results can be interpreted as “per capita” effects; third, it is consistent with the

conceptual framework of knowledge transfer through worker connections or worker flows.

The coefficients of interest are θsub and θloc: θsub represents the estimated parent-subsidiary

technology transfer elasticity, and θloc represents the estimated local technology spillover

elasticity.

The OLS estimates could suffer from endogeneity problems, such that cov(TECHsub, εsub) 6=

0 (patent stocks of multinationals correlate with unobserved shocks that affect subsidiaries’

outcomes) or cov(TECH loc, εloc) 6= 0 (multinationals’ technology stocks correlate with unob-
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served shocks that affect local firms’ outcomes). First, as in the classic simalteneity problem

(the “correlated effect” as in Manski (1993)), MNC headquarters, foreign subsidiaries, or

local Chinese firms could respond simultaneously to identical unobserved shocks. In the

parent-subsidiary technology transfer specification, negative bias could be caused by CEO’s

limited attention23: if the CEO occasionally transfers attention from foreign operations to

domestic research and development centers, then the increase in innovation outcomes in the

U.S. will be associated with the contraction of foreign operations, which creates a negative

bias in the OLS estimates. In the local technology spillover specification, bias could result

from unobserved supply or demand shocks. For example, an unobserved positive global sup-

ply shock that enhances both local Chinese firms performance and multinationals innovation

outcomes will precipitate a positive bias in the OLS estimates. Conversely, an unobserved

shift in tastes toward multinationals products (or high-quality products) in the global market

that also reduces the market demand for the Chinese products will produce a negative bias

in the OLS estimates.

The second source of bias relates to the sorting behaviors of the multinational sub-

sidiaries. Specifically, the innovation capacity of the multinationals may correlate with their

unobserved ability to select subsidiary locations, thereby resulting in bias in the OLS esti-

mate. This type of bias could be either positive or negative: if multinationals prefer locations

with lower expected wages and input cost growth and if more innovative multinationals are

superior in selecting the preferred locations for their subsidiaries, then the bias would be

negative; conversely, if multinationals prefer locations with higher levels of human capital

stocks and faster market demand growth, then the bias would be positive.

To address potential endogeneity issues, I first restrict the sample of subsidiaries to those

initiated between 2000 and 2007 so that their exit and entry decisions were unlikely to be

affected by the multinational parents innovation activities during the sample period. I further

introduce an instrumental variable strategy based on the U.S.s R&D tax credit policies; the

following section elaborates upon this.

23See, for example, Schoar (2002) and Seru (2014), for empirical evidence of CEO’s limited attention.
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3.1 The U.S. R&D tax credit

The U.S. research & experimentation tax credit, or the R&D tax credit, consists of two parts:

the federal tax credit system and the state tax credit system. The federal R&D tax credit was

first introduced by the federal government in the Economic Recovery Tax Act of 1981. The

policy grants a 25% tax credit for all qualified research and development expenses (QRE)

defined by the U.S. Internal Revenue Code (IRC)24. Since 1981, Congress had extended the

R&D tax credit policy for multiple times, and made it permanent in year 2015.

The introduction of the state R&D tax credit policies closely aligned with that of the

federal policy, and the state tax codes typically apply the same QRE definition as the

federal government. In 1982, Minnesota became the first state to introduce the state R&D

tax credit. As of 2007, 32 U.S. states have introduced some form of the R&D tax credit, and

Hawaii, Rhode Island, Nebraska, California, and Arizona have the highest effective credit

rate, ranging from 11% to 20%.

[Figure 3]

It is highly common for the effective state R&D tax credit rates to change over the

course of years due to policy adjustments 25. Figure 3 illustrates the changes in these tax

credits from 1994 to 2001 (the duration of our analysis); it displays significant variations in

state-level R&D tax credit policy adjustments. Furthermore, the impact of these tax credits

on firms research and development investment may also correspond with macroeconomic

fluctuations and other tax policy changes, such as interest rates and corporate income tax

rates. To adjust for these factors, I use the state-specific, R&D tax credit-induced user cost

of research and development capital (henceforth, user cost of R&D capital), constructed

following Hall (1992), Wilson (2009), and Bloom, Schankerman and Reenen (2013) in my

instrumental variable construction26.

24The three main components of eligible research expenses are: i. wages; ii. supplies; iii. contract research
expenses, as in the 2005 IRC section 41. Please see Audit Techniques Guide: Credit for Increasing Research
Activities for detailed definition.

25For example, Arizona changes its tax credit rate from 20% to 11% in year 2001
26The formula to construct the user cost of R&D capital is presented in the appendix
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3.2 Instrumental Variable Construction

I construct the instrumental variable in four steps. First, I compute each firm’s patent

stock in each state in year 1997, which corresponds to the starting year of the 3-year lagged

measures of technology stocks. The patent stock share in each state is a proxy of the

geographic distribution of the firm’s innovation activities. Based on the state-specific average

user cost of R&D capital, I compute the firm-specific user cost of R&D capital as:

ρ̃it =
∑
s∈S

wisρ
h
st

where ρhst is the user cost of R&D capital for the highest tier of R&D spending firms in state

s and year t, wis is firm i’s share of citation-weighted patent stocks in state s and year 1997.

I further compute a cumulative R&D user cost (similar to our patent stock construction)

as:

Zsub
it =

t∑
t′=ti0

(1− η)t
′−ti0log(¯̃ρit′)

where ti0 is the starting year of firm i, η = 15% is the depreciation rate of knowledge capital,

and ¯̃ρit′ is the average firm-level user cost of R&D capital from t′ − 3 to t′. The coverage of

three years before patent application year is to account for research duration27.

The firm-specific cumulative user cost of R&D capital is directly used as the instrument

for the technology transfers from the U.S. parents to their subsidiaries (the lagged patent

stocks of the parent companies). The first-stage regression specification in identifying the

parent-subsidiary technology transfer effect is written as:

TECHsub
nt = fn + ft + λsubZsub

m(n)t−3 + νsubnt

where I control for subsidiary fixed effect fn and year fixed effect ft, with standard errors

clustered at the parent company level. λsub is the coefficient of interest, which represents the

elasticity of the parents’ patent stocks in respond to the cumulative log R&D capital user

costs.

Next, I compute the weighted average of the user costs at the Chinese county level, based

27In the appendix, I show that the cumulative R&D user cost construction is an approximation of a constant
elasticity relationship between patent counts and R&D user cost.
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on the initial size of the subsidiaries in China:

Z loc
ct =

∑
n∈Nc

Zsub
m(n)t−3 · w0

n∑
n∈Nc

w0
n

in which w0
n is the initial employment of subsidiary n, and Nc is the set of all matched

subsidiaries in c. The term can be interpreted as the average cumulative R&D user cost of

the parent companies of all foreign subsidiaries in the county.

The first-stage regression specification in identifying the local technology spillover effect

is represented as:

TECH loc
ict = fi + ft + λlocZ loc

ct−3 + νlocict

The first-stage regression would be conducted at the Chinese local firm level, where fj is

the firm fixed effects, and ft is the year fixed effects, which could be further replaced by

sector-year fixed effects and ownership type-year fixed effects. As in the previous equation,

λloc is the coefficient of interest, representing the elasticity of local technology stocks of

multinationals in response to the average cumulative log R&D capital user cost changes.

[TABLE 2]

Table 2 displays the first stage regressions. The results show that the constructed instru-

ments exert negative effects on the corresponding multinational technology shocks which are

both economically and statistically significant. The F-statistics of the first-stage regressions

are at least around 10, which is the lower bound of strong instruments, as suggested by Stock

and Yogo (2002)28.

4 Results

4.1 Parent-Subsidiary Technology Transfers

I examine the relationship between parent companies’ innovation and their subsidiaries’ per-

formance. This step serves as a validation assessment because the existence of the parent-

subsidiary technology transfers is necessary for the multinationals local technology spillover

28In the appendix, I discuss how the identification strategy of using cumulative user cost of R&D capital
might fulfill the criteria of the exclusion and inclusion restrictions in detail.
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effect. Additionally, the question concerning whether technology advances of the parent com-

panies are transmitted to their foreign subsidiaries is worth investigating in itself. Previous

studies have documented substantial technology transfers within multinationals (Branstet-

ter, Fisman and Foley (2006)). A parallel strand of literature has established that the

productivity shocks of parent firms could be transmitted to their foreign subsidiaries (for

example, Boehm, Flaaen and Pandalai-Nayar (Forthcoming), Bilir and Morales (2018)).

However, whether technological improvements in the parent companies also generate pro-

ductivity gains in the foreign subsidiaries has not yet been investigated.

I begin by studying how the matched subsidiaries’ log value-added output, TFPR, labor

productivity, and markups are affected by their parent companies’ 3-year lagged citation-

weighted patent stocks (TECHsub). I control for firm fixed effects that eliminate any time-

invariant subsidiary characteristics, and industry-year fixed effects that absorb industry spe-

cific shocks in each year29. I further include the mean sales, TFPR, and markups level of

the local firms in the same sector and county of each matched subsidiary in the regressions

to control for the local economic conditions. Last, as discussed before, I weight each firm by

their initial employment levels and cluster the robust standard errors at the parent company

level.

[TABLE 3]

Table 3 presents the regression results. Column 1 suggests that a 10% increase in the

parents lagged patent stocks is associated with a 2.4% increase in the subsidiaries value-

added outputs. As indicated in column 2, controlling for the local economic conditions

did not eliminate the positive correlations between the parents lagged patent stocks and the

subsidiaries value-added outputs. The IV estimate using the cumulative user costs of research

and development capital as instruments in column 3 indicates that a 10% increase in the

parents lagged patent stocks causally increases the value-added outputs of the subsidiaries by

5.5%. In column 3 relative to column 2, the IV estimate is about double the OLS estimate,

which may either be due to attenuation bias (since the standard error also becomes larger)

or unobserved factors, such as CEO attention, as discussed previously. As demonstrated by

29Ownership-year fixed effects are not controlled as most firms in the sample are foreign-owned.
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column 4, the TFPR is positively correlated with the parents technology shocks, but the

OLS estimate presents negative bias (comparing with column 5). Column 5 and 6 suggest

that a 10% increase in the parents lagged patent stocks causally increases the revenue-based

productivity measures, including TFPR and labor productivity, by about 3.7% to 3.9%

respectively.

I also investigate how the other firm-level outcomes of the subsidiaries respond to the

parent companies’ technology stocks30. I find that, subsidiaries’ gross outputs, average wage,

value of intermediate inputs, and intangible assets increase following their parents’ technology

improvements.

4.2 Local Technology Spillovers

The results presented in the previous subsection confirm that the subsidiaries of the U.S.

multinationals benefit from technological advances of their parent firms. The next question

is as follows: Do the local firms in China also benefit from the technological improvements of

the multinationals in the local areas? This subsection addresses this question. It examines

how the local firms log value-added output, TFPR, and labor productivity, are affected by

the multinationals local technology shocks (TECH loc), which is measured in terms of the

log weighted sum of lagged patent stocks. I have controlled for firm fixed effects, year fixed

effects (or industry-year and ownership-year fixed effects) in the regressions and weight the

regressions in terms of the initial employment of firms. Robust standard errors are clustered

at the county level.

[TABLE 4]

Table 4 presents the regression results. Column 1 shows that, a 10% increase in the local

technology stocks is associated with a 1.1% increase in the local firms’ value-added outputs,

and the magnitude changes to 1.7% after controlling for industry-year and ownership-year

fixed effects rather than year fixed effects in column 2. Column 3 shows that, a 10% increase

in the local technology stocks causally leads to a 3.6% increase in the value-added outputs of

the local firms at 10% significance level. Like before, the IV estimate is about twice as large

30See Table A8.
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as the OLS estimate, suggesting a negative bias due to either attenuation bias, or the global

shocks as previously discussed. Column 4 shows that the TFPR is also positively correlated

with the local technology stocks, but the OLS estimate is negatively biased (when compared

with column 5). As shown in columns 5 and 6, a 10% increase in the local technology stocks

also causally increases local firms’ revenue-based productivity measures by 2.6% to 2.7%.

I also investigate the effect of the local technology stocks on the other outcomes of local

firms31, and find that the local firms’ gross outputs, average wage, and intermediate inputs

are responding positively to the local technology stocks at at least 10% significance level.

One potential concern is that since the sample in the primary analysis is an unbalanced

panel of the local firms, the identified productivity gains may not reflect technology spillovers

toward the incumbent firms; they may instead reflect a sorting phenomenon in which more

productive firms enter the data and less productive firms exit the data. I find that local

firms entry and exit decisions are unlikely the main reason for the identified productivity

gains: Local firms become less likely to exit as a result of the multinationals local technology

shocks, but minimal evidence suggests a sorting effect of the local technology shocks32.

4.3 Magnitudes

I discuss the implied magnitudes of the identified effects in the baseline regressions in de-

tail. First, one within-firm standard deviation in the parent-subsidiary technology transfers

(0.367) will lead to a 20.1% increase in the subsidiaries’ value-added outputs, a 14.3% in-

crease in the subsidiaries’ TFPR, and a 13.7% increase in the subsidiaries’ labor productivity.

The one standard deviation effect of the parent-subsidiary technology transfers on TFPR

explains about 9.9% of the within-firm variations of TFPR in the matched subsidiaries. In

terms of economic magnitudes, back-of-envelope calculation implies that the one standard

deviation effect would generate about $3688 increase to the median labor productivity of the

subsidiaries.

Similarly, one within-firm standard deviation in the local technology spillovers from the

U.S. multinationals (0.187) leads to a 6.7% increase in the local firms’ value-added outputs,

31See Table A9.
32See Table A10.
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a 4.9% increase in the local firms’ TFPR, and a 5.1% increase in the local firms’ labor

productivity. The one standard deviation effect of the local technology spillovers on TFPR

explains about 4.3% of the within-firm variations of TFPR in the matched subsidiaries. In

terms of economic magnitudes, back-of-envelope calculation implies that the one standard

deviation effect would generate about $299 increase to the median labor productivity of the

local firms. Additionally, the intra-firm effect of technology shocks is more substantial than

the inter-firm one, which can be associated with the role of firm boundaries in the transfer

of technology.

4.4 Discussions

The revenue-based productivity measures, including TFPR and labor productivity, measures

the output value produced by each unit of input (or combination of inputs). Although

the measures themselves are economically meaningful, they also incorporate variations in

market power across producers, as suggested in Syverson (2011) and many other studies.

If more productive producers charge lower prices, the revenue-based productivity measures

will be downward biased comparing to the underlying production efficiency (tfpq). In the

baseline regressions, the cross-time industry-level variations of market power is absorbed by

the industry-year fixed effect; however, the within-industry variations of market power is not

addressed due to data limitations. In this section, I discuss the implications of the baseline

results on the production efficiency (TFPQ) under certain model assumptions.

By definition, I write the elasticity of the revenue-based productivity (TFPR or labor

productivity) in response to multinationals’ technology stocks s as the following:

dπit
ds

=
dpit
ds

+
dωit
ds

where πit is the revenue-based productivity, pit is the value-added output price, and ωit is the

production efficiency. In words, the response of revenue-based productivity to the technology

stocks is the sum of the response of value-added output price and the response of production

efficiency.

I assume that the firm production function is Cobb-Douglas with constant return to scale
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(CRS): y = a+ αl + (1− α)k. I further assume that wage w is given at the local level, and

the interest rate r is fixed (the supply elasticity of capital is infinite and the price of capital

is determined by the international market).

In the first case, I assume that each county produces a distinct variety of product, and

the market for each product (in each county) is perfectly competitive, following Armingon

(1969). Then dpit
ds

= dmcit
ds

= 0 as the production efficiency gains from local technology

spillovers will be offset by the local wage increases. Therefore the effect of multinational

technology stocks on TFPR equalizes the effect on TFPQ, or dπit
ds

= dωit

ds
. Therefore, under

the Armington setting of perfect competition, the baseline results suggest that the technology

shocks improve firms’ production efficiency at the same scale.

In the second case, I assume monopolistic competition in each industry, so that firms

in each industry face a constant markup σ
σ−1 . Following Hsieh and Klenow (2009), TFPR

should be equalized in each industry given input prices, and TFPQ could be written as:

ωit =
σ

σ − 1
q − αl − (1− α)k

in which q = p+y is the total output value, and σ is the demand elasticity. Therefore TFPQ

can be recovered if the production elasticity and the demand elasticity have been estimated

correctly. However, the approach will be threatened if the multinational technology spillovers

also change the demand elasticity.

I first construct a measure of markup following De Loecker and Warzynski (2012). The

estimated markup could be written as:

µ̂it = β̂l(
wagebill

exp(ŷ)
)−1

In other words, the estimated markup is the ratio between the elasticity of labor input and

the share of labor expenditure in total output value.

I first test whether the estimated firm-level markups are affected by the technology

spillovers33. I further recover TFPQ based on the estimated production elasticity and de-

mand elasticity in the following three ways: first, I assume σ = 3 for all industries; second,

I assume σ to be constant within each industry group, using industry aggregated output

33See Table A11.
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values and wage-bills to compute labor expenditure shares; third, I assume σ to be constant

within each industry-year group, using industry-year aggregated output values and wage-

bills to compute labor expenditure shares. I recover firm-level TFPQ under each assumption

respectively, and repeat my baseline analysis on the TFPQ measures.

My findings are summarized as following. First, the firm-level estimated markups, or

labor expenditure shares in total output, is not responding significantly to the technology

spillovers, suggesting that the demand elasticity remains constant under monopolistic compe-

tition assumptions. Second, the technology spillovers causally increase the TFPQ measures

as well, and the implied magnitudes of the point estimates are even larger than the baseline.

The results imply that under monopolistic competition assumptions, the TFPR gains are

likely to be associated with production efficiency improvements.

Last, the TFPR growth in response to the technology spillovers is accompanied by lo-

cal wage growth. There are two hypotheses explaining why the local wages might respond

positively to the multinationals’ technology spillovers. First, the local labor market might

be tightened following the technology spillovers. Second, the human capital stocks of the

subsidiaries and the domestic firms are improved. Due to the lack of convincing unemploy-

ment and job vacancy data at county level in China from 2000 to 2007, the first hypothesis

is hard to verify. Nevertheless, I find evidence consistent with the second hypothesis, as

the technology spillovers causally increase the percentage of high-skilled workers (defined as

workers with college degrees) in the workforce of the local areas34, suggesting that the local

human capital stocks respond positively to the technology spillovers. In other words, the

productivity gains may be associated with the agglomeration spillovers of the high-skilled

labors. 35.

5 Robustness Checks

This section provides a list of robustness checks to address various potential concerns re-

garding the baseline results.

34See Table A12.
35See, for example, Combes and Gobillon (2015), for a summary of the related literature.
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5.1 Choices of technology diffusion duration and distance

In the primary analysis, I have made two seemingly arbitrary choices: Firstly, I presume

that the duration of international technology diffusion through multinationals is three years.

Secondly, I assume that the effective local technology spillover distance is 20 kilometers.

I examine alternative choices regarding the duration and distance36. I find my baseline

results are robust to the lagged year choices of zero to four years for the parent-subsidiary

technology transfer effects, and the lagged year choices of three to five years for the local

technology spillover effects. I also find the results are robust to distance choices between

0 to 30 kilometers. Furthermore, I discover that the estimated local spillover effects are

decaying over distance. The attenuation of local spillovers with distance aligns with the

previous findings that knowledge spillovers are geographically localized (Henderson, Jaffe

and Trajtenberg (1993b), Hall, Jaffe and Trajtenberg (2005)).

5.2 Other shocks from multinationals

I then exploit the effects of the other shocks which originated from multinationals activities.

This naturally results in an examination of the impact of R&D-based spillovers. Since the

constructed instruments can be directly applied to the R&D stocks of the multinationals, I

was able to investigate the causal impacts of the R&D stocks on the subsidiaries and local

firms outcomes. As expected, I find that the effect of R&D-based technology shocks are

highly similar to the effect of the patent-based technology shocks and that an increase in

multinationals R&D stocks precipitates both output growth and productivity gains among

the subsidiaries and the local firms37.

I further examine the impact of multinationals sales and employment shocks on the sub-

sidiaries. Due to the lack of valid instruments, I could only study the correlations between

the shocks and subsidiaries performance. I document that subsidiaries output and produc-

tivity are positively associated with both employment growth and sales growth among their

parent companies38.

36The results are shown in Figure A.7 and Figure A.8.
37See Table A13.
38See Table A14.
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Previous studies using employment or output share measures have find mixed evidence of

multinational technology spillovers. To exhibit the differences between the “size” shocks in

the previous studies and the “technology” shocks constructed in this paper, I also compute

the shares of employment and value-added output shares of foreign-owned enterprises in the

local areas and examine the correlation between those “size” shocks and the performance

of the local firms (excluding the foreign-owned enterprises themselves). I find the measured

“size” shocks are negatively correlated with local firms’ outcomes39. The results reveal

substantial differences between the impacts of technology shocks and size shocks.

5.3 Additional robustness checks

I use alternative TFPR and markup measures estimated based on trans-log production func-

tions, which approximates constant elasticity of substitution (CES) production functions. I

find my baseline results persist under the alternative production functions40.

To further validate my baseline results, I investigate how the U.S. firms collectively

(including their subsidiaries) respond to parent companies innovation in the U.S. I first

construct outcome variables of U.S. public firms based on the Compustat database, including

log employment, log sales, TFPR, and labor productivity. I then regress these firm-level

outcomes on their three-year lagged patent stocks for all U.S. public firms matched to the

patent data, instrumented using the firm-level cumulative log user costs of R&D capital. The

results suggest that the overall levels of employment, sales, TFP, and labor productivity of

U.S. public companies all respond positively to their lagged patent stocks at 5% significance

level41. The finding is consistent with previous studies on the strongly positive private returns

to R&D investments (Hall, Mairesse and Mohnen (2010)), implying that the growth of firms’

knowledge stocks generate real returns in the forms of sales growth and productivity gains.

The hypothesized diffusion process of MNCs technology shocks consists of two steps:

The first step involves technology transfers from U.S. parent companies to their subsidiaries

in China; the second involves technology spillovers from the subsidiaries to the local firms.

39See Table A15.
40See Table A16
41See Table A17.
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However, direct technology spillovers from U.S. parent companies to the local Chinese com-

panies remain possible. For example, this may be possible through outsourcing contracts

from parent companies. Specifically, if U.S. multinationals obtain enhanced knowledge about

the local companies in China from their subsidiaries and outsource production process to

these local Chinese companies, then the positive local technology spillover effect identified

in our baseline regression might result from the outsourcing activities directly rather than

the subsidiaries. To address this concern, I interact the local technology shock measures

with the share of initial employment of outsourcing MNCs42. The results indicate that, the

technology shocks from the outsourcing U.S. companies is unlikely the driving force of the

positive local technology spillover effect identified in our baseline regressions, as increasing

shares of outsourcing multinationals in the local areas (insignificantly) reduce the effect of

local technology spillovers43.

6 Extensions

The general measure of multinationals local technology stocks enables an understanding

of the overall impact of the multinationals technology improvements on the local economy

(manufacturing firms), but the local technology spillover effect also varies based on the re-

lationship between the multinationals and local firms. This section extends the previous

county level measure of technology shocks into two county-industry specific measures: The

first encompasses technology shocks based on the industry linkages between the subsidiaries

and the local firms; the second encompasses technology shocks based on the technological

linkages between the multinationals and local firms. The latter is applied further to in-

vestigate the determinants of local firms absorptive capacity and technological upgrading

decisions.

42I identify outsourcing U.S. companies based on whether their 10-K files mention outsourcing contracts in
China.

43See Table A18.
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6.1 Input-Output linkages

I first investigate how the firms within the same industry, or in the upstream or downstream

industries of the subsidiaries, respond to the local technology spillovers exerted by multi-

nationals. The analysis is inspired by the previous studies which exploit the “size” shocks

of multinationals. Convention wisdom suggests that the inflow of foreign capital intensifies

competition in the industry and diminishes domestic firms’ productivity as their fixed costs

now spread over a smaller market (Aitken and Harrison (1999)), and benefits the upstream

industries either through direct technology transfer or demand shocks (Javorcik (2004)).

However, the effect of the multinationals technology shocks may differ for the following

reasons: First, the quality upgrades associated with the technology improvements may pre-

cipitate market segmentation between the multinationals and local competitors and generate

a weaker competitive effect relative to the size shocks; second, the technology improvements

may also increase multinationals requirements concerning the quality of intermediate inputs

and lower their demands for the local suppliers products, thereby producing weaker backward

effects relative to the size shocks. To investigate the effects of multinationals’ local technol-

ogy shocks through industry relationships and to further understand the differences between

technology shocks and size shocks, I construct the within-industry technology shocks and

the associated shocks upstream and downstream industries. I first construct a measure of

industry-level local technology spillovers as:

TECHwithin
cst = log(

∑
n∈Nsc

Km(n)t−3 ·
w0
n

W 0
cs

)

in which s denotes industries, Nsc is the set of matched subsidiaries in county c and industry

s, and W 0
cs is the total employment in county c and industry s.

I then construct measure of industry-level local technology spillovers as:

TECHupstream
cst = log(

∑
s′∈Us

K̄cst−3 · ass′)

TECHdownstream
cst = log(

∑
s′∈Ds

K̄cst−3 · bss′)

in which K̄cst−3 =
∑

n∈Nsc
Km(n)t−3· w

0
n

W 0
cs

is the multinationals’ lagged patent stocks in industry
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s and county c, Us is the set of upstream sectors of sector s and Ds is the set of downstream

sectors of s, and ass′ (bss′) is industry s′’s share of input (output) in sector s. The construction

process of upstream/downstream shocks closely follows the previous studies, using Input-

output table coefficients to weight the industry-level measures.

I regress local firms’ outcomes, including value-added outputs, TFPR and labor produc-

tivity, on the within-industry and upstream or downstream technology spillovers, controlling

for firm fixed effects, industry-year fixed effects, and ownership-year fixed effects, and clus-

tering the standard errors at the county-industry level.

[TABLE 5]

Table 5 presents the baseline results. Panel A shows the estimated within-industry effects

of technology spillovers. I find that, the value-added outputs, TFPR, and markups respond

positively to the technology spillovers at the significance level of at least 10%. A one within-

firm standard deviation increase of the within-industry technology spillovers causally increase

the local firms’ outputs by 8.7% and TFPR by 5.2%. Panel B shows the estimated effects

of technology spillovers to the upstream industries. I find the effect on the upstream firms’

value-added outputs is weakly positive, but the effects on the productivity measures are close

to 0 both statistically and economically. Panel C shows the estimated effects of technology

spillovers to the downstream industries. I find the effects to be positive on value-added

outputs, TFPR, and labor productivity of the downstream firms, but only significant at

10% level for the value-added outputs. A one standard deviation increase of the technology

spillovers leads to a 3.1% increase in the value-added outputs.

The results first indicate the existence of within-industry technology spillover effects and

that they generate production expansion and productivity gains for the local firms. Since

it is unlikely that local firms output prices will increase in response to the within-industry

technology shocks, the TFPR improvements are more likely to be associated with production

efficiency gains. Second, the results of the upstream and downstream effects suggest that

the technology spillovers are likely to generate demand and supply shocks to the upstream

and downstream industries, thereby increasing their value-added outputs; however, weak

evidence suggests that such demand and supply shocks improve the productivity of these
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firms.

Related to my baseline findings, the input-output analysis indicates that the baseline re-

sult of MNCs positive local spillover effect consists of within-industry technology spillovers,

but the evidence for the cross-industry technology spillovers is minimal. However, even the

magnitude of the within-industry effect on TFPR is no larger than the baseline estimates,

and the significance level of the estimate is only 10%, which suggests that the traditional

approach of assessing the industry-level effect of multinational shocks using the subsidiaries

industry classifications may be insufficient to capture the technology spillover effects of the

multinationals. The next step entails introducing a new measure of industry-specific multi-

national technology shocks based on the technology linkages between the multinationals and

local firms.

6.2 Technology Spillovers through Technological Linkages

The industry-specific local technology stocks based on the subsidiaries industry codes could

suffer from shortcomings. First, many of the multinationals and their subsidiaries are

conglomerates which operate across multiple industries and are embedded with diversified

technology stocks; therefore, one industry classifier might undermine the potential technol-

ogy shocks to firms in the related industries44. Second, industry classification is generally

product-based rather than technology-based, and the applications of certain technology often

occur across industries (Jaffe (1986)). Therefore, it may be insufficient to measure potential

impacts of MNCs technology shocks by examining outcomes of firms operating under the

same industry code of the subsidiaries.

To improve the traditional measure of multinational shocks based on the industry link-

ages between the multinational subsidiaries and the local firms, I instead exploit the tech-

nology linkages between the U.S. multinationals and local firms. As the first step, I clas-

sify the patent stocks of U.S. firms into six technological categories defined in Hall, Jaffe

and Trajtenberg (2001) and Hall, Jaffe and Trajtenberg (2005): Chemical, Computers &

44For example, P&G (China) servers “over a billion Chinese consumers with more than 20 brands across
nine categories”. In the ASIE data, its headquarter industry code is 2671, Soup and Detergent production.
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Communications, Drugs & Medical, Electrical & Electronic, and Mechanical45. In other

words, for each U.S. company j, I denote its technology stock by a 5-dimensional vector

~KP
jt = (KP,1

jt , K
P,2
jt , ..., K

P,6
jt ), in which KP,κ

jt denotes firm j’s patent stock in technological

category κ. Next, using the SIPO database merged with ASIE, I classify the Chinese patents

into the six technological categories as well, and compute the percentages of patent stocks

in each technological category for each Chinese industries: ~ps = (ps1, ps2, ..., ps5), where psκ

denotes the share of patent stocks of technological category κ in industry s. Because the

SIPO data is scarce in early years, I use the patent stocks of year 2005 to compute the

shares. I then compute an industry-specific local technology spillover measure based on the

technology distances between MNCs and Chinese industries:

TECHdist
sct = log

( ∑
κ∈{1,2,...,5}

psκ(
∑
n∈Nc

KP
n(m)κt−3 ·

wij0
Wc0

)
)

in which psκ is share of parents from technology category κ in industry s, Nc is the set of all

matched subsidiaries in county c, KP
m(n)κt−3 is subsidiary n’s parent company m’s citation-

weighted patent stocks in technology category κ. sij0 and Sc0 are the same as previously

defined.

The ideal measures of technological closeness are based on more detailed technology

classification systems (for example, the measure used in Jaffe (1986) or the Mahalanobis

extension used in Bloom, Schankerman and Reenen (2013)), or the pairwise technology link-

ages based on citations between MNCs and local firms (for example, Branstetter (2006)).

There are several obstacles in applying those methods under the current analysis. First, as

it is straightforward to categorize the technology codes in SIPO (International Patent Clas-

sification, or IPC) into the six technological categories, the mapping between the IPC and

the CPC (Cooperative Patent Classifications, the classification system adopted by USPTO),

could be complicated and inaccurate, which make it unfavorable to implement the Jaffe

(1986) method. Secondly, only a limited number of Chinese inventors cite U.S. patents

when filing patent applications, making it implausible to use the citation-based measures of

technology linkages.

I assess the impact of multinationals industry-specific technology shocks by regressing the

45Patents that do not belong to any of the categories are dropped from the data.
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firm-level outcomes (value-added outputs and TFPR) on the newly constructed measures

of technology shocks based on the technological linkages. As previously, firm-fixed effects,

sector year-fixed effects, and industry year-fixed effects are controlled. In addition, I examine

the within-county variations of technology shocks by incorporating county-year fixed effects.

Because the industry-specific local technology shocks vary by county and industry, robust

standard errors are clustered at the county-industry level.

[TABLE 6]

Table 6 presents the results. The local technological distance-based measure causally

increase the local firms’ value-added outputs and TFPR: a one standard deviation increase

in the technology spillovers leads to a 7.5% increase in the value-added outputs and a 5.4%

increase in the TFPR (labor productivity) of the local firms that are technologically linked

to the multinationals. The magnitudes of the estimated effects are a little bigger than the

baseline estimates, and are significant at 5% level. Similar to the baseline results, the OLS

estimates is smaller than the IV estimates, suggesting a negative bias in the OLS regressions.

Furthermore, I find the positive effects persist after controlling for the county-year fixed

effects, suggesting that the local technology spillovers are mostly associated with the within-

county differences of technological closeness between the local firms and the multinationals.

The technological linkage-based measure of the local technology shocks encapsulates the

multinationals technology spillovers on the local firms more effectively relative to the industry

linkage-based measures, since it suggests stronger causal effects on the local firms outputs

and TFPR and reflects the within-county variance of the spillover effects which originates

from technological closeness. I further apply the measure to address the determinants of

the local firms absorptive capacity and the effects of the multinationals local technology

spillovers on the local firms technological upgrade decisions.

6.3 Absorptive Capacity

Previous literature on FDI spillovers asserts that the spillover strength is contingent upon

local firms absorptive capacity, namely the ability “to recognize the value of new, external

information, assimilate it, and apply it to commercial ends” (Cohen and Levinthal (1990)).
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Griffith, Redding and Van Reenen (2004) have revealed the multifaceted role of R&D in-

vestment of both stimulating innovation and enhancing technology transfer. Blalock and

Gertler (2009) notes that firms with more innovation activities, larger technology gaps with

the MNCs, and more educated workers would benefit more from FDI spillovers. In line

with these studies, this section investigates the role of local firms absorptive capacity in the

channeling of MNCs technology shocks. Specifically, it examines how the effect of MNCs

technology shocks depends upon the following factors: shares of new products, ex-ante wage

levels, and ownership types46.

[TABLE 7]

I first examine the role of innovation activities in local firms’ responsiveness to the multi-

nationals’ technology spillovers. Because ASIE only contains R&D expenditure data for

years after 2005, I alternatively measure firms’ innovation activities using the sales of new

products 47. I define the innovative firms as those with positive sales of new products in any

year during the sample period. I then estimate the effects of the technology spillovers on

the innovative firms and the non-innovative firms separately. Panel A of Table 7 suggests

that the estimated effects on the innovative firms are larger and more significant than their

non-innovative counterparts, implying that innovation activities play a crucial role in local

firms’ absorption of the external technology diffusion from the multinationals.

I then investigate whether firms’ human capital stocks magnify the impact of technology

spillovers. Since the typical measures of human capital stocks (such as education levels) are

not observed in the data, I use firms’ average wage levels as a proxy for human capital stocks.

Specifically, I define the high-wage (high human capital) firms as those with initial wage

levels above the median level in the corresponding two-digit industry-year groups, and then

estimate the technology spillover effects on the high-wage and low-wage groups separately.

The regression results are shown in panel B of Table 7. I find that, both groups expand

production at similar scales according to the point estimates, but the effects on TFPR is

46From now on, I switch to the industry technology spillovers through technology linkages as the main
measure of MNCs’ spillovers; many of the results are also valid using the local technology spillover measure
in the baseline models.

47The variable is also used in Tao, Lu and Zhu (2017) to measure innovation activities.
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larger and more significant for the firms with higher wage levels, suggesting that firms with

higher human capital stocks might benefit more from the technology spillovers in terms of

their revenue-based productivity. However, since wage is not a sufficient measure of human

capital, further research is necessary to identify the role of human capital in channelling

technology spillovers.

Lastly, I examine how firms with different ownership types might respond differently

to the technology spillovers. Previous studies on the Chinese economy, such as Hsieh and

Klenow (2009), suggest that firms’ ownership structures are associated with misallocations of

production inputs. Particularly, state-owned enterprises (SOEs) in China are found to be less

productive but larger relative to the other ownership types, and the inefficiency might affect

SOEs’ response to the external technology spillovers. I examine the spillover elasticity of

SOEs and non-SOEs separately in panel C of Table 7. I find that the effects are statistically

significant at level of at least 10% for both SOEs and non-SOEs, but the point estimates

are larger for the non-SOEs comparing to the SOEs, suggesting that the non-SOEs are more

efficient in absorbing the spillovers.

In summary, the results in this section illustrate that the absorptive capacity of local

firms hinges on multiple factors, including innovation activities, initial productivity and

wage levels, and ownership types. The findings may be explained by the previous theories

concerning the determinants of firms’ absorptive capacities.

6.4 Technology Upgrading

This section investigates the effect of the multinationals technology shocks on local firms

innovation activities. Specifically, it examines how local firms patenting activities respond

to the technology shocks based on the SIPO patent data combined with the ASIE. Concep-

tually, a positive local technology shock exerts two potential effects on local firms choices of

innovation status: First, the productivity gains from the technology spillovers may stimulate

the local firms to implement greater innovation if the quality improvements from innovation

complement the productivity gains in firms profit functions48; second, technology improve-

ments among the multinationals might also induce local firms to imitate or specialize in

48Such relation is presented in, for example, De Loecker (2011).
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low-end production processes49, which diminishes their innovation inputs. The second fac-

tor can be interpreted as a reduction in the fixed costs of adopting “low-type” technologies

(such as imitation or low-end production technologies)50. Intuitively, new product design

and production processes adopted by multinational subsidiaries are likely to lower the infor-

mation barriers of imitation or reverse engineering among non-invention firms; competition

from the multinationals high-quality products may also induce the local firms to specialize

in low-quality products. If the two channels (the productivity gain effect and the fixed-cost

reduction effect) both exist in the local technology spillovers, then the effect of local tech-

nology shocks on the local firms innovation will be heterogeneous across firms: For the less

productive firms, the technology shocks will exert weak but positive or even negative effects

on their innovation activities; the positive effect on innovation will be stronger among more

productive firms.

The empirical analysis primarily focuses on firms that filed at least one patent in SIPO

between 2000 and 2007. I classify firms into decile groups based on their lagged TFP within

each two-digit industry as measures of their ex-ante productivity level. I construct two

measures of local firms’ innovation outcomes: first, log stocks of all patents; second, log

stock of invention and utility model patents51. Conceptually, the second measure includes the

patents that more effectively reflect technological improvements. I regress the two innovation

outcomes on the measured local technology spillovers, the lagged TFP deciles, and the

interaction of the two terms:

KP
ict = fi + ft + β1TECH

loc
ct + β2TFP decileit−1 + β3TECH

loc
ct × TFP decileit−1 + εict

and the previous discussion predicts that β1 ≤ 0 and β3 > 0.

[TABLE 8]

49For example, Arkolakis et al. (2018) presents a model featuring international specialization in innovation
(in the developed countries) and production (in the developing countries)

50A simple framework is provided in the appendix.
51There are three main types of patents in China: invention patent, utility model patent, and design patent.

By definition, invention patent refers to “any new technical solution relating to a product, a process
or improvement”; utility model patent refers to “any new technical solution relating to the shape, the
structure, or their combination, of a product”; and design patent refers to “any new design of the shape,
the pattern or their combination, or the combination of the color with shape or pattern, of a product”.
For details, see SIPO official website: FAQ.
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Table 8 displays the regression results. Firstly, columns 1 and 3 show that the overall

impact of the local technology spillovers on firm-level innovation is positive but insignificant.

In column 2 and 4, I interact the technology spillover measure with the ex-ante TFP decides

of the local firms, and consistent with the predictions, I find that the effect of technology

spillovers is increasing in the TFP deciles. Specifically, I find moving up 1 decide in the

lagged TFP level will increase the estimated effect of local technology spillovers by about

0.70% to 0.74%. Furthermore, the interaction term in column 2 is significant at 10% level,

while the interaction term in column 4 is significant at 5%, showing that the effect is more

statistically significant for the patents with higher technology contents.

7 Concluding Remarks

Based on a unique match between U.S. public firms and their manufacturing subsidiaries in

China, and a novel identification strategy, this study provides new empirical evidence on the

international knowledge transfers from parent companies to their foreign subsidiaries and

then to the local domestic firms, resulting in both production expansion and productivity

gains of the subsidiaries and local firms in China.

I further investigate the underlying channels of the technology spillovers from multina-

tionals to the local firms. Contrary to conventional wisdom, I find the technology spillovers

are more likely to be within-industry rather than cross-industry, but the traditional industry-

level measures based on subsidiaries’ industry codes are insufficient to capture the range of

technology spillovers. I further find the local spillovers are largely explained by the tech-

nological relationships between the multinationals and local firms. The strength of the

spillover effect is also contingent upon the absorptive capacity of the local firms, in the form

of innovation activities, technology gaps, human capital stocks, and ownership structures.

The multinationals technology spillovers also accelerate the innovation process of the more

productive firms in the local areas.

This study suggests several directions for future research. First, the similar approach

of matching U.S. multinationals with their subsidiaries in foreign countries can be applied

to investigate the spillover effects in any other countries; it may be fruitful to compare the
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technology spillover effects between developed and developing countries. Second, it is un-

certain whether the technology diffusion from the multinationals to the local firms harms

the multinationals themselves. As many of the debates concerning the current trade war

between the U.S. and China have focused on the “technology stealing” of Chinese firms, it

will be necessary to evaluate the consequences of multinational technology spillovers for the

U.S. firms themselves. Third, the impact of the technology shocks highlighted in this study

appears to differ from the impacts of employment and output shocks in the previous litera-

ture. Therefore, it will be helpful to compare and discuss how and why these shocks differ

in detail. Lastly, the approach of obtaining subsidiary information from U.S. public compa-

nies financial reports can be extended to gather more information concerning headquarters

exact foreign investment decisions, such as establishing new plants, joint investments with

local companies, and acquiring or selling subsidiaries. Such knowledge will potentially fos-

ter opportunities for natural experiments and case studies that may shed light on the FDI

literature.
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Figure 1: Institutional Background

This figure shows the change of FDI net flows into China and the corresponding policy changes during the
same period. The figure divides the evolution of the institutional changes into three major periods. The first
period starts from 1982 to 1989, when China started its market economy reform and opening to trade and
FDI. The second period starts from 1992 to 2001, when China deepens the market reform by enriching the
ownership laws, opening major cities and trade zones, and starting the privatization process of SOEs. The
third period starts from 2001 to 2010, when China accesses WTO and becomes the world’s major destination
of FDI.
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Figure 3: Changes of R&D Capital User Cost and Median Log Patent Stock

The figures show the geographic distribution of the changes of R&D capital user cost and median log patent
stock. The upper figure shows the change of R&D capital user cost from 1994 to 2001, and the lower figure
shows the change of median firm-state log patent stock from 1997 to 2004, corresponding to the time period
in our main analysis.

Change of R&D Capital User Cost

Change of Median Log Patent Stock
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Table 1: Summary statistics

Variables Mean Median Std. Dev. N

Panel A. Matched subsidiaries

Value added (millions RMB) 193.93 52.77 1147.75 1565
Gross output (millions RMB) 677.49 188.75 4063.93 1565
TFP 3.13 3.45 1.93 1565
Markups 0.87 0.79 0.86 1565
Employment 565.74 223.00 1240.26 1565
Wage (thousands RMB) 51.13 38.96 125.70 1565
Export value (millions RMB) 301.83 24.06 2354.92 1565

Panel B. Local firms

Value added (millions RMB) 24.55 5.01 236.70 449,028
Gross output (millions RMB) 99.45 20.51 923.32 449,028
TFP 1.89 2.06 1.68 449,028
Markups 0.71 0.64 0.79 449,028
Employment 266.41 106.00 926.13 449,028
Wage (thousands RMB) 15.87 12.87 15.24 449,028
Export value (millions RMB) 33.06 0.00 552.21 449,028
State/Collective ownership (%) 25.52 449,028
Private ownership (%) 37.96 449,028
Foreign ownership (%) 36.52 449,028

Panel C. spillover measures

TECHsub 7.83 8.37 2.64 1565
TECH loc 3.84 4.29 3.38 449,028
TECHwithin 3.38 3.71 3.65 65,701
TECHupstream 0.37 0.28 4.31 315,106
TECHdownstream 0.47 0.79 3.86 318,809
TECHsim 1.97 2.25 3.49 371,041

Notes: The table presents the summary statistics of key variables in the main analysis,
in which panel A presents the characteristics of matched subsidiaries, panel B presents
characteristics of local firms in the matched counties, and panel C presents the distribution
of technology shock measures. The units are noted in the parentheses, if necessary.
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Table 2: First-stage Regressions

First-stage regressions, 2000-2007
Dependent variables TECHsub TECH loc

(1) (2) (3) (4)

Zsub -1.210*** -1.202***
(0.348) (0.347)

Z loc -0.363*** -0.358***
(0.120) (0.113)

Local controls No Yes
Firm fixed effects Yes Yes Yes Yes
Year fixed effects No No Yes No
Sector-year fixed effects Yes Yes No Yes
Ownership-year fixed effects No No No Yes
Sample Subsidiaries Local firms
Observations 1565 1565 371041 371041
R-squared 0.991 0.991 0.997 0.997

Notes: The table presents the first-stage regression results for the parent-subsidiary
technology transfer specification and the local technology spillovers specification. Robust
standard errors are clustered at parent company level in columns 1 and 2, and at county
level in columns 3 and 4. ***, **, and * indicate significance at the 1%, 5%, and 10%
level.
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Table 3: Effects of the parent-subsidiary technology shocks

Parent-subsidiary technology transfers
Dependent variables va va va tfpr tfpr lp

(1) (2) (3) (4) (5) (6)

Models OLS OLS IV OLS IV IV
TECHsub 0.241*** 0.259*** 0.548** 0.224*** 0.387*** 0.374***

(0.0614) (0.0631) (0.217) (0.0364) (0.136) (0.138)

Local controls No Yes Yes Yes Yes Yes
Industry-year FE Yes Yes Yes Yes Yes Yes
First-stage F-stats 11.714 11.714 11.714
Observations 1565 1565 1565 1565 1565 1565
R-squared 0.693 0.693 0.691 0.623 0.633 0.601

Notes: The table presents the regression results of the effects the parent-subsidiary technology
shocks. Regressions are weighted using the initial employment of the firms. Robust standard errors
are clustered at the parent company level. ***, **, and * indicate significance at the 1%, 5%, and
10% level.

Table 4: Effects of the local technology shocks

Local technology spillovers
Dependent variables va va va tfpr tfpr lp

(1) (2) (3) (4) (5) (6)

Models OLS OLS IV OLS IV IV
TECH loc 0.113* 0.167*** 0.360* 0.159*** 0.263** 0.272***

(0.0639) (0.0534) (0.183) (0.0355) (0.110) (0.103)

Firm FE Yes Yes Yes Yes Yes Yes
Year FE Yes No No No No No
Industry-year FE No Yes Yes Yes Yes Yes
Ownership-year FE No Yes Yes Yes Yes Yes
First-stage F-stats 10.356 10.356 10.356
Observations 371041 371041 371041 371041 371041 371041
R-squared 0.676 0.683 0.683 0.575 0.575 0.562

Notes: The table presents the regression results of the effects the local technology shocks. Regressions
are weighted using the initial employment of the firms. Robust standard errors are clustered at the
county level. ***, **, and * indicate significance at the 1%, 5%, and 10% level.
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Table 5: Technology shocks through input-output linkages

Panel A. Within-industry technology shocks
Dependent variables va tfpr lb

(1a) (2a) (3a)

TECHwithin 0.389** 0.233* 0.208
(0.180) (0.130) (0.128)

Observations 56522 56522 56522
R-squared 0.632 0.566 0.556

Panel B. Technology shocks to upstream
Dependent variables va tfpr lb

(1b) (2b) (3b)

TECHupstream 0.0959 -0.00399 -0.00206
(0.0726) (0.0629) (0.0631)

Observations 315294 315294 315294
R-squared 0.688 0.579 0.573

Panel C. Technology shocks to downstream
Dependent variables va tfpr lb

(1c) (2c) (3c)

TECHdownstream 0.110* 0.0604 0.0590
(0.0597) (0.0541) (0.0553)

Observations 319938 319938 319938
R-squared 0.691 0.588 0.577

Notes: The tables shows the effects of local technology shocks on the local
firms’ performance through industry linkages. Panel A reports the withinin-
industry estimated effects, Panel B reports the estimated effects on the up-
stream industries, and panel C reports estimated effects on the downstream
industries. IV coefficients are reported in all columns. Firm fixed effects,
industry-year fixed effects, and ownership-year fixed effects are controlled
in all columns. Robust standard errors are clustered at the county-industry
level. ***, **, and * indicate significance at the 1%, 5%, and 10% level.
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Table 6: Technology shocks through technological linkages

Local spillovers through technological linkages
Dependent variables va va va tfpr tfpr tfpr

(1) (2) (3) (4) (5) (6)

Models OLS IV IV OLS IV IV
TECHdist 0.120** 0.261** 0.258** 0.0807* 0.186** 0.202*

(0.0556) (0.107) (0.122) (0.0480) (0.0890) (0.105)

Firm FE Yes Yes Yes Yes Yes Yes
Industry-year FE Yes Yes Yes Yes Yes Yes
Ownership-year FE Yes Yes Yes Yes Yes Yes
County-year FE No No Yes No No Yes
First-stage F-stats 45.779 31.068 45.779 31.068
Observations 371036 371036 371036 371036 371036 371036
R-squared 0.683 0.683 0.711 0.575 0.575 0.606

Notes: The tables shows the effects of local technology shocks on the local firms’ performance
through technological linkages. Robust standard errors are clustered at the county-industry level.
***, **, and * indicate significance at the 1%, 5%, and 10% level.
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Table 7: Determinants of absorptive capacity

Panel A. Innovation activities
Dependent variables va tfpr va tfpr

(1a) (2a) (3a) (4a)

Groups Non-innovative Innovative
TECHdist 0.117* 0.0670 0.583*** 0.442***

(0.0635) (0.0516) (0.176) (0.151)

Observations 313419 313419 57622 57622
R-squared 0.658 0.591 0.647 0.553

Panel B. human capital stocks
Dependent variables va tfpr va tfpr

(1c) (2c) (3c) (4c)

Groups Low wage High wage
TECHdist 0.226* 0.142 0.278** 0.236**

(0.130) (0.109) (0.137) (0.0994)

Observations 187119 187119 183922 183922
R-squared 0.605 0.579 0.708 0.533

Panel C. Ownership types
Dependent variables va tfpr va tfpr

(1c) (2c) (3c) (4c)

Groups SOEs Non-SOEs
TECHdist 0.227** 0.131* 0.334** 0.262**

(0.0944) (0.0714) (0.156) (0.131)

Observations 107619 107619 263421 263421
R-squared 0.697 0.605 0.662 0.531

Notes: The table shows the determinants of local firms’ absorptive capacity. Iv co-
efficients are reported in all columns. Firm fixed effects, industry-year fixed effects,
and ownership-year fixed effects are controlled in all columns. Robust standard er-
rors are clustered at the county-industry level. ***, **, and * indicate significance
at the 1%, 5%, and 10% level.
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Table 8: Effects of technology shocks on innovation

Technology shocks and innovation activities
Dependent variables: Log patent stocks All Invention + utility

(1) (2) (3) (4)

TECHdist 0.104 0.0784 0.137 0.109
(0.221) (0.225) (0.209) (0.214)

Lagged TFP (decile) 0.00261 0.00320
(0.00894) (0.00847)

TECHdist X Lagged TFP (decile) 0.00696* 0.00743**
(0.00367) (0.00356)

First-stage F-stats 20.569 10.347 20.569 10.347
Observations 61326 61326 61326 61326
R-squared 0.884 0.884 0.891 0.891

Notes: The table shows the effects of multinationals’ technology shocks on the local firms’ innovation
activities. IV results are reported in all columns. Firm fixed effects, industry-year fixed effects, and
ownership-year fixed effects are controlled in all columns. Robust standard errors are clustered at
the county-industry level. ***, **, and * indicate significance at the 1%, 5%, and 10% level.
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Appendix A Truncation Adjustment

Following Hall, Jaffe and Trajtenberg (2001), we adjust the citation-weighted patent counts

to alleviate the truncation problems. The Harvard patent dataverse contains all patents

granted by USPTO before 2010. There are two types of truncation problems. First, with

respect to patent counts, patents filed before 2010 but granted after 2010 are not included

in the data. Second, with respect to citation counts, citations made after 2010 are not

included in the data. As our analysis focuses on the patent data up to 2007, the two types

of truncation problems might lead to sizable bias in my estimates.

I adjust the citation-weighted patent counts in two steps. First, I compute the following

empirical cumulative probability distribution function:

F P (s) =

∑
t

∑t+s
t′=t Pt,t′∑
t Pt

where Pt denotes total number of patents filed in year t, and Pt,t′ denotes the number of

patents filed in year t and granted in year t′. In words, I compute the proportion of patents

that are granted within s years after filed. I estimate the function for each of the six techno-

logical categories52. I also restrict the estimation sample to the patents filed between 1970

and 2000 to avoid the truncation problem. I replace F (s) = 1 for s > 10, as the estimation

results show that F (s) is greater than 99% for s > 10 for any technological category. The

first step aims to adjust the truncation problem associated with patent numbers.

In the second step, I use the quasi-structural method to adjust citation counts. Following

Hall, Jaffe and Trajtenberg (2001) and Hall, Jaffe and Trajtenberg (2005), I estimate the

following equation:

log(Ctt′/Pt) = α0 + αt + αt′ + f(L)

in which Ctt′ is the number of citations made at year t′ > t on patents filed in year t, Pt is

the number of patents filed in year t, L denotes the year lags t′ − t, and

f(L) = log(exp(−β1L)(1− exp(β2L)))

52The six technological categories are: Chemical, Computers&Communications, Drugs&Medical, Electri-
cal&Electronic, Mechanical, and Others.
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I apply nonlinear least-squares models to estimate beta1 and beta2 for each technological

category, and compute the predicted cumulative probability function (net of filing year and

application year fixed effects) as:

FC(s) =
L=s∑
L=0

exp(−β̂1L)(1− exp(β̂2L))

for s up to 30.

In the final step, I adjust the patent weighted patent counts PC
t field at year t by

PC,adjusted
t =

PC
t

F P (2010− t) · FC(2010− t)

Appendix B Variable Definition and Data Cleaning

1. Value-added: It is the main output measure used in the analysis. In the ASIE data, it

is computed using the formula:

Value-added = Gross output− Intermediate input + Value-added tax

Another commonly used definition of value-added is:

Value-added = Fixed asset depreciation + Wagebill + Net taxes + Operating surplus

For computational convenience, I replace the non-positive values using the minimum

positive value within each 2 digit industry-year group.

2. Employment: number of employees are directly reported in the ASIE data. I replace

0 values using 1.

3. Capital: I use perpetual inventory method following Brandt et al. (2017) to construct

real capital measures. I replace the non-positive values using the minimum positive

value within each 2 digit industry-year group.

4. Wagebill: wage-bill is directly reported in the ASIE data. To be consistent with the

other variable constructions, I replace wagebill using value-added if wagebill is larger

than value-added.
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5. Wage: average wage is computed using Wagebill/employment.

Appendix C Productivity Estimation

I assume the following Cobb-Douglas value-added production function:

yit = βkkit + βllit + ωit + εit

where yit is value-added output, kit is capital input, lit is labor input, ωit is the persistent

productivity term, and εit is the transitory productivity shocks. I assume that the production

function parameters, βk and βl, vary by two-digit industry codes. In other words, the

production function is estimated separately for each two-digit industries.

Following Levinsohn and Petrin (2003) and Ackerberg, Caves and Frazer (2015), I assume

that firms’ intermediate input demand is expressed as:

mit = f̃(kit, lit, Xit, ωit)

where Xit are a set of control variables elaborated later

Substitute the inverted intermediate input demand function, ωit = f̃(kit, lit, Xit) into the

production function gives:

yit = βkkit + βllit + f̃(kit, lit, Xit) + εit = Φ̃(kit, lit, Xit) + εit

In the first step of our estimation, I estimate the predicted output function Φ̃ with a third-

degree polynomial of kit, lit, and Xit = (eit,MTCHit, SPL
loc
it , Zit). In detail, I include:

1. interaction terms of kit and lit up to the third degree;

2. an export dummy eit, and its interactions with with all terms in 1;

3. an indicator variable of whether the firm is in a county with matched U.S. subsidiaries

MTCHit, and its interactions with with all terms in 1;

4. the measure of local technology spillovers SPLlocit , and its interactions with with all

terms in 1;

5. 4-digit industry fixed effects, ownership fixed effects, and province fixed effects (Zit).
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For each set of values (βl, βk), the estimated productivity is expressed as:

ω̂it = Φ̂it − βkkit − βllit

In the second step, I assume that the law of motion of ω could be written as:

ωit = α0 + g(ωit−1) + αeeit + αmMTCHit + αsSPL
loc
it + ξit

where g(·) is a fourth-order polynomial function, and I estimate the parameters (βl, βk) using

generalized method of moments (GMM) with the following moment conditions:

E

(
ξit(β)

( 1

lit

kit−1
ˆ̃Φit−1(kit, lit, Xit)

))
= 0

Last, I estimate TFP as the residual term from the production function:

ω̂it = yit− β̂kkit − β̂llit

Appendix D Details of R&D Tax Credit

R&D tax credit plays a key role in the U.S. economy and corporate innovation activities.

In 2015, the total R&D expenditure is about $495 billion in the U.S. About 70%, or $355

billion came from private sector. The total R&D expenditure accounts for about 2.7% of

total GDP, and the private sector R&D accounts for about 1.9%53. Government support for

business R&D expenditures account for 0.25% of total GDP in the U.S. in year 2015, and

about 30% of the funding (0.07% of GDP) is in the form of tax incentives54. Therefore the

amount of government support accounts for about 13% of total business R&D expenditures,

and the tax incentives account for about 4%.

The common form of R&D tax credit is a tax credit applied to incremental R&D expen-

ditures, or R&D expenditures above some base level. Here I take California as an example.

53See Fact SheetResearch & Development by the Numbers, R&D Coalition.
54See Measuring Tax Support for RD and Innovation, OECD.
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Since year 2000, California provides an R&D tax credit of 15% for qualified research expenses

(henceforth, QRE). The amount of R&D tax credit is computed in the following steps55:

1. Step 1: Identify current-Year qualified RD expenses.

2. Step 2: Calculate base-period percentage. The base percentage is defined as the per-

centage of qualified research expenses in gross receipts for at least three years during

the period 1984 through 1988, capped by 16%.

3. Step 3: Calculate RD base amount. The R&D base amount is computed as the average

annual gross receipts in the last three years multiplied by the base-period percentage.

4. Step 4: Calculate R&D tax credit. It is computed by the excess amount of the current-

year qualified R&D expenses over the base amount multiplied by the tax credit rate

(15%).

and I further provide a simple numerical example in Table A6. I use Microsoft as an example

and assume all its R&D expenditures are incurred in California. The calculated tax credit

amount is about 3.7% of total R&D expenditure in 2015.

Following the previous literature, I use the user cost of R&D capital to instrument for the

U.S. firms’ innovation activities. Intuitively, the user cost of R&D capital is the opportunity

cost of R&D investment, or the implicit rental rate of R&D capital after tax. As in Wilson

(2009), the user cost of R&D capital is derived from the Hall-Jorgenson formula (Hall and

Jorgenson (1967)):

ρit =
1− s(keit + keft)− zt(τ eit + τ eft)

1− (τ eit + τ eft)
[rt + δ]

where i denotes state level variables and f denotes federal level variables; rt is the real

interest rate, δ is the economic depreciation rate of R&D capital, τ ’s are effective corporate

tax rates, zt is the present discounted value of tax depreciation allowance, and s is the share

of R&D expenditures that qualifies for special tax treatment.

55Detailed illustration and examples are provided in An Overview of California’s Research and Development
Tax Credit.
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Appendix E Demonstration of Instrument

I denote patent stocks as K, patent counts as P , and the user cost of R&D capital as r. I

assume that K =
∑∞

s=0(1−δ)sPs, in which Ps is the patent counts s years before the current

period; and Ps = C · rεs, in which ε is the elasticity of patent counts in response to the user

cost of R&D capital.

I further assume a steady state level of innovation: (K0, P0, r0), in which K0 =
∑∞

s=0(1−

δ)sP0 = P0/δ, and P0 = C · rε0.

Now consider a deviation of rs from the steady state level r0. Let r̃s = log(rs), and

applying Taylor expansion gives:

log(K(r̃s)− log(K0) = (1− δ)sP0 · ε
K0

· (r̃s − r̃0)

= (1− δ)sP0 · ε
K0

· (log(rs)− log(r0))

Therefore the following approximation holds:

∂K/K

∂rs/rs
= (1− δ)sP0 · ε

K0

which implies that, the elasticity of K to rs of s periods before is proportional to (1− δ)s.

Last, I use the approximated slope of logK to log rs to construct the instrument:

Z =
∞∑
s=0

(1− δ)s log rs

There is limited periods in the data, so I compute the cumulative sum up to the maximum

period of each company in the analysis.

Appendix F Discussion of Instruments

F.1 Exclusion Restrictions

The exclusion restrictions require that the instrumental variable I adopt is uncorrelated with

the error terms in the second stage; that is, corr(Z, ε) = 0. As previously discussed, I will

discuss the two types of endogeneity problems: simultaneity and sorting.
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The simultaneity problems that threaten our identification only exist when the R&D

tax credit policy in the U.S. is correlated with unobserved economic shocks in China. The

introduction of R&D tax credit was in the Economic Recovery Tax Act of 1981, which is far

before China accesses WTO (and the starting year of our sample period), so it is unlikely that

the initiation of the R&D tax credit programs is related to any Chinese local shocks. The

state specific R&D tax credit, on the other hand, was introduced and modified separately by

each state in the subsequent decades, and such state level policy changes might be correlated

with local shocks in China. To test that, I first compare the lagged firm-specific user cost

of R&D capital between firms that mentioned China in their 10K reports between 2000 and

2007 and firms that did not. If the local shocks of China do affect R&D tax credit policy

decisions in the U.S., there should be a significant difference in the R&D tax credit, and

hence user costs of R&D capital, between firms that have operations in China and firms

isolated from China. The comparison is shown in Figure A.3, in which I find the differences

of cumulative R&D user costs to be stable over time, suggesting that the two groups of

firms are unlikely to be treated differently under the R&D tax credit policies. Secondly, I

match the state-level R&D tax credit changes from 2000 to 2007 with the changes of Chinese

import competition from 2000 to 2007 introduced by Autor, Dorn and Hanson (2013). If

the local economic shocks in China influence the policy making process of the U.S. state

government, it is likely that such shocks would channel through Chinese import shocks to

the U.S.. As shown in Figure A.4, the changes of state level R&D tax credit is unlikely

to be correlated with Chinese import competition shocks. Those anecdotal evidence show

that, the instrumental variable I applied, i.e. the U.S. state-level R&D tax credit policies, is

unlikely to be directly correlated with the unobserved economic shocks in China.

Secondly, I address the sorting problem discussed in the previous sections. The problem

arises when multinationals with different innovation capacity sort into Chinese counties with

different characteristics. I conduct a set of placebo tests that regress local firms’ ex-ante

outcomes on the ex-post instrument changes. For the ex-ante firm outcomes, I select the

following variables constructed directly from the ASIE data: the levels and growth of output,

TFP, markups, and wage bills from 1998 to 2000. For each of those variables, I test its

correlation with the change of the county level user cost of R&D capital from 2000 to 2007
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(and the change of the county level spillover strength from 2000 to 2007). The test results

are presented in Figure A.5. The results imply that there is only weak correlations between

the changes of the local firms’ outcomes before 2000 and the changes of corresponding user

cost R&D capital after 2000. Furthermore, the correlations between the ex ante changes of

the local firms’ outcomes and the patent stock growth after 2000 are also insignificant, as

shown in Figure A.6, implying that sorting might not be a major concern in both our IV

estimates and OLS estimates.

F.2 Inclusion Restrictions

In this section I test the inclusion restrictions. Since the construction of the technology shock

measures and the instrumental variables involves both weighted average/sum and non-linear

transformation of taking logarithm, the underlying mechanism of the negative relationship

presented in the first-stage regressions is unclear. Meanwhile, although previous literature

has shown that firms’ R&D investment are negatively impacted by the user cost of R&D

capital, few evidence suggests that the strong negative relationship with the user costs of

R&D capital would still hold for patent stocks. To address those concerns, I perform our test

of inclusion restrictions in three steps. First, I regress firm’s log citation-weighted patent

counts56 in each state on the 3 year-average R&D capital user cost for all years from 1976 to

2007; I also perform the test using negative binomial models and Poisson pseudo-likelihood

models on citation-weighted patent counts (I use the floor of non-integers to approximate

integers), as those models normally yield better fitness for count data with many 0’s. Second,

I test the relation at the U.S. firm level, by regressing log citation-weighted patent stocks on

the firm-level cumulative user cost of R&D capital for all U.S. firms, and firms matched to

subsidiaries in China, from 2000 to 2007.

The two sets of results are shown in Table A7. In panel A, I first show that the 3-year

average R&D capital user cost has a strong negative impact on the number of patents at

firm-state level. A 1% decrease in the log user cost will lead to about 5.5% to 6.4% increase

in number of patent applications. A potential problem about using the linear regression

56To account for 0’s, I adjust the number by adding the minimum non-zero patent counts to the original
counts.
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model on the log patent application is that there are many observations with value 0 in the

data. I address such concerns using the negative binomial model and the Poisson regression

model, and I find the negative relation persists in these two models. In panel B, I aggregate

the patent counts and user cost of R&D capital to the firm level, and find the negative

relation still holds for log patent stocks and cumulative R&D user cost at the firm level for

all U.S. firms, indicating that a 1% decrease in the cumulative user cost of R&D capital

is associated with a 1.5% to 2.0% increase in the citation-weighted patent stocks. When

I restrict our sample to only those firms matched to any Chinese subsidiaries, I find the

coefficient is similar in magnitude comparing to the coefficient for all U.S. firms, implying

a 1% decrease in the cumulative user cost of R&D capital will increase citation-weighted

patent stocks by 1.8% to 1.9%, depending on the weighting scheme.

Appendix G Conceptual Framework of Technology Adop-

tion

G.1 Setup

I start with a generalized conceptual framework to formalize the problem. I assume a mass

of M local firms with productivity expressed as:

ω(i) = ω0(i) + θs

where ω0(i) is firm i’s initial productivity draw from a distribution φ(·) of productivity levels

bounded by 0 below, and s represents the external technology shocks.

Firms are able choose between two alternative production technologies, type H and type

L. The profit function of each production technology type can be written as: π(ω;X)−fX(s),

where X = H,L. Without loss of generality, I assume that π(ω;X) is increasing in ω.

The setup above highlights the dual role of the technology spillover term s: on one hand,

it directly improves local firms’ production efficiency; on the other hand, it changes local

firms’ easiness of adopting production technologies. I will discuss the second role of spillovers

later in detail under the applications of the conceptual framework.
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I further make the following two assumptions:

Assumption 1 (Strict single-crossing condition): ∆π(ω) ≡ π(ω;H) − π(ω;L) is strictly

increasing in ω;

Assumption 2 ∆f(s) ≡ fH(s)− fL(s) > 0 for any s.

The above two assumptions portray the difference between H and L technology types:

return to productivity is higher under the H type, but the associated fixed cost is also higher.

The assumptions can directly lead to the following proposition:

Proposition 1 For any s there exists a unique ω∗(s) such that a firm chooses H if and only

if its productivity is less than ω∗(s).

The proof of the proposition is straight-forward: a firm prefers H than L if and only if

∆π(ω) ≥ ∆f(s). Since ∆π(ω) is strictly increasing in ω, there must be a unique ω∗(s) such

that ∆π(ω∗(s)) = ∆f(s), and any firms with productivity equal or above ω∗(s) will choose H

(henceforth referred to as H-type firms), while any firms with productivity below ω∗(s) will

choose L (henceforth referred to as L-type firms). Furthermore, the cutoff of productivity

draws can be written as ω∗0(s) = ω∗(s) − s. Therefore Φ(ω∗0(s))M firms will choose L-type

technology, and (1− Φ(ω∗0(s)))M firms will choose H-type technology.

I further discuss how the external technology shock s induces firms to switch between

technology types under the following three cases.

Case 1 ∆f(s) is a constant.

Under the first case in which the gap between the fixed costs of H and L is a constant,

the technology spillover term s is irrelevant for the productivity cutoff, as the productivity

cutoff only needs to fulfill ∆π(ω∗) = ∆f (Figure ??). The cutoff of productivity draws can

be written as ω∗ − s, which is decreasing in s. Therefore a positive number of firms will

switch from L to H with an increase of technology spillovers s under case 1.

Case 2 ∆f(s) is decreasing in s.
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Under the second case the gap between fixed costs shrinks with technology spillover

growth, or technology spillovers make it relatively easier to access the H-type technology

than the L-type technology for local firms. Since ∆π(ω) is increasing in ω and ∆f(s) is

decreasing in s, and ω∗(s) fulfills ∆π(ω∗(s)) = ∆f(s), ω∗(s) will be decreasing in s as shown

in Figure ??. The cutoff of initial productivity draws is ω∗(s) − s, which is also decreasing

in s. Therefore a positive number of firms will switch from L to H with an increase of

technology spillovers s under case 2.

Case 3 ∆f(s) is increasing in s.

Case 3 represents a more interesting case, in which the fixed cost of accessing L-type

technology is relatively lower with technology spillover growth (as shown in Figure ??).

Under case 3, the productivity cutoff is increasing in s, and the cutoff of initial productivity

draws, ω∗0(s) = ω∗(s)− θs, can be either increasing or decreasing in s:

dω∗0(s)

s
=

dω∗(s)

ds︸ ︷︷ ︸
fixed cost effect

− θ︸︷︷︸
productivity effect

The first term, dω∗(s)
ds

, represents a ”fixed cost” effect, namely the reduction of productivity

cutoff associated with technology spillovers, and the second term, −θ, represents a ”produc-

tivity” effect, namely the direct productivity gains from technology spillovers. On one hand,

if dω∗(s)
ds

< 1, then the fixed cost effect dominates and a positive number of firms will switch

from H to L with an increase of technology spillovers s. On the other hand, if dω∗(s)
ds
≥ 1,

then the productivity effect dominates and and a positive number of firms will switch from

H to L with an increase of technology spillovers s.

The general setup can be easily linked to the monopolistic competition models with firm

heterogeneity, for example, the Melitz-Chaney model (Melitz (2003) and Chaney (2008))

or the Melitz-Ottaviano model (Melitz and Ottaviano (2008)). Here I present a model

under monopolistic competition with constant elasticity, in which technology choices will

affect the demand shifter faced by the firms. The model presents two predictions that are

directly associated with the empirical tests: first, more productive firms are more likely

to choose H-technology comparing to the less productive counterparts under technology

68



spillover growth; second, more profitable firms (defined by their markups) are more likely to

choose H-technology comparing to the less profitable counterparts under technology spillover

growth.

G.2 Applications

Assume firm i face market demand as:

q(i) = Q(
p(i)

P
)−σξX

The production function can be written as:

qi = exp(ωi)f(li, ki)

where ωi is firm i’s productivity, and f(li, ki) = exp(βlli + (1− βl)ki).

I further assume that ωi = ω0
i + θs, where s is the external technology shocks, and ω0

i is

firm i’s initial productivity draw.

There are two types of technology: H and L, which determines the quality shifter ξX ,

such that ξH > ξL. Meanwhile, firms incur overhead cost fXi (s) = fX(s) + εXi in each

period, where εXi is idiosyncratic overhead cost shocks, and fH(s) > fL(s) for any s. For

convenience, define ∆ξ = ξH − ξL, ∆f(s) = fH(s)− fL(s), and ∆εi = εHi − εLi .

The unit cost of production is c(w,r)
exp(ωi)

, where c(w, r) is a function of wage w and interest

rate r. Profit maximizing yields the price rule as: pi = c(w,r)
ρexp(ωi)

, where ρ = σ−1
σ

.

Firm i’s profit under technology X can be written as:

π(ωi, X; s) = Ψ exp((σ − 1)ωi) · ξX − fXi (s)

where Ψ = 1
σ
QP σ(σ c(w,r)

σ−1

)1−σ
.

Firm i’s choice of technology solely depends on the difference of realized profits. Specifi-

cally, firm i chooses H if and only if ∆π(ωi; s) ≥ 0, where

∆π(ωi; s) = Ψ exp((σ − 1)ωi) ·∆ξ −∆f(s)−∆εi

where ∆εi = εHi − εLi , with cumulative probability distribution function of Φ(·).
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For any firm with ex-ante productivity draw ω0, the probability of the firm choosing

L-technology is:

Pr(X = L|ω0; s) = Φ
(
∆f(s)−Ψ exp((σ − 1)ωi) ·∆ξ

)
and

dPr(X = L|ω0; s)

ds
=φ
(
Ψ exp((σ − 1)ωi) ·∆ξ −∆f(s)

)
·(

∆f ′(s)︸ ︷︷ ︸
fixed cost effect

−Ψ∆ξexp((σ − 1)(ω0 + θs)) · (σ − 1)θ︸ ︷︷ ︸
productivity effect

)
As shown in the equation, the probability of choosing the L-technology depends on two

terms: the fixed cost effect term ∆f ′(s) and the productivity effect term Ψexp((σ− 1)(ω0 +

θs)) · (σ − 1)θ, of which the former solely depends on s, and the latter also depends on the

initial productivity draw ω0.

Consider the case that ∆f ′(s) > 0, representing that the gaps between the fixed costs of

adopting H-technology and L-technology is increasing in s. Then for any given s there exists

a cutoff of initial productivity ω∗(s) such that dPr(X=L|ω0;s)
ds

> 0 if any only if ω0 < ω∗(s).

The relation above can be approximated by the following equation:

Pr(X = L|ω0; s)
.
= β0 + β1 · s+ β2 · s× 1(ω0 > ω∗(s))

.
= β̃0 + β̃1 · s+ β̃2 · s× ω0

and the model predicts that β2 < 0 and β̃2 < 0.

Tariff plays a similar role as productivity in the model. For simplicity, assume that there

is no productivity heterogeneity and the tariff faced by industry i is τi. Then the profit of

firm i can be expressed as:

π(τi, X; s) = Ψτ−1i exp((σ − 1)ω) · ξX − fXi (s)

and it is easy to show that: there exists a cutoff of tariff τ ∗(s) such that dPr(X=L|τ ;s)
ds

> 0 if
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any only if τ > τ ∗(s). Similarly, the relation can be approximated by the following equation:

Pr(X = L|τ ; s)
.
= β0 + β1 · s+ β2 · s× 1(τ > τ ∗(s))

.
= β̃0 + β̃1 · s+ β̃2 · s× τ0

and the model predicts that β2 > 0 and β̃2 > 0.
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Appendix H Additional Figures and Tables

Figure A.1: Graphic Illustration
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Figure A.2: Example of Name Matching Procedure

This figure shows an example of the matching procedure. In the first step (not shown here), I use text
scraping tools to identify U.S. public firms operating in China during years around 2000. In the second step,
I manually extract the names of the subsidiaries (if exist) from both Exhibit 21 and the main text of the
10-K files. In the third step, I search for the keywords of the names in Chinese, and find the exact names of
those subsidiaries. In the last step, I search for the exact names in the ASIE data. I also double check the
information in the ASIE data with the information in the 10K and the online searching results to ensure the
matching accuracy.
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Figure A.3: Reflection: Line Plot of User Cost Comparison

The figure shows the comparison of the constructed U.S. firm-level instruments of firms operating in China
and other firms. The long dashed lines show the annual average, and the dashed lines show the upper/lower
95% confidence intervals. The red lines show the change of instruments of firms operating in China, and the
blue lines show the change of instruments of other firms.
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Figure A.4: Reflection: Chinese Import Competition and R&D Tax Credit (2000-2007)

The figure shows the scatter plot of state R&D tax credit changes from 2000 to 2007 versus state-level import
competition changes from 2000 to 2007 based on Autor, Dorn and Hanson (2013). The red dot line shows
the OLS fit, and the blue dot line shows the IV fit, using import competition to other high-income countries
as the instrument. Robust standard errors are reported.
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Figure A.5: Sorting: initial growth and instrument change
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Figure A.6: Sorting: initial growth and spillover changes
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Figure A.7: The lagged effects of technology shocks

The figures show the relationship between the estimated impacts of technology shocks and lagged years. The
top panel shows the relationship between parent-subsidiary technology transfer effects and lagged years, and
the bottom panel shows the relationship between local technology spillover effects and lagged years. OLS
and IV estimates, and the corresponding 95% confidence intervals are shown in the figures.

Parent-subsidiary technology shocks

Local technology shocks
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Figure A.8: Attenuation of local technology shocks with distance

The figure presents the relationship between the estimated local technology spillover effects and the choice
of distance among counties’ geographic centers. The point estimates and the 95% confidence interval are
shown in the figure.

79



Table A1: Examples of U.S. Companies and their First Chinese Subsidiaries

Company Name Entry Year City

Coke Cola 1979 Beijing
Pepsi 1981 Shenzhen

Johnson & Johnson 1982 Beijing
Hewlett-Packard 1985 Beijing

P&G 1988 Guangzhou
Dupont 1988 Shenzhen

General Electric 1991 Beijing
IBM 1992 Shanghai

Motorola 1992 Tianjin
Emerson Electric 1992 Shenzhen
Colgate-Palmolive 1992 Guangzhou

Intel 1994 Shanghai
Eastman Kodak 1995 Shanghai

United Technologies 1997 Tianjin
Abbott Laboratories 1998 Shanghai

Dows Chemical 1998 Shanghai

Table A2: Source Countries/Regions of FDI in China, 2006

Country/Region FDI Inflows (Million) % of Total FDI

Hong Kong 17948.79 29.75
Virgin Islands 9021.67 14.96

Japan 6529.77 10.82
Republic of Korea 5168.34 8.57

United States 3061.23 5.07
Singapore 2204.32 3.65

Taiwan 2151.71 3.57
Cayman Islands 1947.54 3.23

Germany 1530.04 2.54
Samoan 1351.87 2.24

Netherlands 1043.58 1.73
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Table A3: Matching Rate of Subsidiaries

U.S. Firms Subsidiaries Total employment

Number of Public Firms 4918
Mentioning China 1148
Identified subsidiaries from 10-K 310 670 213,901
Add ORBIS subsidiaries 322 725 242,401
Existing from 2000 to 2007 236 460 191,738
Match to patent data 210 370 161,425

Table A4: Top 15 U.S. Companies in China, by Employment

Company names # subsidiaries Employment Sales (million yuan)

MOTOROLA SOLUTIONS INC 2 13514 34210
FLEXTRONICS INTERNATIONAL 5 10173 6080
EMERSON ELECTRIC CO 10 8935 2630
UNITED TECHNOLOGIES CORP 5 8199 7687
PULSE ELECTRONICS CORP 1 6500 631
GENERAL ELECTRIC CO 9 6246 2382
PEPSICO INC 14 5816 3578
SOLECTRON CORP 3 4935 5344
NIKE INC 1 4108 375
MATTEL INC 1 3695 109
ITT INC 7 3518 449
CUMMINS INC 5 2821 1076
DEERE & CO 2 2814 216
CTS CORP 1 2667 1262
PROCTER & GAMBLE CO 3 2217 4256
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Table A6: An Example of R&D Tax Credit Calculation

An example of R&D tax credit calculation (Microsoft, 2015)

Step 1: Identify current-Year qualified R&D expenses
R&D expenses 12046
Step 2: Calculate base-period percentage
1984-1988 gross receipts 1275
1984-1988 RDC expenses 145
R&D expenses as a percent of gross receipts 11.40%
Step 3: Calculate R&D base amount
Average annual gross receipts for 2011-2014 79341
Apply base-period percentage 11.40%
Base amount 9055
Step 4: Calculate tax credit
Excess QRE 2991
Apply tax credit rate 15%
Tax credit amount 449
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Table A7: Inclusion restrictions and first-stage regressions

Panel A. U.S. firm-state level, 1976-2010
Dependent variables Log citation weighted counts citation weighted counts

(1a) (2a) (3a) (4a)

Log user cost of R&D capital -5.506*** -6.391*** -5.884*** -5.465***
(0.820) (0.989) (0.984) (0.959)

Firm fixed effects No Yes No No
Year fixed effects Yes Yes Yes Yes
Models OLS OLS NB Poisson
Observations 513907 513898 513907 513907
R-squared 0.009 0.087

Panel B. US Firm level, 1997-2004
Dependent variable Log Citation weighted patent stock

(1b) (2b) (3b) (4b)

Cumulative log user cost of R&D capital -1.977*** -1.883*** -1.476*** -1.793***
(0.0620) (0.288) (0.202) (0.401)

Firm fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
Sample All Matched All Matched
Weighted by initial employment No No Yes Yes
Observations 12900 1400 12900 1400
R-squared 0.839 0.930 0.866 0.971

Notes: The table shows the inclusion restriction test results. Panel A presents regression results
at U.S. firm-state level, with robust standard errors clustered at state-year level. Panel B presents
regression results at U.S. firm level for all U.S. firms and matched firms only, with robust standard
errors clustered at firm level. Panel C presents regression results at Chinese firm level, with robust
standard errors clustered at parent company level in columns 1 and 2, and at Chinese county level
in columns 3 and 4. ***, **, and * indicate significance at the 1%, 5%, and 10% level.

84



Table A8: Effects of the parent-subsidiary technology shocks (other outcomes)

Parent-subsidiary shocks, other outcomes
Dependent variables gp w m roa intangible export

(1) (2) (3) (4) (5) (6)

TECHsub 0.350** 0.266* 0.325* 0.0328 1.222** -0.434
(0.135) (0.135) (0.183) (0.0209) (0.472) (0.609)

Observations 1565 1565 1565 1565 1565 1565
R-squared 0.911 0.556 0.897 0.609 0.712 0.792

Notes: The table presents the regression results of the effects the parent-subsidiary technology
shocks on the other outcomes of the subsidiaries. IV estimates are shown in all columns. Firm fixed
effects and industry-year fixed effects are controlled in all columns. Local economic conditions are
controlled in all columns. Robust standard errors are clustered at the parent company level. ***,
**, and * indicate significance at the 1%, 5%, and 10% level.

Table A9: Effects of the local technology shocks (other outcomes)

Local technology shocks, other outcomes
Dependent variables gp w m roa intangible export

(1) (2) (3) (4) (5) (6)

TECH loc 0.211* 0.320** 0.324* 0.0223 -0.0288 0.259
(0.114) (0.146) (0.167) (0.0185) (0.332) (0.361)

Observations 372547 372547 372547 372547 372547 372547
R-squared 0.910 0.490 0.886 0.564 0.719 0.859

Notes: The table presents the regression results of the effects the parent-subsidiary technology shocks
on the other outcomes of the subsidiaries. IV estimates are shown in all columns. Firm fixed effects,
industry-year fixed effects, and ownership-year fixed effects are controlled in all columns. Robust
standard errors are clustered at the county level. ***, **, and * indicate significance at the 1%, 5%,
and 10% level.
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Table A10: Dynamic effects of the local technology shocks

Local technology shocks, entry and exit
Dependent variables Entry Exit

(1) (2) (3) (4)

TECH loc -0.0456 -0.0177 -0.0282* -0.0436**
(0.0413) (0.0428) (0.0153) (0.0216)

TFP deciles -0.00381*** 0.0183 -0.00818*** -0.0204
(0.000678) (0.0258) (0.000702) (0.0164)

TECH loc ×TFPdeciles -0.00582 0.00321
(0.00693) (0.00427)

Mean entry/exit 0.165 0.068
Observations 371041 371041 371041 371041
R-squared 0.100 0.068 0.068 0.052

Notes: The tables shows the regression results of local technology shocks on the local firms’
entry and exit in the data. IV coefficients are reported in all columns. County fixed effects,
industry-year fixed effects, and ownership-year fixed effects are controlled in all columns.
Robust standard errors are clustered at the county level. ***, **, and * indicate significance
at the 1%, 5%, and 10% level.
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Table A11: Markups and TFPQ

Parent-subsidiary shocks, tfpq
Dependent variables µ tfpq1 tfpq2 tfpq3

(1) (2) (3) (4)

TECHsub 0.0151 0.640*** 1.777*** 1.661***
(0.0862) (0.236) (0.574) (0.504)

Observations 1565 1565 1565 1565
R-squared 0.675 0.592 0.895 0.922

Local technology shocks, tfpq
Dependent variables µ tfpq1 tfpq2 tfpq3

(1) (2) (3) (4)

TECH loc -0.0704 0.508** 1.239** 1.408***
(0.0780) (0.203) (0.479) (0.486)

Observations 375454 375454 375454 375454
R-squared 0.615 0.578 0.882 0.886

Notes: The tables shows the regression results of technology shocks on the subsidiaries and
local firms’ markups and TFPQ. IV coefficients are reported in all columns. In panel A,
firm fixed effects, industry-year fixed effects, and local economic controls are controlled in all
columns. In panel B, firm fixed effects, industry-year fixed effects, and ownership-year fixed
effects are controlled in all columns. Column 2 assumes σ = 3; column 3 assumes industry-
specific σ; column 4 assumes industry-year σ. Robust standard errors are clustered at the
parent company level in panel A, and at the county level in panel B. ***, **, and * indicate
significance at the 1%, 5%, and 10% level.
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Table A12: Effect of the local technology shocks on the high-skilled labor ratio

Agglomeration of high-skilled labor
Dependent variable ∆hs ratio, 2000-2005

(1) (2) (3) (4)

∆TECH loc, 2000-2005 0.0198** 0.0399** 0.0165** 0.0254*
(0.00850) (0.0176) (0.00809) (0.0150)

Weighting No No Yes Yes
First-stage F 11.412 15.953
Observations 202 202 202 202
R-squared 0.015 -0.000 0.016 0.012

Notes: The tables shows the regression results of local technology shocks on the high-skilled
labor ratio in the local areas. OLS results are reported in columns 1 and 3, and IV results
are reported in columns 2 and 4. Columns 1 and 2 are unweighted, and columns 3 and 4
are weighted by the county-level labor force in 2000. Robust standard errors are reported.
***, **, and * indicate significance at the 1%, 5%, and 10% level.
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Table A13: Robustness checks: R&D shocks

Panel A. Parent-subsidiary R&D shocks
Dependent variables va tfpr lb µ

(1a) (2a) (3a) (4a)

TECHsub
R&D 0.430** 0.304** 0.294*** 0.00605

(0.200) (0.119) (0.106) (0.0682)

Observations 1565 1565 1565 1565
R-squared 0.666 0.598 0.580 0.704

Panel B. Local R&D shocks
Dependent variables va tfpr lb µ

(1b) (2b) (3b) (4b)

TECH loc
R&D 1.019*** 0.699*** 0.695*** 0.157

(0.383) (0.258) (0.248) (0.136)

Observations 375454 375454 375454 372424
R-squared 0.675 0.578 0.565 0.790

Notes: The table shows the effect of U.S. public firms’ R&D shocks on their sub-
sidiaries’ and local firms’ performance. IV results are reported in all columns. In
panel A, firm fixed effects, industry-year fixed effects, and local economic controls
are controlled in all columns. In panel B, firm fixed effects, industry-year fixed
effects, and ownership-year fixed effects are controlled in all columns. Robust stan-
dard errors are clustered at the parent company level in panel A, and at the county
level in panel B. ***, **, and * indicate significance at the 1%, 5%, and 10% level.
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Table A14: Robustness checks: Other parent-subsidiary shocks

Other parent-subsidiary shocks
Dependent variables va va tfpr tfpr

(1) (2) (3) (4)

Sales shocks 0.879*** 0.637***
(0.225) (0.232)

Emp. shocks 0.779*** 0.561***
(0.237) (0.212)

Observations 1435 1435 1435 1435
R-squared 0.705 0.706 0.639 0.640

Notes: The table shows the effect of U.S. public firms’ other shocks on their sub-
sidiaries’ performance. OLS coefficients are reported in all columns. Firm fixed
effects, industry-year fixed effects, and local economic controls are controlled in all
columns. Robust standard errors are clustered at the parent company level. ***,
**, and * indicate significance at the 1%, 5%, and 10% level.

Table A15: Robustness checks: Other local shocks

Other local shocks
Dependent variables va va tfpr tfpr

(1) (2) (3) (4)

Local emp. share -0.755*** -0.440***
(0.174) (0.125)

Local va share -0.516*** -0.395***
(0.177) (0.128)

Observations 1260891 1260881 1260891 1260881
R-squared 0.735 0.735 0.649 0.649

Notes: The table shows the effect of U.S. public firms’ other shocks on the local
firms’ performance. OLS coefficients are reported in all columns. Firm fixed effects,
industry-year fixed effects, and ownership-year fixed effects are controlled in all
columns. Robust standard errors are clustered at the county level. ***, **, and *
indicate significance at the 1%, 5%, and 10% level.
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Table A16: Robustness checks: Trans-log production function

Translog production function
Dependent variables tfpr µ tfpr µ

(1) (2) (3) (4)

TECHsub 0.365** 0.00198
(0.142) (0.105)

TECH loc 0.288** 0.0408
(0.132) (0.0799)

Observations 1565 1564 375454 375454
R-squared 0.707 0.748 0.644 0.803

Notes: The table shows the effect of the multinationals’ technology shocks on the
subsidiaries and local firms’ TFP and markups, estimated using trans-log produc-
tion functions. IV coefficients are reported in all columns. In columns 1 and 2, firm
fixed effects, industry-year fixed effects, and local economic controls are controlled
in all columns. In columns 3 and 4, firm fixed effects, industry-year fixed effects,
and ownership-year fixed effects are controlled in all columns. Robust standard
errors are clustered at the parent company level in columns 1 and 2, and at the
county level in columns 3 and 4. ***, **, and * indicate significance at the 1%, 5%,
and 10% level.

Table A17: Robustness checks: Global effects of technology shocks

Global effects of technology shocks
Depdent variables emp sales tfpr lb

(1) (2) (3) (4)

L3.Log patent stocks 0.0496** 0.0598** 0.189*** 0.186***
(0.0198) (0.0296) (0.0589) (0.0594)

Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 8715 8715 8715 8715
R-squared 0.977 0.944 0.749 0.808

Notes: The table shows the causal impact of U.S. public firms’ parent stocks on
their own outcomes. IV coefficients are reported in all columns. Firm fixed effects
and year fixed effects are controlled in all columns. Robust standard errors are
clustered at the U.S. company level. ***, **, and * indicate significance at the 1%,
5%, and 10% level.
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Table A18: Robustness checks: Local technology shocks from outsourcing MNCs

Shocks from outsourcing companies
Depdent variables va va tfpr tfpr

(1) (2) (3) (4)

Models OLS IV OLS IV
TECH loc 1.515** 1.830 0.967** 1.224

(0.611) (1.353) (0.403) (0.868)
TECH loc X OS shares -1.625** -1.255 -0.994** -0.882

(0.698) (1.872) (0.469) (1.187)

First-stage F-stats 8.02 8.02
Observations 229535 229535 229535 229535
R-squared 0.666 0.665 0.572 0.571

Notes: The table shows how outsourcing activities affects MNCs’ technology shocks
on local firms’ value-added outputs and TFPR. Firm fixed effects, industry-year
fixed effects, and ownership-year fixed effects are controlled in all columns. Robust
standard errors are clustered at the county level. ***, **, and * indicate significance
at the 1%, 5%, and 10% level.
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