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Abstract

We study the role of fluctuations in discount rates for the joint dynamics of expected

returns in the stock market and employment dynamics. We construct a non-parametric

bound on the predictability and time-variation in conditional volatility of the firm’s

profit flow that must be met to rationalize the observed business-cycle fluctuations in

vacancy-filling rates. A stochastic discount factor consistent with conditional moments

of the risk-free rate and expected returns on risky assets only partly alleviates the need

for an excessively volatile model of the expected profit flow.
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1 Introduction

Stock market valuation and the dynamics of labor market variables are highly volatile relative

to conventional measures of macroeconomic risk and strongly correlated with the business

cycle. The volatility in the stock market variables in excess of the subsequent movements

in dividends is the basis of the Shiller (1981) excess volatility puzzle in the asset pricing

literature. On the other hand, Shimer (2005) identified the discrepancy between the volatility

in labor market tightness and measures of labor productivity as an excess unemployment

volatility puzzle in search and matching models of the labor market.

Campbell and Shiller (1988) used linear approximations of present value budget con-

straints to argue that variation in price-dividend ratios unexplained by movements in sub-

sequent dividends have to be attributed to fluctuations in discount rates applied to these

dividends. However, given the relative smoothness of yields on riskless assets, in particular

the real risk-free rate, these fluctuations in discount rates have to come mainly in the form

of time-varying compensation for risk, manifested in fluctuations in the conditional volatility

of the stochastic discount factor.

The search and matching literature dealt with the unemployment volatility puzzle by in-

troducing mechanisms that increase the volatility and cyclicality of the profit flow earned by

the firm from hiring the marginal worker (Hall and Milgrom (2008), Hagedorn and Manovskii

(2008), Kehoe et al. (2015), Christiano et al. (2016), and others). At the same time, prefer-

ences used in this work typically imply minimal compensations for risk, and hence are not

able to match standard asset pricing facts including large risk premia for risky cash flows

and fluctuations in the valuation of the stock market.

In this paper, we provide a quantitative connection between valuation of risky financial

assets and valuation of profit flows earned by hiring workers in the labor market. The

question is to which extent can fluctuations in discount rates, disciplined by financial markets

data, serve as an explanation for the observed business cycle fluctuations in labor market

variables.

The central issue when building this connection is the distinction between cash flows

priced in financial markets and cash flows that are relevant for the firm that decides to

hire a worker. Stock market valuation, when normalized by workforce, can be thought of

as valuation of profit flow generated by the average worker. On the other hand, the hiring

decision is based on the profits earned by the firm from hiring the marginal worker. While

the formed can be constructed using observed data on profits or dividends and employment,

the latter is inherently unobservable.

Hence, rather than explicitly modeling the profit flow from the marginal worker, we
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characterize a set of restrictions that every such profit flow must satisfy in order to be

consistent with optimality of firms’ hiring decisions. In particular, we construct a non-

parametric bound on two moments of firm’s profit dynamics.

One of the moments is the volatility of the conditional expectation of firm’s profits from

the marginal worker. The standard approach in the search and matching literature dictates

to make this volatility high, so that business-cycle fluctuations in expected profits are able

to explain changes in incentives of firms to hire workers. The other moment is the average

conditional volatility of the profit flow. Business cycle fluctuations in the conditional volatil-

ity of innovations to profits that are correlated with innovations to the stochastic discount

factor lead to fluctuations in risk premia associated with the firm’s profit flow and again

generate procyclical incentives to hire workers.

The bound that we construct reveals that a successful model of the labor market dynam-

ics that relies on the optimality condition for hiring must satisfy this condition through a

combination of the above two channels. Introducing a properly modeled stochastic discount

factor alleviates the burden imposed by the optimality condition on generating an excessively

volatile expected profit flow, and allows to shift part of the weight on the risk compensation

channel.

We construct alternative parametric and non-parametric models of the stochastic dis-

count factor to study the magnitude of the tradeoff between fluctuations in expected profit

flow and fluctuations in its conditional volatility. The main conclusion is that a successful

stochastic discount factor must have a large and strongly countercyclical conditional volatil-

ity in order for risk premia to play a quantitatively meaningful role in explaining labor

market fluctuations. We explain that these labor market restrictions imposed on plausible

stochastic discount factors are in fact stronger than in pricing of financial assets, due to short

duration of profit flows associated with hired workers.

The bound that we derive depends on the model of the stochastic discount factor and

observed variation in labor market variables, in particular vacancy-filling rates and separation

rates, but not on the profit flow from the marginal worker itself. This allows us to construct

the bound and then investigate whether alternative empirically observable proxies for this

profit flow are consistent with the bound. We construct measures of aggregate average profit

per worker and conclude that they do not meet the bound.

We further study to which extent our analysis could be affected by the presence of

financial constraints faced by firms that desire to hire workers. Our analysis assumes that

the same stochastic discount factor that prices assets in financial markets is also used by

firms to value cash flows from hired workers. If firms are facing financial constraints and

investors in financial markets are not, then the optimal hiring decision of the firms will be

2



distorted by shadow prices assigned to these constraints. We form portfolios of firms sorted

on measures and financial constraints and indeed observe that cash flows of financially less

constrained firms are closer to meeting the bound.

Finally, we investigate whether the bound provides meaningful information in the sense

that profit flow processes that are consistent with it also do well in generating relevant

unemployment fluctuations. To do so, we construct counterfactual profit flow processes

that lie exactly on the bound and embed them in a search and matching framework with a

calibrated matching function. Optimal hiring decisions implied by the dynamics of the profit

flow process then imply a counterfactual time series for the unemployment rate that we can

compare with historical data. We show that this counterfactual time series fits very well the

U.S. data since 1950. The bound is therefore not only necessary but also sufficiently tight.

This paper contributes to the growing body of work that incorporates insights from asset

pricing literature to study labor market dynamics. Petrosky-Nadeau et al. (2015), Favilukis

and Lin (2016), Kuehn et al. (2014) Favilukis et al. (2015), Belo et al. (2014), Donangelo

et al. (2016), or Kilic and Wachter (2015) are recent examples. Perhaps the closest paper to

ours is Hall (2017), who explicitly highlights the economic forces that fluctuations in discount

rates play in the search and matching framework, and provides insights into the interaction

between the stochastic discount factor and profit flow. However, his model of preferences

implies that most of the time-variation in discount rates is manifested as time-variation in

the mean, as opposed to the dispersion, of the stochastic discount factor, and hence implies

quantitatively implausible movements in the risk-free rate.

The paper is organized as follows. We start in Section 2 with a back-of-the-envelope

calculation that highlights the quantitative challenge that the risk-compensation channel

faces as an explanation of labor market fluctuations. In Section 3 we introduce the theoretical

framework, and in Section 4 we derive and interpret the bound that we use to analyze

restrictions on profit flow processes. Section 5 introduces alternative models of stochastic

discount factors, and Sections 6 and 7 describe the data and discuss empirical results. In

Section 8 we study implied labor market dynamics. Section 9 concludes.

2 A back-of-the-envelope calculation

Before delving into the construction of our bound, we want to motivate the quantitative

challenge studied in this paper by a simple approximate calculation. This includes time-

variation in risk premia to a log-linearization result outlined in Shimer (2005).

We consider a discrete-time environment with optimizing investors in financial markets

and firms hiring workers in a frictional labor market. In this environment, optimality con-
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ditions are described by two types of forward-looking restrictions. In the financial market,

these restrictions have the form of Euler equations for the valuation of returns on alternative

assets. In the labor market, optimal choice of hiring implies an intertemporal condition that

equalizes the cost of hiring the marginal worker with the present discounted value of profits

generated by employing this worker.

Firms in the production sector hire workers in a Diamond–Mortensen–Pissarides labor

market. Firms post vacancies at a per-period cost κ, and the vacancies are filled at an

equilibrium rate qt. Optimal hiring choice implies that the value to the firm of hiring a

marginal worker must be equal to the expected cost of hiring the marginal worker, κ/qt.

This implies the Euler equation

κ

qt
= Et

[
st+1

(
πt+1 + (1− δt+1)

κ

qt+1

)]
(1)

where πt+1 is the firm’s profit flow from the marginal worker, st+1 the firm’s stochastic

discount factor, and δt+1 the probability of match separation. In recessions, vacancy filling

rates qt are high and hiring workers is cheap, which must be rationalized by low future

expected discounted profit flows. While we focus here on the labor market, an analogous

equation (and hence our analysis) holds for any Q-theory type optimality condition where

κ/qt represents the upfront cost of investment and δt+1 the depreciation rate.

Dividing equation (1) by κ/qt and using the definition of covariance, we obtain the usual

valuation equation1

1 = Et [st+1]Et

[
πt+1 + (1− δt+1)κ/qt+1

κ/qt︸ ︷︷ ︸
Rh
t+1

]
+ Covt

[
st+1,

πt+1 + (1− δt+1)κ/qt+1

κ/qt

]

︸ ︷︷ ︸
−Γt

(2)

where Rh
t+1 is the return on hiring the worker in period t, Et [st+1]

.
= 1/Rf

t is the reciprocal

risk-free rate, and the covariance term is the negative of the risk-premium, Γt. This equation

states that expected returns Et
[
Rh
t+1

]
in excess of the risk-free rate (such that the first term

on the right-hand side is larger than one) reflect compensation for risk in the form of risk

premia Γt, which arise due to the fact that states with high payoffs πt+1 comove negatively

with states with high high marginal rates of substitution st+1.

Many models in the labor-macro literature imply negligible risk premia (Γt ≈ 0). Since

the risk-free rate is relatively stable over the business cycle, large fluctuations in vacancy

filling rates qt must be compensated by correspondingly large fluctuations in expected profit

1Details of all calculations from this section of the paper are provided in Appendix A.
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flow Et [πt+1] such that Et
[
Rh
t+1

]
≈ Rf

t also remains stable. More recently, a number of

papers started focusing on the risk premium term Γt as well. According to this view, high

current vacancy filling rates qt during recessions are consistent with high expected returns

Et
[
Rh
t+1

]
because they reflect high risk premia Γt during recessions, which restores equation

(2).

In order to assess the quantitative feasibility of this channel, it is useful to construct a

log-linear approximation of equation (2). In order to focus on the quantitatively relevant

objects, we neglect fluctuations in the risk-free rate and set Et [st+1]
.
= β, as well as δt+1 = δ.

We also assume that the vacancy filling rate qt can be approximated by an AR(1) process

with autoregression coefficient ρq. Then we obtain the approximation

(
1− β (1− δ) + Γ

)
Et [π̂t+1]− ΓΓ̂t = −

(
1− β (1− δ) ρq + Γ

)
q̂t. (3)

In this equation, Γ represents the (risk-adjusted) steady state risk premium, and variables

with hats are percentage deviations from this steady state. In absence of risk premia (Γ =

Γ̂t = 0), we can relate the unconditional volatilities of q̂t and Et [π̂t+1] as

σ (Et [π̂t+1]) =
1− β (1− δ) ρq
1− β (1− δ)

σ (q̂t) .

In the quarterly data on vacancy filling rates, σ (q̂t) = 0.223 and ρq = 0.9. We can fur-

ther calibrate the quarterly steady state separation rate δ = 0.1 and the time-preference

parameter β = 0.9975 to obtain the required volatility of expected profits that rationalizes

the hiring equation σ (Et [π̂t+1]) = 0.419, which is more than twenty times the volatility of

output. This is another manifestation of the unemployment volatility puzzle.

To which extent can fluctuations in risk premia help resolve this puzzle? Equation (3)

allows us to construct a lower bound on the required volatility of risk premia as a function

of volatilities of the the vacancy filling rate and expected profit flow

σ
(
Γ̂t

)
≥

1

Γ

[(
1− β (1− δ) ρq + Γ

)
σ (q̂t)−

(
1− β (1− δ) + Γ

)
σ (Et [π̂t+1])

]
. (4)

where the equality is achieved when Et [π̂t+1] and Γ̂t are perfectly negatively correlated.

Figure 1 displays the volatility of the risk premium Γσ
(
Γ̂t

)
in annualized percentage

points when computed using quarterly and annual data, for alternative levels of the volatility

of expected profits, σ (Et [π̂t+1]). Empirical estimates of time-variation in risk premia are

hard to compute but we use the volatility of the lower bound on the equity premium on the

S&P 500 index computed in Martin (2017) as an illustrative example. Martin (2017) reports
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Figure 1: Lower bound on the volatility of the risk premium. Blue solid lines represent the lower
bounds of the volatility of the annualized risk premium needed to satisfy the hiring equation, com-

puted as Γσ
(
Γ̂t

)
using (4). Red dash-dotted lines are estimates of the volatility of the annualized

risk premium from Martin (2017). The average risk premium Γ is calibrated to the 4.96% and
4.64% at the quarterly and annual frequency, respectively, as in Martin (2017).

this volatility to be 3.6% and 2.43% on the quarterly and annual frequency, respectively.

These values are reported as the dash-dotted red lines in the figure.

The figure shows that in order to rationalize the fluctuations in vacancy filling rates in a

model with plausibly calibrated time-variation in the risk premium, the required volatility

of expected cash flows continues to be very high. In other words, fluctuations in the risk

premium can play a dominant role in explaining labor market fluctuations only if they are

substantially larger than those observed in the stock market, in the order of at least 10–15

annualized percentage points.

3 Theoretical framework

The above calculations studied the role of the volatility of risk premia, which intertwine

the prices of risk embedded in the stochastic discount factor with risk exposures in the

cash flows from the marginal worker. In this section, we separate the contributions of the

stochastic discount factor and the cash flow process. We start with a stochastic discount

process disciplined using financial market data, and then devise a bound that only involves
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moments of the cash flow process, such that any cash flow process that does not satisfy the

bound also cannot satisfy the hiring equation (1) for the given stochastic discount factor.

This will allow us to study the tradeoff that alternative models of the stochastic discount

factor generate between fluctuations in expected cash flows and in risk premia as a source

of explanation of time-variation in vacancy filling rates.

3.1 Restrictions

Rewriting equation (1) as

κ

qt
= Et [st+1πt+1] + Et

[
st+1 (1− δt+1)

κ

qt+1

]
, (5)

we can separate out the role of hiring cost from the contribution of the profit flow. We

assume that we have available data on vacancy filling rates qt and separation rates δt, and

we determined a model of the stochastic discount factor st+1 using outside information. Our

focus is to derive restrictions on the firm’s profit flow from the marginal worker such that

equation (5) holds. Writing the expected profit flow as

Et [st+1πt+1] = Et [st+1]Et [πt+1] + Covt (st+1, πt+1) (6)

uncovers three sources of variation. When agents are risk-neutral, as in much of the search

and matching literature, we have st+1 = β and observed differences in vacancy filling rates

must be rationalized through fluctuations in firm’s expected profits Et [πt+1]. In a more

general environment, fluctuations in the conditional mean of the stochastic discount factor

Et [st+1] and time-variation in the covariance Covt (st+1, πt+1) contribute to the variation in

expected discounted profit flow as well.

Our goal is to provide a stochastic discount factor that is consistent with evidence on

cross-sectional differences and time-variation in expected returns, and use it to infer charac-

teristics of a class of processes πt that are consistent with optimal hiring choice (5). Denoting

gt+1 =
κ

qt
− st+1 (1− δt+1)

κ

qt+1
(7)

we have

0 = Et [st+1πt+1 − gt+1]

In order to empirically implement the conditional restriction (5), we instrument the equation
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as in Hansen and Singleton (1982) with a vector of variables zπt , and get

0 = E [zπt (st+1πt+1 − gt+1)] . (8)

The vector of instruments zπt contains business cycle variables that serve as predictors of

future state of the labor market. Equation (8) states that the Euler equation errors st+1πt+1−

gt+1 are not systematically related to these predictors.

3.2 Objective

There will typically be many processes πt consistent with the set of restrictions (8), and both

theoretical modeling as well as empirical measurement of πt are challenging. Theory dictates

that the Euler equation (5) holds for the profit flow associated with the marginal worker

but this profit flow is not directly obtainable from data. The theoretical literature then

frequently sidesteps this issue by introducing environments where the average and marginal

workers are identical.

Rather than explicitly modeling the profit flow, we aim at asking what are the minimal

requirements that every profit flow process consistent with (5) must satisfy. Since the liter-

ature has traditionally struggled to generate profit processes that are sufficiently volatile to

rationalize fluctuations in the vacancy filling rates, we are looking for the lower bound on

dispersion of the profit process for (8) to hold.

Since we can write (6) as

Et [st+1πt+1] = Et [st+1]Et [πt+1] + ρt (st+1, πt+1)σt (st+1)σt (πt+1) (9)

where ρt is the conditional correlation and σt the conditional standard deviation, the two

key moments that can offset fluctuations in qt are Et [πt+1] and σt (πt+1). This motivates the

objective

Lα = αV ar [Et [πt+1]] + (1− α)E [V art [πt+1]] (10)

As a function of α, this objective generates a lower bound on the combinations of variance

of the conditional mean and average conditional variance of the profit process such that

it is consistent with the restrictions above. When α = 1
2
, then the objective is equal to

1
2
V ar [πt+1]. The objective Lα can therefore be thought of as a generalization of the Law of

Total Variance.

When αց 0, the objective emphasizes the minimization of average conditional variance

E [V art [πt+1]]. Then, in order to rationalize (5), the process πt has to become highly pre-

dictable and exhibit large fluctuations in the conditional mean Et [πt+1]. This is the only
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way how to resolve the unemployment volatility puzzle when st+1 = β.

On the other hand, when α ր 1, the objective Lα stresses the minimization of the varia-

tion in Et [πt+1]. From equation (6), we infer that the resolution of the unemployment volatil-

ity puzzle must arise from sufficiently large business cycle fluctuations in Covt (st+1, πt+1).

These can emerge from sufficiently large fluctuations in the conditional volatility of the

stochastic discount factor but if these are not large enough, conditional volatility of the

profit process will have to fluctuate as well.

4 Bounds

For a given model of a stochastic discount factor and data on separation rates and vacancy

filling probabilities, the problem is

min
πt+1

Lα subject to 0 = E [zπt (st+1πt+1 − gt+1)] . (11)

When α = 1
2
, the problem reduces to finding the minimum variance profit process, and the

solution corresponds to the lowest point on the Hansen and Jagannathan (1991) bound.

Proposition 4.1. The solution to problem (11) satisfies

πt+1 − Et [πt+1] =
1

2 (1− α)
(st+1 −Et [st+1]) (z

π
t )

′ λπ (12)

Et [πt+1]− π̄ =
1

2α
(zπt Et [st+1]− E [zπt st+1])

′ λπ (13)

where the vector of loadings λπ is given by

λπ = (Vα)
−1 (E [zπt gt+1]− E [zπt st+1] π̄)

with

Vα =
1

2α
V ar [zπt Et [st+1]] +

1

2 (1− α)
E [V art [z

π
t st+1]]

π̄ =
(E [zπt st+1])

′ V −1
α E [zπt gt+1]

(E [zπt st+1])
′ V −1

α E [zπt st+1]
. (14)

Proof. See Appendix B.

For each choice of α, Proposition 4.1 yields a profit flow process that is consistent with

restrictions in (11) implied by the hiring equation. These alternative profit flows differ in
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how their two conditional moments, Et [πt+1] and V art [πt+1], contribute to rationalizing the

labor market dynamics.

When α ր 1, innovations in (12) are large, and the profit process exhibits large con-

ditional variance V art [πt+1]. Fluctuations in vacancy filling rates qt are then rationalized

through time-variation in risk premia, i.e., through movements in the covariance term in the

discounted profit flow (6). On the other hand, when α ց 0, innovations in implies large

fluctuations in the conditional mean Et [πt+1] in (13), which leads to large fluctuations in the

first-term on the right-hand side of (6).

Innovations to the profit process are conditionally linear in innovations to the stochastic

discount factor, while deviations of the conditional mean of the profit process from uncondi-

tional mean are conditionally linear in the corresponding deviations of the stochastic discount

factor.

The form of the process gt+1 in (7) implies that the average level of firm’s profit will be

proportional to the vacancy cost κ, which can be directly inferred from the solution (14).

In the absence of a widely accepted value for this parameter, we normalize the results by

the average profit E [πt+1]. Including information on the vacancy cost parameter κ together

with average profitability π̄, instead of optimizing over π̄ in (14), would further tighten the

bound. The constructed bound is conservative in the sense that the profit flow process

is only required to satisfy the set of instrumented restrictions (11), rather than the hiring

Euler equation (1) in each time-t state. We will later discuss the role of the choice of the

instruments zπt in more detail.

4.1 Interpretation

It is useful to highlight the differences of the constructed weighted variance bound on firm’s

profit relative to the familiar Hansen and Jagannathan (1991) and other similar bounds.

Proposition 4.1 derives the weighted variance bound on firm’s profit for a given model

of the stochastic discount factor. The construction can be implemented empirically for any

particular model of the stochastic discount factor, as long as we can provide an observable

counterpart to the path st+1. For instance, the realized path of an Epstein–Zin stochastic

discount factor can be constructed using realizations of consumption growth and a proxy

for the return on aggregate wealth. In what follows we consider alternative methods for the

construction of empirically relevant stochastic discount factors.

The bound on the moments of the profit flow is to be understood as a joint test of the

moments of the profit flow and the model of the stochastic discount factor. One interpretation

of the bound is to study the tradeoffs between the two moments of the profit flow in (10)
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offered by alternative stochastic discount factors. This is useful for the evaluation of the

role risk premia play in different models as an explanation of fluctuations in vacancy posting

rates. On the other hand, if the constructed bound is to be interpreted truly as the lower

bound on the variability of the profit flow that is consistent with the (correct) hiring Euler

equation, we need to invoke the following assumption.

Assumption 4.2. The stochastic discount factor st+1 prices all risks relevant for the hiring

decision implied by the hiring Euler equation (1).

To see the role of this assumption, consider an alternative stochastic discount factor

sεt+1 = st+1 + εt+1

where εt+1 is a mean-zero perturbation orthogonal to the vector of priced returns but corre-

lated with the profit flow. Then sεt+1 prices the same returns as st+1 but (6) now implies

Et
[
sεt+1πt+1

]
= Et [st+1]Et [πt+1] + Covt (st+1, πt+1) + Covt (εt+1, πt+1)

Fluctuations in Covt (εt+1, πt+1) can now amplify the time-variation in expected discounted

profits, thus reducing the need to impose a large dispersion of the profit flow.

4.2 Implementation

In order to provide an empirical implementation of the profit flow process characterized

in Proposition 4.1, we need to construct conditional moments Et [st+1] and Et [gt+1]. The

former is the reciprocal of the risk-free rate, which we directly extract from data. In order

to construct the latter, we assume that the economy follows a Markov process

Xt+1 = φ (Xt,Wt+1) (15)

with state vector Xt and innovations Wt+1, and that the vacancy filling rate qt and the

separation rate δt are functions of the Markov state

qt = q (Xt) , δt = δ (Xt) .

For instance, (15) can be a linear VAR, with qt and δt included as elements of the state

vector. We specify the choice of the Markov process in the empirical implementation below.
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5 Models of stochastic discount factors

The bound constructed in Proposition 4.1 gives us considerable freedom in terms of the

models of stochastic discount factors that we can entertain in the analysis. Here, we outline

two approaches that we implement in the next sections. The first is based on a structural

model of an Epstein and Zin (1989, 1991) stochastic discount factor with stochastic volatility,

derived in Bansal et al. (2014). The second approach is a non-parametric construction of

a minimum-variance stochastic discount factor that lies on the Hansen and Jagannathan

(1991) bound.

5.1 A structural model with recursive preferences

The representative investor endowed with recursive preferences ranks consumption streams

Ct using the continuation value recursion

Vt =

[
(1− β)C

1−1/ψ
t + βEt

[
V 1−γ
t+1

] 1−1/ψ
1−γ

] 1

1−1/ψ

,

where β represents the time preference parameter, γ the relative risk aversion, and ψ the

intertemporal elasticity of substitution. We show in Appendix D that the logarithm of the

implied one-period stochastic discount factor can be written as a function of the one-period

consumption growth rate ∆ct+1 = logCt+1 − logCt and the logarithm of the return on

aggregate wealth rwt+1:

log st+1 = θ log β −
θ

ψ
∆ct+1 + (θ − 1) rwt+1 (16)

where θ
.
= (1− γ) / (1− 1/ψ). When γ = 1/ψ, then the last term in the stochastic dis-

count factor is zero, and the preferences reduce to standard constant relative risk aversion

preference with risk aversion γ.

We are interested in an empirical implementation of the stochastic discount factor that

features conditional heteroskedasticity. Following Bansal et al. (2014), we specify a linear

model for the underlying state

Xt+1 = φxXt + εt+1, εt+1 ∼ N (0,Ωt) . (17)

We include consumption growth as one element of the state vector,

∆ct+1 = ι′cXt+1
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where ιc is an n × 1 indicator vector. Similarly, we include in Xt a univariate measure of

conditional expected variance that drives time-variation in the covariance matrix Ωt, such

that

σ2
t = ι′σXt. (18)

Bansal et al. (2014) use realized monthly variation in monthly industrial production growth

as a measure of realized variance, RVt+1 = ι′vXt+1. The measure of expected variance is then

given by

σ2
t = Et [RVt+1] = ι′vφxXt

and hence ι′σ = ι′vφx. We also alternatively consider measures of conditional expected vari-

ance constructed by Jurado et al. (2015), in which case ισ is the indicator vector that selects

the particular measure of expected variance included in the vector Xt.

The stochastic discount factor (16) therefore inherits time-variation in conditional volatil-

ity from the dynamics of consumption growth and return on aggregate wealth. In order to

deal with lack of direct measurement of aggregate wealth, we again proceed as in Bansal

et al. (2014) and Lustig and Van Nieuwerburgh (2008) and assume that aggregate wealth

portfolio consists of financial wealth and human capital. By combining observable measures

of the return on financial wealth, labor income growth and consumption growth in the bud-

get constraint of the representative investor, we can infer a restriction on the dynamics of

human capital component of wealth and hence infer implied returns on aggregate wealth.

Details are provided in Appendix D.

5.2 Non-parametric construction

The stochastic discount factor introduced in Section 5.1 imposes structural restrictions on

the relationship between the dynamics of consumption growth, measured stochastic volatil-

ity, and time-variation in risk-premia. As an alternative construction, we consider a non-

parametric extraction of the stochastic discount factor that is consistent with pricing re-

strictions imposed on a set of traded returns. In particular, we assume that investors have

unconstrained access to a vector of n securities with one-period real returns Ri
t+1, i = 1, . . . , n.

Investor optimization implies that the stochastic discount factor satisfies the vector of pricing

restrictions

Et
[
st+1R

i
t+1

]
= 1, i = 1, . . . , n.

In order to implement these restrictions empirically, we proceed in an analogous fashion as

in the case of implementing the hiring restriction (8) and use a vector of instruments zst .
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This implies the set of restrictions

0 = E
[
zst

(
st+1R

i
t+1 − 1

)]
, i = 1, . . . n. (19)

There are typically many stochastic discount factors consistent with (19), and we choose the

one with the lowest variance. This stochastic discount factor is obtained by solving

min
st+1

1

2
E
[
(st+1 − E [st+1])

2] subject to 0 = E
[
zst

(
st+1R

i
t+1 − 1

)]
, i = 1, . . . n. (20)

The variance-minimizing stochastic discount factor lies at the lowest point of the Hansen–

Jagannathan bound and the solution has a structure analogous to that for the profit process

πt+1 in Proposition 4.1.2 The solution to this optimization problem is summarized in the

following proposition.

Proposition 5.1. The minimum-variance stochastic discount factor that solves problem (20)

is given by3

st+1 = s̄+ (zst ⊗Rt+1 −E [zst ⊗Rt+1])
′ λs

where the vector of loadings λs and the mean of the stochastic discount factor are

λs = (V ar [zst ⊗ Rt+1])
−1 (E [zst ⊗ 1]− E [zst ⊗ Rt+1] s̄)

s̄ =
(E [zst ⊗ Rt+1])

′ (V ar [zst ⊗ Rt+1])
−1E [zst ⊗ 1]

(E [zst ⊗ Rt+1])
′ (V ar [zst ⊗ Rt+1])

−1E [zst ⊗ Rt+1]
.

Proof. See Appendix B.

The stochastic discount factor is therefore a conditionally linear function of returns, and

variation in instruments serves as fluctuations in the its conditional mean and conditional

volatility. In order to obtain conditional moments of the stochastic discount factor needed to

construct the profit bound, we project the constructed path of st+1 on the vector of predictors

(17).

2Problem 20 ignores the usual no-arbitrage restriction that the stochastic discount factor has to remain
strictly positive. See Hansen and Jagannathan (1991) and Hansen et al. (1995) for analysis with restrictions
that assure positivity of the solution. We abstract from this restriction for reasons of analytical tractability.

3Here, ⊗ is the Kronecker product. For two column vectors x =
(
xi
)k
i=1

and y =
(
yj
)n
j=1

, x ⊗ y is a

column vector of length k× n with (x⊗ y)
(i−1)n+j

= xiyj. For instance, we can write the set of restrictions
(19) in concise form as 0 = E [zst ⊗ (st+1Rt+1 − 1)] where 1 is a column vector of ones of length n.
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6 Data

We use quarterly macroeconomic and financial data for the period 1953Q1–2017Q4. The

state vector Xt includes several macroeconomic and financial variables, mostly following

Bansal et al. (2014),

Xt =
[
1,∆ct,∆yt, RVt, qt, R

f
t , R

m
t , pdt

]
,

where 1 is a constant, ∆ct consumption growth, ∆yt income growth, Rf
t the risk-free rate, Rm

t

market return, pdt logarithm of the price-dividend ratio, RVt a measure of realized variance,

and qt vacancy-filling rate.

The consumption and income growth are constructed from the BEA series for real per-

sonal consumption expenditures per capita and real disposable personal income per capita.

The realized variance RVt is the sum of squared monthly growth rates of the real per capita

industrial production over the last 12 months,

RVt =
11∑

m=0

(
idt−m/3 − idt−(m+1)/3

idt−(m+1)/3

)2

.

The vacancy filling probability is the key labor market variable in our setting. Vacancy data

have been provided to us by Nicolas Petrosky-Nadeau, who combined several data sources

to create a consistent time-series of vacancies for the 1929–2016 period; the details are

explained in Petrosky-Nadeau and Zhang (2013). We follow Shimer (2012) in constructing

the job finding rate ft and job separation rate δt using data on civilian employment level,

unemployment level and number of civilians unemployed for less than 5 weeks. We use

data on unemployment rate ut, vacancy rate vt and job finding rate ft to construct the

vacancy filling rate as qt = ft/θt, where θt = vt/ut is the market tightness. We note that

the job finding and job separation rates correspond to movements between employment and

unemployment.

The risk free rate Rf
t is the one-month T-bill rate and Rm

t the value-weighted U.S. market

return. Both series are downloaded from Kenneth French’s website and net of realized

inflation. To construct the price dividend ratio, we download monthly returns on the value-

weighted stock market index, including dividends vwridt and excluding dividends, vwredt.

Denoting Pt and Dt the price and dividend flow, respectively, we have

vwridt+1 =
Pt+1 +Dt+1

Pt
− 1, vwredt+1 =

Pt+1

Pt
− 1.

We use these two formulas to obtain a series of prices and dividends. Starting from P0 = 1, we

recursively update Pt = Pt−1 (1 + vwredt+1) , Dt = Pt−1 (vwridt − vwredt). Our quarterly
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Figure 2: Extracted path of quarterly realizations of the stochastic discount factors. Top panel:

Recursive-preference stochastic discount factor. Bottom panel: Minimum variance stochastic dis-
count factor. NBER recessions shaded.

measure of the price dividend ratio is the price Pt at the end of the quarter divided by the

sum of dividends over the last 12 months.

We also construct a pair of empirical proxies for the profit flow. First, we construct real

profits per worker using after-tax corporate profits from NIPA, divided by the GDP deflator

and employment. We detrend the time series by real potential GDP per worker.

We also measure real per capita profits in Compustat. We use operating income be-

fore depreciation (OIBDPQ), deflated by the GDP deflator and divided by employment as

measured in Compustat. Employment in Compustat is available only at annual frequency,

and we linearly interpolate the data to obtain a quarterly data series. We again detrend by

dividing the time series by real potential GDP per worker.

16



0 0.5 1
0

0.25

0.5

NIPA profits

Compustat profits

E[V art[πt+1]]
1/2

V
a
r[
E
t[
π
t+

1
]]
1
/
2

constant SDF
benchmark

0 0.5 1
0

0.25

0.5

Shimer (2010) Nash

Shimer (2010) rigid wage

Hall, Milgrom (2008) Nash

Hall, Milgrom (2008)

Hall (2017)

E[V art[πt+1]]
1/2

Figure 3: Normalized weighted variance bound for the profit process. The horizontal axis represents
the square root of the average conditional variance of the profit process, while the vertical axis the
square root of the variance of its conditional expectation. Both quantities are normalized by the
average profit E [πt+1]. The black dashed line is the bound constructed for a constant stochastic
discount factor. The solid red line is the bound constructed using BKSY(2014) stochastic discount
factor. The magenta dots represent empirical proxies for the moments. Blue dots are model-implied
moments calculated from models used in the labor literature.

7 Results

Figure 2 depicts paths of the two stochastic discount factors outlined in Section 5. The top

panel shows the structural stochastic discount factor based on Epstein–Zin preferences and

stochastic volatility. The bottom panel represents the minimum variance stochastic discount

factor that uses Rm
t and Rf

t as vector of priced returns, and the state vector Xt as the vector

of instruments zst in (19). Both stochastic discount factors exhibit substantial countercyclical

fluctuations in conditional variance, with negligible movements in conditional mean, both of

which are needed to jointly rationalize countercyclical risk premia and the relatively stable

real risk-free rate.

7.1 Weighted variance bound

We can now implement problem (11) using observable data for vacancy filling rates, separa-

tion rates and the path of the stochastic discount factor. For alternative values of α ∈ (0, 1),

we obtain a locus of points in the space of the average conditional variance E [V art [πt+1]]

and variance of the conditional expectation V ar [Et [πt+1]] that form a bound above which
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all profit processes satisfying restrictions (8) must lie. The roots of these two moments are

depicted on the horizontal and vertical axes in Figure 3, respectively.

The hiring Euler equation (1) is homogeneous degree one in (κ, πt+1). In the absence of

an agreed upon value of the vacancy posting cost κ, we impose a normalization and plot

the roots of the average conditional variance E [V art [πt+1]] and variance of the conditional

expectation V ar [Et [πt+1]] normalized by the mean profit E [πt+1].

The left panel in Figure 3 shows the bounds for two alternative stochastic discount

factors. In both cases, the vector of instruments zπt used in the minimization problem (11)

only involves the constant and the vacancy filling rate qt.

The black dashed line represents the risk-neutral case st+1 ≡ β. This bound is horizon-

tal. Since the covariance term in (6) is zero, the only way how to rationalize fluctuations

in vacancy filling rates is to generate sufficiently large fluctuations in expected profit flow

Et [st+1], while conditional volatility σt [πt+1] is irrelevant. For the given processes for va-

cancy filling rate qt and separation rate δt, the given risk neutral stochastic discount factor

st+1 ≡ β, and uncertainty driven by the Markov process Xt in (17), any profit flow process

that is to satisfy the hiring Euler equation (1) must exhibit sufficiently large fluctuations in

the conditional mean (sufficiently large V ar [Et [πt+1]]) to lie above the black bound.

The solid red line represents the profit variability bound constructed using the Bansal

et al. (2014) model for the stochastic discount factor. The bound is downward sloping,

implying that the bound can be satisfied using a profit process with high volatility of the

conditional mean (i.e., a process that is highly predictable, the usual channel in the search

literature), or a process with high conditional volatility, the new channel operating through

time-varying risk premia on hiring a worker, or a combination of both, as we move along the

bound.

The steeper the bound, the larger is the set of profit flow processes that are consistent with

the restrictions in (8). The last term in expression (9) implies that a more volatile stochastic

discount factor with more countercyclical volatility will generate large fluctuations in risk

premia without the need for excessive volatility of the profit flow. The average volatility of

the profit flow is depicted on the horizontal axis in Figure 3, and stochastic discount factors

with more countercyclical volatility will typically lead to steeper bounds.

7.2 Empirical and model implied measures of the profit flow

We now study alternative empirical proxies for the profit flow as well as theoretical processes

implied by different models used in the labor market literature, and confront them with the

bound we inferred in the previous section. These results are also depicted in Figure 3.
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First, we examine two empirical measures of average aggregate profits per worker, com-

puted from NIPA and Compustat profits, respectively, that can be used as proxies for the

theoretical profit from the marginal worker. For both proxies of the profits, we compute

E[V art[πt+1]] and V ar[Et[πt+1]] using a projection on the vector of instruments used in

equations (8) and (19). We again normalize both objects by the mean value of the profit

flow, E[πt+1]. Magenta dots in the left panel of Figure 3 represent these data.

These profit flow measures lie significantly below both bounds. This implies that intro-

ducing a stochastic discount factor that generates time-varying risk premia consistent with

data from financial markets has only limited capacity in rationalizing fluctuations in vacancy

filling rates in the labor market. To put it differently, models calibrated to be consistent

with variability of these time series would not be able to explain the unemployment volatility

puzzle.

It is important to stress the discrepancy between these measures of profit per worker

and the theoretical object we are interested in. The theoretical model predicts that πt+1

corresponds to the profit flow from the marginal worker. Constructed empirical proxies,

however, represents average profits per worker. Hence a failure of this empirical proxy to

meet the bound can potentially be attributable to the discrepancy between average and

marginal profits from a worker. In absence of empirical measures of marginal profits, one

potential avenue is to use the distance between the data points and the bound as a constraint

on the wedge implied by a theoretical model that distinguishes between average and marginal

worker profit.

In the right panel of Figure 3, we depict profit flow processes obtained in theoretical

models constructed by Hall and Milgrom (2008) (with Nash and alternative offer bargain-

ing, respectively), Shimer (2010) (with Nash bargaining and rigid wages, respectively), and

Hall (2017) (with a model of the stochastic discount factor that rationalizes business cycle

movements in price-dividend ratios). These models introduce specific mechanisms that al-

ter the baseline Diamond–Mortensen–Pissarides search and matching model to rationalize

fluctuations in vacancy filling rates.

For each of these models, we then construct E[V art[πt+1]] and V ar[Et[πt+1]] directly

using the structure of models. The details are explained in the Appendix C. We normalize

both objects by the mean value of the profit flow, E[πt+1]. Each blue dot in the right panel

of Figure 3 represents one of these models.

Most of these profit flows exhibit very small conditional volatility, and most of the vari-

ation comes in the business cycle fluctuations of the conditional mean. These profit flows

were designed to rationalize the labor market dynamics in models with essentially risk-

neutral firms, and hence the only way how to meet the hiring Euler equation is through
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Figure 4: Alternative profit flow paths satisfying the weighted variance bounds. Top panel : α =
0.001: high weight on minimizing conditional variance. Bottom panel : α = 0.999, high weight on
minimizing variance of conditional expectation. NBER recessions shaded.

fluctuations in expected profits. This is the essence of the alternative offer bargaining and

rigid wage mechanisms introduced in Hall and Milgrom (2008) and Shimer (2010), respec-

tively. Interestingly, these two specifications essentially meet our bound for st+1 ≡ β, while

the Nash bargaining specifications do not, indicating that the bound is sufficiently tight to

meaningfully discriminate profit flow processes that do not rationalize observed fluctuations

in vacancy filling rates.

Figure 4 displays two alternative extracted paths of firms’ profit flow that satisfy the

weighted variance bound represented by the red line in Figure 3. The top panel in Figure 4

shows the path for α = 0.001, which corresponds to the top left end of the bound. The

trajectory now exhibits low conditional volatility and a high predictability over the business

cycle. On the other hand, the bottom panel depicts the path for weight α = 0.999, which

corresponds to the bottom right end of the bound. The path is visibly heteroskedastic, with

no clear predictable pattern for its conditional mean. While these two processes have very
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different stochastic properties, they both satisfy the set of restrictions in (8). The bound thus

provides guidance for alternative ways in which modeled or measured cash flow processes

can be consistent with the dynamics of hiring in the labor market.

7.3 Robustness and the role of instruments

The optimization problem for the bound (11) uses a vector of instruments zπt . Here we

discuss how the choice of instruments affects results.

The restriction in the optimization problem is that the errors in the hiring Euler equation

cannot systematically move with the instrumenting variables. Hence, variables which capture

the business cycle well are the natural choice of instruments. Note that with one instrument,

a suitably chosen constant profit flow πt+1 = π̄ satisfies the restriction. Since the value of

the objective Lα is zero for any value of α in this case, a constant profit flow is the solution

to (11). This is not an interesting solution. Therefore, we need at least two instruments.

Increasing the number of instruments further adds additional restrictions on the profit flow

and as a result, the minimum will be reached at higher values, which shifts the bound

outward.

Our benchmark calculation includes two variables in zπt , a constant and the vacancy

filling probability qt. We depict the resulting bound again as the solid red line in Figure 5.

As we have seen, even with a single (nonconstant) instrument qt the bound is sufficiently

tight to discriminate against models with low fluctuations in the profit flow.

Adding instruments tightens the bound. The dotted line represents the bound when all

variables from the state vector Xt are included as instruments. Excluding qt from the list of

instruments, the bound shifts substantially downward to the dash-dotted line.

Which instruments to add to zπt ? Macroeconomic models typically strive to capture

comovement between a small set of variables of interest, which then lend themselves as

instruments.

The right panel of Figure 5 shows robustness to several alternative specifications. In the

first one, we keep the conditional mean of the stochastic discount factor constant, which

results in a constant risk-free rate. This leaves the bound essentially unchanged (dashed red

line). In the second alternative specification, we exclude δt from the set of state variables and

impose that it is constant over time and equal to its mean value over the studied period. The

separation rate is countercyclical, which makes hiring a worker in a recession less valuable due

to lower expected duration of the match. Turning off this channel by making the separation

rate constant means that we need more variable profit flow. Indeed, the bound shifts to the

right, as depicted by the dotted red line. Finally, we decrease the risk aversion parameter in
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Figure 5: Normalized weighted variance bound for the profit process. The horizontal axis represents
the square root of the average conditional variance of the profit process, while the vertical axis the
square root of the variance of its conditional expectation. Both quantities are normalized by the
average profit E [πt+1]. Alternative lines represent bounds constructed for choices of instrumenting
variables zt (left panel) or different stochastic discount factors (right panel). Left panel: the solid
red line is the benchmark bound, the dotted red line uses all state variables X as instruments
in (11), the dash dotted red line uses all state variables X expect for vacancy filling rate q as
instruments. Right panel: the dashed red line corresponds to a SDF with constant conditional
mean, the dotted red line corresponds to an SDF with constant job separation rate, the dash
dotted red line corresponds to a SDF with risk-aversion parameter 5.

our baseline specification from γ = 12 to γ = 5. The stochastic discount factor now has a

lower conditional volatility, and therefore the conditional volatility of the profit flow has to

increase. The bound becomes flatter, as depicted by the dash dotted line.

7.4 Alternative stochastic discount factors

Figure 6 includes bounds for the profit flow process constructed using different models of the

stochastic discount factor. In the left panel, the stochastic discount factor is constructed as

in Proposition 5.1, using the market return Rm
t and the risk-free rate Rf

t as priced returns,

and conditioning using Xt as the vector of instruments. The bound is very close to that

constructed using the structural model of the stochastic discount factor.

In the right panel, we construct the bound using the theoretical model of the stochastic

discount factor introduced in Hall (2017). In that model, the state space consists of a grid

of five states, and hence dummy variables for each of these states serve as conditioning

22



0 0.5 1 1.5
0

0.25

0.5

0.75

NIPA profits

Compustat profits

E[V art[πt+1]]
1/2

V
a
r[
E
t[
π
t+

1
]]
1
/
2

constant SDF
benchmark

min. var. SDF

0 0.5 1 1.5
0

0.25

0.5

0.75

Hall (2017)

E[V art[πt+1]]
1/2

constant SDF
benchmark

Hall (2017)

Figure 6: Normalized weighted variance bounds for alternative models of the stochastic discount
factor. The dash-dotted line in the left panel represents the bound constructed using the minimum
variance stochastic discount factor. In right right panel, it corresponds to the stochastic discount
factor from Hall (2017).

variables. This makes the vector of instrumented restrictions (8) equivalent to (1).

Interestingly, this bound is almost flat, and also substantially below the bound con-

structed using st+1 ≡ β. The first property implies that fluctuations in risk premia play a

negligible role in Hall (2017). The key to understanding the second property is the fact that

the model of the stochastic discount factor in Hall (2017) generates a strongly procyclical

conditional mean of the stochastic discount factor (i.e., a strongly countercyclical risk-free

rate). In other words, the covariance term in (6) is quantitatively small, so a strongly pro-

cyclical first term on the right-hand side of (6) is needed to rationalize fluctuations in vacancy

filling rates. Empirically, the risk-free rate is smooth, so we require a high V ar [Et [πt+1]],

which is mirrored in the tight dashed line in Figure 6. However, the strong procyclicality

of Et [st+1] in Hall (2017) implies that a lower variation V ar [Et [πt+1]] is needed to explain

labor market fluctuations.

Finally, it is worth noting that the profit flow process generated in Hall (2017)’s model

(blue dot) lies almost exactly on the bound constructed using the model implied stochastic

discount factor. This is not surprising, as the model was designed to essentially fit vacancy

filling rates state by state. Were the blue dot below the dash-dotted line, it would imply

that the model does not exhibit sufficient dispersion in the profit flow to rationalize the

instrumented version of the hiring equation.
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7.5 A broader interpretation of profit flow

Our focus lies in the study of the discounted profit flow Et [st+1πt+1]. So far, we have inter-

preted πt+1 as the net cash flow the firm earns from hiring the marginal worker, discounted

by the stochastic discount factor inferred from financial market data, and assumed that

firms have the same unconstrained access to financing as investors in the financial market.

However, if firms face financial constraints, then the corresponding discounted profit flow is

given by

Et [st+1λt+1πt+1]
.
= Et [st+1π̃t+1]

where π̃t+1 is the profit flow adjusted by the shadow prices of the borrowing constraints in

individual future states relative to today, λt+1. These shadow prices emerge, for instance, in

situations when firms need to borrow to finance the cost of hiring or to pre-pay wages. In

such situations, an empirical proxy for profits constructed using NIPA or Compustat data

would provide a biased measure of π̃t+1, and λt+1 could explain, at least to some extent,

the distance between the magenta points in Figure 3 and the weighted variance bounds.

To answer this question, one needs to construct an empirical or theoretical measure of the

fluctuations in these shadow prices λt+1.

This interpretation also provides a possible reconciliation between our bound and the

results in the Hall (2017) model. If we write the discounted profit flow as Et [s̃t+1πt+1]

where s̃t+1 = st+1λt+1, then s̃t+1 would not be the stochastic discount factor pricing assets in

unconstrained markets but rather a constraint-adjusted stochastic discount factor that takes

into account the role of pricing impact of constrained borrowing. We leave the exploration

of this topic for future work.

8 Predicted unemployment dynamics

We now ask a different question: Are fluctuations in the value of the job large enough to

explain unemployment fluctuations?

In particular, we use the stochastic discount factor and alternative profit flow processes

to compute the value of the job, Jt. We then use it to predict the path of the unemployment

rate.

We first consider a counterfactual profit flow that lies exactly on the bound that we

have constructed. Given that this process has been constructed to be consistent with the

fluctuations in the vacancy filling rate, it has the potential to generate enough volatility

in the unemployment rate. However, it is not guaranteed that it will be consistent with

other moments of the unemployment dynamics, for example its persistence, since this is
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left unconstrained in our calculation. We therefore investigate whether a profit flow process

consistent with the bound can also translate into a plausible path of the unemployment rate.

We proceed as follows. We first use time series for st+1, πt+1 and δt+1 to construct the

value of the job Jt as the present discounted value of the profit flow stream.4 We then use the

hiring Euler equation, the law of motion for unemployment and a Cobb-Douglas matching

function to construct a time series for market tightness and the unemployment rate:

κ

q (θt)
= Jt

ut+1 = f (θt) ut + δt (1− ut)

q (θt) = Bθ−ηt , f (θt) = Bθ1−ηt

In particular, for given value of Jt, the Euler equation determines q (θt). We then use the

matching function to recover θt and f (θt), and the law of motion for unemployment to

determine calculate ut+1.

We choose the elasticity of the matching η = 0.72 following Shimer (2005), and normalize

B to match the mean unemployment rate in the simulated path to the one measured in the

data.

Figure 8 plots the time series for J (Xt) constructed using the two extracted time series

for firms’ profit flow that satisfy the weighted variance bound for α = 0.001 and α = 0.999,

respectively. In both cases, these values fall dramatically during recessions, although for

different reasons. In the top panel, J (Xt) falls because the conditional mean Et [πt+1] falls

4This calculation utilizes formulas on conditional expectations in exponential-quadratic framework given
in Appendix E.
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Figure 8: Value of the job using surplus from bounding exercise, Top: α = 0.001: high weight
on minimizing the expected conditional variance. Bottom: α = 0.999: high weight on minimizing
variance of conditional expectation.

substantially. In the bottom panel, J (Xt) falls because the conditional covariance between

st+1 and πt+1 becomes more negative.

Figure 9 shows the calculated paths for the unemployment rate constructed using three

different profit flow processes. The top two panels show results for profit flow processes

satisfying the bound for α = 0.001 and α = 0.999, respectively. The bottom panel uses the

empirical proxy for the profit flow using NIPA tables.

The profit flows which lie on the bound highly successful in delivering a path for the

unemployment rate that lines up well with data, though they operate through different

channels. The top one generates the time-variation in incentives to hire through time-

varying covariance with the stochastic discount factor while the middle one generates the

flucutations in the hiring rate through fluctuations in the expected profit flow. Recall that

the empirical proxy does not satisfy the bound and indeed this exericise confirms that it
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std autocorr. corr. with data
actual 0.130 0.906 –
predicted; πt for α = 0.001 0.113 0.838 0.753
predicted; πt for α = 0.999 0.153 0.857 0.730
predicted; NIPA πt 0.064 0.710 0.633

Table 1: Summary of the predicted unemployment rate. The first row shows the standard deviation
and autocorrelation of the actual log unemployment rate. The other rows show these statistics for
predicted unemployment rates using different profit flows: the second and third row use profit flow
lying on the bound for α = 0.001 and α = 0.999, respectively. The fourth row shows uses profit flow
from NIPA. The last column shows correlation of the predicted and actual unemployment path.

does not feature enough variation to explain the unemployment dynamics.

Table 1 shows several moments of the predicted unemployment paths and compares it to

actual unemployment rate. It only confirms the conclusion from Figure 9.

The conclusion from this exercise is that the bound is meaningful: profit flows lying on the

bound are consistent with actual unemployment dynamics while those lying inside the bound

are not. Moreover, this also demonstrates how one can relate the distance of a particular

profit flow process from the bound to how much variation of the actual unemployment rate

is explained by that particular profit flow.

9 Directions for future research

In this paper, we connect the pricing of returns in the stock market with the pricing of

cash flows accrued by the firm from worker-firm matches. We start by constructing a non-

parametric lower bound on two moments of the profit flow the firm receives from the marginal

worker that must be satisfied in order for the hiring Euler equation to hold. This weighted

variance bound, while conservative, is able to discriminate among theoretical models used in

the literature as well as among empirical proxies for the marginal profit flow. The bound is

constructed conditional on a model of a stochastic discount factor that prices financial assets

instrumented by a vector of variables that capture business-cycle variation in risk premia.

The properties of the profit flow and stochastic discount factor consistent with the bound

and returns on financial assets lead us to construct a parametric model from which we infer

fluctuations in the value of the worker to a firm. When constructed using inferred profit

processes consistent with the weighted variance bound, these fluctuations in the value of the

worker are able to match the business-cycle volatility of the unemployment rate.

Once we restrict the model of the stochastic discount factor to be consistent with the
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Epstein–Zin recursive preference specification with a time-varying price of risk, and inform

the profit flow process using an empirical proxy, the ability of the model to generate em-

pirically observed fluctuations in the unemployment rates decreases, although it remains

substantial. We argue that the remaining wedge can be attributable to several factors, in-

cluding the discrepancy between the profit from the average and the marginal worker, as

well as shadow prices on financial constraints the firms are facing, relative to investors in

financial markets. A further study of the role of these constraints is left for future work.

Similarly, it would be interesting to study the implications of this weighted variance bound

for cross-sectional firm-level and industry-level data. If we interpret the wedge between the

bound and the moments measured using observed cash flows as the contribution of financial

constraints faced by different firms, then our framework allows to non-parametrically study

the distribution of these wedges across firms and industries, allowing us to measure the

cross-sectional heterogeneity in the impact of borrowing constraints for the unemployment

dynamics.
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Figure 9: Predicted unemployment rate constructed using Jt generated using alternative profit flow
processes. Top panel : profit flow lying on the bound for α = 0.001, high weight on minimizing the
expected conditional variance. Middle panel : profit flow lying on the bound for α = 0.999, high
weight on minimizing variance of conditional expectation. Bottom panel : profit flow constructed
using NIPA tables.
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Appendix

A Log-linearization of the hiring equation

Assume that the risk-free rate and separation rate are constant, Et [st+1] = β and δt = δ. Let

the bar and hat variables denote the steady state values and log deviations from the steady state,

respectively. Then log-linearize equation (2):

1 = βπ
q̄

κ
Et [(1 + π̂t+1 + q̂t)] + (1− δ) βEt [1 + q̂t − q̂t+1]− Γ

(
1 + Γ̂t

)
.

In the steady state,

1 = βπ
q̄

κ
+ (1− δ) β − Γ.

Further assume that q̂t follows an AR(1) process with autocorrelation ρq. Using this and the

steady-state relationship, we obtain

0 = βπ
q̄

κ
Et [π̂t+1 + q̂t] + β (1− δ) (1− ρq) q̂t − ΓΓ̂t.

Finally, substitute βπq̄/κ out using the steady state relationship to find (3):

(
1− β (1− δ) + Γ

)
Et [π̂t+1]− ΓΓ̂t = −

(
1− β (1− δ) ρq + Γ

)
q̂t. (21)

When the risk premium is zero, Γ = Γ̂t = 0, then the above relationship simplifies to

Et [π̂t+1] = −
1− β (1− δ) ρq
1− β (1− δ)

q̂t,

which implies

σ (Et [π̂t+1]) =
1− β (1− δ) ρq
1− β (1− δ)

σ (q̂t) .

We now consider the case with risk premia. Take the variance of both sides of (21),

(
1− β (1− δ) ρq + Γ

)2
σ2 (q̂t) =

(
1− β (1− δ) + Γ

)2
σ2 (Et [π̂t+1]) + Γ

2
σ2

(
Γ̂t

)

−2
(
1− β (1− δ) + Γ

)
ΓCov

(
Et [π̂t+1] , Γ̂t

)

=
(
1− β (1− δ) + Γ

)2
σ2 (Et [π̂t+1]) + Γ

2
σ2

(
Γ̂t

)

−2
(
1− β (1− δ) + Γ

)
Γσ (q̂t)σ

(
Γ̂t

)
ρ
(
Et [π̂t+1] , Γ̂t

)
.

We want to find, for the given variance of conditional expected profit flow σ2 (Et [π̂t+1]), the mini-

mum variance of the risk premium σ2
(
Γ̂t

)
needed to generate the observed variance of the vacancy-

filling rate σ2 (q̂t). The minimum is achieved when the correlation between the expected profit flow
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and the risk premium, ρ
(
Et [π̂t+1] , Γ̂t

)
, is equal to −1. In particular, we get

(
1− β (1− δ) ρq + Γ

)2
σ2 (q̂t) ≤

(
1− β (1− δ) + Γ

)2
σ2 (Et [π̂t+1]) + Γ

2
σ2

(
Γ̂t

)

+2
(
1− β (1− δ) + Γ

)
Γσ (q̂t) σ

(
Γ̂t

)

=
[(
1− β (1− δ) + Γ

)
σ (Et [π̂t+1]) + Γσ

(
Γ̂t

)]2

Consequently, we obtain the desired inequality (4):

Γσ
(
Γ̂t

)
≥

(
1− β (1− δ) ρq + Γ

)
σ (q̂t)−

(
1− β (1− δ) + Γ

)
σ (Et [π̂t+1]) .

B Proofs

Proof of Proposition 4.1. Let λπ be the Lagrange multiplier on the constraint in (11). The La-

grangean for the problem is

Lα = αV ar [Et [πt+1]] + (1− α)E [V art [πt+1]]− (E [zπt (st+1πt+1 − gt+1)])
′ λπ

= αE
[
(Et [πt+1]− E [πt+1])

2
]
+ (1− α)E

[
Et

[
(πt+1 − Et [πt+1])

2
]]

− (E [zπt (st+1πt+1 − gt+1)])
′ λπ

The first-order condition with respect to πt+1 yields

0 = 2α (Et [πt+1]− E [πt+1]) + 2 (1− a) (πt+1 − Et [πt+1])− (zπt st+1)
′ λπ. (22)

Conditioning down this equation to the time-t information set and further to the unconditional

distribution yields

0 = 2α (Et [πt+1]− E [πt+1])− (Et [z
π
t st+1])

′ λπ

0 = (E [zπt st+1])
′ λπ.

Substituting these back into (22), we obtain

0 = 2 (1− a) (πt+1 − Et [πt+1])− (zπt st+1 − Et [z
π
t st+1])

′ λπ

and hence

πt+1 − Et [πt+1] =
1

2 (1− α)
(zπt st+1 − Et [z

π
t st+1])

′ λπ

Et [πt+1]− E [πt+1] =
1

2α
(Et [z

π
t st+1]− E [zπt st+1])

′ λπ.
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Plugging these restrictions back into the constraint in (11) yields

E [zπt gt+1] = E [zπt st+1πt+1] = E [zπt st+1]E [πt+1] + E [zπt st+1 (πt+1 − E [πt+1])]

= E [zπt st+1]E [πt+1] +
1

2α
E
[
zπt st+1 (Et [z

π
t st+1]− E [zπt st+1])

′
]
λπ

+
1

2 (1− α)
E
[
zπt st+1 (z

π
t st+1 − Et [z

π
t st+1])

′
]
λπ

= E [zπt st+1]E [πt+1] +
1

2α
V ar [Et [z

π
t st+1]]λ

π +
1

2 (1− α)
E [V art [z

π
t st+1]]λ

π.

We can define the weighted variance matrix

Vα
.
=

1

2α
V ar [Et [z

π
t st+1]] +

1

2 (1− α)
E [V art [z

π
t st+1]]

and solve for the Lagrange multiplier

λπ = (Vα)
−1 (E [zπt gt+1]− E [zπt st+1]E [πt+1]) .

Using the fact that 0 = (E [zπt st+1])
′ ν, we can premultiply this equation by (E [zπt st+1])

′ and solve

for E [πt+1]:

E [πt+1]
.
= π̄ =

(E [zπt st+1])
′ (Vα)

−1E [zπt gt+1]

(E [zπt st+1])
′ (Vα)

−1E [zπt st+1]
.

These expressions replicate the statement of the proposition.

Proof of Proposition 5.1. The construction of the minimum-variance stochastic discount factor as

a solution to (20) is standard and can be viewed as a special case of the calculations in the proof

of Proposition 4.1 above, when setting α = 1/2 and stacking the set of instrumented pricing

restrictions (19) using Kronecker notation as:

0 = E [zst ⊗ (st+1Rt+1 − 1)] . (23)

The Lagrangean now is

L =
1

2
E
[
(st+1 −E [st+1])

2
]
− (E [zst ⊗ (st+1Rt+1 − 1)])′ λs

and the implied first-order condition

0 = st+1 − E [st+1]− (zst ⊗Rt+1)
′ λs

which also implies that (E [zst ⊗Rt+1])
′ λs = 0 and hence

st+1 = E [st+1] + (zst ⊗Rt+1 − E [zst ⊗Rt+1])
′ λs
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Substituting this into the constraint (23) yields

E [zst ⊗ 1] = E [zst ⊗Rt+1]E [st+1] + E
[
(zst ⊗Rt+1) (z

s
t ⊗Rt+1 − E [zst ⊗Rt+1])

′
]
λs

= E [zst ⊗Rt+1]E [st+1] + V ar [zst ⊗Rt+1]λ
s

and consequently

λs = (V ar [zst ⊗Rt+1])
−1 (E [zst ⊗ 1]− E [zst ⊗Rt+1]E [st+1]) .

Premultiplying by (E [zst ⊗Rt+1])
′, we obtain

(E [zst ⊗Rt+1])
′ λs = 0 = (E [zst ⊗Rt+1])

′ (V ar [zst ⊗Rt+1])
−1 (E [zst ⊗ 1]− E [zst ⊗Rt+1]E [st+1])

and finally

E [st+1]
.
= s̄ =

(E [zst ⊗Rt+1])
′ (V ar [zst ⊗Rt+1])

−1 (E [zst ⊗ 1])

(E [zst ⊗Rt+1])
′ (V ar [zst ⊗Rt+1])

−1E [zst ⊗Rt+1]

which completes the proof.

C Bounds in search models

We construct E [V art[πt+1] and V ar [Et [πt+1]] using profit flow process πt generated by several

search models. We explain here in detail how it is constructed.

C.1 Shimer (2010)

We start with Shimer (2010). Shimer solves his model using log-linearization around the steady

state which implies that the law of motion for the state variable as well as the policy function are

linear functions of the state. Let’s x̂t be a vector of state variables expressed in log deviations from

the steady state. Then

x̂t+1 = Ax̂t +Dvt+1

π̂t = Bx̂t

where vt+1 is a standard normal shock and π̂t is the model implied profit flow. Matrices A,B,D are

known, this is the solution of the model. We are interested in calculating the conditional moments.

Let’s start with establishing unconditional mean and variance moments of x̂t:

E [x̂t] = 0

Σ = V ar [x̂t] = E
[
x̂tx̂

′

t

]
= AΣA′ +DD′

35



Given that innovation vt+1 is normal, the distribution of x̂t is normal with mean zero and variance

Σ.

Let’s now compute conditional moments of πt. The conditional mean

Et [πt+1] = Et [π̄ exp (π̂t+1)] = π̄Et [exp (Bx̂t+1)]

= π̄E [exp (BAx̂t +BDvt+1) |x̂t]

= π̄ exp

(
BAx̂t +

1

2
BD (BD)′

)

The last equality uses the mean of the log normal variable. It is then straightforward to derive that

Et
[
π2t+1

]
= Et

[
π̄2 exp (2π̂t+1)

]
= π̄2E [exp (2B (Ax̂t +Dvt+1)) |x̂t]

= π̄2 exp
(
2BAx̂t + 2 (BD) (BD)′

)
,

V art [πt+1] = Et
[
π2t+1

]
− Et [πt+1]

2

= π̄2 exp (2BAm̂t) exp
(
BD (BD)′

) (
exp

(
BD (BD)′

)
− 1

)

Then,

E [V art [πt+1]] = π̄2E
[
exp (2BAm̂t) exp

(
BD (BD)′

) (
exp

(
BD (BD)′

)
− 1

)]

= π̄2 exp
(
2 (BA) Σ (BA)′ +BD (BD)′

) (
exp

(
BD (BD)′

)
− 1

)

V ar [Et [πt+1]] = V ar

(
π̄ exp

(
BAm̂t +

1

2
BD (BD)′

))

= π̄2
(
exp

(
BAΣA′B′

)
− 1

)
exp

(
BΣB′

)

where we utilized formulas for the variance of a log normal variable.

Finally, observe that

E [πt] = π̄ exp

(
1

2
BΣB′

)

and therefore the normalized moments are

E [V art [πt+1]]

E [πt]
2 = exp

(
(BA)Σ (BA)′

) (
exp

(
BD (BD)′

)
− 1

)

V ar [Et [πt+1]]

E [πt]
2 = exp

(
BAΣA′B′

)
− 1

The matrices A,D are taken directly from Shimer (2010), since these emerge as solution to the

model. The matrix B has to be constructed by log-linearizing the marginal product of labor minus

the wage.
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C.2 Hall and Milgrom (2008)

Business cycle fluctuations in the model are driven by a productivity shock which follows a 5-state

Markov process with a transition matrix P . The authors provide values for wage and productivity in

each state of the five states on their website as the solution of hte model. It is then straightforward

to calculate the appropriate moments. Let π be the 5x1 vector of profit flow values πi = si − wi;

these are known as it is the solution of the model. Let p∗ be the stationary distribution asociated

with P . Then

Et [π] = Pπ, Et
[
π2

]
= Pπ2, E [π] = π′p∗

V art [π] = Pπ2 − (Pπ)2

E [V art [π]] =
(
Pπ2 − (Pπ)2

)
′

p∗

V ar [Et [π]] =
(
(π − Pπ)2

)
′

p∗

D Recursive preferences

The derivation in this section closely follows Bansal et al. (2014). Assuming that aggregate wealth

Wt is traded, the return Rwt+1 = exp
(
rwt+1

)
in (16) must satisfy the valuation restriction 1 =

Et
[
st+1R

w
t+1

]
. Under joint log-normality, this restriction can be rewritten as

Et [∆ct+1] = ψ log β + ψEt [rw,t+1]−
ψ − 1

γ − 1
Vt (24)

where Vt
.
= 1

2V art
[
log st+1 + rwt+1

]
is a measure of conditional variance in the model. The return

on aggregate wealth must also obey the usual budget constraint Wt+1 = (Wt − Ct)R
w
t+1. Denoting

wt = log (Wt/Ct) the logarithm of the wealth consumption ratio and log-linearizing around its

steady state value w̄, we obtain

rwt+1 = κ0 + wt+1 +∆ct+1 −
1

κ1
wt (25)

where κ0 and κ1 are log-linearization constants, in particular κ1 = (exp (w̄)− 1) / exp (w̄).

Solving this equation forward and imposing a transversality condition, we obtain

wt =

∞∑

j=0

κj1
(
∆ct+j+1 − rwt+j+1 + κ0

)
,

or, in terms of innovations,

ct+1 − Et [ct+1] = (Et+1 − Et)




∞∑

j=0

κj1r
w
t+j+1


− (Et+1 − Et)




∞∑

j=1

κj1∆ct+j+1


 . (26)
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To simplify notation, it is convenient to define

NC,t+1
.
= ct+1 − Et [ct+1] , NECF,t

.
= (Et+1 −Et)

[∑
∞

j=1 κ
j
1∆ct+j+1

]

NCF,t
.
= (Et+1 − Et)

[∑
∞

j=0 κ
j
1∆ct+j+1

]
, NV,t+1

.
= (Et+1 − Et)

[∑
∞

j=1 κ
j
1Vt+j

]

NR,t+1
.
= rwt+1 − Et

[
rwt+1

]
, NDR,t+1

.
= (Et+1 − Et)

[∑
∞

j=1 κ
j
1r
w
t+j+1

]
.

(27)

Then we can rewrite (26) as NCF,t+1 = NR,t+1 + NDR,t+1. This relationship states that since

the wealth-consumption ratio is assumed to be stationary in the present-value budget constraint,

the discounted long-run response of consumption, NCF,t+1, must be equal to the sum of responses

of current and future discounted returns on wealth, NR,t+1 + NDR,t+1. Using the asset pricing

relationship (24) to substitute out future consumption growth from (26), we obtain

NC,t+1 = NR,t+1 + (1− ψ)NDR,t+1 +
ψ − 1

γ − 1
NV,t+1. (28)

In order to operationalize the model of stochastic volatility, Bansal et al. (2014) assume a one-

factor linear structure for conditional volatility, imposed by (18). First, we can express Vt as a

function of innovations as

Vt =
1

2
V art [(1− γ)NCF,t+1 +NV,t+1]

where we used the specification of the stochastic discount factor (16). Second, assuming that

innovations to the long-run conditional variance, NV,t+1, are homoskedastic and orthogonal to

innovations to cash flows, we can write

Vt = c+
1

2
(1− γ)2 V art [NCF,t+1] .

where the constant term c = 1
2V ar [NV,t+1] is unimportant. Given the one-factor structure of

conditional variance, fluctuations in conditional variance of all variables will be proportional, and

hence

Vt = c+
1

2
χ (1− γ)2 V art [∆ct+1] .

The empirical strategy used in Bansal et al. (2014) is to normalize the measure of realized variance

included in the VAR so that its average is equal to the unconditional variance of consumption

growth, and then determine the constant χ as the ratio of the unconditional variance of long-run

and short-run consumption innovations,

χ = V ar [NCF,t+1] /V ar [NC,t+1] . (29)

Then we get

Vt = c+
1

2
χ (1− γ)2Et [RVt+1] = c+

1

2
χ (1− γ)2 ι′vφxXt.

To complete the model, we need to empirically identify the return on aggregate wealth, rwt+1. The
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idea is to assume that aggregate wealth consists of two components, financial wealth represented

by the stock market with return rdt+1, and human capital with cash flows given by the presented

discounted value of labor income, and return ryt+1. While ryt+1 is unobservable, we assume that the

expected return obeys

Et
[
ryt+1

]
= a+ b′Xt

where the vector b is inferred from relationship (28). In particular, we assume, as in Bansal et al.

(2014), that the vector Xt consists of

Xt =
(
∆ct,∆yt, r

d
t , wt, RVt

)
′

(30)

where ∆yt is the growth rate of real labor income and rdt is the real market return. Using the

VAR structure (17), we can express the innovations to economic variance and to current and future

market returns as

NV,t+1 =
1

2
χ (1− γ)2 ι′vQεt+1, Nd

R,t+1 = ι′rεt+1, Nd
DR,t+1 = ι′rQεt+1

where Q
.
= κ1φx (I − κ1φx)

−1 represents the cumulative long-run response matirx to innovation

εt+1. Further, we can use definitions (27) to express the innovation to future returns to human

capital as

Ny
DR,t+1 = b′φ−1

x Qεt+1, Ny
CF,t+1 = ι′y (I +Q) εt+1.

We can then use the equation that expresses the return to human capital, analogous to (25),

ryt+1 = κ0 + wyt+1 +∆yt+1 −
1

κ1
wyt

to infer that

Ny
R,t+1 = Ny

CF,t+1 −Ny
DR,t+1 = ι′y (I +Q) εt+1 − b′φ−1

x Qεt+1.

Finally, Bansal et al. (2014) approximate the return on aggregate wealth as a weighted average

of the market return and return on human capital, with fixed weight ω:

rwt = (1− ω) rdt + ωryt

which implies

NR,t+1 = (1− ω)Nd
R,t+1 + ωNy

R,t+1, NDR,t+1 = (1− ω)Nd
DR,t+1 + ωNy

DR,t+1. (31)

Equation (28) then implies that

ι′c = (1− ω) ι′r + ω
[
ι′y (I +Q)− b′φ−1

x Q
]
+ (1− ψ)

[
(1− ω) ι′rQ+ ωb′φ−1

x Q
]
+
ψ − 1

γ − 1

1

2
χ (1− γ)2 ι′vQ

= q0 + b′q1
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with

q0 = (1− ω) ι′r + ωι′y (I +Q) + (1− ψ) (1− ω) ι′rQ+
ψ − 1

γ − 1

1

2
χ (1− γ)2 ι′vQ (32)

q1 = −ωφ−1
x Q+ (1− ψ)ωφ−1

x Q

and hence b′ = (ι′c − q0) q
−1
1 . Finally, notice that the expression for b depends on χ, which is defined

in (29), and depend on the ratio of unconditional variances of NCF,t and NC,t. The former can be

computed from NCF,t+1 = NR,t+1+NDR,t+1 and (31). Iterating on b and χ yields the desired fixed

point.

From the above calculations, we can construct the stochastic discount factor (16) as

log st+1 − Et [log st+1] = −
θ

ψ
(∆ct+1 − Et [∆ct+1]) + (θ − 1) [rw,t+1 − Et [rw,t+1]]

= −
θ

ψ
NC,t+1 + (θ − 1)NR,t+1

=

(
−
θ

ψ
+ θ − 1

)
NR,t+1 −

θ

ψ
(1− ψ)NDR,t+1 −

θ

ψ

ψ − 1

γ − 1
NV,t+1

= −γNCF,t+1 +NDR,t+1 +NV,t+1 = ι′sεt+1

where

ι′s = −γι′c (I +Q) + (1− ω) ι′rQ+ ωb′φ−1
x Q+

1

2
χ (1− γ)2 ι′vQ

and

Et [log st+1] = θ log β −
θ

ψ
Et [∆ct+1] + (θ − 1)Et

[
rwt+1

]

= θ log β −
θ

ψ
ι′cφxXt + (θ − 1)Et

[
(1− ω) rdt+1 + ωryt+1

]

= θ log β −
θ

ψ
ι′cφxXt + (θ − 1) (1− ω) ι′rφxXt + (θ − 1)ω

(
a+ b′Xt

)

= θ log β + (θ − 1)ωa+

[
−
θ

ψ
ι′cφx + (θ − 1) (1− ω) ι′rφx + (θ − 1)ωb′

]
Xt

where a is not determined but we can set it to calibrate the average one-period real interest rate.

In particular,

logEt [st+1] = θ log β + (θ − 1)ωa+

[
−
θ

ψ
ι′cφx + (θ − 1) (1− ω) ι′rφx + (θ − 1)ωb′

]
Xt

+
1

2
ι′sV art [εt+1] ιs
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Consequently, knowing that V ar [εt+1] = E [V art [εt+1]] (since Et [εt+1] = 0), we have

E [logEt [st+1]] = θ log β + (θ − 1)ωa+

[
−
θ

ψ
ι′cφx + (θ − 1) (1− ω) ι′rφx + (θ − 1)ωb′

]
E [Xt]

+
1

2
ι′sV ar [εt+1] ιs

Since we know that

E [logEt [st+1]] = −E
[
logRft

]

and we can infer E [Xt] and V ar [εt+1] from the data, we obtain a. Further, in the one-factor

volatility model

V art [εt+1] =
ι′cV art [εt+1] ιc
ι′cV ar [εt+1] ιc

V ar [εt+1] =
Et [RVt+1]

E [RVt+1]
V ar [εt+1] =

ι′σXt

ι′σE [Xt]
V ar [εt+1]

and hence we can construct the conditional expectation logEt [st+1].

D.1 Alternative measures of conditional variance

Instead of using a measure of realized variance in (30), we also consider measures of conditional

variance from Jurado et al. (2015). In this case,

Xt =
(
∆ct,∆yt, r

d
t , wt, σ

2
t

)
′

and

NV,t+1 =
1

2
χ (1− γ)2 ι′σφ

−1
x Qεt+1

where ισ selects the variable σ2t from Xt. Consequently, (32) becomes

q0 = (1− ω) ι′r + ωι′y (I +Q) + (1− ψ) (1− ω) ι′rQ+
ψ − 1

γ − 1

1

2
χ (1− γ)2 ι′σφ

−1
x Q

while the rest of the calculation to obtain the vector b remains unchanged.

D.2 Market model specification

Bansal et al. (2014) also consider an alternative model where aggregate wealth is associated with

the value of the stock market.

E Conditional expectations in exponential-quadratic framework

In this appendix, we present formulas for conditional expectations in a general form of the exponential-

quadratic model used in the main text. The results are derived in Borovička and Hansen (2014)

where this model arises as an approximation for a class of dynamic stochastic general equilibrium

models constructed using a second-order series expansion.
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Let X = (X ′

1,X
′

2)
′ be an (n1+n2)×1 vector of states, W ∼ N(0, I) a k×1 vector of independent

Gaussian shocks, and Ft the filtration generated by (X0,W1, . . . ,Wt). We will show that given the

law of motion

X1,t+1 = Θ10 +Θ11X1,t + Λ10Wt+1 (33)

X2,t+1 = Θ20 +Θ21X1,t +Θ22X2,t +Θ23 (X1,t ⊗X1,t) +

+Λ20Wt+1 + Λ21 (X1,t ⊗Wt+1) + Λ22 (Wt+1 ⊗Wt+1)

and a process Mt = exp (Yt) whose additive increment is given by

Yt+1 − Yt = Γ0 + Γ1X1,t + Γ2X2,t + Γ3 (X1,t ⊗X1,t) + (34)

+Ψ0Wt+1 +Ψ1 (X1,t ⊗Wt+1) + Ψ2 (Wt+1 ⊗Wt+1) ,

we can write the conditional expectation of M as

logE [Mt | F0] =
(
Γ̄0

)
t
+

(
Γ̄1

)
t
X1,0 +

(
Γ̄2

)
t
X2,0 +

(
Γ̄3

)
t
(X1,0 ⊗X1,0) (35)

where
(
Γ̄i
)
t
are constant coefficients to be determined.

The dynamics given by (33)–(34) embed as a special case the VAR specification of the Markov

dynamics. In this case the state vector Xt is represented by X1,t in (33), and the vector X2,t is

empty.

E.1 Definitions

To simplify work with Kronecker products, we define two operators vec and matm,n. For an m×n

matrix H, vec (H) produces a column vector of length mn created by stacking the columns of H:

h(j−1)m+i = [vec(H)](j−1)m+i = Hij .

For a vector (column or row) h of length mn, matm,n (h) produces an m× n matrix H created by

‘columnizing’ the vector:

Hij = [matm,n(h)]ij = h(j−1)m+i.

We drop the m,n subindex if the dimensions of the resulting matrix are obvious from the context.

For a square matrix A, define the sym operator as

sym (A) =
1

2

(
A+A′

)
.

Apart from the standard operations with Kronecker products, notice that the following is true. For

a row vector H1×nk and column vectors Xn×1 and Wn×1

H (X ⊗W ) = X ′ [matk,n (H)]′W
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and for a matrix An×k, we have

X ′AW =
(
vecA′

)
′

(X ⊗W ) .

Also, for An×n, Xn×1, Kk×1, we have

(AX)⊗K = (A⊗K)X

K ⊗ (AX) = (K ⊗A)X.

Finally, for column vectors Xn×1 and Wk×1,

(AX)⊗ (BW ) = (A⊗B) (X ⊗W )

and

(BW )⊗ (AX) = [B ⊗A•j ]
n
j=1 (X ⊗W )

where

[B ⊗A•j ]
n
j=1 = [B ⊗A•1 B ⊗A•2 . . . B ⊗A•n] .

E.2 Conditional expectations

Notice that a complete-the squares argument implies that, for a 1× k vector A, a 1× k2 vector B,

and a scalar function f (w),

E [exp (B (Wt+1 ⊗Wt+1) +AWt+1) f (Wt+1) | Ft] = (36)

= E

[
exp

(
1

2
W ′

t+1 (matk,k (2B))Wt+1 +AWt+1

)
f (Wt+1) | Ft

]

= |Ik − sym [matk,k (2B)]|−1/2 exp

(
1

2
A (Ik − sym [matk,k (2B)])−1A′

)
Ẽ [f (Wt+1) | Ft]

where ·̃ is a measure under which

Wt+1 ∼ N
(
(Ik − sym [matk,k (2B)])−1A′, (Ik − sym [matk,k (2B)])−1

)
.

We start by utilizing formula (36) to compute

Ȳ (Xt) = logE [exp (Yt+1 − Yt) | Ft] =

= Γ0 + Γ1X1,t + Γ2X2,t + Γ3 (X1,t ⊗X1,t) +

+ logE

[
exp

([
Ψ0 +X ′

1t [matk,n (Ψ1)]
′
]
Wt+1 +

1

2
W ′

t+1 [matk,k (Ψ2)]Wt+1

)
| Ft

]

= Γ0 + Γ1X1,t + Γ2X2,t + Γ3 (X1,t ⊗X1,t)−

−
1

2
log |Ik − sym [matk,k (2Ψ2)]|+

1

2
µ′ (Ik − sym [matk,k (2Ψ2)])

−1 µ
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with µ defined as

µ = Ψ′

0 + [matk,n (Ψ1)]X1,t.

Reorganizing terms, we obtain

Ȳ (Xt) = Γ̄0 + Γ̄1X1,t + Γ̄2X2,t + Γ̄3 (X1,t ⊗X1,t)

where

Γ̄0 = Γ0 −
1

2
log |Ik − sym [matk,k (2Ψ2)]|+

1

2
Ψ0 (Ik − sym [matk,k (2Ψ2)])

−1 Ψ′

0

Γ̄1 = Γ1 +Ψ0 (Ik − sym [matk,k (2Ψ2)])
−1 [matk,n (Ψ1)] (37)

Γ̄2 = Γ2

Γ̄3 = Γ3 +
1

2
vec

[
[matk,n (Ψ1)]

′ (Ik − sym [matk,k (2Ψ2)])
−1 [matk,n (Ψ1)]

]
′

.

For the set of parameters P = (Γ0, . . . ,Γ3,Ψ0, . . . ,Ψ2), equations (37) define a mapping

P̄ = Ē (P) ,

with all Ψ̄j = 0. We now substitute the law of motion for X1 and X2 to produce Ȳ (Xt) =

Ỹ (Xt−1,Wt). It is just a matter of algebraic operations to determine that

Ỹ (Xt−1,Wt) = logE [exp (Yt+1 − Yt) | Ft] =

= Γ̃0 + Γ̃1X1,t−1 + Γ̃2X2,t−1 + Γ̃3 (X1,t−1 ⊗X1,t−1)

+Ψ̃0Wt + Ψ̃1 (X1,t−1 ⊗Wt) + Ψ̃2 (Wt ⊗Wt)

where

Γ̃0 = Γ̄0 + Γ̄1Θ10 + Γ̄2Θ20 + Γ̄3 (Θ10 ⊗Θ10) (38)

Γ̃1 = Γ̄1Θ11 + Γ̄2Θ21 + Γ̄3 (Θ10 ⊗Θ11 +Θ11 ⊗Θ10)

Γ̃2 = Γ̄2Θ22

Γ̃3 = Γ̄2Θ23 + Γ̄3 (Θ11 ⊗Θ11)

Ψ̃0 = Γ̄1Λ10 + Γ̄2Λ20 + Γ̄3 (Θ10 ⊗ Λ10 + Λ10 ⊗Θ10)

Ψ̃1 = Γ̄2Λ21 + Γ̄3

(
Θ11 ⊗ Λ10 +

[
Λ10 ⊗ (Θ11)•j

]n
j=1

)

Ψ̃2 = Γ̄2Λ22 + Γ̄3 (Λ10 ⊗ Λ10) .

This set of equations defines the mapping

P̃ = Ẽ
(
P̄
)
.
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E.3 Iterative formulas

We can write the conditional expectation in (35) recursively as

logE [Mt | F0] = logE

[
exp (Y1 − Y0)E

[
Mt

M1
| F1

]
| F0

]
.

Given the mappings Ē and Ẽ , we can therefore express the coefficients P̄ in (35) using the

recursion

P̄t = Ē
(
P + Ẽ

(
P̄t−1

))

where the addition is by coefficients and all coefficients in P̄0 are zero matrices.
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