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Abstract

We provide a rationale for nonlinear pricing under competition in the

absence of private information: The dominant firm can use unchosen offers

to constrain its rival’s possible deviations and extract more surplus from

the buyer. When the capacity of the rival firm is constrained, as compared

to linear pricing, the dominant firm can use the nonlinear pricing to par-

tially foreclose the rival and harm the buyer. By establishing an equivalence

between the subgame perfect equilibrium of our asymmetric competition

game and an optimal mechanism in a “virtual” principal-agent model, we

characterize the optimal nonlinear pricing.

Keywords: Nonlinear Pricing, Capacity Constraint, and Partial Fore-

closure.

JEL Code: L13, L42, K21

∗Chao: College of Business, University of Louisville (e-mail: yong.chao@louisville.edu); Tan:
Department of Economics, University of Southern California (e-mail: guofutan@usc.edu); Wong:
Department of Economics, Lingnan University (e-mail: adamwong@ln.edu.hk). We gratefully
acknowledge helpful comments from Sandro Brusco, Giacomo Calzolari, Jimmy Chan, Fei Li,
Giuseppe Lopomo, Preston McAfee, Alessandro Pavan, Huseyin Yildirim, Jidong Zhou, and
seminar participants at Caltech, SHUFE, UC Davis, UCSB, U of Hong Kong, USC, Zhejiang
U, UBC, U of Washington, UC Irvine, National Cheng Kung U, Chinese U of Hong Kong,
UIUC, U of Illinois, 2017 Triangle Microeconomics Conference, 2017 Workshop on Industrial
Organization and Management Strategy, Fall 2017 Midwest Economic Theory Conference, 2018
NSF/NBER/CEME Decentralization Conference, 2018 CRESS-JUFE Conference, 2018 ICIIE
Conference at NJU, and IO Workshop at U of St. Gallen.

1

 Electronic copy available at: https://ssrn.com/abstract=3314159 

mailto:yong.chao@louisville.edu
mailto:guofutan@usc.edu
mailto:adamwong@ln.edu.hk


1 Introduction

Nonlinear pricing (NLP)—–total price not necessarily proportional to the quan-

tity purchased—–is ubiquitous in intermediate-goods markets. It takes the form of

various rebates and discounts conditional on volumes purchased by a buyer. The

impact of NLP on competition is a hotly debated antitrust topic, especially when

the NLP is adopted by a dominant firm. Examples include three-part tariffs1 em-

ployed by Skelly Oil, Pacific, Microsoft,2 and all-units discounts3 used by Michelin,

British Airways, Canada Pipe, Tomra, Post Danmark, and Tetra Pak.4

The vast majority of antitrust cases involving NLP is Section 2/Abuse of Dom-

inance cases. By the very nature of abuse of dominance, a key feature shared by

those cases is the asymmetry : the asymmetry in the size of the firms involved, and

the asymmetry in terms of the complexity of pricing adopted by those asymmetric

firms. Specifically, in those cases, there is a firm that is considered as “dominant”

1A three-part tariff is a pricing scheme consisting of a fixed fee, a free allowance of units up
to which the marginal price is zero, and a positive per-unit price for additional demand beyond
that allowance. For literature on three-part tariffs, see Grubb (2009, 2012, 2015), Chao (2013),
and references therein.

2Magnus Petroleum Co., Inc. v. Skelly Oil Co., 599 F.2d 196 (1979).
Barry Wright Corp. v Pacific Scientific Corp., 555 F.Supp.1264 (1983).
United States v. Microsoft Corp., No. 94-1564 (D.D.C. filed July 15, 1995); Baseman, Warren-

Boulton, and Woroch (1995).
3All-units discounts refer to a pricing practice that lowers the per-unit price on all units once

the buyer’s purchase crosses a volume threshold. For literature on all-units discounts, see Kolay,
Shaffer, and Ordover (2004), Feess and Wohlschlegel (2010), O’Brien (2017), Chao, Tan, and
Wong (2018a,b), and references therein.

4Case COMP/E-2/36.041/PO-Michelin, Commission Decision of 20 June 2001. Case T-
203/01, Manufacture Française des Pneumatiques Michelin v. Commission of the European
Communities supported by Bandag Inc., Judgement of the Court of First Instance of 30 Septem-
ber 2003. See Motta (2009) for discussion of this case.

Case C-95/04, British Airways plc v. Commission of the European Communities supported by
Virgin Atlantic Airways Ltd., Judgment of the European Court of Justice, March 2007.

Canada (Commissioner of Competition) v Canada Pipe Co, 2006 FCA 233, (2007) 2 FCR.
EC, Commission Decision of 29 March 2006 relating to proceedings under Article 82 [EC]

and Article 54 of the EEA Agreement (Case COMP/E-1/38.113 – Prokent-Tomra) [2006] OJ, C
734/07; Tomra Systems and Others v Commission, T-155/06 [2010] ECR II-4361; Tomra Systems
ASA and Others v Commission, C-549/10 P, [2012] ECR I-0000.

Case C-23/14, Post Danmark A/S v. Konkurrencer̊adet, ECLI:EU:C:2015:651.
On November 16, 2016, the then State Administration of Industry and Commerce of China

fined Tetra Pak for abusing its dominance between 2009 and 2013 in China’s aseptic packaging
market. One of the alleged abusive practices was to exclude and limit competition through its
all-units discounts. See Chao and Tan (2017), and Fu and Tan (2018) for discussions on this
case.
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in market share, capacity, product lines, profits, and so on. And there is one or

several smaller firms that have limited capacity, narrower product lines, or lim-

ited distribution channels. Moreover, the “dominant” firm typically offers more

complex pricing schemes (e.g., rebates/discounts conditional on volumes) than its

rival. In the foregoing cases, to name a few, Microsoft, Canada Pipe, Tomra and

Tetra Pak are considerably larger than their rival firms, and they design complex

NLP whereas their small rivals usually utilize simple linear pricing (LP).

To capture the above stylized facts of the asymmetries and propose a new

rationale of NLP with minimal information requirement, we consider the following

model with complete and perfect information. There are two firms, a dominant

firm and a minor firm. Both firms can produce a homogeneous product at a

constant marginal cost. However, the minor firm is capacity constrained. There is

a representative downstream buyer who may purchase the product from one or both

firms. We consider a three-stage game in which the dominant firm offers a general

NLP schedule first and then the minor firm responds with a per-unit price, followed

by the buyer choosing her purchases from both firms. We characterize subgame

perfect equilibrium (SPE) outcomes of the game, and study the properties of the

dominant firm’s optimal NLP and the implications of the equilibrium outcomes.

It appears that, in our complete and perfect information game, a singleton

quantity-payment offer (also known as a bundle) would be sufficient and optimal

for the dominant firm. After all, there is only one buyer and no uncertainty

regarding her demand.5 Thus, there can be only one quantity purchased by her

from the dominant firm in equilibrium, regardless of how many quantities offered

by the dominant firm. However, we show in Section 4 that, by offering multiple

bundles to a single buyer, the dominant firm can increase its profit, even though

in equilibrium, only one bundle will be chosen.

The intuition for why the dominant firm can improve its profit by offering

unchosen bundles to a single buyer is that those extra bundles provide the buyer

with extra options. Such extra options, as the buyer’s latent choices, constrain the

minor firm’s possible deviations of undercutting the dominant firm. Therefore, the

unchosen bundles help the dominant firm better manipulate competition against its

5Klemperer and Meyer (1989) show that, as a response to demand uncertainty, firms may be
forced to offer a supply function against a range of possible states.
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small rival and extract more surplus from the buyer. As it turns out, the dominant

firm’s profit maximization requires a continuum of bundles, and the minimal set

of such optimal bundles entails a schedule of strictly increasing marginal prices for

increments of the buyer’s purchases, albeit the average prices could be decreasing.

We thus contribute to the literature of nonlinear pricing by providing a novel

explanation for a menu of offers conditional on volumes under duopoly in the

absence of private information.

As compared to contracts that reference rivals, e.g., market-share discounts,6 a

NLP schedule conditional on the supplier’s own volume sales, such as a quantity

discount scheme, is often regarded as more likely to be efficiency-enhancing. Nev-

ertheless, our results suggest that, the antitrust scrutiny for the own volume-based

NLP schedule employed by a dominant undertaking is warranted, for different

reasons depending on the extent of the dominance.7 If the dominance is very

prominent (i.e., the capacity of the minor firm is small), then, as compared to LP

schemes, the NLP adopted by the dominant firm reduces the price, sales, and prof-

its of the minor firm as well as the buyer’s surplus. This is because when the minor

firm’s capacity is limited, the dominant firm enjoys a significant non-contestable

demand, and can use that demand as a stake to tie part of the contestable de-

mand with it through a NLP schedule. This results in a partial foreclosure to the

minor firm and meanwhile hurts buyer. By contrast, if the dominance is limited

(i.e., the capacity of the minor firm is large), then the adoption of NLP can soften

the competition and thus increase the minor firm’s profits and reduce both the

buyer’s surplus and total surplus. In this case, the dominant firm’s priority be-

comes to prevent the minor firm from undercutting. So now NLP is detrimental

to competition not because it forecloses the minor firm, but because it acts as a

competition-softening device and harms the buyer and social efficiency.

Furthermore, we have a methodological contribution of demonstrating a “mech-

anism design approach” to solving SPE outcomes. As we will point out in Section

3, it is considerably difficult to solve the optimal NLP schedule in our game by

6Majumdar and Shaffer (2009), Mills (2010), Calzolari and Denicolò (2013) and Chen and
Shaffer (2014) study market-share discounts under competition.

7Calzolari and Denicolò (2011) show that, if two firms, competing for consumers who are
privately informed about the demand, are highly asymmetric, then quantity discounts can hurt
smaller firms and consumers.
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applying the standard backward induction procedure, essentially because the dom-

inant firm’s action space is a functional space. Nonetheless, in Subsection 5.1 we

transform the problem of determining SPE outcomes into a mechanism design

problem with hidden action and hidden information that can be solved by mech-

anism design techniques. Generally, for games where there is a single first mover

whose action space is a functional space and all the followers’ action spaces are

much simpler, one can apply our mechanism design approach to transform the

problem of solving equilibrium outcomes into a more tractable mechanism design

(constrained optimization) problem.8

To understand our transformation, it is important to keep in mind two features

of our model: first, the dominant firm’s NLP schedule is contingent on its own

sales, so that the dominant firm has direct control on the quantity it sells to and

the payment it receives from the buyer (but not on, say, its competitor’s sales nor

price); second, the buyer makes her purchase decision after seeing the minor firm’s

price, and the minor firm makes its price decision after seeing the dominant firm’s

NLP schedule. Thus, we can imagine that the dominant firm, instead of offering a

NLP schedule, on one hand recommends the minor firm what price to charge, and

on the other hand offers the buyer a selling mechanism. Such a mechanism requires

the buyer to report the minor firm’s price right after she sees it, and commits on

how the quantity the buyer receives and the payment she makes depend on her

report. In the spirit of the Revelation Principle, the restrictions imposed by SPE

in the minor firm-buyer subgame can be captured as incentive compatibility and

individual rationality constraints for the buyer, and an obedience constraint for the

minor firm. The dominant firm designs the optimal recommendation and selling

mechanism subject to the above constraints. Finally, after solving this constrained

optimization problem, the optimal selling mechanism can be transformed back to

an optimal NLP for the dominant firm. More succinctly, we transform our original

problem into a “virtual” principal-agent problem that involves treating the minor

firm’s (an agent’s) price as its hidden action meanwhile letting the buyer (another

agent) to report the minor firm’s price as her private information to the dominant

firm (the principal). After the transformation, we can apply mechanism design

8For example, our mechanism design approach can be applied to transforming alternative
games where (i) there are multiple minor firms and multiple buyers, and/or (ii) the minor firms
and buyers have private information.
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techniques to characterize the optimal NLP for the dominant firm.

Related Literature. In the literature, NLP is usually considered as a screen-

ing device in the presence of buyers’ private information, e.g., Maskin and Riley

(1984). The Revelation Principle indicates that a monopolist can without loss

adopt a direct revelation selling mechanism (i.e., quantity-payment pairs condi-

tional on reported types). In the absence of a buyer’s private information, a direct

revelation selling mechanism for the buyer reduces to a single bundle (i.e., one

quantity-payment pair). By contrast, we show that the dominant firm in our

setting, competing with a minor follower, has incentives to offer a NLP with a

continuum of bundles. Our Equivalence Theorem (Theorem 1) shows how the idea

of the Revelation Principle can be extended to our setting to greatly facilitate the

equilibrium analysis.

Our setting has some similarities to sequential common agency when the two

firms are regarded as principals and the buyer a common agent. The literature of

common agency is large, both in theory and applications. It initially deals with

simultaneous common agency, which in our context means that the two firms make

offers simultaneously; the literature on sequential common agency is fast growing

in recent years.9 However, because in our setting the second-mover firm only offers

LP, our analysis is very different from the analysis of sequential common agency. In

fact, as it will be clear later, in our setting it is the best to view the first-mover firm

as the only principal, whereas both the second-mover firm and the buyer should

be regarded as two agents.

Unlike the existing literature on exclusionary contracts, we show that partial

foreclosure resulting from NLP arises under complete information with one buyer.

Thus, our exclusionary story does not need discoordinated buyers like in Rasmusen,

Ramseyer, and Wiley (1991) and Segal and Whinston (2000). There is only one

buyer in our model, so it is devoid of downstream competition in Simpson and

Wickelgren (2007) and Asker and Bar-Isaac (2014). For the NLP contracts to

have exclusionary effects in Aghion and Bolton (1987) and Choné and Linnemer

(2016), it is necessary to have uncertainty about the minor firm’s cost or demand.

We instead provide an exclusionary theory in the absence of uncertainty.

9See, for example, Martimort (2006); Pavan and Calzolari (2009, 2010) for a literature review
on common agency.
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Several studies examine optimal pricing within specific classes of simple non-

linear pricing under asymmetric competition like in our setting. Chao (2013)

considers the competitive impact of a three-part tariff employed by a leading firm.

Chao, Tan, and Wong (2018a,b) study the impact of all-units discounts with one

threshold. The current paper extends the analyses there to determine the general

optimal NLP.

The remainder of the paper is organized as follows. In Section 2, we set up our

model of asymmetric competition in intermediate-goods markets. Section 3 exam-

ines the buyer’s problem and points out difficulties in applying standard backward

induction procedure. Section 4 demonstrates how an extra unchosen price-quantity

bundle can improve the dominant firm’s profit, albeit it will not be chosen in equi-

librium. Subsection 5.1 establishes an equivalence between a SPE of the game and

an optimal mechanism in a “virtual” principal-agent model with hidden action

and hidden information. Subsection 5.2 characterizes the equilibrium outcome of

our original game. Section 6 derives the characterization by solving the “virtual”

principal-agent model. Other equilibrium properties and implications (including

the qualitative features of the dominant firm’s optimal NLP, comparative statics,

and the impact of NLP on competition) are discussed in Section 7. Section 8

concludes. Proofs are relegated to an Appendix.

2 Model

There are two firms, firm 1 and firm 2, that produce identical products, and one

buyer (or downstream firm) for the product. To capture a notion of dominance,

we allow for a possible capacity asymmetry between the two firms. In particular,

firm 1, as a dominant firm, can produce any quantity at a unit cost c ≥ 0. Firm 2,

as a possibly smaller firm, has a capacity k ∈ (0,∞], up to which it can produce

any quantity at the same unit cost c. If the buyer chooses to buy Q ≥ 0 units

from firm 1 and q ∈ [0, k] units from firm 2, her payoff is the gross benefit given

by u(Q+ q), less the payments to the two firms.

We consider a three-stage game as follows. First, firm 1 offers a nonlinear tariff

τ(·), which specifies the payment τ(Q) ∈ R ∪ {∞} that the buyer has to make
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if she chooses to buy Q units from firm 1,10 with the restriction that τ(0) ≤ 0.

Second, after observing τ(·), firm 2 offers a unit price p ≥ c (up to k units). Third,

after observing τ(·) and p, the buyer chooses the quantities she buys from the two

firms. This is a sequential-move game with complete and perfect information. We

use the equilibrium concept of (pure-strategy) SPE.

We say a tariff is regular if the subgame after firm 1 offers such a tariff has

some SPE.11 The set of feasible tariffs firm 1 can choose from, denoted as T , is

the collection of τ : R+ → R ∪ {∞} that is regular and satisfies τ(0) ≤ 0.12 Also

denote the set of feasible unit prices firm 2 can choose from as P ≡ [c,∞).

A SPE is composed of a firm 1’s strategy τ ∗ ∈ T , a firm 2’s strategy p∗ : T → P ,

and a buyer’s strategy q∗ : T × P → R+ × [0, k], such that

q∗(τ, p) ∈ argmax
(Q,q)∈R+×[0,k]

{u(Q+ q)− pq − τ(Q)} ∀(τ, p) ∈ T × P , (1)

p∗(τ) ∈ argmax
p∈P

{(p− c)q∗2(τ, p)} ∀τ ∈ T , (2)

τ ∗ ∈ argmax
τ∈T

{τ(q∗1(τ, p∗(τ)))− cq∗1(τ, p∗(τ))} . (3)

We make the following regularity assumptions and definitions.

Assumption 1. u : R+ → R is twice continuously differentiable, satisfies u(0) =

0, u′′(·) < 0, u′(0) > c, and there exists a unique qe ∈ (0,∞) such that u′(qe) = c.

Denote the quantity demanded by the buyer at any per-unit price p as D(p) ≡
argmaxq≥0 {u(q)− pq}, and the monopoly profit at p as π(p) ≡ (p − c)D(p). As-

sumption 1 implies that D(·) and π(·) are continuously differentiable on [c, u′(0))

and D(·) is strictly decreasing on [c, u′(0)].

We call max{D(·)−k, 0} firm 1’s captive (or non-contestable) demand function.

From firm 1’s point of view, this portion of the total demand D(·) is not subject

to any threat of competition from firm 2, due to the latter’s capacity constraint.

In the Q-p space, we let

Φ ≡ {(Q, p) ∈ R+ × P : D(p)− k ≤ Q ≤ D(p)} (4)

10τ(Q) =∞ means that purchasing Q units is not allowed.
11It can be shown that any lower semicontinuous tariff is regular.
12By definition, if we allow firm 1 to choose an irregular tariff, then the whole game has no

SPE.
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denote the region between the original demand and the captive demand curves. In-

tuitively, Φ represents the competitive (or contestable) portion of the total demand.

Note that qe = D(c) is the welfare-maximizing quantity. If k ≥ qe, effectively firm

2 does not have capacity constraint.

Assumption 2. π(·) is strictly concave on [c, u′(0)].

Assumption 2 implies that there is a unique optimal monopoly price pm ≡
argmaxp π(p) ∈ (c, u′(0)) given by π′(pm) = 0.

3 Buyer’s Problem

Since our game is a sequential-move complete and perfect information one and

we try to determine its SPE outcome, the standard backward induction method

requires us to sequentially solve the buyer’s problem (1), firm 2’s problem (2), and

firm 1’s problem (3), which turns out to be an unmanageable task. Specifically,

given arbitrary τ ∈ T and p ∈ P , a general characterization of the solution to the

buyer’s problem (1) is not available, since firm 1’s offer τ is an endogenous function

to be determined in firm 1’s problem (3). But without a general explicit solution

to (1), it is difficult, if not impossible, to solve (2) and (3). Thus the standard

procedure of backward induction cannot be applied to our game.

We shall transform our original task of solving (1), (2), and (3) into a mecha-

nism design problem, which allows us to determine the SPE outcomes. As a first

step of the transformation, we introduce two important functions: V (Q, p) and

π(Q, p).

Let V (Q, p) denote the buyer’s conditional payoff if she is endowed with Q

units and can buy at most k more units at price p, i.e.,

V (Q, p) ≡ max
q∈[0,k]

{u(Q+ q)− pq} . (5)

Given the two firms’ offers τ ∈ T and p ∈ P , we can decompose the buyer’s

maximization problem (1) into two sub-problems: (i) for any given Q, the buyer

chooses q from firm 2 by solving (5); (ii) the buyer chooses Q from firm 1, i.e.,

max
Q≥0
{V (Q, p)− τ(Q)} . (6)

9

 Electronic copy available at: https://ssrn.com/abstract=3314159 



Although the sub-problem (ii) still does not permit a ready solution without know-

ing τ , the sub-problem (i) is well behaved and tractable: the problem in (5) has a

unique maximizer given by13

Proj[0,k](D(p)−Q) ≡ max {min {D(p)−Q, k} , 0} , (7)

and, by the Envelope Theorem, V (Q, p) has the following properties.

Lemma 1. For every (Q, p) ∈ R+ × P,

Vp(Q, p) = −Proj[0,k](D(p)−Q), (8)

VQ(Q, p) = u′(Proj[Q,Q+k](D(p))) = Proj[u′(Q+k),u′(Q)](p), (9)

VQp(Q, p) = VpQ(Q, p) =

1 if D(p)− k < Q < D(p)

0 if Q < D(p)− k or Q > D(p)
. (10)

Note that, from (10), V satisfies weak increasing differences. Moreover, such

property of increasing differences is strict in the region Φ.

Let π(Q, p) denote firm 2’s conditional profit given that the buyer purchases

Q units from firm 1 and firm 2 charges price p, i.e.,

π(Q, p) ≡ (p− c) Proj[0,k](D(p)−Q). (11)

4 Why an Unchosen Bundle Helps

Before we characterize firm 1’s optimal general tariff τ(·), let us first look at a spe-

cific nonlinear tariff—a finite number of bundles, each characterized by a quantity

and a payment.14

Our starting point will be the simplest one, a one-bundle offer, which people

might think as optimal for firm 1. After all, there is only one buyer and there

is no demand uncertainty, so there can be only one quantity that the buyer will

13For any closed interval X ⊂ R and any point x ∈ R, let ProjX(x) denote the projection of x
on X, that is, argminy∈X |y − x|.

14All the results in later sections do not logically rely on this section. The purposes of this
section are providing insights and helping intuitive understanding.
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purchase from firm 1 in equilibrium, regardless how many quantities offered by

firm 1. Nevertheless, as we shall see, firm 1 can strictly improve its profit over its

optimal profit level in the “one-bundle equilibrium,” by offering an extra bundle

which will not be chosen in equilibrium.

4.1 Optimal One-Bundle Offer

In this section, we show how the optimal one-bundle offer is determined. Consider

any bundle (Q, T ), where Q ≥ 0 denotes its bundle quantity and T ∈ R denotes

its bundle price. Given that firm 1 offers (Q, T ), the buyer may accept or reject it,

after seeing firm 2’s price offer p. If the buyer accepts (Q, T ), the buyer’s surplus

is V (Q, p)− T ; otherwise it is V (0, p). Provided Q > 0, the increasing differences

property (10) of V implies that the curve V (Q, p)−T , drawn against p, must cross

only once the curve V (0, p) from below, as shown in Figure 1(a). It follows that

the buyer’s acceptance/rejection decision is a cut-off policy: there exists a cut-off

x such that the buyer accepts (Q, T ) if p > x and rejects (Q, T ) if p ≤ x, where x

is determined by

V (Q, x)− T = V (0, x). (12)

If the buyer accepts the bundle (Q, T ) from firm 1, she would buy Proj[0,k](D(p)−
Q) from firm 2; otherwise she would buy D(p) solely from firm 2. Then, firm 2’s

profit, as a function of p, consists of two pieces asπ(0, p) if p ≤ x

π(Q, p) if p > x
,

as shown in Figure 1(c). Since firm 1 has positive sales if and only if it can induce

firm 2 to set p > x, firm 1 must ensure

max
p>x

π(Q, p) ≥ max
p≤x

π(0, p). (13)

The optimal bundle (Q∗, T ∗) and cut-off x∗ in a “one-bundle equilibrium” must

solve the following firm 1’s optimization problem

Maximize
Q,T

{T − c ·Q s.t. (12) and (13)} . (14)
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(a) Buyer’s Surplus (BS) under One Bundle (b) Buyer’s Surplus (BS) under Two Bundles

(c) Firm 2’s Profit (Π2) under One Bundle (d) Firm 2’s Profit (Π2) under Two Bundles

Figure 1: One Bundle versus Two Bundles

Using the constraint (12) to eliminate T , firm 1’s profit can be written as

Π1 = T − c ·Q = V (Q, x)− V (0, x)− c ·Q.

In equilibrium firm 1’s sales must be positive, i.e., Q∗ > 0. To maximize V (Q∗, x)−
V (0, x) − c · Q∗, x should be made as large as possible, because of the increasing

differences property (10) of V . Consequently, at the optimal bundle (Q∗, T ∗), the

competitive constraint (13) from firm 2 must be binding, i.e., π(Q∗, p∗) = π(0, x∗),

where p∗ ∈ argmaxp>x∗ π(Q∗, p) is firm 2’s equilibrium price. Figure 1(c) illustrates

it. Also note that, at the optimum, x∗ ∈ (c, p∗).
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4.2 Adding an Unchosen Bundle to Improve

We now, given the optimal one-bundle offer (Q∗, T ∗) and the corresponding cut-off

x∗, construct one extra bundle to relax the originally binding no-deviation con-

straint (13) for firm 2. As a result, firm 1 can strictly improve its profit over

Π∗1 ≡ T ∗ − c ·Q∗ with the extra bundle.

We show the profitable improvement through the following two steps.

Step 1: Add an extra unchosen bundle.

Pick any Q1 ∈ (0, Q∗), and let T1(ε) = V (Q1, x
∗)−V (0, x∗)− ε for ε ≥ 0. From

the increasing differences property (10) of V , the solid red curve V (Q1, p)− T1(ε),

drawn against p, must cross once and only once the solid black curve V (0, p) (the

solid blue curve V (Q∗, p)−T ∗) from below at x0(ε) (above at x1(ε)), as illustrated

in Figure 1(b). Here x0(ε) and x1(ε) are given by

V (Q1, x0(ε))− T1(ε) = V (0, x0(ε)), (15)

V (Q1, x1(ε))− T1(ε) = V (Q∗, x1(ε))− T ∗. (16)

Now, if firm 1 offers both bundles (Q1, T1(ε)) and (Q∗, T ∗), the buyer would pick

the large bundle (Q∗, T ∗) when firm 2’s price is above x1(ε), and would pick the

small one (Q1, T1(ε)) when firm 2’s price is between x0(ε) and x1(ε), and would

not pick any bundle from firm 1 when firm 2’s price is below x0(ε).

Accordingly, firm 2’s profit, as a function of p, consists of three pieces as
π(0, p) if p ≤ x0(ε)

π(Q1, p) if x0(ε) < p ≤ x1(ε)

π(Q∗, p) if p > x1(ε)

,

as shown in Figure 1(d). If firm 1 wants to induce the buyer to still choose the

bundle (Q∗, T ∗), firm 1 must ensure firm 2 to set p > x1(ε), i.e.,

max
p>x1(ε)

π(Q∗, p) ≥ max
p≤x0(ε)

π(0, p) (17)

and

max
p>x1(ε)

π(Q∗, p) ≥ max
x(ε)<p≤x1(ε)

π(Q1, p). (18)
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Thus, by offering an extra bundle, firm 1 breaks firm 2’s profit function from two

pieces to three pieces, and hence replaces constraints (12) and (13) with (15), (16),

(17), and (18).15

Interestingly, while the original no-deviation constraint (13) for firm 2 is bind-

ing, after adding the extra bundle, the new ones (17) and (18) are non-binding, pro-

vided ε > 0 is small enough. This can be seen from Figure 1(d). Since c < x∗ < p∗,

for small ε > 0 we have c < x0(ε) < x∗ < x1(ε) < p∗, as in Figure 1(d). Then,

max
p>x1(ε)

π(Q∗, p) = π(0, x∗) > π(0, x0(ε)) = max
p≤x0(ε)

π(0, p).

So (17) is not binding. In addition, because π(Q1, x
∗) < π(0, x∗), when ε > 0 is

small enough, we have x1(ε) close enough to x∗, so that π(Q1, x1(ε)) < π(0, x∗). It

follows that

max
p>x1(ε)

π(Q∗, p) = π(0, x∗) > π(Q1, x1(ε)) = max
x(ε)<p≤x1(ε)

π(Q1, p).

So (18) is not binding, either.

Step 2: Improve profit by increasing the price of the original chosen bundle.

Since now (17) and (18) are non-binding, firm 1 will be able to strictly increase

its profit by increasing the price of the chosen Q∗-bundle from T ∗ to T2(δ) = T ∗+δ

with small δ > 0. After that, the x0(ε) defined by (15) is unaffected; the x1(ε)

defined by (16) is now replaced by x1(ε, δ), which is given by

V (Q1, x1(ε, δ))− T1(ε) = V (Q∗, x1(ε, δ))− T ∗ − δ.

As δ > 0 is small, x1(ε, δ) is close to x1(ε), so that, first, x1(ε, δ) < p∗, and

second, (17) and (18) still hold strictly. Accordingly, firm 2 still charges p = p∗

and the buyer still picks the Q∗-bundle, but now pays firm 1 a higher bundle price

T2(δ) > T ∗.

15When ε = 0, the curve V (Q1, p)− T1(0) (the dashed red curve in Figure 1(b)) crosses both
V (0, p) and V (Q∗, p) − T ∗ at x∗, thereby x0(0) = x1(0) = x∗. Hence (15) and (16) reduce to
(12); (17) and (18) reduce to (13).
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4.3 Summary

From the above analysis, we see that firm 1 can improve its profit by offering the

buyer an extra bundle and raising the price of the chosen bundle. (Of course, at

the optimum firm 1 may also adjust the size of the chosen bundle.) The intuition

is: such extra unchosen bundle, as the buyer’s latent choice, reduces the temptation

for firm 2 to cut price. Indeed, in Figure 1(c), without the extra bundle, if firm

2 cuts its price to x∗, the buyer no longer buys from firm 1, and the resulting

increase in firm 2’s sales makes firm 2 indifferent between cutting to x∗ and not;

in contrast, in Figure 1(d), with the extra bundle, if firm 2 cuts its price to x∗, the

buyer still buys the small bundle from firm 1, and the resulting increase in firm

2’s sales would be so limited that firm 2’s profit would strictly decrease; if firm 2

wants the buyer not to buy even the small bundle from firm 1, the necessary price

cut would be so deep that, once again, firm 2’s profit would strictly decrease. Firm

1 can then raise the price of the chosen bundle without triggering firm 2’s price

cut.

Also, it is worth noting that in the above construction we require Q1 < Q∗

because the extra bundle is meant to be chosen after some firm 2’s price cutting,

which induces the buyer to buy less from firm 1. In fact, adding an extra bundle

that is larger than the chosen one can never improve firm 1’s profit. Another

important observation is that, at the optimum, the no-deviation constraints for

firm 2 (i.e., (17) and (18)) must be binding, for otherwise there is still room for

firm 1 to raise its profit.16

All these qualitative features extend to the case where firm 1 is allowed to offer

more than two bundles. When more bundles are allowed, firm 2’s profit curve is

cut into more pieces, which relax firm 2’s no-deviation constraints and allow firm 1

to increase its profit even further. In general, if n bundles are allowed, there are n

no-deviation constraints for firm 2, which must be all binding at the optimum. As

we shall see in the following section, firm 1’s optimal NLP involves a continuum

of quantities for the buyer to choose from, corresponding to a range of firm 2’s

no-deviation constraints that must be binding at the optimum.

16If (18) is slack, firm 1 may further raise the price of the chosen bundle (keeping the price of
the smaller bundle unchanged), which increases x1 and keeps x0 unchanged and thus (17) intact.
If (17) is slack, firm 1 may raise the prices of both the chosen and the smaller bundles by the
same amount, which increases x0 and keeps x1 unchanged and thus (18) intact.
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5 Equilibrium

As we argued in Section 3, it is difficult to apply the standard procedure of back-

ward induction to solve the SPE. In this section, we transform the original problem

into an equivalent mechanism design problem, which allows us to characterize the

SPE outcomes.

5.1 Equivalence between the SPE and a Mechanism Design

Problem

Observe that, for any given tariff τ ∈ T , the buyer will optimally choose some

purchase Q(p) ≥ 0 from firm 1, contingent on any possible price p ∈ P chosen by

firm 2. The payment for this purchase is thus τ(Q(p)) ≡ T (p). So the buyer enjoys

a net surplus V (Q(p), p)−T (p). Given that the buyer’s optimal purchase from firm

1 is Q(p), and hence the optimal purchase from firm 2 is Proj[0,k](D(p)−Q(p)), firm

2 would optimally choose some price p̄ ∈ P , i.e., to maximize its profit π(Q(p), p).

Virtually, we have a one-principal-two-agent model, in which firm 1 (the principal)

offers a direct revelation mechanism Q : P → R+ and T : P → R to the buyer

(Agent 1), and recommends a price p̄ ∈ P for firm 2 (Agent 2).

In the spirit of the Revelation Principle, imagining firm 1 asks the buyer to

report firm 2’s price, solving the SPE for the whole game is equivalent to solving

the following constrained optimization problem (OP):

Maximize
Q(·),T (·),p̄

T (p̄)− c ·Q(p̄) (OP)

subject to

V (Q(p), p)− T (p) ≥ V (Q(p̃), p)− T (p̃) ∀p, p̃ ∈ P (B-IC)

V (Q(p), p)− T (p) ≥ V (0, p) ∀p ∈ P (B-IR)

π(Q(p̄), p̄) ≥ π(Q(p), p) ∀p ∈ P . (F2-IC)

Constraint (B-IC) is the incentive compatibility constraint for the buyer, i.e.,

the buyer has incentive to report firm 2’s price truthfully. Constraint (B-IR)

is the individual rationality constraint for the buyer, i.e., the buyer is willing

to participate in the mechanism rather than obtaining nothing from and paying
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nothing to firm 1 (and single-sourcing from firm 2). Constraint (F2-IC) is the

incentive compatibility constraint for firm 2, i.e., firm 2 has an incentive to charge

the recommended price p̄, understanding that the buyer will always report its price

truthfully. Finally, the objective function of (OP) is firm 1’s profit provided firm

2 follows the recommendation p̄ and the buyer reports truthfully.

The equivalence between the SPE and the optimization problem (OP) is estab-

lished in the following theorem.

Theorem 1 (Equivalence). Take any Q∗ : P → R+, T ∗ : P → R, and p̄∗ ∈ P.

(Q∗(·), T ∗(·), p̄∗) is a solution of (OP) if and only if there is a SPE (τ ∗, p∗, q∗) such

that

Q∗(p) = q∗1(τ ∗, p) ∀p ∈ P , (19)

Proj[0,k](D(p)−Q∗(p)) = q∗2(τ ∗, p) ∀p ∈ P , (20)

T ∗(p) = τ ∗(Q∗(p)) ∀p ∈ P , (21)

p̄∗ = p∗(τ ∗). (22)

By virtue of Theorem 1, we reduce our task of finding the SPE to determining

the solution to (OP). The optimization problem (OP) can be solved with the help

of mechanism design techniques and some nice diagrams in Section 6; its solution

can then be transformed back to characterize the SPE outcomes.

5.2 Characterization of the SPE

In this subsection we state our final characterization results and postpone the

derivations to Section 6, so that reader not interested in the derivations may skip

Section 6 and jump to the equilibrium implications in Section 7.

The following theorem establishes the existence and provides characterization

of the SPE.

Theorem 2 (SPE). There exists at least one SPE. In any SPE, the following

holds:
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(a) Firm 2’s equilibrium price p̄ ∈ (c, pm) solves17

− (p̄− c)D′(p̄) =
1

e
min

{
D

(
c+

p̄− c
e

)
, k

}
, (23)

and firm 2’s equilibrium profit Π2 is given by

Π2 = (p̄− c)(D(p̄)− π′(p̄)) = −(p̄− c)2D′(p̄) > 0. (24)

(b) Given firm 1’s equilibrium tariff, firm 2 is indifferent between charging its

equilibrium price p̄ and deviating to any p ∈ [x0, p̄), where

x0 = c+
p̄− c
e
∈ (c, p̄). (25)

(c) If firm 2 charges a (possibly off-equilibrium) price p within the interval

[x0, p̄], the buyer would purchase Q(p) from firm 1 and D(p) − Q(p) from firm 2,

where Q(·) on [x0, p̄] is a strictly increasing function given by

Q(p) = D(p)− Π2

p− c
∀p ∈ [x0, p̄]. (26)

In particular, the buyer’s equilibrium purchase from firm 1 is

Q̄ = Q(p̄) = π′(p̄) ∈ (max{D(p̄)− k, 0}, D(p̄)) (27)

and her equilibrium purchase from firm 2 is D(p̄) − Q̄ ∈ (0, k); if firm 2 deviates

to x0, the buyer’s (off-equilibrium) purchase from firm 1 would be

Q0 = Q(x0) = max{D(x0)− k, 0} < Q̄. (28)

(d) Firm 1’s optimal tariff τ(·) on [Q0, Q̄] is given by

τ(Q) = u(Q0 + k)− u(k) +

∫ Q

Q0

x(Q̃)dQ̃ ∀Q ∈ [Q0, Q̄], (29)

where x(·) on [Q0, Q̄] is the inverse of Q(·) on [x0, p̄].

17e denotes the base of natural logarithm, which is approximately 2.71828.
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Noticeably, (26) implies that firm 2’s profit (p− c)(D(p)−Q(p)) is a constant

(equal to its equilibrium profit Π2) over a range of prices in [x0, p̄]. It is because

the incentive compatibility constraint (F2-IC) for firm 2 is binding over that range.

In response to firm 2’s possible deviations in [x0, p̄], firm 1 offers a continuum of

bundles with quantities in the interval [Q0, Q̄].

The tariff formula (29) actually describes the minimal set of bundles that is

necessary to constitute an optimal NLP for firm 1. The payments for quantities

outside [Q0, Q̄] are actually indeterminate. Firm 1 has some freedom to set τ(Q)

for Q /∈ [Q0, Q̄] because, as long as they are set to be sufficiently high, firm 2 would

still charge p̄ and the buyer would still purchase Q̄ from firm 1 and D(p̄)− Q̄ from

firm 2 so that the allocation and profits would be unaffected. To construct a

complete optimal tariff, a simple way is to let τ(0) = 0 if 0 /∈ [Q0, Q̄], and let

τ(Q) =∞ for all Q /∈ [Q0, Q̄] ∪ {0}.
The intuition for why only the bundles with quantities in [Q0, Q̄] are needed is

clear from our analysis in Section 4. Recall that the necessity of offering unchosen

bundles comes from the competitive pressure from firm 2 (which is parameter-

ized by k): they serve as the buyer’s latent choices to constrain firm 2’s possible

deviation of undercutting, and we have seen that such latent bundles must be

smaller than the chosen bundle. The bundle (Q̄, τ(Q̄)) is chosen by the buyer

in equilibrium. Those (Q, τ(Q)) for Q ∈ [Q0, Q̄) are unchosen but they are the

necessary latent choices for the purpose of preventing firm 2’s deviations. Once

the schedule of latent bundles extends downward up to a point at which it reaches

firm 1’s captive demand (i.e., max{D(·) − k, 0}), the competitive pressure is not

in force and no more latent bundles are needed. In other words, those (Q, τ(Q))

for Q /∈ [Q0, Q̄] ∪ {0}, if being offered at all, are not only unchosen but also truly

redundant.

Note that, from (29), τ ′(Q̄) = x(Q̄) = p̄, that is, firm 1’s marginal price

evaluated at its actual sales is equal to firm 2’s actual price; furthermore, if firm 2

deviates to charge any price p ∈ [x0, p̄), the buyer would purchase from firm 1 the

quantity Q at which firm 1’s marginal price is τ ′(Q) = x(Q) = p. This is because

the buyer’s purchases are always adjusted to equate the marginal prices of the two

firms provided her purchases from both firms are positive.

Theorem 2 claims the existence but not the uniqueness of the SPE outcome.
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Strictly speaking, the SPE outcome is never unique because of the aforementioned

freedom of choosing τ(Q) for Q /∈ [Q0, Q̄]. But if the solution of (23) for p̄ is unique,

from Theorem 2 all the “relevant” (i.e., except redundant bundles) components of

the SPE outcome are uniquely determined. Therefore, we say the SPE outcome

is essentially unique if the solution of (23) is unique. Since the right-hand side

of (23) as a function of p̄ is non-increasing, a simple sufficient condition for the

essential uniqueness is that the left-hand side of (23) as a function of p̄ is strictly

increasing.

Corollary 1 (Essential Uniqueness). The SPE outcome is essentially unique if the

following condition is satisfied:18

− (p− c)D′(p) is strictly increasing in p on [c, pm]. (30)

Note that −(p − c)D′(p) = D(p) − π′(p). Thus, a graphical interpretation of

condition (30) is that, for any k, the curve Q = π′(p) and the captive demand

curve Q = D(p)− k cross at most once, as we draw in Figures 2 and 4 in Section

6.

6 Derivations of Equilibrium

This section outlines the derivations of Theorem 2. Following Theorem 1, we do

it through solving the constrained optimization problem (OP).

6.1 Constraints for the Buyer

The following lemma characterizes the incentive compatibility constraint (B-IC)

and individual rationality constraint (B-IR) for the buyer.

Lemma 2 (Constraints for Buyer). Any Q : P → R+ and T : P → R satisfy

(B-IC) and (B-IR) if and only if the following conditions hold:

∀p1, p2 ∈ P with p1 ≤ p2, either Q(p1) ≤ Q(p2)

or D(p1) ≤ Q(p2) or Q(p1) ≤ D(p2)− k
(Mon)

18This condition is equivalent to that u′(q)− c is strictly log-concave in q on [D(pm), qe].
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∀p ∈ P , T (p)− T (c) = V (Q(p), p)− V (Q(c), c)−
∫ p

c

Vp(Q(t), t)dt (31)

V (Q(c), c)− T (c) ≥ V (0, c) (32)

Condition (Mon) is a weakened version of the standard monotonicity condition

for mechanism design problems; it is weakened because the increasing differences

property (10) of V is strict only on Φ. If (Mon) holds, Q(·) must be non-decreasing

on {p ∈ P : (Q(p), p) ∈ Φ}, but may be decreasing when (Q(p), p) /∈ Φ. Condition

(Mon) says that Q(·) may be decreasing only in a particular way: whenever p1 < p2

and Q(p1) > Q(p2), the rectangle [Q(p2), Q(p1)] × [p1, p2] must not intersect the

region Φ. Such weakened monotonicity implies the following result.

Corollary 2. Condition (Mon) implies Proj[0,k](D(p)−Q(p)) is non-increasing in

p on P.

Condition (31) is the standard envelope formula for payment for mechanism

design problems. Condition (Mon) and condition (31) together are necessary and

sufficient conditions for (B-IC). Moreover, given (31), condition (32) is a necessary

and sufficient condition for (B-IR), since (31) implies V (Q(p), p)− T (p)− V (0, p)

is non-decreasing in p.

Once the constraints (B-IC) and (B-IR) are replaced with (Mon), (31), and

(32), we see that (32) must be binding, for otherwise firm 1 can increase its profit

T (p̄) − c · Q(p̄) by increasing T (p) for every p ∈ P by a constant, after which all

other constraints ((Mon), (31), and (F2-IC)) are intact. Therefore,

T (c) = V (Q(c), c)− V (0, c). (33)

Using (31) and (33) to eliminate T (·), we obtain, for all p ∈ P ,

T (p) = V (Q(p), p)− V (0, c)−
∫ p

c

Vp(Q(t), t)dt. (34)
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(a) when k ≥ D(pm) (b) when k < D(pm)

Figure 2: Firm 2’s Iso-profit Curves

6.2 Constraints for Firm 2

We now take a look at the incentive compatibility constraint (F2-IC) for firm

2. Given that firm 1 offers the buyer Q(·), firm 2 has incentives to follow the

recommended price p̄ if and only if its profit π(Q(p), p) is maximized at p = p̄.

Figure 2 shows firm 2’s iso-profit curves (i.e., the level curves of π(Q, p) =

(p− c) Proj[0,k](D(p)−Q)) and an arbitrary Q(·) curve in the Q-p space. Firm 2

seeks to attain the highest iso-profit curve by choosing a point on the Q(·) curve.

Figure 2 also illustrates the general patterns of the iso-profit curves. First,

each iso-profit curve associated with a positive profit level must be strictly below

the demand curve Q = D(p) and strictly above the cost line p = c. Second,

Assumption 2 implies that π(Q, ·) is strictly concave on {p : π(Q, p) > 0} for every

Q ≥ 0. Therefore, each iso-profit curve (associated with a positive profit level)

must be (horizontally) single-peaked, and thus has a unique most rightward point.

Furthermore, if firm 2 does not have capacity constraint (i.e., k ≥ qe), its iso-

profit curves are the same as the level curves of π(p) − (p − c)Q, whose slopes

are (p − c)/(π′(p) − Q). Thus, the iso-profit curves are strictly decreasing when

Q > π′(p) and strictly increasing when Q < π′(p). When firm 2 has capacity

constraint (i.e., k < qe), the iso-profit curves are horizontal when (Q, p) is below

the captive demand curve, i.e., Q < D(p) − k, and coincide the level curves of

π(p) − (p − c)Q otherwise, as shown in Figure 2. The captive demand curve

Q = D(p)− k may or may not cross the curve Q = π′(p), depending on whether k

is smaller or larger than D(pm) as shown in Figures 2(a) and 2(b). The direction
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of higher profit is indicated by the arrow pointing northwest.

Therefore, we in particular have the following results, which we will use later:

(i) The largest feasible level of firm 2’s profit is π(max{pm, u′(k)}); (ii) Each iso-

profit curve (associated with positive profit less than π(max{pm, u′(k)})) has its

unique most rightward point on the curve Q = max {π′(p), D(p)− k}.

6.3 Constrained Optimization

This subsection solves (OP) and thus the SPE outcome. Recall that we have used

(31) and (33) to eliminate T (·), as given by (34). Then, firm 1’s profit can be

written as

Π1 = T (p̄)− c ·Q(p̄)

= V (Q(p̄), p̄)− V (0, c)−
∫ p̄

c

Vp(Q(p), p)dp− c ·Q(p̄) (35)

We denote firm 2’s profit as Π2 and explicitly introduce it as a choice variable

in (OP). Now, (OP) can be rewritten as

Maximize
Q(·),p̄,Π2

(35) (OP’)

subject to

(Mon)

Π2 ≥ π(Q(p), p) ∀p ∈ P (F2-IC’)

Π2 = π(Q(p̄), p̄). (F2-Pro)

Our strategy of solving (OP’) and hence (OP) is as follows. We decompose

(OP’) into two stages: in the first stage, Q(·) and p̄ are optimally chosen contingent

on any feasible Π2 > 0; in the second stage, Π2 is optimally chosen. Lemma 3 below

solves the first stage contingent on Π2, and Lemma 4 solves the second stage to

pin down Π2 and solves (OP).
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(a) when k ≥ qe (b) when k < qe

Figure 3: Firm 1’s profit Π1 contingent on Q(·) and p̄

To graphically show firm 1’s profit, we use (8) and (9) to rewrite (35):

Π1 =

∫ Q(p̄)

0

[VQ(Q, c)− c]dQ+

∫ p̄

c

[Vp(Q(p̄), p)− Vp(Q(p), p)] dp

=

∫ Q(p̄)

0

[Proj[u′(Q+k),u′(Q)](c)− c]dQ

+

∫ p̄

c

[Proj[0,k](D(p)−Q(p))− Proj[0,k](D(p)−Q(p̄))]dp

=

∫ Q(p̄)

0

[Proj[u′(Q+k),u′(Q)](c)− c]dQ

+

∫ p̄

c

[Proj[D(p)−k,D(p)](Q(p̄))− Proj[D(p)−k,D(p)](Q(p))]dp (36)

Figure 3 shows the area of Π1 given by (36) for a given Q(·) and p̄: Areas A

and B correspond to the first and the second integral in (36) respectively. Area

A comes from firm 1’s captive demand. If firm 2 has no capacity constraint (i.e.,

k ≥ qe) as shown in Figure 3(a), the captive demand vanishes and consequently

Area A is 0.

It can be seen from Figures 2 and 3 that, given a Π2 ∈ (0, π(max {pm, u′(k)}))
and hence a firm 2’s iso-profit curve, in order to maximize Π1 subject to (Mon),

(F2-IC’), and (F2-Pro), (i) the part of Q(·) curve below p̄ must lie on the iso-

profit curve until it reaches the boundary of Φ (i.e., either the vertical axis or the

curve Q = D(p) − k), and (ii) the point (Q(p̄), p̄) must be chosen to be the most

rightward point on the firm 2’s iso-profit curve, i.e., Q̄ = max {π′(p̄), D(p̄)− k}
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(a) when k is large (b) when k is small

Figure 4: Optimal Q(·) contingent on Π2

from Subsection 6.2. Lemma 3 below formalizes these claims and solves (OP’)

contingent on Π2. Figures 4(a) and 4(b) graphically show the partial solutions

contingent on Π2 for two examples when firm 2’s capacity is large and small,

respectively.

Lemma 3. Contingent on any Π2 ∈ (0, π(max{pm, u′(k)})), (OP’) has a solution.

For any such solution (Q(·), p̄), p̄ is the unique solution of

max{D(p̄)− k, π′(p̄)} = D(p̄)− Π2

p̄− c
≡ Q̄, (37)

and Q(p) for p ∈ [x0, p̄] is given by (26), where x0 is the unique solution in (c, p̄]

of

max{D(x0)− k, 0} = D(x0)− Π2

x0 − c
≡ Q0. (38)

Moreover, Q(·) is strictly increasing on [x0, p̄].

Remark 1. (Q0, x0) is the unique intersection below p̄ between the iso-profit curve

and the captive demand curve Q = max{D(p) − k, 0}. Formula (26) gives Q(p)

only on the interval p ∈ [x0, p̄] (i.e., only when (Q(p), p) belongs to the competitive

portion Φ of demand and is below the curve Q = π′(p)). How we define Q(p)

for p /∈ [x0, p̄] does not affect Π1, provided Q(·) satisfies (Mon) and (F2-IC’). In

particular, any monotonic extension of (26) works, e.g., we let Q(p) = Q̄ for p > p̄

and Q(p) = Q0 for c ≤ p ≤ x0, as shown in Figure 4.

To solve (OP’), it remains to pin down Π2, which should be chosen to make

the Π1 area in Figure 4 as large as possible. It turns out that the corresponding

25

 Electronic copy available at: https://ssrn.com/abstract=3314159 



first-order condition can be simplified as (39) below. Also, when Π1 is maximized

we must have D(p̄) − k < Q̄ so that the left-hand side of (37) reduces to π′(p̄).

These together with Lemma 3 complete the characterization of solutions of (OP’).

Once a solution (Q(·), p̄,Π2) of (OP’) is obtained, we can use (34) to derive T (·),
and then obtain the corresponding solution (Q(·), T (·), p̄) of (OP). Thus, we obtain

the following lemma.

Lemma 4. Problem (OP) has at least one solution. Any such solution (Q(·), T (·), p̄),

together with the corresponding x0,Π2, Q̄, Q0, satisfies19

p̄− c = e · (x0 − c) > 0, (39)

Π2 = (p̄− c)(D(p̄)− Q̄) = (x0 − c) min{D(x0), k}, (40)

(26)–(28), and

T (p) = u(Q0 + k)− u(k) +

∫ p

x0

tdQ(t) ∀p ∈ [x0, p̄]. (41)

Finally, we can apply Theorem 1 to characterize the equilibrium outcome of

the original game. Theorem 2 follows.

7 Equilibrium Implications

In this section, we first examine the properties of the optimal NLP, including

the monotonicity of its marginal and average prices and the impact of the minor

firm’s capacity constraint on equilibrium outcomes. Then through comparing to

a situation where NLP is banned, we demonstrate the (anti)competitive effects of

the NLP when employed by the dominant firm.

7.1 Marginal and Average Prices of the Optimal NLP

Proposition 1 (Convex Tariff and Quantity Discounts). In any equilibrium, firm

1’s tariff τ is continuously differentiable, strictly increasing, and strictly convex

on [Q0, Q̄]. Moreover, it exhibits quantity discounts in the sense that τ(Q)/Q is

19Remark 1 also applies here.
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Figure 5: Equilibrium nonlinear pricing

strictly decreasing for Q ∈ [Q0, Q̄] if and only if τ(Q̄)/Q̄ ≥ p̄, which is true for all

small k > 0.

In the absence of asymmetric information, we find that the dominant firm’s

optimal nonlinear tariff exhibits convexity (or increasing marginal price) in the

relevant quantity range [Q0, Q̄]. A typical equilibrium tariff is shown in Figure 5.

This is in stark contrast to a typical nonlinear tariff in Maskin and Riley (1984): in

Maskin and Riley (1984), under asymmetric information, a monopolist’s optimal

nonlinear tariff often involves concavity (or decreasing marginal price).

The convexity of the optimal tariff can be understood as follows. Under com-

petition, even though there is no asymmetric information, firm 2 can undercut firm

1’s pricing in the relevant price range [x0, p̄]. Since firm 1 wants to induce firm 2 to

set p̄ and sell Q̄ to the buyer in equilibrium, to prevent firm 2 from undercutting

below p̄ and hence the buyer from buying less than Q̄, firm 1 must offer lower and

lower marginal prices in case the buyer buys less and less from firm 1. This is why

firm 1’s optimal tariff’s marginal price is increasing on [Q0, Q̄].

In spite of the convexity, the optimal NLP tariff can meanwhile exhibit quantity

discounts (or decreasing average price). Such quantity discounts property holds

in the whole relevant range [Q0, Q̄] when the dominant firm’s actual average price

τ(Q̄)/Q̄ is at least as high as the minor firm’s average price p̄, which is true when

k is small.20 When k > k̂ (so that Q0 = 0 and τ(Q0) = 0), it is obvious to

see the optimal NLP must manifest a quantity premium because it is a convex

20The proof of Proposition 1 actually reveals that τ(Q)/Q has a single trough on [Q0, Q̄]. That
τ(Q̄)/Q̄ ≥ p̄ is the condition under which the trough is at Q̄.
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curve passing through the origin. When k is in the intermediate range, there will

be a quantity cutoff below which the convex NLP tariff will still display quantity

discounts, and above which it will display quantity premiums.

In the real world, NLP has to be simple enough for practical reasons, and thus

may not coincide with the optimal NLP we derive there. However, some of them do

exhibit the convexity as shown in Proposition 1, such as three-part tariffs and all-

units discounts in the neighborhood of the quantity threshold point. Meanwhile,

all-units discounts display quantity discounts.

7.2 Impact of Capacity Asymmetry

Now we study how the equilibrium objects change as the minor firm’s capacity

varies. When k is large enough such that D(x0) ≤ k (or equivalently Q0 = 0), the

equilibrium outcome does not vary with k.21 It is because whenever D(x0) < k

firm 2 does not supply to its full capacity even if it deviates to the lowest relevant

deviating price x0. So the equilibrium objects will vary with k only when k is

small. The comparative statics results are as follows.

Proposition 2 (Comparative Statics on k). There is a unique k̂ ∈ (D(pm), qe)

such that Q0 = 0 in equilibrium if and only if k ≥ k̂. The set of equilibrium

outcomes is independent of k on [k̂,∞].

For k ∈ (0, k̂], as k increases, the followings hold,22

(a) Firm 1’s equilibrium profit Π1 and output Q̄ decrease;

(b) Firm 2’s equilibrium profit Π2, price p̄ increase; if (30) holds then its output

D(p̄)− Q̄ increase;

(c) The buyer’s equilibrium surplus BS increases when k is small, and decreases

when k is close to but below k̂;

(d) The equilibrium total surplus TS decreases.

For k ≤ k̂, an increase in firm 2’s capacity always benefits firm 2, and harms

firm 1. This is not surprising because firm 2’s capacity represents its competitive

21This can be seen from (23): The right-hand side of (23) becomes 1
eD
(
c+ p̄−c

e

)
when D(x0) =

D
(
c+ p̄−c

e

)
≤ k. It follows that the equilibrium p̄ becomes independent of k, so are all other

equilibrium objects.
22In the proof, we also show that, the equilibrium Q0 (x0) is decreasing (increasing) in k; the

equilibrium Π2 +BS is decreasing in k when k is close to but below k̂.
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threat on firm 1. Total surplus of the industry decreases in k. In the limiting case

that k approaches zero, firm 1 becomes a perfectly discriminatory monopoly and

supplies qe, and thus the equilibrium total surplus approaches the first-best level.

Interestingly, the buyer benefits from the increase in k when k is small, whereas

gets harmed from it when k is close to but below k̂. This implies, even though firm

2 always has an incentive to increase its capacity as long as k ≤ k̂, firm 1 will not

want this to happen, and the buyer will be on the same stance with firm 2 when

k is small, whereas with firm 1 when k is close to but below k̂.

7.3 Comparing with LP

In this subsection, let us look at a benchmark case where NLP is banned, and

then see why the NLP adopted by the dominant firm can be a harmful practice by

comparing the equilibrium outcomes with and without NLP.

Consider a game that is similar to the one we presented in Section 2, except

that firm 1 is forced to choose a uniform price. Call it the LP vs LP game, and

the game presented in Section 2 the NLP vs LP game. The LP vs LP equilibrium

outcomes are as follows.

Proposition 3 (LP vs LP Equilibrium). Consider the LP vs LP game. If k < qe,

then there is a unique SPE outcome, in which both firms offer p̄LP , where π′(p̄LP ) =

k, and the buyer purchases qLP1 = D(p̄LP )− k and qLP2 = k units from firm 1 and

firm 2 respectively. If k ≥ qe, then there are multiple SPE outcomes, in which

the prevailing price can be any p̄LP ∈ [c, pm] (either p1 = p2 = p̄LP ∈ [c, pm] or

p1 ≥ pm = p2) and firm 1 makes no sales.

In the LP vs LP game, the uniform per-unit price from firm 1 is available for

the buyer’s entire demand, which invites firm 2 to undercut/match if it wants to

have some sales. Accordingly, firm 1 will serve the residual demand after the buyer

buys all k from firm 2 under LP vs LP.

From Proposition 3, it is easy to see that p̄LP decreases with k for k < qe.23

Recall from Proposition 2 that p̄ increases with k for k ∈ (0, k̂] and then stays

constant for k ∈ (k̂,∞). Because limk→0 p̄ = c < pm = limk→0 p̄
LP and, when

23Other comparative statics results straightforwardly follow. For a full description of the
comparative statics for the LP vs LP game, see Corollary 1 in Chao, Tan, and Wong (2018a).
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k = k̂, p̄ > x0 = u′(k̂) > p̄LP , there must exist a unique ǩ ∈ (0, k̂) such that

p̄ Q p̄LP if and only if k Q ǩ.

Proposition 4 (Comparison). Let k ∈ (0, qe) and compare any SPE outcome of

the NLP vs LP game with the unique SPE outcome of the LP vs LP game.

(a) Quantities: Q̄ > qLP1 when k ∈ (0, ǩ] or k is close to qe; D(p̄)− Q̄ < qLP2 =

k;

(b) Profits: Π1 > ΠLP
1 ; Π2 < ΠLP

2 when k ∈ (0, ǩ], and Π2 > ΠLP
2 when

k ∈ [k̂, qe);

(c) Buyer’s Surpluses: BS < BSLP when k is small or k ∈ [k̂, qe);

(d) Joint Surpluses: Π2 +BS < ΠLP
2 +BSLP ; TS R TSLP if and only if k Q ǩ.

Proposition 4 demonstrates the competitive effects of NLP. As compared with

LP, NLP adopted by firm 1 always benefits firm 1, whereas harms firm 2 and the

buyer jointly. NLP allows the marginal price for each unit to vary, in contrast

to the uniformity under LP. Such flexibility in pricing has two effects: one is

the surplus-extraction effect, and the other is the competition-manipulating effect.

Thanks to the better instrument in surplus extraction from NLP than from LP,

firm 1 has an incentive to expand quantity supplied, which tends to increase the

total surplus. Meanwhile, because firm 1 under NLP can customize marginal price

for every single unit accordingly to the competitive pressure from firm 2, it will

better manipulate competition, which tends to reduce total surplus. Which effect

dominates depends on the extent of the dominance.

When k is relatively small, the competitive threat from firm 2 does not concern

firm 1 that much, and firm 1’s NLP will intensify the competition and extract

surplus from firm 2 and the buyer, notwithstanding total surplus is increased.

Through general linear demands in the next subsection, we demonstrate that for

NLP to have the above exclusionary effect, the k does not have to be really small.

But as k becomes sufficiently large, LP vs LP competition would result in an

outcome close to zero profits for both firms. Thus, firm 1 will employ the NLP

to soften the competition, which benefits firm 2, but hurts the buyer and total

surplus.
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7.4 An Example of Linear Demands

To demonstrate our analysis above, now we consider an example of linear demands.

Suppose that u(q) = q − q2/2 and c = 0. Then D(p) = 1 − p, π(p) = p ·
(1 − p), and π′(p) = 1 − 2p for all p ∈ [0, 1]. Assumptions 1, 2, as well as

condition (30) are satisfied, so that the equilibrium is essentially unique and thus

the equilibrium conditions in Theorem 2 are not only necessary but also sufficient.

Applying Theorem 2 and Proposition 3, we can perform our comparative statics

analyses for the full range of k ∈ (0, 1]. It is easy to compute the cutoff above

which Q0 = 0 is k̂ = e2

1+e2
. All the calculated results are listed in Table A1 in the

Appendix.

As shown in Figures 6(a) and 6(b), NLP adopted by the dominant firm always

increases the dominant firm’s sales volume, and decreases the minor firm’s. More-

over, when the minor firm is relatively small, e.g., k ≤ e2/(2 + e2) ≈ 0.79 in our

linear demand example, the minor firm gets partially foreclosed by the dominant

firm’s NLP, in terms of lower profits, volume sales, and market shares than under

LP vs LP equilibrium. This can be seen from Figure 6(c).

As we claim generally in Proposition 2 and as shown in Table A1, all the

equilibrium objects, except the buyer’s surplus BS in NLP vs LP equilibrium, are

monotone in k. Figure 6(d) demonstrates these non-monotone patterns. Due to its

non-monotonicity, the buyer gets harmed by the NLP when the minor firm is either

relatively small, or sufficiently large in our linear demand example, e.g., either k ≤
e ·
(
3e− 2

√
e2 − 4

)
/ (16 + 5e2) ≈ 0.23, or k ≥ e ·

(
3e+ 2

√
e2 − 4

)
/ (16 + 5e2) ≈

0.61.

From Figure 6, when the minor firm is capacity constrained, both the minor

firm and the buyer are harmed by the dominant firm’s NLP. Our results provide

some supports to the antitrust concerns about conditional discounts adopted by

some dominant firms when competing against small rival firms.

8 Conclusion

The NLP schedule is naturally viewed as a menu of inducing buyers with private

information to self-select. Nevertheless, the main antitrust concern about NLP,

when used by dominant firms, is its potential exclusionary effects, which has been
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(a) Firm 1’s Sales (b) Firm 2’s Sales

(c) Firm 2’s Profits (d) Buyer’s Surplus

Figure 6: NLP vs LP and LP vs LP Equilibria for Linear Demand

one of the most controversial issues in antitrust policy and enforcement.

Absent asymmetric information about the buyer, downstream competition, or

demand uncertainty, we offer a new motive for NLP when a dominant firm com-

petes with a capacity-constrained rival for one known type buyer: By offering

unchosen bundles, the dominant firm can constrain its rival’s possible deviations

and extract more surplus from the buyer. We characterize the optimal NLP sched-

ule employed by the dominant firm, and find that, such NLP schedule can be both

profitable and anticompetitive. The anticompetitive effects of the NLP schedule

employed by the dominant firm depend on the extent of the dominant firm’s dom-

inance.
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Appendix

Proof of Lemma 1. Fix anyQ ∈ R+. Note that the unique maximizer Proj[0,k](D(p)−
Q) of the value function V (Q, p) is piecewise continuously differentiable. For any

p ∈ P at which Proj[0,k](D(p) − Q) is differentiable (i.e., D(p) − Q 6= 0 and

D(p)−Q 6= k), clearly V (Q, p) is also differentiable at p and the derivative Vp(Q, p)

computed from the Envelope Theorem is given by (8). Moreover, even for p ∈ P at

which Proj[0,k](D(p)−Q) is not differentiable (i.e., D(p)−Q = 0 or D(p)−Q = k),

Proj[0,k](D(p)−Q) is still continuous; it is clear that the left-derivative and right-

derivative of V (Q, ·) exist and both are equal to the right-hand side of (8). Thus,

V (Q, ·) is differentiable and (8) holds. The same logic proves that V (·, p) is dif-

ferentiable and (9) holds. From (8) and (9), we know Vp(Q, ·), Vp(·, p), VQ(Q, ·),
and VQ(·, p) are all piecewise continuously differentiable. In particular, whenever

differentiable (i.e., D(p)−Q 6= 0 and D(p)−Q 6= k), the cross derivatives VQp and

VpQ are given by (10). �

The proof of Theorem 1 requires the following two lemmas.

Lemma A1. For any Q : P → R+, T : P → R, and p̄ ∈ P that satisfy (B-IC),

(B-IR), and (F2-IC), there is a τ ∈ T and a SPE of the subgame after firm 1

offers τ such that

(i) in this SPE of the subgame, firm 2 chooses p = p̄, and the buyer, contingent

on any firm 2’s unit price p ∈ P, chooses to buy Q(p) and Proj[0,k](D(p) − Q(p))

units from firm 1 and firm 2 respectively, and

(ii) τ(Q(p)) = T (p) for all p ∈ P.

Proof. Suppose that Q : P → R+, T : P → R, and p̄ ∈ P satisfy (B-IC), (B-IR),

and (F2-IC). Define

τ(Q) =


T (p) if ∃p ∈ P s.t. Q(p) = Q

0 if Q = 0 and @p ∈ P s.t. Q(p) = 0

∞ otherwise

. (A1)

Note that the above τ is well defined because (B-IC) implies T (p) = T (p̃) whenever

Q(p) = Q(p̃). Clearly, (ii) holds. To see that τ(0) ≤ 0, note that if @p ∈ P s.t.
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Q(p) = 0, then τ(0) = 0; if Q(p̂) = 0 for some p̂ ∈ P , then τ(0) = T (p̂) ≤ 0, where

the inequality follows from (B-IR). Thus, τ(0) ≤ 0.

Given this τ and any p ∈ P , (B-IC) and (B-IR) imply that a buyer’s optimal

action is to buy Q(p) and Proj[0,k](D(p) − Q(p)) units from firm 1 and firm 2

respectively. Given τ and that the buyer uses the above strategy, (F2-IC) implies

that a firm 2’s optimal action is to choose p = p̄. Therefore, the strategies in (i)

constitute a SPE of the subgame after firm 1 offers τ . It follows that τ is regular

and hence τ ∈ T . �

Lemma A2. For any τ ∈ T and any SPE of the subgame after firm 1 offers τ ,

if Q : P → R+, T : P → R, and p̄ ∈ P satisfy (i) and (ii) in Lemma A1, then

Q(·), T (·), p̄ also satisfy (B-IC), (B-IR), and (F2-IC).

Proof. Take any τ ∈ T and any SPE of the subgame after firm 1 offers τ . Suppose

that Q : P → R+, T : P → R, and p̄ ∈ P satisfy (i) and (ii) in Lemma A1. Since

the strategies described in (i) constitute a SPE of the subgame after firm 1 offers

τ , we have (F2-IC) and

V (Q(p), p)− τ(Q(p)) ≥ V (Q, p)− τ(Q) ∀(Q, p) ∈ R+ × P . (A2)

To see (B-IC), take Q = Q(p̃) for arbitrary p̃ ∈ P in (A2) and use (ii). To see

(B-IR), take Q = 0 in (A2) and use τ(0) ≤ 0 and (ii). �

Proof of Theorem 1. “Only if” part. Suppose that (Q∗(·), T ∗(·), p̄∗) is a solu-

tion of (OP). Then Q∗(·), T ∗(·), p̄∗ satisfy (B-IC), (B-IR), and (F2-IC). From

Lemma A1, there is a τ ∗ ∈ T (defined by (A1) with τ(·), Q(·), T (·) replaced by

τ ∗(·), Q∗(·), T ∗(·)) such that (21) holds and a SPE (p∗(τ ∗), q∗(τ ∗, ·)) of the subgame

after firm 1 offers τ ∗ is described by (19), (20), and (22).

In the subgame after firm 1 offers this τ ∗, we let firm 2 and the buyer play

the SPE (p∗(τ ∗), q∗(τ ∗, ·)), so that firm 1’s profit is T ∗(p̄∗) − c · Q∗(p̄∗). In the

subgame after firm 1 offers any other τ ∈ T \{τ ∗}, we let firm 2 and the buyer play

any SPE (p∗(τ), q∗(τ, ·)), which exists because every τ ∈ T is regular. By such

constructions, p∗, q∗ satisfy (1) and (2).

From Lemma A2, the SPE outcome of the subgame after firm 1 offers an

arbitrary τ ∈ T must be characterized by some Q(·), T (·), p̄ that satisfy (B-IC),
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(B-IR), and (F2-IC), and the associated firm 1’s profit is T (p̄) − c · Q(p̄). Since

(Q∗(·), T ∗(·), p̄∗) is a solution of (OP), firm 1 cannot make strictly higher profit

than T ∗(p̄∗)− c ·Q∗(p̄∗) by offering any τ ∈ T . That is, (τ ∗, p∗, q∗) satisfies (3) and

hence is a SPE of the whole game.

“If” part. Let (Q∗∗(·), T ∗∗(·), p̄∗∗) denote the solution of (OP) given by Lemma

4, and Π∗∗1 the maximum value of (OP).24 Suppose that (τ ∗, p∗, q∗) is a SPE and

Q∗(·), T ∗(·), p̄∗ satisfy (19), (20), (21), and (22). From Lemma A2, Q∗(·), T ∗(·), p̄∗

satisfy (B-IC), (B-IR), and (F2-IC). In the SPE (τ ∗, p∗, q∗), firm 1’s profit is Π∗1 =

T ∗(p̄∗) − cQ∗(p̄∗). Also suppose, by way of contradiction, that (Q∗(·), T ∗(·), p̄∗)
is not a solution of (OP). It follows that Π∗1 < Π∗∗1 . We shall show that firm 1

then can offer a tariff in T that guarantees itself a profit arbitrarily close to Π∗∗1 in

every SPE of the firm 2-buyer subgame that follows. Once this is proved, offering

such a tariff is a firm 1’s profitable deviation in the SPE (τ ∗, p∗, q∗), which is a

contradiction.25

To do that, we perturb the solution (Q∗∗(·), T ∗∗(·), p̄∗∗) so that firm 2 would

have to lower its price a bit more if it wishes to increase its sales by any given

amount. We can keep p̄∗∗ unchanged and, for any ε > 0, let

Qε(p) =


Q∗∗(p) if p ≥ p̄∗∗

Q∗∗(p̄∗∗) if p̄∗∗ − ε < p < p̄∗∗

Q∗∗(p+ ε) if p ≤ p̄∗∗ − ε

,

Tε(p) = V (Qε(p), p)− V (0, c)−
∫ p

c

Vp(Qε(t), t)dt.

From the analyses in Section 6, (Qε(·), Tε(·), p̄∗∗) satisfies all the constraints of

(OP); the (F2-IC) constraint holds strictly at every p 6= p̄∗∗; the value of (OP)

evaluated at (Qε(·), Tε(·), p̄∗∗) is arbitrarily close to the maximum value Π∗∗1 when

24Admittedly, we use the results in Section 6, which appear later than Theorem 1, to prove
the “if” part of Theorem 1. However, there is no circularity of reasoning because the analyses
in Section 6 do not rely on Theorem 1. (One can always formally analyze (OP) as in Section 6
even if Theorem 1 is not true.)

25Here we cannot simply use the tariff implied by the solution (Q∗∗(·), T ∗∗(·), p̄∗∗) of (OP) (see
Lemma 4) because (i) if firm 1 offers this tariff, then firm 2 is indifferent between offering p̄∗∗

and offering some lower price (note that (F2-IC) is binding over a range), and (ii) if firm 2 does
offer some lower price, then firm 1’s profit is strictly lower than Π∗∗1 .
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ε is made arbitrarily small.

Define τε(·) by the right-hand side of (A1) with Q(·) and T (·) replaced by

Qε(·) and Tε(·). Now, if firm 1 offers τε, the best responses of the buyer and firm

2 are unique. In particular, firm 2 would surely offer p̄∗∗; the buyer would surely

purchase Qε(p̄
∗∗) from firm 1; firm 1’s profit would surely be the value of (OP)

evaluated at (Qε(·), Tε(·), p̄∗∗). Therefore, offering τε with small enough ε > 0 is a

firm 1’s profitable deviation as desired. �

Proof of Lemma 2. We shall first show that (B-IC) is equivalent to (Mon) and

(31), then establish that, given (Mon), (B-IR) is equivalent to (32). Let U(p) ≡
V (Q(p), p)− T (p). Then (B-IC) can be written as

U(p)− U(p̃) ≥ V (Q(p̃), p)− V (Q(p̃), p̃) ∀p, p̃ ∈ P , (A3)

and (31) can be written as

U(p)− U(c) =

∫ p

c

Vp(Q(t), t)dt ∀p ∈ P . (A4)

Step 1. (B-IC) implies (Mon) and (31).

Suppose (B-IC) is satisfied. Then (A3) implies that, for any p1, p2 ∈ P ,

V (Q(p1), p2)−V (Q(p1), p1) ≤ U(p2)−U(p1) ≤ V (Q(p2), p2)−V (Q(p2), p1). (A5)

If (Mon) does not hold, then there exist p1, p2 ∈ P such that p1 < p2 and Q(p1) >

Q(p2) and D(p1) > Q(p2) and Q(p1) > D(p2)− k. But then (A5) implies

0 ≥ [V (Q(p1), p2)− V (Q(p1), p1)]− [V (Q(p2), p2)− V (Q(p2), p1)]

=

∫ p2

p1

∫ Q(p1)

Q(p2)

VpQ(Q, p)dQdp > 0,

which is a contradiction. The above equality holds because, from Lemma 1, V (Q, ·)
is continuously differentiable and Vp(·, p) is piecewise continuously differentiable

(and hence they are absolutely continuous on any compact interval). The last

inequality holds because, first, VpQ ≥ 0 almost everywhere and VpQ = 1 on the

interior of Φ; second, in the Q-p space, the point (Q(p2), p1) is strictly below the
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curve Q = D(p) (from D(p1) > Q(p2)) and the point (Q(p1), p2) is strictly above

the curve Q = D(p)−k (from Q(p1) > D(p2)−k), so the rectangle [Q(p2), Q(p1)]×
[p1, p2] must intersect the interior of Φ, on which VpQ > 0. Therefore, (Mon) must

hold.

Moreover, (A5) implies (A4). Therefore, (31) holds.

Step 2. (Mon) and (31) imply (B-IC).

First, (Mon) implies that, for all p1, p2 ∈ P with p1 ≤ p2, we have

Proj[0,k](D(p2)−Q(p1)) ≥ Proj[0,k](D(p2)−Q(p2)), (A6)

Proj[0,k](D(p1)−Q(p1)) ≥ Proj[0,k](D(p1)−Q(p2)). (A7)

Indeed, p1 ≤ p2 and (Mon) imply either (i) Q(p1) ≤ Q(p2), or (ii) D(p1) ≤ Q(p2),

or (iii) Q(p1) ≤ D(p2) − k. In case (i), clearly (A6) and (A7) hold. In case (ii),

we have D(p2) ≤ D(p1) ≤ Q(p2) so that the right-hand sides of (A6) and (A7) are

0. In case (iii), we have Q(p1) + k ≤ D(p2) ≤ D(p1) so that the left-hand sides of

(A6) and (A7) are k > 0. Therefore, (A6) and (A7) hold in each case.

Recall that (31) is equivalent to (A4). Therefore, for any p1, p2 ∈ P (no matter

whether p1 ≤ p2 or not), we have

U(p2)− U(p1) =

∫ p2

p1

Vp(Q(p), p)dp

= −
∫ p2

p1

Proj[0,k](D(p)−Q(p))dp

≥ −
∫ p2

p1

Proj[0,k](D(p)−Q(p1))dp

=

∫ p2

p1

Vp(Q(p1), p)dp

= V (Q(p1), p2)− V (Q(p1), p1),

where the inequality is from (A6) when p1 ≤ p2 and from (A7) when p1 ≥ p2. It

proves (A3) and hence (B-IC).

Step 3. Given (B-IC) (in fact, (31) only), (B-IR) is equivalent to (32).

It suffices to show that V (Q(p), p) − T (p) − V (0, p) = U(p) − V (0, p) is non-

decreasing in p on P . Indeed, from (31), which is equivalent to (A4), and Lemma
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1, we know both U(·) and V (0, ·) are differentiable, and U ′(p) = Vp(Q(p), p) ≥
Vp(0, p). Therefore, (B-IR) is equivalent to (32). �

Proof of Corollary 2. It is implied by (A6) in the proof of Lemma 2. �

Proof of Lemma 3. Fix any Π2 ∈ (0, π(max{pm, u′(k)})) and hence a firm 2’s iso-

profit curve in the Q-p space (see Figure 2). Constraint (F2-Pro) requires that

(Q(p̄), p̄) must be on the iso-profit curve. Constraint (F2-IC’) requires that the

graph of Q(·) must not cut into the left side of the iso-profit curve.

From Subsection 6.2, we know: the iso-profit curve, which contains (Q(p̄), p̄),

is strictly below the demand curve and strictly above the cost line, so that Q(p̄) <

D(p̄) and p̄ > c. Also, the iso-profit curve is (horizontally) single-peaked, with its

unique most rightward point satisfying Q = max {D(p)− k, π′(p)}.
Here we prove by contradiction that (Q(p̄), p̄) must be the most rightward point

(horizontal peak) of the iso-profit curve, i.e.,

Q(p̄) = max{D(p̄)− k, π′(p̄)}). (A8)

Suppose not. Consider the case that Q(p̄) > max{D(p̄)− k, π′(p̄)} (i.e., (Q(p̄), p̄)

lies on the strictly decreasing portion of the iso-profit curve). Pick a small ε > 0

such thatQ(p̄) > max {D(p̄− ε)− k, π′(p̄− ε)} and p̄−ε > c. To satisfy constraint

(F2-IC’), Q(p̄ − ε) must satisfy Q(p̄ − ε) > Q(p̄). But then constraint (Mon) is

violated because now Q(p̄− ε) > Q(p̄) > D(p̄)− k and D(p̄− ε) ≥ D(p̄) > Q(p̄).

Now consider the case that Q(p̄) < max{D(p̄) − k, π′(p̄)} (i.e., (Q(p̄), p̄) lies on

the non-decreasing portion of the iso-profit curve). Then, Π1 can be raised by

increasing both Q(p̄) and p̄ along the iso-profit curve toward the horizontal peak

(see Figures 2 and 3). It proves (A8).

Since (Q(p̄), p̄) is on the iso-profit curve (i.e., Π2 = (p̄−c) Proj[0,k](D(p̄)−Q(p̄)))

and D(p̄)− k ≤ Q(p̄) < D(p̄), we have

Π2 = (p̄− c)(D(p̄)−Q(p̄)), (A9)

which is equivalent to (26) at p = p̄. It, together with (A8), proves (37) and

Q̄ = Q(p̄).

Let x0 and Q0 be defined as in the lemma (i.e., defined by x0 ≤ p̄ and (38)).
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That is, (Q0, x0) is the intersection below p̄ between the iso-profit curve and the

curve Q = max{D(p)−k, 0}.26 In particular, c < x0 ≤ p̄ and Q0 ≤ Q̄. Now, recall

that Π1 can be written as (36) and visualized in Figure 3. In order to maximize Π1,

it remains to maximize the second integral in (36) (or Area B in Figure 3) subject

to (Mon) and (F2-IC’). Neglect (Mon) for a moment. Then, Q(·) on [x0, p̄] must

coincide the iso-profit curve, i.e., (26) holds, for otherwise Π1 can be improved by

shifting the part of Q(·) on [x0, p̄] that does not match with the iso-profit curve

toward the latter. How we define Q(p) for p /∈ [x0, p̄] does not affect Π1, but those

values have to be defined such that Q(·) satisfies (Mon) and (F2-IC’) on P . One

way is: let Q(p) = Q̄ for p > p̄ and Q(p) = Q0 for c ≤ p ≤ x0, as shown in Figure 4.

Then, Q(·) is non-decreasing on P so that (Mon) is satisfied. It is also clear from

Figure 4 that (F2-IC’) is satisfied. It proves (26). Finally, (26) and Assumption 2

imply that Q(·) is strictly increasing on [x0, p̄]. �

Proof of Lemma 4. Lemma 3 has characterized the optimal (Q(·), p̄) contingent

on any Π2 ∈ (0, π(max{pm, u′(k)})). Clearly, the maximum Π1 contingent on

Π2 = 0 is equal to the limiting contingent maximum Π1 as Π2 ↓ 0 (which is

equal to u(max{qe − k, 0})− c ·max{qe − k, 0}), and the maximum Π1 contingent

on Π2 = π(max{pm, u′(k)}) is equal to the limiting contingent maximum Π1 as

Π2 ↑ π(max{pm, u′(k)}) (which is equal to 0). After reducing the first stage (where

(Q(·), p̄) is chosen contingent on Π2), (OP’) has only one choice variable, Π2, and

the reduced objective function is continuous in Π2 on [0, π(max{pm, u′(k)})]. Thus,

(OP’) and hence (OP) has at least one solution.

If Π2 = 0, then the contingent maximum can be raised by increasing Π2 (con-

templating an upward-and-leftward shift of Q(·) to a higher firm 2’s iso-profit

curve in Figure 4). Thus, at any optimum, Π2 > 0, which implies p̄ > c and

D(p̄) > Q̄. On the other hand, if Π2 is π(max{pm, u′(k)}) or is so large that the

contingent solution exhibits D(p̄)− Q̄ = k, then the contingent maximum can be

raised by decreasing Π2 (contemplating a downward-and-rightward shift of Q(·) to

a lower firm 2’s iso-profit curve in Figure 4). Thus, at any optimum, it holds that

Π2 < π(max{pm, u′(k)}) and Q̄ > max{D(p̄)− k, 0}, which in turn imply Q0 < Q̄,

and c < x0 < p̄ < pm (see Figure 4 again). So (40) and (26)–(28) follow from

26There is another intersection above p̄ (which is on the vertical axis), but the intersection
below p̄ is uniquely given by (38).
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Lemma 3.

Next, we show (39). From Figure 3, (36) can be rewritten as

Π1 =

∫ Q0

0

u′(Q+ k)dQ+ x0 ·
(
Q̄−Q0

)
+

∫ p̄

x0

(
Q̄−Q(p)

)
dp− cQ̄ (A10)

=

∫ Q0

0

[u′(Q+ k)− x0] dQ+ (p̄− c)Q̄−
∫ p̄

x0

Q(p)dp

=

∫ ∞
x0

max{D(p)− k, 0}dp+ (p̄− c)Q̄−
∫ p̄

x0

[
D(p)− Π2

p− c

]
dp,

where the last equality is due to (28) and (26). Let

TS(p) ≡ u(D(p))− c ·D(p) =

∫ ∞
p

D(t)dt+ (p− c)D(p) (A11)

denote the total surplus under linear pricing p. From (27) and the first equality of

(40),

TS(p̄) =

∫ ∞
p̄

D(p)dp+ (p̄− c)D(p̄) =

∫ ∞
p̄

D(p)dp+ (p̄− c)Q̄+ Π2,

so that we can further rewrite Π1 as

Π1 =

∫ ∞
x0

max{D(p)− k, 0}dp+ TS(p̄)− Π2 −
∫ ∞
x0

D(p)dp+

∫ p̄

x0

Π2

p− c
dp

= TS(p̄)−
∫ ∞
x0

min{D(p), k}dp+

(
ln

p̄− c
x0 − c

− 1

)
Π2. (A12)

The partial derivatives of (A12) are

∂Π1

∂p̄
= (p̄− c)D′(p̄) +

Π2

p̄− c
,

∂Π1

∂x0

= min{D(x0), k} − Π2

x0 − c
,

∂Π1

∂Π2

= ln
p̄− c
x0 − c

− 1.

Note that (40) and (27) imply that ∂Π1/∂p̄ = ∂Π1/∂x0 = 0. Hence, the total
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derivative of (A12) with respect to Π2 is

dΠ1

dΠ2

= ln
p̄− c
x0 − c

− 1. (A13)

Therefore, the first-order condition dΠ1/dΠ2 = 0 implies (39). Substituting this

first-order condition into (A12), the maximum Π1 can be written as

Π1 = TS(p̄)−
∫ ∞
x0

min{D(p), k}dp. (A14)

Last, we derive (41). Note that T (p̄) = Π1 + cQ̄. Use the expression (A10) for

Π1, we have

T (p̄) =

∫ Q0

0

u′(Q+ k)dQ+ x0 ·
(
Q̄−Q0

)
+

∫ p̄

x0

(
Q̄−Q(p)

)
dp

=

∫ Q0

0

u′(Q+ k)dQ+ p̄Q̄− x0Q0 −
∫ p̄

x0

Q(p)dp

= u(Q0 + k)− u(k) +

∫ p̄

x0

pdQ(p). (A15)

From (26), we know Q(·) is differentiable on (x0, p̄). Then, from (34), T (·) is

differentiable on (x0, p̄) as well, and for all p ∈ (x0, p̄),

T ′(p) = VQ(Q(p), p) ·Q′(p)

= u′(Proj[Q(p),Q(p)+k](D(p))) ·Q′(p)

= u′(D(p)) ·Q′(p)

= p ·Q′(p), (A16)

where the second equality is from (9); the third equality is from

D(p)− k ≤ Q(x0) (∵ p > x0 and (28))

≤ Q(p) (∵ Q(·) is increasing on [x0, p̄])
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and

D(p) ≥ Q(p̄) (∵ p < p̄ and D(p̄) > Q(p̄))

≥ Q(p) (∵ Q(·) is increasing on [x0, p̄]).

From (34), we know T (·) is absolutely continuous on [x0, p̄], so that T (p) = T (p̄)−∫ p̄
p
T ′(t)dt for all p ∈ [x0, p̄]. It, together with (A15) and (A16), proves (41). �

Proof of Theorem 2. The results are from Lemma 4 and Theorem 1. (26)–(28) are

already stated in Lemma 4. (25) is from (39). (24) follows from (27) and the first

equality of (40). Substituting (25) and (27) into the second equality of (40) and

cancelling the positive factor p̄ − c, we obtain (23). Finally, the formula (29) for

τ(Q) with Q ∈ [Q0, Q̄] is derived from (41) through changing of variable: x(·) for

Q(·). �

Proof of Corollary 1. Under condition (30), the left-hand side of (23) is strictly

increasing in p̄, and the right-hand side is non-increasing in p̄. Therefore, (23) has

at most one solution under (30). �

Proof of Proposition 1. From (29), τ ′(·) = x(·) on [Q0, Q̄]. Since x(·), define on

[Q0, Q̄], is the inverse of Q(·) on [x0, p̄] and the latter is continuous and strictly

increasing and on [Q0, Q̄], x(·) is also continuous and strictly increasing. The range

of x(·) is [x0, p̄] and x0 > c ≥ 0. The first part of the proposition follows.

To see the second part, first recall that τ ′(Q̄) = x(Q̄) = p̄ and observe that

d

dQ

(
τ(Q)

Q

)
=
f(Q)

Q
,

where f(Q) ≡ τ ′(Q)− τ(Q)/Q. Since

f ′(Q) = τ ′′(Q)− d

dQ

(
τ(Q)

Q

)
= τ ′′(Q)− f(Q)

Q
,

we have f ′(Q) = τ ′′(Q) > 0 whenever f(Q) = 0. In other words, f(Q) crosses zero

from below once and only once, if it does. So a necessary and sufficient condition

for f(Q) < 0 on [Q0, Q̄) is f(Q̄) ≤ 0, so is the case for d(τ(Q)/Q)/dQ < 0 on

[Q0, Q̄).
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Finally, as k → 0, both p̄ and x0 approach c (from (23) and (25)), both Q̄ and

Q0 approach qe (from (27) and (28)), and τ(Q̄) approaches u(qe) (from (29)). It

follows that

lim
k→0

(
τ(Q̄)

Q̄
− p̄
)

=
u(qe)

qe
− c > 0.

It shows that τ(Q̄)/Q̄ > p̄ for all small k > 0.27 �

The proof of Proposition 2 and Proposition 4 require the following lemma,

which states that what firm 2 and the buyer jointly earn in equilibrium is equal

to their joint outside option under the counterfactual situation that firm 2’s unit

cost was raised to x0.

Lemma A3. In any equilibrium,

Π2 +BS =

∫ ∞
x0

min{D(p), k}dp (A17)

= u(min{D(x0), k})− x0 ·min{D(x0), k}

= u(D(x0)−Q0)− x0 · (D(x0)−Q0).

Proof. The first equality follows from (A14) and the equilibrium buyer’s surplus

as BS ≡ u(D(p̄))− p̄(D(p̄)− Q̄)− τ(Q̄) = TS − Π1 − Π2. The second equality is

clear. The third equality is from (28). �

Proof of Proposition 2. Let x̂0 be the minimum equilibrium x0 when k =∞, given

by (23) and (25) with min {D(x0), k} = D(x0). Define k̂ ≡ D(x̂0). From Theorem

2, k̂ satisfies the first two claims (see Figure 4).

The rest of the proof considers comparative statics for k ∈ (0, k̂]. Following

the proof of Lemma 4, we regard Π1, p̄, Q̄, x0, Q0, x(·), BS, TS as functions of Π2.

Here we also regard them as functions of k. In particular, we write Π1(Π2; k).

Fix Π2 and let k increase on (0, k̂]. Note that Q0 = max{D(x0) − k, 0} > 0

before the increase, so that we have D(x0) > k before the increase. The p̄ and

Q̄ determined by (27) and the first equality of (40) do not change. The x0, Q0,

27As a matter of fact, when k ≥ k̂ or k is smaller than but close to k̂, the tariff τ exhibits
quantity premiums, i.e., τ ′(Q)/Q is strictly increasing on [Q0, Q̄]. It follows from the fact that τ

is strictly convex on [Q0, Q̄], τ(0) = 0, and that Q0 = 0 when k ≥ k̂.
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and Π1 determined by the second equality of (40), (28), and (A12) decrease as k

increases (see Figure 4).

In equilibrium, Π1 = maxΠ2 {Π1(Π2; k)} decreases in k, because Π1(·; k) shifts

down as k increases. From (A13), we see that ∂Π1(Π2; k)/∂Π2 increases, because

p̄ is unchanged whereas x0 decreases when we fix Π2 and let k increase. In other

words, Π1(Π2; k) satisfies strict increasing differences. Therefore, the Π2 that max-

imizes Π1 must increase when k increases. Then, from (24) and Assumption 2, p̄

must increase, and hence Q̄ decreases follows from (27). Then from (A11), TS de-

creases. From (39), x0 increases. From (28), Q0 decreases. The result for D(p̄)−Q̄
can be immediately seen from D(p̄)−Q̄ = −(p̄−c)D′(p̄). This completes the proof

of parts (a), (b), and (d).

Last, we prove part (c). To see the first half of part (c), note that BS is

positive and tends to zero as k → 0. To see the second half of part (c), first note

that, as shown above, we have min{D(x0), k} = k when k ≤ k̂. From Lemma A3,

Π2 +BS = u(k)− x0k whenever k ≤ k̂. Hence,

d(Π2 +BS)

dk

∣∣∣∣
k↗k̂

= u′(k̂)− x0 − k̂ ·
dx0

dk

∣∣∣∣
k↗k̂

< 0.

The last inequality follows from u′(k̂) − x0 ≤ u′(k̂) − x̂0 = 0 and dx0
dk

∣∣
k↗k̂ > 0.

Therefore, Π2 +BS is decreasing in k when k is close to but below k̂. This is true

for BS as well, because Π2 is increasing in k. �

Proof of Proposition 3. Straightforward and omitted. �

Proof of Proposition 4. Recall D(p̄)− Q̄ < k from Theorem 2. This, together with

the definition of ǩ, implies that Q̄ > D(p̄)− k ≥ D(p̄LP )− k when k ∈ (0, ǩ]. As

k ↗ qe, D(p̄LP ) − k tends to zero and Q̄ > 0. Also recall qLP1 = D(p̄LP ) − k and

qLP2 = k from Proposition 3. Part (a) follows.

Clearly, Π1 > ΠLP
1 hold. From Theorem 2 and Proposition 3, we know Π2 =

(p̄ − c)(D(p̄) − Q̄) and ΠLP
2 = (p̄LP − c)k. Then part (a) and the definition of ǩ

imply Π2 < ΠLP
2 when k ∈ (0, ǩ].

When k ∈ [k̂, qe), (26) evaluated at p = x0 implies Π2 = (x̂0 − c)k, where x̂0

is (as in the proof of Proposition 2) the minimum equilibrium x0 when k = ∞.
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Therefore, ΠLP
2 = (p̄LP − c)k < Π2 since p̄LP < u′(k) ≤ u′(k̂) = x̂0. It proves the

result for Π2,Π
LP
2 when k ∈ [k̂, qe). It completes the proof of part (b).

The result for TS, TSLP follows from the definition of ǩ and the fact that the

total output is equal to the demand D(·) evaluated at firm 2’s price. Moreover,

ΠLP
2 +BSLP =

(
p̄LP − c

)
k +

∫ ∞
p̄LP

D(p)dp

≥
∫ ∞
c

min {D(p), k} dp

>

∫ ∞
x0

min {D(p), k} dp (∵ x0 > c)

= Π2 +BS (∵ (A17)).

This completes the proof of part (d).

Compare BS = TS − Π1 − Π2 and BSLP = TSLP − ΠLP
1 − ΠLP

2 . When

k ∈ [k̂, qe), our previous results that TS < TSLP , Π1 > ΠLP
1 , and Π2 > ΠLP

2

together imply BS < BSLP . As k ↘ 0, from (A17), BS tends to zero but BSLP

is positive. Therefore, we also have BS < BSLP when k is small. It completes the

proof of part (c). �
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Table A1: Linear Demand Example (Note: k̂ = e2

1+e2
.)

NLP vs LP Equilibrium

Pricing
x0 Q0 p̄ Q̄

1
e2

min{k, k̂} 1+e2

e2
max{k̂ − k, 0} 1

e
min{k, k̂} 1− 2

e
min{k, k̂}

Surplus

Π1 Π2

1
2(1+e2)

+ 1+e2

2e2
(max{k̂ − k, 0})2 1

e2
(min{k, k̂})2

BS TS

min{k, k̂} − 4+e2

2e2
(min{k, k̂})2 1

2
− 1

2e2
(min{k, k̂})2

LP vs LP Equilibrium

Pricing
pLP
1 pLP

2 qLP
1 qLP

2

1−k
2

1−k
2

1−k
2

k

Surplus

ΠLP
1 ΠLP

2

(1−k)2

4
(1−k)·k

2

BSLP TSLP

(1+k)2

8
(1+k)(3−k)

8
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G. Calzolari and V. Denicolò. Competition with exclusive contracts and market-

share discounts. The American Economic Review, 103(6):2384–2411, 2013.

Y. Chao. Strategic effects of three-part tariffs under oligopoly. International Eco-

nomic Review, 54(3):977–1015, 2013.

Y. Chao and G. Tan. All-units discounts: Leverage and partial foreclosure in

single-product markets. Canadian Competition Law Review, 30(1):93–111, 2017.

Y. Chao, G. Tan, and A. C. L. Wong. All-units discounts as a partial foreclosure

device. The RAND Journal of Economics, 49(1):155–180, 2018a.

Y. Chao, G. Tan, and A. C. L. Wong. Asymmetry in capacity and the adoption

of all-units discounts. 2018b.

Z. Chen and G. Shaffer. Naked exclusion with minimum-share requirements. The

RAND Journal of Economics, 45(1):64–91, 2014.
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