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Abstract

I study a social learning model in which agents make decisions sequentially and learn

about an unknown payoff-relevant state through two sources – a signal about the state itself

(a state-signal) and a signal about the actions taken by previous agents (an action-signal).

Our objective is to provide general conditions on the action-signals that lead the agents to

eventually behave as if they know the state, i.e., that lead to information aggregation. When

the agents’ action-signals are what I call weakly separating, it is shown that information ag-

gregation occurs when the agents’ state-signals are unboundedly informative in the sense of

Smith and Sorensen (2000). This result provides a unifying criterion to evaluate when infor-

mation aggregation occurs. I also provide sufficient conditions for information aggregation

when the state-signals are boundedly informative, and necessary conditions for information

aggregation. The theory is illustrated with applications to privacy protection on financial

platforms, regulation of third-party information provision in social learning environments,

and the design of social learning environments when agents suffer “source amnesia”.
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1 Introduction

In many economic and social settings, people have limited private information about a payoff-

relevant state of the world and rely on their information of the actions of others as a vital

source of additional information. For instance, in assessing the quality of a new product,

consumers draw inferences from other consumers’ purchasing decisions; in judging whether a

political candidate is suitable for office, voters obtain information from the voting behavior

of others. Likewise, in financial markets, investors learn about the market fundamentals by

observing other investors’ behavior.

A classic literature studies the possibility of information aggregation in such settings,

characterizing conditions under which individuals are able to take the correct state-dependent

actions in the long run.1 A common assumption in the literature is that individuals are

connected through a network. In particular, each individual is assumed to know the identities

of his neighbors in the network and perfectly observe his neighbors’ actions.2 These network

models are suited for settings where learning happens through person-to-person interactions.

However, people are often situated in more general environments where they are imperfectly

informed about others’ identities and actions – for example, consumers consult sales volumes

or bestseller lists to learn about other consumers’ purchase decisions, while investors examine

financial reports to learn about other investors’ decisions. A comprehensive understanding

of social learning in general information environments is lacking, which greatly limits the

applicability of the results that the literature reports.

This paper provides a framework to analyze social learning in general information environ-

ments. I consider a large number of agents, who arrive sequentially and obtain information

about the state of the world from two sources: a signal about the state itself (a state-signal)

and a signal about the actions taken by previous agents (an action-signal). I show that

information aggregation occurs if the state-signals can induce extreme posterior beliefs and

the action-signals are informative enough to separate certain types of action-histories (this

property of the action-signals is formally captured in two closely related concepts of “strong

separation” and “weak separation”). The characterization result provides a unifying crite-

rion to evaluate whether information aggregation occurs in social learning. In addition to

environments studied in the prior literature, the result implies that information aggregation

can occur in many under-researched environments – e.g., those in which each agent observes

1For surveys, see Bikhchandani et al. (1998); Chamley (2004); Golub and Sadler (2016).
2Most of the literature focuses on the special case in which agents observe all past actions, i.e., they are

connected in a complete network.
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certain coarse summary statistic about past actions.

The theory is illustrated with three important applications. First, I consider how digital

platforms can design its information disclosure to ensure information aggregation and, at the

same time, protect the privacy of the users. I construct an action-signal information structure

that features “dynamically-adjusted benchmarks”. I show that this information structure

satisfies my definition of weak separation, and thus give rise to information aggregation. At

the same time, the information structure is less informative than the widely-used disclosure

method of releasing the volumes of prior actions.3 Thus, it is better at protecting the users’

privacy.

Second, I study the regulation of third party information provision in social learning

environments. I show that when action-signals satisfy strong separation, the necessary and

sufficient condition for information aggregation to be robust to third party manipulation

is that the state-signals are unboundedly informative. This result is then used to analyze

whether and how third-party information provision in social learning environments should

be regulated.

Finally, I analyze social learning when agents have limited memory. I show that when

action-signals satisfy weak separation, information aggregation is robust to certain distor-

tions which reduce the informativeness of the action-signals about other agents’ identities. I

then argue that this type of distortion is precisely the major source of cognitive limitation

of agents as documented by laboratory evidence. In light of the result, I discuss how the

information environment can be designed so that it is easy for agents with limited memory

to aggregate information.

Formally, in my model, a countably infinite number of agents, n ∈ {1,2, ...}, sequentially

choose an action an, starting with agent 1, to maximize their expected utility. Each agent’s

utility depends on the state θ and his action an. Agent n’s information about θ consists of two

sources: a state-signal sn about θ and an action-signal mn about histories of other agents’

actions. The state-signal sn is generated according to a distribution ψ(⋅∣θ) independently

conditional on the state θ; the action-signal mn is generated according to a distribution

µn(⋅∣a<n) independently conditional on the history of actions a<n before agent n arrives.

This information structure generalizes the various information structures employed in the

literature. It also captures other important environments, such as those in which agents

observe coarse summary statistics of prior actions (e.g., labor markets), and those in which

3The informativeness of the action-signals are measured according to the Blackwell order of informative-

ness.
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agents observe the majority choice of actions of cohorts of agents (e.g., product markets

where bestseller lists are published).

I provide a systematic analysis of long-run efficiency of learning in the game, as measured

by the notion of information aggregation. We say that there is information aggregation if, as

n goes to infinity, equilibrium actions an converge (in probability) to the action that yields

the highest utility given the state θ. In the analysis of information aggregation, both the

informativeness of the state-signals and that of the action-signals play a key role.

The informativeness of state-signals matters for information aggregation mostly in terms

of whether an agent’s state-signal can have an unbounded influence on his posterior belief.

This concept is first introduced by Smith and Sørensen (2000). I refer to state-signals that

satisfy this property as being unboundedly informative.4 If a state-signal is unboundedly

informative, then it can move the posterior anywhere no matter where in the interior the

prior starts. In contrast, if the state-signal is boundedly informative, then, for any given prior,

the posterior will be bounded away from the extremes of 0 or 1. Smith and Sørensen show

that, in the special case wherein each agent perfectly observes all past actions, information

aggregation occurs if and only if the state-signals are unboundedly informative.

In terms of the action-signals, this paper introduces the key concepts of weak and strong

separation, based on whether the action-signals are informative enough so that agents can

“separate” certain types of action-histories. The action-signals are weakly-separating if each

agent n can find some (potentially random) set Jn of prior agents such that every agent

only appear in a finite number of these Jn sets, and, in the limit as n goes to infinity, each

agent n’s action-signal separates action-histories that differ in terms of the optimal decisions

implied by the volumes of actions in Jn. If, as n goes to infinity, agent n’s action-signal

always separates action-histories that differ in terms of the volumes of actions in Jn (instead

of the implied optimal decisions), we say that the action-signals are strongly-separating.

Sections 5.1 and 5.2 illustrate the main idea of the separation concepts in the special case

in which the Jn sets are deterministic. Then Section 5.3 presents the general notions of

weak and strong separation which allow the Jn sets to be stochastic. Many reasonable

action-signals are weakly- or strongly-separating. For example, the canonical environment

in this literature, where each agent observes all past actions, are both weakly- and strongly-

separating. Environments in which each agent observes some coarse summary statistic of

recent actions can be weakly separating but not strongly separating. Two simple examples in

which action-signals are neither weakly-separating nor strongly-separating are: one in which

4Smith and Sørensen refer to the property as “private beliefs being unbounded.”

4



all future agents only observe the actions of the first k number of agents, and one in which

each agent observes his immediate predecessor’s action with error probability ε > 0.

The main results of this paper are presented in five theorems. Theorems 1, 2, and 3

show that when state-signals are unboundedly informative and action-signals are strongly-

or weakly- separating, information aggregation occurs in all equilibria. The result unifies

the prior literature and clarifies the underlying forces for information aggregation: agents

needs to, at least, figure out the optimal decisions implied by the volumes of recent actions.

In addition, the results contributes to the literature by identifying a larger class of environ-

ments that give rise to information aggregation, e.g., environments in which agents learn

from volumes or certain coarse statistics of actions from recent histories and unbuondedly

informative state-signals. On the other hand, Theorem 4 shows that when state-signals

are boundedly informative, action-signals that are weakly separating may not aggregate in-

formation. Then Theorem 5 provides a sufficient condition for action-signals to aggregate

information regardless of whether the state-signals are boundedly or unboundedly informa-

tive. Finally, Theorem 6 provides a necessary condition for information aggregation to occur,

which shows that information aggregation is impossible when the action-signals on which

(an infinite subset of) agents build their decisions is simply too noisy about action-histories

beyond a finite period of time.

The characterization theorems highlight that a substantially larger set of environments

than those studied in the previous literature can induce information aggregation, many of

which are widely used in practice. I apply these results to study three important applications.

Section 6.1 studies the design of information disclosure on a digital platform in order to

both enable information aggregation and protect users’ privacy. Two potential disclosure

methods are discussed. First, I analyze the commonly-used disclosure policy of releasing

the volumes of actions periodically. This policy is shown to correspond to an action-signal

technology that satisfies strong separation. Second, I introduce a disclosure policy that fea-

tures “dynamically-adjusted benchmarks” and show that it corresponds to an action-signal

technology that satisfy weak separation. According to the characterization results, both

disclosure policies lead to information aggregation under unboundedly informative state-

signals. However, the second disclosure policy is shown to be better at protecting users’

privacy because it reveals strictly less information about past actions.

Section 6.2 investigates the robustness of information aggregation towards manipulation

by third parties who can provide additional information about past actions to the agents.

I show that information aggregation is robust to such manipulation if state-signals are un-
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boundedly informative and the action-signals are strongly separating.5 As a result, when the

state-signals are unboundedly informative, a benevolent regulator that cares about long-run

learning outcomes only needs to ensure that action-signals that satisfy strong separation are

accurately disclosed and frequently updated. The regulator can adopt a laissez-faire policy

regarding third party disclosure of other types of information. However, when state-signals

are boundedly informative, third parties can always provide additional information to agents

who are not well-informed about others’ choices and induce herding behavior which blocks

information aggregation. As discussed in Section 6.2, this result is broadly in line with the

widely studied fact that advertisement and propaganda programs usually target people who

are not well-informed, suggesting a possible (indirect) channel of manipulation through social

learning for this phenomenon.

Section 6.3 studies the impact of a reduction of information in the action-signals on

information aggregation. As a corollary of the main characterization theorem, I show that in

a large class of action-signals that are strongly separating, information aggregation is robust

to information reduction that features a certain type of “identity-blending.” The result can

be interpreted as a robustness property of information aggregation against agents’ limited

memory of identities of prior agents, which in cognitive psychology is documented as “source

amnesia.”6 This result can be formalized by assuming that each agent has a simplified

memory process: instead of remembering every detail of past information, his memory is

limited by a coarse partition of the space of events.

The rest of the paper proceeds in the usual order. Section 2 reviews the literature. Section

3 introduces the model. Section 4 characterizes the agents’ optimal strategies. Section 5

presents the main results about information aggregation in the long run. Section 6 studies

three applications. Section 7 concludes. Proofs and materials omitted from the main text

are presented in the Appendix.

5The result is correct regardless of the number of such third parties, and regardless of their objectives

and the communication protocols through which they can influence the agents’ information.
6This phenomenon, which is well-studied in psychology, refers to the fact that people have difficulty

remember sources of prior events but find it relatively easy to remember the content of the events (Shimamura

and Squire, 1987; Zaragoza and Lane, 1994; Schacter, 1999; Brown and Marsh, 2008). In a social learning

context, source amnesia can be especially intensified due to “memory interference”(McGeoch, 1932; Anderson

and Neely, 1996): when the same decisions are made repeatedly by different people, it becomes difficult to

remember exactly who performed which action. Despite its prevalence, source amnesia has received little

formal treatment in the theory of social learning.
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2 Related Literature

This paper contributes to the large and growing literature on social learning. Banerjee

(1992), Bikhchandani et al. (1992), and Welch (1992) initiate the literature on social learning,

wherein agents act sequentially and observe the actions of all previous agents. Smith and

Sørensen (2000) provide the most comprehensive and complete analysis of this environment.

Their results and the importance of the concepts of bounded and unbounded private beliefs,

which they introduced, have already been discussed in this paper’s introduction and will

play an important role in our analysis. Other important contributions in this area include,

among others, Lee (1993), Chamley and Gale (1994), and Vives (1997). An excellent general

discussion is provided by Bikhchandani et al. (1998). These papers typically focus on the

special case wherein agents perfectly observe the history of actions.

Deviating from the full information paradigm, Celen and Kariv (2004) study learning

when each individual observes his immediate predecessor. Extending the model further,

Acemoglu et al. (2011) study social learning in arbitrary social networks. They characterize

the set of environments that lead to information aggregation. A key concept is that of a social

network with expanding observations in which no finite group of agents is excessively influ-

ential. They show that there is no information aggregation in networks with non-expanding

observations. When state-signals are unboundedly informative and the network topology is

expanding, information aggregation will occur. Furthermore, for a sizable class of stochas-

tic social networks, there is information aggregation even when state-signals are boundedly

informative. Smith and Sørensen (2014) provides a first (and perhaps the only) attempt to

study sequential social learning when prior agents’ identities are not perfectly known. They

focus on a special case in which agents learn about others’ actions through a random sample

of prior actions. Smith and Sorensen show that if state-signals are unboundedly informative

and the distant past is not over-sampled, information aggregation occurs.

My paper contributes to this literature by considering a general information environment,

according to which a countable number of agents arrive sequentially and learn about other

agents’ actions. In this sense, my paper unifies the literature. In addition, my model

encompasses many other important environments that are not studied in earlier papers.

The main characterization theorems in my paper provide a simple criterion to check whether

information aggregation occurs in a general information environment. The results on the

general properties of information aggregation and optimal information design are novel to the

literature, and they can only be meaningfully stated in a model that allows all information

environments.
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Other related work on social learning includes Callander and Horner (2009), who show

that when agents are differentially informed, it may be optimal to follow the actions of

agents that deviate from past average behavior; Hendricks et al. (2012), Mueller-Frank and

Pai (2016), and Ali (2018), who incorporate costly search or costly information into social

learning; Bohren (2016, 2017), who studies the robustness of information aggregation to

small amount of behavioral biases; Banerjee and Fudenberg (2004) and Frick et al. (2019),

who study environments in which a continuum of agents, rather than a single agent, arrive at

each point in time; and Ellison and Fudenberg (1993), Ellison and Fudenberg (1995), Bala

and Goyal (2001), DeMarzo et al. (2003), Golub and Jackson (2010), among others, who

focus on non-Bayesian learning with agents using some reasonable rules of thumb.

3 Model

3.1 Environment

A countably infinite number of agents (individuals), indexed by n ∈ N, arrive sequentially,

and each makes a single decision an ∈ {0,1}. All agents are expected utility maximizers.

The state of the world is θ ∈ {0,1}, and agents share a common prior πi = P(θ = i) = 1/2

for i ∈ {0,1}. Agents prefer to choose the action that matches the state, and they have a

common utility function u(an, θ) with

u(1,1) = u(0,0) = 1 and u(1,0) = u(0,1) = 0.7

The state θ is initially unknown. Before making the decision an, each agent n ∈ N
privately observes a state-signal sn taking values in an arbitrary Polish space S. The signals

{sn}n∈N are independent and identically distributed conditional on the state θ, according to a

distribution ψ(⋅∣θ) ∈△(S). We assume that ψ(⋅∣θ = 1) and ψ(⋅∣θ = 0) are mutually absolutely

continuous, so no state-signal realization in S perfectly reveals the state.

7The assumptions on the prior and the functional form of the utility are only for simplicity of exposition.

The main results of this paper hold under any prior belief that is not degenerate, i.e., πi /∈ {0,1}, and any

general utility function such that

u(1,1) > u(0,1) and u(0,0) > u(1,0).

The model can also be generalized so that agents have heterogenoues utilities as long as the utility functions

are common knowledge.
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We say that the state-signals are unboundedly informative, if for every positive number

K, there are measurable subsets C and D of S such that

ψ(C ∣θ = 1)

ψ(C ∣θ = 0)
>K and

ψ(D∣θ = 1)

ψ(D∣θ = 0)
<

1

K
.

Otherwise, we say that the state-signals are boundedly informative.

For concreteness, consider some examples of signal structures. We could have binary

signals, with each sn taking values in S = {0,1} and where

ψ(sn = 0∣θ = 0) = ψ(sn = 1∣θ = 1) = q >
1

2
.

The realization sn = 0 provides evidence in favor of θ = 0, while sn = 1 provides evidence in

favor of θ = 1. This is the signal structure studied by Banerjee (1992) and Bikhchandani et al.

(1992), and the state-signals are boundedly informative in this case. We could also consider

real-valued signals with ψ(⋅∣θ = 0) and ψ(⋅∣θ = 1) being probability measures on R. For

instance, suppose ψ(⋅∣θ = 0) and ψ(⋅∣θ = 1) are both supported on S = [0,1], where ψ(⋅∣θ = 0)

has density 2−2s and ψ(⋅∣θ = 1) has density 2s. In this case, lower signal realizations provide

stronger evidence in favor of θ = 0: the signal s ∈ [0,1] induces the likelihood ratio s
1−s . It is

easy to check that these state-signals are unboundedly informative.

In addition to the state-signal sn, each agent n also privately observes an action-signal

mn about histories of past actions, taking values in an arbitrary Polish space M. We use

a = (a1, a2, ...) ∈ A ∶= {0,1}∞ to represent a full action-history, which specifies the ordered

sequence of actions taken by each agent. We use a<n = (a1, ..., an−1) ∈ A<n ∶= {0,1}n−1 to

represent a date-n action-history – i.e., the projection of a full action-history onto dates

before n. The set of date-1 action-histories is a singleton set A<1 = {∅} with a null initial

history. For any subset of agents I ⊆ N, we use aI = (ai)i∈I to represent an action-history of

agents in I. Conditional on each action-history a<n, the action-signal mn is independently

generated according to a distribution µn(⋅∣a<n) ∈ △(M). The information environment

according to which agents learn about others agents’ actions is summarized by the signal

realization spaceM and the sequence of transition probabilities {µn}∞n=1. We therefore refer

to µ ∶= ({µn}∞n=1,M) as the action-signal technology, or simply technology.

The representation of the action-signal technology nests earlier models in the literature

as special cases. For example, if M = A and µn(a<n∣a<n) = 1 for any n and a<n ∈ A<n, then

agents will fully observe the histories as in the canonical model studied by Banerjee (1992),

Bikhchandani et al. (1992), and Smith and Sørensen (2000), among others. We could also
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capture social network models. Suppose each agent n is connected to a set Bn ⊆ {1,2, ..., n−1}

of agents in the network. Let M = A and µn(aBn ∣a<n) = 1 for any n and a<n ∈ A<n. In this

case, the agents perfectly observe the actions of agents in Bn, and know their identities.

We can capture stochastic social networks by allowing Bn to depend on an independent

randomization device. These are the environments studied in Acemoglu et al. (2011).

The model also captures many important settings that are not included in the prior

literature. For instance, suppose M = {0,1} and µn(1∣a<n) = 1 if and only if ∑
n−1
i=n−k ai > k/2,

for some fixed odd integer k. This is an environment in which each agent learns which of

the actions, 0 or 1, was taken by the majority of the previous k agents, which is related

to many real-world markets: book-buyers learn from bestseller lists; film-goers consult box-

office rankings, etc. As another example, we can also consider environments in which agents

learn from summary statistics of actions. SupposeM = {1, ..., k} for some integer k, and for

each m ∈M, µn(m∣a<n) = 1 if ∑
n−1
i=n−k ai = m. In this case, each agent knows the aggregate

number of people choosing action 1, among the most recent k agents. The model can also

capture non-partitional signals: For example, suppose M = {0,1} and µn(m∣a<n) = q >
1
2 if

an−1 = m. In this case, agent n observes a noisy signal about his immediate predecessor’s

action. When agent n observes mn = m, he knows that it is more likely an−1 = m, but he

cannot rule out the possibility of an−1 = 1 −m.

3.2 Strategies and Equilibrium

A (behavioral) strategy σn ∶ S×M→△({0,1}) for agent n is a measurable function that maps

each possible realization of her state-signal and action-signal into a randomized strategy over

his action an ∈ {0,1}. A strategy profile of the agents is a sequence of strategies σ = (σn)n∈N.

We use the standard notation σ−n = (σ1, ..., σn−1, σn+1, ...) to denote the strategies of all

agents other than n. A strategy profile σ induces a joint probability distribution Pσ over

the states, actions, action-signals, and state-signals, i.e., (θ, a, s,m) where a = (a1, a2, ...),

s = (s1, s2, ...), and m = (m1,m2, ...). We use Eσ[⋅] to denote the operator that takes the

expectation of random variables with respect to Pσ. If S or M have infinite elements, then

conditional expectations given the signals are only defined almost everywhere. In such cases,

I use P(⋅∣sn) and Pσ(⋅∣mn) to refer to some version of the various conditional probabilities

that may differ on zero measure sets.

In our game, agents’ payoffs do not depend on what the other agents do. Thus, off-

equilibrium beliefs do not matter. This allows us to define an equilibrium concept by simply

requiring an unconditional optimization for each agent, which implies utility maximization
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conditional on beliefs updated according to Bayes rule almost everywhere on the agent’s

signal space S ×M. We say that a strategy profile is an equilibrium if each agent maximizes

her expected utility, given the strategies of other agents:

Definition 1. A strategy profile σ is an equilibrium of the social learning game if for each

n ∈ N, σn maximizes the expected payoff of agent n, given the strategies of other agents σ−n,

i.e.,

Eσ[u(an, θ)] ≥ E(σ′n,σ′−n)[u(an, θ)],

for every behavior strategy σ′n for agent n.

Proposition 1. There exists an equilibrium.

Given the sequence of strategies {σ1, ..., σn−1}, the maximization problem of agent n has

a solution. Since each agent acts once in sequence, an inductive argument establishes the

existence of an equilibrium, though in general it is not unique because some agent may be

indifferent between the two actions. In this case, we can construct two different equilibria

in which this agent adopts different strategies and subsequent agents best reply to these

different strategies.

3.3 Long-Run Learning Metrics

Our study of equilibrium behavior centers on asymptotic outcomes. In particular, we consider

the metric of information aggregation, based on agents’ expected utility as the agent-index n

approaches infinity. Information aggregation occurs if agents’ utility approaches what they

would obtain with perfect information:

Definition 2. For any strategy profile σ, say that information aggregation occurs given

σ if

lim
n→∞

Eσ[u(an, θ)] = π1u(1,1) + π0u(0,0).8

This represents the best asymptotic outcome we can hope to achieve: For later agents,

it is as though the private information of those that came before them is aggregated into a

8Equivalently, information aggregation occurs under strategy profile σ if limPσ(an = θ) = 1.
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single, arbitrarily precise signal.9

Another useful long-run learning metric is that of information diffusion, which depends

on the distribution (and, in particular, the support) of the private beliefs. In the appendix, I

discuss how my results should be interpreted if we use diffusion as the metric for the analysis.

4 Preliminary Analysis

The next result shows that agents’ equilibrium strategies can be characterized as a function

of two posterior beliefs. These posterior play an important role in our analysis.

Proposition 2. Let σ be a strategy profile for the agents in any equilibrium. Let sn ∈ S and

mn ∈M be any signal realizations. Then agent n’s action an ∈ supp(σn(sn,mn)) must satisfy

an =

⎧⎪⎪
⎨
⎪⎪⎩

1, if P(θ = 1∣sn) + Pσ(θ = 1∣mn) > 1

0, if P(θ = 1∣sn) + Pσ(θ = 1∣mn) < 1
(1)

and an ∈ {0,1} otherwise, where P(⋅∣sn) and Pσ(⋅∣mn) are some version of the various con-

ditional probabilities.

This proposition establishes an additive decomposition in the optimal decision rule be-

tween information obtained from the state-signal sn and that from the action-signal mn. The

next definition formally distinguishes between the two components of an agent’s information.

Definition 3. We refer to the probability pn = P(θ = 1∣sn) as agent n’s private belief, and

qn ∶= Pσ(θ = 1∣mn) as agent n’s social belief.

Note that the private belief pn does not depend on the strategy profile of other agents,

whereas qn depends on the strategy profile. Hence, we use P in defining pn and Pσ in

defining qn. Since sn’s are identically and independently distributed across n, so are the

9Information aggregation requires that the probability of taking the correct action converges to 1. There-

fore, information aggregation will fail when, as more agents arrive, the limit inferior of the probability of

all agents taking the correct action is strictly less than 1 – i.e., there exists an infinite sub-sequence of

agents for whom the probabilities of taking the correct action are uniformly bounded away from 1. This is

the strongest limiting result achievable in our framework. Information aggregation implies an almost-sure

convergence of individual beliefs, but an almost-sure convergence of actions is impossible because for full

information aggregation to occur, agents must continue to act based on their signals.
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private beliefs pn’s. We use Gθ to denote the distribution function of pn conditional on the

state. We can now state the definition of state-signals that are boundely or unboundedly

informative, introduced earlier, in terms of the distribution of private beliefs.

Remark 1. The state-signals are unboundedly informative if {0,1} ⊆ supp(p1), and they are

boundedly informative otherwise.10

When the state-signals are boundedly informative, there is a cap as to how informative

the state-signal can be, i.e., how large or small the private beliefs induced by the state-signal

can be. In this case, if an agent is sufficiently confident about the state of the world after

observing his action-signal mn, the state-signal will not affect his choice of action, according

to Proposition 2. On the other hand, when the state-signals are unboundedly informative,

the agents may receive arbitrarily informative state-signals in favor of either state. Thus,

even if an agent is very confident of the state of the world after observing mn, he may still

change his action if the state-signal is sufficiently indicative of the opposite state of the world.

In our subsequent analysis, we will see that whether or not the action-signals are boundedly

informative plays a key role in determining whether information aggregation occurs.

In most learning models, social beliefs have natural monotonicity properties. For example,

the more information an agent has when making his own decisions, the more informative

his action will be for subsequent agents who observe the action. It is straightforward to

construct examples in which such monotonicity properties do not hold in a sequential social

learning environment. For this reason, to establish our main results (in the next section),

we will use a different approach that is based on developing lower bounds on the probability

of taking the correct action.

5 Main Results

In this section, I present my main results on information aggregation under action-signals

that are strongly-separating and weakly-separating. To illustrate the main ideas without

complicating the notations, section 5.1 and 5.2 study special cases of action-signal technolo-

gies that satisfy what I call deterministic strong and weak separation. I provide the intuition

of the proofs for these cases. Then I introduce the general results about (stochastic) strong

10The notation supp(p1) represents the support of p1 whose lower bound and upper bound are b, b̄ where

b = inf{x ∈ [0,1] ∣P(p1 ≤ x) > 0} and b̄ = sup{x ∈ [0,1] ∣P(p1 ≤ x) < 1}. Thus, when the state-signals are

unboundedly informative, we have b = 0, b̄ = 1.
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and weak separation in section 5.3.

5.1 Strong Separation: The Deterministic Case

We start by introducing the first key concept of deterministic strong separation.

Let M s
n(J, k) denote the set of agent n’s action-signals that can occur only when exactly

k agents in the set of agents J ⊆ {1, ..., n − 1} take action 1; i.e.,

M s
n(J, k) = {m ∈M ∶ ∀a<n, if ∑

j∈J
aj ≠ k, then m /∈ supp(µn(⋅∣a<n)} .11

Intuitively, if agent n observes an action-signal in M s
n(J, k), then he knows for sure that

exactly k agents in J took action 1, i.e., it is impossible to observe an action-signal in

M s
n(J, k) if exactly k′ number of agents in J took action 1 and k′ ≠ k.

Definition 4. Say that action-signals are deterministically strongly-separating if there

exists non-empty sets of agents, J2, J3, ... such that no agent is in infinitely many of these

sets, each Jn ⊆ {1, ..., n − 1}, and

lim
n→∞

min
a<n

µn (M
s
n (Jn,∑j∈Jn

aj) ∣a<n) = 1,

Intuitively, if the action-signals are deterministically strongly-separating, then for any

fixed integer k, in the limit as n goes to infinity, agent n’s action-signal reveals, with prob-

ability one, the empirical frequency of action 1 taken by some set of agents after the first k

agents.

The following theorem shows that unboundedly informative state-signals and determin-

istically strongly-separating action-signals are sufficient for information aggregation.

Theorem 1. If the state-signals are unboundedly informative and the action-signals are

deterministically strongly-separating, then information aggregation occurs in all equilibria.

Theorem 1 implies that information aggregation occurs in many commonly studied

action-signal technologies under unboundedly informative state-signals. Examples of action-

11Equivalently, the set Ms
n(J, k) can expressed as

Ms
n(J, k) =M − ⋃

a<n∶∑j∈J aj≠k

supp(µn(⋅∣a<n)).
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technologies that are deterministically strongly separating include: environments in which

each individual observes all past actions (Banerjee, 1992; Bikhchandani et al., 1998; Smith

and Sørensen, 2000); those in which each observes just his immediate predecessor (Celen and

Kariv, 2004); those in which agents are connected in a fixed social network that features ex-

panding observations (Acemoglu et al., 2011); and those in which agents observe samples of

prior actions that do not always involve any individual agent. (Smith and Sørensen, 2014).12

As noted in the previous section, there is no monotonicity result that links the infor-

mativeness of an agent’s action about the state to the agent’s own information about past

actions. Instead, Theorem 1 can be shown by making use of an utilitarian monotonicity

related to the (expected) improvement of welfare across agents. In particular, we first con-

sider some agent n whose action-signal is fully informative about the empirical frequency of

action 1 of a set of prior agents Jn ⊂ {1, ..., n − 1}; i.e.,

µn (M
s
n(Jn, ∑

j∈Jn
aj)∣a<n) = 1

for all a<n ∈ A<n. We can establish the following utility improvement principle: there exists a

strict lower bound on the increase in the ex ante expected utility that agent n gets over the

expected average utility of agents in Jn (the average is calculated by assigning each agent in

Jn equal weights). Intuitively, when agent n knows the empirical frequency of choices in Jn,

it is feasible for him to adopt a mixed strategy to choose action 1 with probability exactly

the same as the frequency that agents in Jn choose action 1, i.e., the following strategy is

feasible for agent n:

σcn(mn, sn) =
∑i∈Jn ai

∣Jn∣

because ∑j∈Jn aj is revealed in mn. This strategy will guarantee that agent n gets an expected

utility exactly the same as average utility of agents in Jn.

Notice that the strategy σcn only depends on the action-signal mn but not the state-signal

sn. Since sn is independent of mn, the strategy σc is not utilizing an important source of

information about the state. Now, consider how agent n may improve upon the strategy σcn

by fine tuning his action based on the realization of sn. In particular, when the state-signal

12Acemoglu et al. (2011) also considers social networks in which agents’ “neighborhoods” are stochastic

but independently generated. Similarly, Smith and Sørensen (2014) considers cases where agents observe

samples of past actions that are independently generated. The general notion of strong separation that

captures these special cases are discussed in section 5.3.
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is unboundedly informative, he may observe a very strong state-signal that points to either

state. In such cases, he will always act on the state-signal, and whenever, he does so, the

resulting expected gain of utility is strictly positive. This results in a fine-tuned strategy σfm

that generates an expected utility that is strictly higher than the average utility of agents in

Jn whenever the state-signals are unboundedly informative and the average expected utility

of agents in Jn is smaller than π1u(1,1) + π0u(0,0) – the utility when the agents have full

information about the states.

We can then prove that with deterministically strongly-separating action-signals, similar

improvements of expected utility will continue as more agents arrive because each agent

only appear in a finite number of other agents’ Jn sets and the state-signals are unboundedly

informative. Such strict improvement of expected utility will ultimately lead to information

aggregation.

5.2 Weak Separation: The Deterministic Case

The concept of deterministic strong separation captures the property of an action-signal

technology that allows the agents to know the empirical frequency of actions in some set of

agents who arrived recently. In this section, I introduce the concept of deterministic weak

separation to capture a larger class of action-signal technologies, which may not allow the

agents to know the empirical frequency of actions in some set of agents, but nonetheless

allows them to know the optimal decisions implied by the empirical frequencies of actions in

a set of agents who arrived recently.

Given a strategy profile σ, for any n ∈ N and any J ⊆ {1, ..., n− 1}, we choose a version of

the conditional probability Pσ(θ = 1∣mn,∑j∈J aj) such that whenever the event mn = m and

∑j∈J aj = k occurs with zero probability, we have Pσ(θ = 1∣mn =m,∑j∈J aj = k) =
1
2 . Define

Mw
n (J, σ) ∶= {m ∈M ∶ Pσ(θ = 1∣mn =m,∑

j∈J
aj = k) − 1/2 has the same sign (2)

for every k = 0,1,2, ..., ∣J ∣} , (3)

where zero is deemed as having the same sign as both positive and negative values.

We can now introduce the concept of deterministically weakly-separating action-signals,

which captures the class of action-signals that “separates” the optimal decisions implied by

the histories that specifies the same ∑j∈J aj and lead to the same mn.

Definition 5. Say that action-signals are deterministically weakly separating if for
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every strategy profile σ that satisfies (1), there are nonempty sets of agents, J2, J3, ..., such

that no agent is in infinitely many of these sets, each Jn ⊆ {1,2, ..., n − 1}, and

lim
n→∞

min
a<n

µn (M
w
n (Jn, σ)∣a<n) = 1.

As the following theorem shows, deterministically weakly separating action-signals and

unboundedly informative state-signals are sufficient for information aggregation.

Theorem 2. If the state-signals are unboundedly informative and the action-signals are

deterministically weakly separating, information aggregation occurs in all equilibria.

Thus, information aggregation occurs if the action-signals reveal, at least, the minimum

amount of information that allows agents to figure out the optimal decision implied by the

different set of histories that specify the same ∑j∈Jn aj of some set Jn of recent agents (the

term “recent” means that no agent appears in an infinite number of the sets {Jn}∞n=1).

For generic information environments, deterministic weak separation is easy to verify

given (ψ,µ). In particular, for any ψ that inducce an atom-less distribution (G0,G1) of the

private beliefs, there is a unique equilibrium strategy profile σ as characterized in Proposition

2 which follows a cut-off rule that can be computed explicitly. Section 6.1 provides a concrete

example about how weak separation can be verified and how it can be useful in the design

of real-world markets.

The fact that deterministic weak separation needs to be verified using the strategy profile

characterized in (1) should not be too unexpected: the exact amount of information that

agents know about the state depends on the information structure ψ of the state-signals

(not just whether they are unboundedly informative). Thus, in some knife-edge cases where

action-signals does not satisfy deterministic strong separation, the exact amount of infor-

mation each agent gets from the state-signal can become pivotal in determining whether

information aggregation occurs.

To see how the proof works, assume unboundedly informative state-signals and assume

deterministically weakly separating action-signals, and assume by way of contradiction that

σ is an equilibrium profile under which information-aggregation fails. Then there is a sub-

sequence of agents nk →∞ such that

lim
k→∞

Eσ(u(ank , θ)) = lim
n→∞

Eσ(u(an, θ)) < 1.
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The first thing to argue is that any agent n far enough out in the sequence can achieve the

above infimum utility, at least approximately, without using his state-signal. He can do this

by employing the following naive strategy. Whenever agent n observes, for some nonempty

J ⊆ {1,2, ..., n − 1}, an action-signal mn = m ∈ Mw
n (J, σ), that indicates the conditional

probability Pσ(θ = 1∣mn = m,∑j∈J aj = k) is non-negative for every k ∈ {0, ..., ∣J ∣} such that

this conditional probability is well-defined, then he chooses action 1 with probability 1. (If

m ∈ Mw
n (J, σ) indicates the conditional probability is non-positive for all k, then choose

action 0 with probability 1. If m /∈ Mw
n (J, σ), then choose an action at random.) For

agents far enough out in the sequence, the event mn /∈ Mw
n (J, σ) occurs with very small

probability. Therefore, by adopting the naive strategy, agent n’s expected utility must be

weakly higher than the average utility of the agents in the set J : this is because in the event

that mn = m,∑j∈J aj = k, and if this event implies posterior belief of the state higher than

1/2, taking action 1 guarantees that, in expectation, agent n is outperforming an average

agent in J across these histories. Then if the events mn = m,∑j∈J aj = k for every k implies

the posterior beliefs are all weakly higher than 1/2, taking action 1 upon observing mn =m

guarantees that agent n outperforms an average agent in J in expectation (across all histories

that lead to mn = m). Similarly, the strategy also outperforms an average agent in J when

mn indicates that the posterior belief are all weakly lower than 1/2 for all k.

Since far enough out in the sequence, the agents in J exclude any finite number of agents,

all of the agents in J receive ex-ante utility that is close to or above the infimum limit utility.

At the same time, since mn ∈Mw
n (J, σ) with probability approximately equal to 1 far enough

in the sequence, agent n’s ex ante expected utility from following this naive strategy must

also be close to or above the limit infimum (again for n large). We may conclude that any

agent n, by using this naive strategy, can achieve a payoff close to or above the infimum

limit utility without using his state-signal.

Consider now any subsequence of agents whose limit utility is equal to the infimum limit

utility. By what we have just shown, far enough along this subsequence, each of these agents

can achieve (arbitrarily) close to their equilibrium utility without using their state-signal.

Therefore, if these agents behave optimally given their action signals, but ignore their private

signals, then they can, a fortiori, achieve an expected utility that is close to their equilibrium

utility. But since this limit utility is strictly less than 1, there must be events in which they

are choosing the wrong action and their state-signal is strong enough that, were they to use

it, they would switch to the correct action. Hence, using also their state-signal when it is

sufficiently strong can strictly increase their utility.
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The key of the proof is to show that this increase is bounded away of zero and hence these

agents, far enough along the subsequence can obtain a utility that is strictly greater than

the infimum limit, which contradicts the assumption that that is their equilibrium utility,

and concludes the proof.

As introduced earlier, deterministic weak separation is a weaker condition than deter-

ministic strong separation.

Proposition 3. If the action-signals are deterministically strongly-separating, then they are

deterministically weakly-separating.

5.3 Stochastic Separation

The definitions of deterministic strong and weak separation can be extended to allow the Jn

sets to be random but independent of the action-histories, which lead to the key concepts of

(stochastic) strong and weak separation.

For any pair of positive integers k < n, let N n−1
k denote the set of all nonempty subsets

of {1,2, ..., n − 1} such that mini∈J i + ∣J ∣ > k.

Definition 6. The action-signals are (stochastically) strongly-separating if there exist

a subset Mn(J, k) ⊆M s
n(J, k) for every n ∈ N, J ⊆ {1, ..., n − 1}, and k ∈ {0, ..., ∣J ∣}, such that

(a) limn→∞ µn(∪J∈Nn−1
k
Mn(J,∑j∈J aj)∣a<n) = 1 for every a ∈ A,

(b) µn(Mn(J, k)∣a<n) is independent of a<n for every n, J , and k, 13 and

(c) the sets {Mn(J, k)}J⊆{1,...,n−1},k∈{0,...,∣J ∣} are mutually disjoint.

To interpret this definition, let γn be a distribution over subsets of {1, ..., n−1} such that

γn(J) = µn(Mn(J,∑
j∈J
aj)∣a<n),∀a<n ∈ A<n.

For any strongly-separating action-signal technology, γn exists because of condition (b).

Then we can interpret γn as the (stochastic) analog of Jn in the definition of deterministic

strong separation. It governs the distribution of the subsets of agents whose action-counts

are revealed to agent n. Condition (a) then requires that no agent is excessively influential

13To see why the independence condition is important, see section B4.
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in an infinite number of subsets of agents in the support of other agents’ γn distributions.

Condition (b) restricts the action-signal such that the occurrence of the event of agent

n receiving an action-signal in Mn(J,∑j∈Jn aj) is independent of the action-history. This

ensures that the randomization over which set J is revealed in the action-signal to agent n

does not depend on what actions the agents in J took. Finally, the requirement in condition

(c) that the sets {Mn(J, k)}J,k are mutually disjoint ensures that agent n has a feasible

strategy that only depends on his action-signal and guarantees a utility that is equal to a

weighted average of his recent predecessors’ utility, where the average is taking with respect

to the γn distributions.

To illustrate the environments that are captured by stochastic separation but are left

out by the earlier notion of deterministic separation, consider the stochastic networks as in

Acemoglu et al. (2011): each agent n observes the identities and the actions of agents in a

stochastic neighborhood B(n) ⊆ {1,2, ..., n − 1} where B(n) is generated according to some

probability distribution Qn over all subsets of {1,2, ..., n − 1}, and draws from each Qn are

independent from each other for all n and from the realizations of the state-signals.

In terms of the notations introduced in this paper, each agent n’s action-signal specifies

the identities and the actions of the agent in his stochastic neighborhood, i.e.,

mn = (B(n), ak,∀k ∈ B(n))

and is generated according to the information structure µn(⋅∣a<n) such that

µn((B(n), aB(n))∣a<n) = Qn(B(n)) (4)

Example 1. Consider the special case where B(n) = {n − 1} or {n − 2} with equal proba-

bilities under Qn. It satisfies stochastic strong separation, but fails to satisfy the condition

of deterministic strong or weak separation introduced in the earlier sections. For detailed

explanation of this example, see Section B5.

We can also define a similar stochastic analog to deterministic weak-separation.

Definition 7. The action-signals are (stochastically) weakly-separating if there exist

a subset Mn(J, σ) ⊆Mw
n (J, σ) for every n ∈ N and J ⊆ {1, ..., n − 1}, such that

(a) limn→∞ µn(∪J∈Nn−1
k
Mn(J, σ)∣a<n) = 1 for every a ∈ A,

(b) µn(Mn(J, σ)∣a<n) is independent of a<n for every n and J , and
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(c) the sets {Mn(J, σ)}J⊆{1,...,n−1} are mutually disjoint.

Proposition 4 shows that the deterministic versions of strong and weak separation ana-

lyzed in the previous subsections are special cases of the more general definitions of stochastic

strong and weak separation.

Proposition 4. If the action-signals are strongly-separating, then they are weakly-separating.

If the action-signals are deterministically strongly-separating (or deterministically weakly

separating), then they are strongly-separating (or weakly-separating).

In what follows, I will simply refer to stochastic strong (or weak) separation as strong (or

weak) separation, eliminating the qualifier “stochastic”. Both strong separation and weak

separation ensure agents’ expected utilities are strictly higher than the convex combination

of some of their recent predecessors. A similar argument as before shows that under strongly

or weakly separating action-signals and unboundedly informative state-signals, information

aggregation occurs.

Theorem 3. If the action-signals are strongly-separating or weakly-separating and the state-

signals are unboundedly informative, then information aggregation occurs in all equilibria.

The notion of strong separation unifies the prior literature on sequential social learning.

It captures various action-signal technologies imposed by different papers as special cases

and clarifies the underlying force that give rise to information aggregation. For example,

as discussed in section B6, if agents observe other agents’ actions according to a social

network that features “expanding observations” as studied in Acemoglu et al. (2011), the

corresponding action-signal technology satisfies strong separation.

The results on weak separation contributes to the literature by identifying a much weaker

condition that can also give rise to information aggregation, which can be practically useful

in designing information disclosure (see section 6.1). The relationship between these two

concepts and those in the prior literature is summarized in the Venn Diagram in Figure 1.
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Figure 1: The relationship between different classes of action-signal technologies

5.4 Learning under Boundedly Informative State-Signals

We have obtained sufficient conditions for information aggregation under unboundedly in-

formative state-signals. It is worth asking whether strong or weak separation is sufficient for

information aggregation in the absence of unboundedly informative state-signals. At present

this question is incompletely answered in both the prior literature that restricted attention

to special cases and in my model with a general information environment.

Theorem 4. Suppose the state-signals are boundedly informative. Then information aggre-

gation fails if the action-signals are perfectly informative about action-histories, i.e.,

µn(a<n∣a<n) = 1,∀n ∈ N,∀a<n ∈ A<n.

Theorem 4 reiterates the failure of information aggregation identified by classical papers

(Banerjee 1992; Bikhchandani et al. 1992; Smith and Sorensen 2000). It suggests that

the fully informative action-signals will fail to aggregate information, demonstrating that

transparency alone is insufficient to ensure aggregation. This is so because for any state-

signal sn that leads to only non-extreme private beliefs, an extreme social belief induced by

the action-signal can overwhelm any state-signal, causing agents to disregard their state-

signals when choosing actions.

In some sense the action-signal technology that fully reveals the action-history is a knife-

edge case in which the large-sample principle fails because no one is forced to rely on a
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state-signal. As first discovered in Acemoglu et al. (2011) in a network setting, if we disrupt

information for some agents in the population, creating a sub-sequence of “ignorant agents”

with uninformative action-signals, this group can provide enough information for the rest

of the population to learn the true state. This is generally true in my model with general

information environments.

Theorem 5. Suppose there exists a sequence of agents {ni}i∈N such that

� with probability pi, the realization of mni is completely uninformative about the histo-

ries, i.e., µn(mni ∣a<n) is the same for all a<n ∈ A<n.

� limi→∞ pi = 0 and ∑
∞
i=1 pi =∞

� limn→∞ mina<n µn(Mn({ni}, ani)∣a<n) = 1 for each i.

Then information aggregation occurs.

To see why Theorem 5 is correct. We note that the sequence of agents {ni}i∈N have

no information from their action-signals, and thus act on their state-signals. Therefore, the

actions of these ignorant agents is an infinite sequence of independent signals about the state.

Since all agents learn about actions of the ignorant agents with probability approaching 1, all

agents learn the state according to law of large numbers. We should note that the sequence

ignorant agents consists of an arbitrarily small portion of the population in the limit, which

highlights an important discontinuity in learning outcomes when we compare a transparent

environment with an almost-transparent environment.

This theorem generalizes in several directions. Similar to results in a network setting

(Acemoglu et al., 2011), for information aggregation to occur, the ignorant agents could have

informative action-signals as long as some realizations of the state-signals still dominate the

social belief. We can also allow agents to not all perfectly observe the ignorant agents: we

only need some infinite sequence of agents to observe action-signals that are informative

about the large sample of ignorant agents in a way that is similar to being weakly separating

so that they can aggregate information; and then others can learn by observing this infinite

sequence of agents, instead of the ignorant agents. The results along these directions are

scattered (both in the literature and in my setting). A general characterization of information

aggregation when state-signals are boundedly informative is still missing.
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5.5 Necessary Condition for Aggregation

In this section, I provide a necessary condition for information aggregation. We say that

the action-signal technology is news-permitting if the agents can, at least, distinguish some

continuation histories of each finite history that occurs with positive probability.

Definition 8. The action-signal technology is news-permitting (NP) for strategy profile

σ if ∀ε > 0, ∀k ∈ N, ∀a<k ∈ A<k with Pσ(a<k) > 0, ∃nk > k s.t. ∀n > nk, ∀m ∈M, ∃b<n ∈ A<n

s.t. b<k = a<k and µn(m∣b<n) < ε.

If the action-signal technology is news-permitting, then as more agents arrive, they will

eventually, with positive probability, receive some action-signal that allows them to distin-

guish histories beyond a finite period of time. Hence, as I will show in Theorem 6, when the

action-signal technology is not news-permitting, information aggregation fails.

Theorem 6. If the action-signal technology is not news-permitting for an equilibrium strategy

profile σ, information aggregation does not occur in σ.

Intuitively, the first finite number of k actions can only contain a bounded amount of

information about the state. Thus, if some agent n observes a realization of his action-

signal that can be generated with positive probability (uniformly bounded away from zero)

given every history consistent with a particular date-k action-history, then this realized

action-signal must convey bounded information about the state. Thus, we can bound the

probability that this agent makes the correct choice away from 1 and establish the failure of

information aggregation with an infinite number of such agents.

As I show in Proposition 5, when the state-signals are unboundedly informative, all

action-histories of finite length are reached with positive probability in equilibrium.

Proposition 5. If the state-signals are unboundedly informative, then for any equilibrium

strategy profile σ, ∀k ∈ N, ∀a<k ∈ A<k, we have Pσ(a<k) > 0.

For this reason, when the state-signals are unboundedly informative, if the action-signals

are news-permitting for some equilibrium strategy σ, they must be news-permitting for all

equilibria. This motivates the following definition.

Definition 9. The action-signal technology is uniformly news-permitting (UNP) if ∀ε >
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0, ∀k ∈ N, ∀a<k ∈ A<k, ∃nk > k s.t. ∀n > nk, ∀m ∈ M, ∃b<n ∈ A<n s.t. b<k = a<k and

µn(m∣b<n) < ε.

Corollary 1. If the state-signals are unboundedly informative and the action-signal technol-

ogy is not uniformly news-permitting, information aggregation does not occur in any equilib-

rium.

Examples of action-signal technologies that are not news-permitting include those in

which all agents observe only the first k actions, those in which each agent observes the action

of his immediate predecessor with error probability ε > 0, etc. Theorem 6 and Corollary 1

imply that information aggregation fails in such environments.

6 Applications

In this section, I apply the main results in the previous section to three important applica-

tions. In Section 6.1, I focus on the design of information disclosure on financial platforms to

protect investors’ privacy while maintaining long-run efficiency as measured by information

aggregation. In Section 6.2, I study whether information aggregation is robust to manipula-

tion by third parties who can provide additional information to the agents. In Section 6.3, I

analyze how information loss due to agents’ limited memory impacts long-run social learning

outcome, and how to design the information environment to make it easy for ordinary people

with limited memory to aggregate information.

6.1 Privacy Protection on Digital Platforms

In this section, I present an example in the context of information disclosure on a financial

platform. I construct two action-signal technologies: one strongly separating and another

one only weakly separating, and then discuss how the example sheds light on the policy

discussion of balancing efficiency with privacy protection.

Consider a financial platform for capital investment. Investors n ∈ {1,2, ...} arrive sequen-

tially, each with a unit endowment. Each investor can either invest his or her endowment

in Project A in Chicago or Project B in New York (an = 1 for investing in A, and an = 0

for investing in B). Both projects are in the technology sector, and the investors’ payoffs

are determined by whether Amazon’s second headquarter ends up in Chicago or New York

(θ = 1 for it being in Chicago, and θ = 0 for it being in New York). Suppose, for simplicity,
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there are equal probabilities that Amazon chooses either city as the host of its second head-

quarter, i.e., P(θ = 1) = P(θ = 0) = 1/2, and the investors payoffs are u(an, θ) = 1{an = θ},

i.e., the projects can only succeed in a city where the headquarter is located. Each investor

has some private information sn ∼ ψ(⋅∣θ) about θ that is unboundedly informative. For tech-

nical reasons, the platform can only publish information on its website every week, and any

published information in a particular week will be available for all future investors. Assume

that t number of investors arrive every week.

In designing the information disclosure policy, the platform has two main concerns: en-

suring information aggregation and preserving investor privacy. That is, the platform wants

to disclose as little information as possible while ensuring that information aggregation oc-

curs.14 The concept of strong and weak separation can be used to analyze different disclosure

policies. I will discuss two important disclosure policies (i.e., action-signal technologies).

6.1.1 Empirical Frequencies (Strongly Separating)

Suppose the platform adopts an action-signal technology µs = ({µsn}
∞
n=1,M) such that for

every c ∈ {0,1, ...} (where c is the index of the week) and every agent n ∈ {ct + 1, ..., (c + 1)t}

arriving in week c, the action-signal is such that:

µsn
⎛

⎝
mn =

⎛

⎝

t

∑
j=1
aj,

2t

∑
j=t+1

aj, ...,
ct

∑
j=(c−1)t+1

aj
⎞

⎠

RRRRRRRRRRR

a<n
⎞

⎠
= 1 (5)

Intuitively, for each k ∈ {0, ..., (c − 1)}, the term ∑
(k+1)t
j=kt+1 aj corresponds to the number of

agents who choose action 1 in the kth week (i.e., the empirical frequency of actions in the kth

week). The action-signal, therefore, simply discloses to each agent the empirical frequency of

actions in each of the previous weeks. This action-signal technology is “public” in the sense

that information disclosed to earlier agents are perfectly observed by later agents. This is a

desirable property because, practically, even if the financial platforms delete the information

that they published earlier, there may be third parties who record the information and share

it with future investors.15

This action-signal technology is strongly separating: for each week c ≥ 2 and each agent

n arriving in that week (i.e., n ∈ {ct+1, ..., (c+1)t}), take Jn to be the agents arriving in the

14Add references for “minimum disclosure”.
15For example, such information can be found on investment forums.
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previous week (i.e., the (c − 1)th week):

Jn = {(c − 1)t + 1, ..., ct}.16

Then it is obvious the action-signal mn perfectly separates histories that differ in terms of

∑j∈Jn aj, and that no agent appears in an infinite number of the sets {Jn}∞n=1. So the action-

signal technology satisfies strong separation and will give rise to information aggregation

when the state-signals are unboundedly informative.

This disclosure policy is widely used in practice and corresponds to the simple strategy

of releasing the “empirical frequency of actions” every week. However, is it possible for the

platform to do better at preserving investors’ privacy without impacting information aggre-

gation? The answer is: yes, there is a Blackwell less informative action-signal technology µw

that is weakly separating, and, therefore, also ensures that information aggregation occurs.

6.1.2 Dynamically-Adjusted Benchmarks (Weakly Separating)

In this section, I construct an action-signal technology which is defined using weekly bench-

marks {φc}∞c=1 that are dynamically adjusted. In week c, each agent’s action-signal reveals

whether, in every previous week, the number of agents who choose action 1 is larger than or

smaller than the corresponding benchmark in that week. Since information about all previ-

ous weeks are disclosed, the action-signals are public. The public information upto week c

is denoted as x<c = (x0, x1..., xc−1) ∈ {0,1}c, where, for each k ∈ {0, ..., c−1}, xk = 1 represents

that the aggregate number of agents in week k who choose action 1 is above the week-k

benchmark.

The benchmarks are recursively defined. Define the benchmark in week zero as φ0 = t/2,

and for each subsequent week c ≥ 1, define the benchmark φc ∶ {0,1}c → R such that for each

x<c = (x0, x1..., xc−1) ∈ {0,1}c, the benchmark φc(x<c) is any real number such that, given the

public information disclosed before, if the number of agents in week c who choose action 1 is

larger than φc(x<c), then it indicates that the state θ = 1 is more likely than θ = 0; otherwise,

it indicates that the state θ = 0 is more likely than θ = 1, i.e., φc(x<c) satisfies

Pσ
⎛

⎝
θ = 1

RRRRRRRRRRR

(c+1)t

∑
j=ct+1

aj = ⌊φc(x<c)⌋,1

⎧⎪⎪
⎨
⎪⎪⎩

(k+1)t

∑
j=kt+1

aj > φk(x<k)

⎫⎪⎪
⎬
⎪⎪⎭

= xk for all k = 0,1, ..., c − 1
⎞

⎠
≤ 1/2,

16For agents arriving in the fist week, take Jn to be any sets.
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and

Pσ
⎛

⎝
θ = 1

RRRRRRRRRRR

(c+1)t

∑
j=ct+1

aj = ⌈φc(x<k)⌉,1

⎧⎪⎪
⎨
⎪⎪⎩

(k+1)t

∑
j=kt+1

aj > φk(x<k)

⎫⎪⎪
⎬
⎪⎪⎭

= xk for all k = 0,1, ..., c − 1
⎞

⎠
≥ 1/2.

For each agent n in week c, define φc(a<n) recursively as

φc(a<n) ∶= φc
⎛

⎝

t

∑
j=1
aj > φ0,

2t

∑
j=t+1

aj > φ1(a<t), ...,
ct

∑
j=(c−1)t+1

aj > φc−1(a<(c−1)t)
⎞

⎠

The action-signal technology µw = ({µwn}
∞
n=1,M) is such that for every week c ∈ N and

every agent n arriving in week c, i.e., n ∈ {ct + 1, ..., (c + 1)t}, his or her action-signal is such

that

µwn
⎛

⎝
mn =

⎛

⎝
1{

t

∑
j=1
aj > φ0} ,1{

2t

∑
j=t+1

aj > φ1(a<t)} , ...,1

⎧⎪⎪
⎨
⎪⎪⎩

ct

∑
j=(c−1)t+1

aj > φc−1(a<(c−1)t)

⎫⎪⎪
⎬
⎪⎪⎭

⎞

⎠

RRRRRRRRRRR

a<n
⎞

⎠
= 1

As I show in Proposition 6, this action-signal technology is weakly separating, and thus also

gives rise to information aggregation under unboundedly informative state-signals.

Proposition 6. The action-signal technology µw is weakly separating.

The action-signal technology µw is less informative compared to µs introduced in the

previous subsection, especially when t is large, because empirically frequencies are not fully

disclosed in µw: the agents only know how the empirical frequencies compare with the

benchmarks.

The comparison between µs and µw shows how the platform can intelligently design its

information disclosure so that privacy is preserved without impacting efficiency: the platform

can disclose only the relative position of the empirical frequency of actions with respect to

some benchmark; and the platform needs to dynamically adjust the benchmark in a clever

way to achieve this: given a generic (ψ,µ) the benchmarks can be computed explicitly.17

6.2 Third-Party Information Manipulation

Suppose information aggregation occurs in some information environment. Will some third

party be able to block it by providing additional information to the agents? Such manipula-

17The benchmark is not unique since there may be a range of values of φc for the two inequalities to hold

at the same time. However, for any of these values, the equilibrium outcome will be the same.
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tion efforts exist in many settings: from propaganda in political campaigns, to information

manipulation in financial markets, to targeted advertisement aimed at increasing sales of a

product. From a design perspective, we would want to design information environments in

which information aggregation is robust to such third-party manipulation.

Formally, suppose in addition to the state-signal sn and the action-signal mn, agent n may

observe an additional action-signal m�
n ∈M� disclosed by some third party. Furthermore,

suppose m�
n is generated independently according to a distribution µ�

n(⋅∣a<n) ∈△(M�) given

any action-history a<n. We refer to µ� ∶= ({µ�
n}

∞
n=1,M

�) as the third parties manipulation

technology.

One can interpret µ� as being implemented by a third party who can commit to any signal

structures of µ� before the first agent arrives.18 Alternatively, µ� may be the information

structure of m�
n’s that appears in some equilibrium of a game where multiple third parties

engage in strategic information manipulation of the social learning process. The formulation

captures all these possibilities.

Definition 10. Given (ψ,µ), we say that information aggregation is robust to third-party

manipulation if information aggregation occurs in all equilibria under every µ�.

A consequence of Theorems 2 and 5 is a fundamental difference between state-signals that

are unboundedly informative and those that are boundedly informative. Thus, the analysis

will be carried out separately for the two cases.

I first consider cases where the state-signals are unboundedly informative – that is, en-

vironments where extreme realizations of the state-signal, that are arbitrarily indicative of

each state, can occur and be privately observed by the agents.

Proposition 7. If the state-signals are unboundedly informative and the action-signals are

strongly separating, information aggregation is robust to third-party manipulation.

Intuitively, with third-party information manipulation, the actual action-signal technol-

ogy, through which agents observe signals about past action-histories, consists of two com-

ponents: the original action-signal technology µ and the manipulation technology µ�. If

18In this case, we can think that the signal m�
n’s are directly observed by the agents. Alternatively, as

in Gentzkow and Kamenica (2017), a model in which agents directly observe signal realizations is outcome-

equivalent to a model in which the third party chooses a manipulation strategy, privately observes the

realizations, and sends cheap-talk messages to the agents.
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the original action-signal technology is separating, then after giving more information to

the agents through µ�, the resulting action-signal technology remains separating (which can

be shown using the definition of weak separateness). Thus, information aggregation occurs

under any manipulation strategy.

This implies that when state-signals are unboundedly informative, a regulator needs

not worry about third-party manipulation. He can simply focus on making sure that some

action-signals that satisfies weak separateness are disclosed accurately and in a timely manner

(e.g., publishing and updating data on governmental agencies websites), and he can adopt a

laissez faire policy regarding other sources of information disclosure. Such policies are easy

to implement, but they should be used very carefully when the regulator is not confident

about whether the state-signals are unboundedly informative.

Proposition 8. When the state-signals are boundedly informative, information aggregation

is not robust to third party manipulation.

This should be obvious given the results in Theorem 4. Intuitively, for information

aggregation to occur under boundedly informative state-signals, the existence of a infinite

number of “ignorant” agents whose social belief does not dominate the private beliefs is

required. However, a third party can always provide full information of past actions to these

“ignorant” agents, which will induce herding behavior and block information aggregation.

To illustrate, consider a simple example wherein each agent n observes the entire history

with probability 1 − 1/n and observes no information about past actions with probability

1/n (ignorant). In this case, information aggregation occurs without third party information

manipulation because, in expectation, an infinite (∑
∞
n=1 1/n =∞) number of ignorant agents

always take actions that are informative about their state-signals, and the entire population

(limn→∞ 1−1/n = 1) will ultimately observe the full history and learn the true state from the

actions of the ignorant agents. However, when the third party adopts a manipulation strategy

µ� such that m�
n is fully informative about past actions. All agents will be fully informed

about the entire history of actions, and herding will occur under boundedly informative

state-signals.

Thus, when state-signals are boundedly informative, the regulator needs to carefully

examine the third party information provision (e.g., whether the third party is targeting

“ignorant” agents), before he takes any regulatory action. Unlike the case with unboundedly

informative state-signals, a one-size-fits-all policy choice does not exist.

Furthermore, it should be noted that when state-signals are unboundedly informative,
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the regulator can always induce information aggregation by ensuring the disclosure of some

weakly separating action-signals, whereas when the state-signals are boundedly informative,

there exist third-party strategies (e.g., one that reveals the full history) under which informa-

tion aggregation is doomed to fail (i.e., the regulator cannot induce information aggregation

by any disclosure strategy µ).

6.3 Cognitive Limitation

In real world markets, the action-signal technology µ may be subject to distortions caused by

the agents themselves: agents may have limited cognitive ability to remember past events,

and the information that agents remember is therefore less informative than the information

contained in action-signals disclosed in the first place. In this section, I apply the main

characterization results to analyze the impact of such distortion on information aggregation.

In a social learning environment, each agent acquires information about past action-

histories through the action-signal mn, which contains two types of information: information

about prior choices, and information about the identity of the agent who choose each action.

Laboratory evidence demonstrates that information about the sources (location, identity of

people, etc) of past events is much more likely to be forgotten than the content of past

events. This phenomenon is common among ordinary people, and is referred to as “source-

amnesia”.19 In this section, I consider the impact of this type of cognitive limitation on

social learning.

We have shown that strongly separating action-signal technologies give rise to information

aggregation if the state-signals are unboundedly informative. From the definition of strong

separateness, we can see that the identity of the agents within the Jn sets and any information

about agents outside Jn are not instrumental for an action-signal technology to be strongly

separating. Thus, when agents lose track of information about identities of agents in Jn or

information about agents outside Jn, information aggregation should still occur (although

potentially at a slower pace). We now establish this simple intuition formally.

Definition 11. Given an action-signal technology that is strongly separating, a sequence of

subsets {Jn}∞n=1 that satisfies condition (4) is a separating sequence for µ.

When agents lose track of the identities of other agents, they will not be able to distinguish

19See, for example, Shimamura and Squire (1987), Zaragoza and Lane (1994), McGeoch (1932), and

Anderson and Neely (1996).

31



some histories that differ only in terms of the identity of agents. This is formally captured

by the concept of identity-blending distortions.

Definition 12. Given an action-signal technology µ = ({µn}∞n=1,M) and a sequence of sets

{Jn}∞n=1 with Jn ∈ {1, ..., n−1} for each n, another action-signal technology µ′ = ({µ′n}
∞
n=1,M

′)

is an identity-blending distortion of µ in the sets {Jn}∞n=1 if for any n ∈ N there exists a

surjection fn ∶M→M′ with the following properties:

1. For any distinct m1
n,m

2
n ∈M s.t. fn(m1

n) = fn(m
2
n), we have

µ−1n (m1
n)⋃µ−1n (m2

n) ⊆ {a<n ∈ A<n ∶ ∑
j∈Jn

aj = k} for some k ∈ {0,1,2, ..., ∣Jn∣}.

2. For any a<n ∈ A<n and any mn ∈M ,

µ′n(mn∣a<n) = µn(f
−1
n (mn)∣a<n).

Intuitively, an identity-blending information distortion happens when cognitive limited

agents at least remember the number of agents in Jn who choose each action but may forget

the identity of the agents in Jn or any information that only involve agents outside Jn. The

next proposition states that information aggregation under strongly separating action-signals

is robust to this type of distortion if the distortion occurs in a separating sequence of the

action-signals.

Proposition 9. Suppose µ′ is an identity-blending distortion of µ in a separating sequence

of µ. Then if information aggregation occurs under µ, it must also occur under µ′.

This theorem ensures that we do not need to worry too much about people losing track of

identities of past agents as long as it is limited to the identities of agents in some separating

sequence of the action-signal technology. In addition, we also don’t need to worry about

people losing track of information that only involves agents outside the separating sequence.

In practice, it may be easier for people to forget the sources of distant events; so action-

signal technologies with separating sequence {Jn}∞n=1 such that each Jn contains a large

number of recent agents (e.g. Jn = {n − k,n − k + 1, ..., n − 1} for large k ∈ N) would be

more robust to identity-blending distortion. This explains why statistics that disclose the

empirical frequencies of a large number of recent choices are widely used in practice (e.g.,
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annual employment report).

Finally, the results in this section can also be used to guide the regulation of information

disclosure. In particular, as mentioned in the introduction, many industries impose “mini-

mum disclosure” rules to balance efficiency with privacy, requiring that information should

not be disclosed if it is not important for efficiency purposes. The results in this section

implies that if the regulator wants to hide some information about individual identities for

privacy purposes, but wants to maintain long-run efficiency of social learning, he can blend

individual identities within the Jn set in arbitrary ways as long as the disclosed information

is clear about the empirical frequency of actions in the Jn sets. This provides a simple

guideline for designing regulatory rules.

7 Conclusion

In this paper, I study a model that allows all feasible information environments in a sequential

social learning setting. This allows us to obtain a general understanding of the conditions

under which information aggregation occurs in social learning. First and foremost, I view my

findings as providing a simple criterion that can be used in practice to guide the evaluation

and design of information disclosure in social learning environments. In addition, the findings

further motivate the study, both theoretically and empirically, of non-network models of

social learning. Below, I briefly point to three directions whose exploration seems worthwhile.

First, I maintain the assumption that the agents have homogeneous preferences. One

might question the descriptive validity of this assumption because in many markets, agents

can have very heterogeneous preferences: consumers have different tastes about products;

investors differ in terms of their risk-attitudes; voters have diverse ideological preferences,

etc. While a full analysis of this question is beyond the scope of this paper, I note that if

the heterogeneous preferences are public information, then all my results go through, with

similar proofs. In future work, it would be interesting to understand what happens when

agents have heterogeneous preferences that are privately observed. As discovered by Smith

and Sørensen (2000), in the special case where the action-signals are fully informative about

all histories, heterogeneous private types can lead to herding behavior that does not result

in information cascade – an outcome that never arises with homogeneous preferences. In

ongoing work, I am pursuing a detailed understanding of social learning with private types

in any general information environment.

Second, while this paper considers a model of social learning in which agents arrive
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sequentially in a fixed order and take one-shot actions, it is natural to inquire about the

analogs of my characterization theorems for other social learning models when agents engage

in repeated interactions. For example, it would be interesting to explore what would happen

if long-lived agents learn about each others’ past choices through general action-signals. This

would require generalizing the model in Mossel et al. (2015).

Third, while I have assumed that agents interact with others only by observing their

actions, my model can be enriched to allow for payoff interdependence, wherein agents’

utilities depend not only on the state and their own action but on other agents’ actions.

This is relevant in settings such as voting, investment, etc. Payoff interdependence is also

critical in any market that has centralized price-setting because prices act both as a source of

information for people (i.e., an action-signal) and as a channel through which earlier agents’

actions can affect the utility of subsequent agents. Therefore, a model with general action-

signals and payoff interdependence, will lead to a better understanding of the role of prices

in social learning environments, such as product markets and financial markets.
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A Proofs and supplementary materials for Section 4

A1 Proof of Proposition 2

Agent n obtains information about the state through two sources: the state-signal sn and

the action-signal mn. Since conditional on state θ, sn and mn are mutually independent,

agent n’s optimal decision can be stated in terms of a cut-off strategy in terms of his private

belief pn and his social belief qn.

Proof of Proposition 2. The agent maximizes expected payoffs given her posterior belief will

Pσ(θ = 1∣sn,mn) of the state. Thus, she chooses action an = 1 if

Pσ(θ = 1∣sn,mn)u(1,1) + Pσ(θ = 0∣sn,mn)u(1,0)

> Pσ(θ = 1∣sn,mn)u(0,1) + Pσ(θ = 0∣sn,mn)u(0,0)

Rewriting it in terms of likelihood ratios, we get

Pσ(θ = 1∣sn,mn)

Pσ(θ = 0∣sn,mn)
>

u(0,0) − u(1,0)

u(1,1) − u(0,1)
= 1 (6)

By Bayes’ rule, equation (6) is equivalent to

dPσ(sn,mn∣θ = 1)P(θ = 1)

dPσ(sn,mn∣θ = 0)P(θ = 0)
> 1, (7)

Since P(θ = 1) = P(θ = 0) = 1/2, equation (7) is equivalent to

dPσ(sn,mn∣θ = 1)

dPσ(sn,mn∣θ = 0)
> 1 (8)

By independence of the different sources of the information for agent n, equation (8) is

equivalent to

dP(sn∣θ = 1)

dP(sn∣θ = 0)
>
dPσ(mn∣θ = 0)

dPσ(mn∣θ = 1)
(9)

By Bayes’ rule again, this can be rewritten as

P(θ = 1∣sn)

P(θ = 0∣sn)
>
P(θ = 0∣mn)

P(θ = 1∣mn)
.
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Thus, agent n strictly prefers an = 1 if

P(θ = 1∣sn) + Pσ(θ = 1∣mn) > 1.

Similar arguments confirms that agent n strictly prefers an = 0 if

P(θ = 1∣sn) + Pσ(θ = 1∣mn) < 1.

B Proofs and supplementary materials for Section 5

B1 Proof of Theorem 1

This theorem follows from Theorem 2 and Proposition 3.

B2 Proof of Theorem 2

Lemma 1. For any private belief distributions (G0,G1), we have for all p ∈ (0,1)

dG0(p)

dG1(p)
=

1 − p

p
(10)

Proof. By the definition of private beliefs pn, we have

pn = P(θ = 1∣sn) = P(θ = 1∣pn)

According to Bayes’ rule, we have for any pn ∈ (0,1)

P(θ = 1∣pn) =
dP(pn∣θ = 1)P(θ = 1)

dP(pn∣θ = 1)P(θ = 1) + dP(pn∣θ = 0)P(θ = 0)

Since the two state θ = 1 and θ = 0 are equally likely, and that no signal is completely

informative, i.e. pn /∈ {0,1}, the two equations above imply that

pn =
dG1(pn)

dG1(pn) + dG0(pn)
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and the result follows.

The following properties of the distribution of the private beliefs (G0,G1) will also be

useful in the proof.

Lemma 2. For any 0 < z < x < 1,

G0(x) ≥
1 − x

x
G1(x) +

x − z

2
G1(z),

and for all 0 < x < w < 1,

1 −G1(x) ≥
x

1 − x
(1 −G0(x)) +

w − x

2
(1 −G0(w)).

Proof. For any x ∈ (0,1),

G0(x) = ∫
x

s=0
dG0(s) = ∫

x

s=0

1 − s

s
dG1(s) = (

1 − x

x
)G1(x) + ∫

x

s=0
(

1

s
−

1

x
)dG1(s)

where the second equality follows from the fact that

dG0(s)

dG1(s)
=

1 − s

s
.

For any 0 < z < x < 1, we have

∫

x

s=0
(

1

s
−

1

x
)dG1(s) ≥ ∫

z

s=0
(

1

s
−

1

x
)dG1(s) ≥ ∫

z

s=0
(

1

z
−

2

z + x
)dG1(s) ≥

x − z

2
G1(z)

establishing the first inequality. Similarly, the second inequality can be shown by

1 −G1(x) = ∫
1

s=x
dG1(s) = ∫

1

s=x

s

1 − s
dG0(s)

= (1 −G0(x)) (
x

1 − x
) + ∫

1

s=x
(

s

1 − s
−

x

1 − x
)dG0(s)

The last term can be bounded as follows

∫

1

s=x
(

s

1 − s
−

x

1 − x
)dG0(s) ≥ ∫

1

s=w
(

s

1 − s
−

x

1 − x
)dG0(s)

≥ ∫

1

s=w
(

w

1 −w
−

x +w

2 − x −w
)dG0(s) ≥

w − x

2
(1 −G0(w))
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To simplify exposition, we introduce some notations before proceeding. Let pn(sn) ∶=

P(θ = 1∣sn) denote the private belief induced by sn, and let qσn(mn) ∶= Pσ(θ = 1∣mn) denote

the social belief induced by mn in equilibrium σ. Using these notations, we make it clear that

the private beliefs depend on the state-signal realization sn, and the social beliefs depend

on the action-signal realization mn and the strategy profile σ. For each m ∈ supp(m̃n) in

equilibrium σ, let

dY σ
n (m) ∶= dPσ(mn =m∣θ = 1) = 2qσn(m)dPσ(mn =m)

dNσ
n (m) ∶= dPσ(mn =m∣θ = 0) = 2(1 − qσn(m))dPσ(mn =m).

where the last step in each of the two equations follows from Lemma 1 and the fact that

dPσ(mn =m) =
1

2
⋅ (dY σ

n (m) + dNσ
n (m)). (11)

Hence, for any m on the support of mn, we have

dY σ
n (m)

dNσ
n (m)

=
qσn(m)

1 − qσn(m)
(12)

Lemma 3. The probability that agent n’s action match the correct state in equilibrium σ is

such that

Pσ(an = θ) ≥
1

2
(∫

mn∈M
(1 −G−

1(1 − q
σ
n(mn)))dY

σ
n (mn) +∫

mn∈M
G0(1 − q

σ
n(mn))dN

σ
n (mn))

Proof. According to Proposition 1, we know that given a particular realization of mn that

induces a social belief qσn(mn), agent n chooses an = 1 if pn(sn) > 1 − qσn(mn) and chooses

an = 0 if pn(sn) < 1 − qσn(mn). Thus,

Pσ(an = θ) ≥ ∫
mn∈M

P(pn(sn) > 1 − qσn(mn)∣θ = 1)dPσ(mn∣θ = 1)P(θ = 1)

+∫
mn∈M

P(pn(sn) < 1 − qσn(mn)∣θ = 0)dPσ(mn∣θ = 0)P(θ = 0)

where the inequality follows from the fact that the signals sn and mn are conditionally

independent given θ, and the fact that we omitted the case where pn(sn) = 1 − qσn(mn)
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under which the agent’s action may also match the state with positive probability (when the

distribution of the state-signals have mass points). The result follows by substituting the

expressions of

1 −G−
1(1 − q

σ
n(mn)) = P(pn(sn) > 1 − qσn(mn)∣θ = 1)

and

G0(1 − q
σ
n(mn)) = P(pn(sn) < 1 − qσn(mn)∣θ = 0).

For any n ∈ N and J ⊂ N, define:

M̃1
n(J ;σ) = {m ∈M ∶ Pσ(θ = 1∣mn =m,∑

j∈J
aj = k) ≥ 1/2 for every k (13)

such that the posterior is well-defined}. (14)

and

M̃0
n(J ;σ) = {m ∈M ∶ Pσ(θ = 1∣mn =m,∑

j∈J
aj = k) ≤ 1/2 for every k (15)

such that the posterior is well-defined}. (16)

By definition, we have

Mw
n (J ;σ) = M̃0

n(J ;σ) ∪ M̃1
n(J ;σ).

where Mw
n (J, σ) is the set of action-signals used in the definition of weak separation.

Intuitively, upon observing an action-signal realization in M̃0
n(J, σ) or M̃1

n(J, σ), agent n

can guarantee to get at least the expected utility of an average agent in J across histories

that lead to mn =m, by simply choosing action 0 or 1 respectively.

This idea can be formalized by considering the following naive strategy for agent n which

only depends on his action-signal mn:

σan(mn, sn) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1, if mn ∈ M̃1
n(Jn, σ)

0, if mn ∈ M̃0
n(Jn, σ)

0, if mn /∈Mw
n (Jn, σ)

(17)
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Given an equilibrium σ, for any Jn ⊆ {1, ..., n − 1}, let ασ(Jn) be the average utility of

agents in Jn, i.e.,

ασ(Jn) =
∑j∈Jn Pσ(aj = θ)

∣Jn∣
.

The following lemma provides a lower bound of the expected utility that agent n can get

by adopting the naive strategy.

Lemma 4. Suppose for agent n and Jn ⊆ {1, ..., n − 1}, we have

min
a<n

µn(M
w
n (Jn;σ)∣a<n) > 1 − ε. (18)

Then the expected utility that agent n gets from adopting the naive strategy σan is such that

Pσan,σ−n(an = θ) ≥ ασ(Jn) − ε (19)

Proof. According to the definition of ασ(Jn), we have

ασ(Jn) ⋅ ∣Jn∣ = P(θ = 1)∫
a<n

(∑
i∈Jn

ai)dPσ(a<n∣θ = 1)

+P(θ = 0)∫
a<n

(∣Jn∣ − ∑
i∈Jn

ai)dPσ(a<n∣θ = 0)

Given mina<n µn(M
w
n (Jn, σ)∣a<n) > 1 − ε, we have

ασ(Jn) ⋅ ∣Jn∣ ≤ P(θ = 1)∫
a<n

∑
i∈Jn

ai [ε + µn(M
w
n (Jn, σ)∣a<n)]dPσ(a<n∣θ = 1)

+P(θ = 0)∫
a<n

(∣Jn∣ − ∑
i∈Jn

ai) ⋅ [ε + µn(M
w
n (Jn, σ)∣a<n)]dPσ(a<n∣θ = 0)

≤ P(θ = 1)∫
a<n

∑
i∈Jn

aiµn(M
w
n (Jn, σ)∣a<n)dPσ(a<n∣θ = 1)

+P(θ = 0)∫
a<n

(∣Jn∣ − ∑
i∈Jn

ai) ⋅ µn(M
w
n (Jn, σ)∣a<n)dPσ(a<n∣θ = 0)

+ε ⋅ ∣Jn∣ (20)

where the last inequality follows from the fact that 0 ≤ ∑i∈Jn ai ≤ ∣Jn∣.
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Let the date-n extended history h<n be the ordered sequence of of the actions and the

action-signal realizations before agent n takes his own action, i.e.

h<n = (m1, a1, ...,mn−1, an−1,mn).

We use H<n to denote the set of all date-n extended histories.

For any n ∈ N, any m ∈M, any J ⊂ {1, ..., n− 1}, let µ−1n (m,J, k) denote the set of date-n

extended histories which specifies that exactly k agents in J choose action 1, and is such

that mn =m, i.e.,

µ−1n (m,J, k) = {h<n ∈ H<n ∶mn =m and ∑
i∈J
ai = k} .

We refer to µ−1n (m,J, k) as the kth history-set of J contained in mn =m.

We note that the first term on the R.H.S. of Inequality (20) can be rewritten in terms of

the extended histories H<n as follows:

P(θ = 1)∫
a<n

∑
i∈Jn

aiµn(M
w
n (Jn, σ)∣a<n)dPσ(a<n∣θ = 1)

= P(θ = 1)∫
h<n∶mn∈Mw

n (Jn,σ)
∑
i∈Jn

aidPσ(h<n∣θ = 1)

= P(θ = 1) [∫
h<n∶mn∈M̃1

n(Jn;σ)
∑
i∈Jn

aidPσ(h<n∣θ = 1) + ∫
h<n∶mn∈M̃0

n(Jn;σ)
∑
i∈Jn

aidPσ(h<n∣θ = 1)]

= P(θ = 1)
∣Jn∣

∑
k=1
∫
m∈M̃1

n(Jn;σ)
∫
h<n∈µ−1n (m,Jn,k)

kdPσ(h<n∣θ = 1,mn =m)dPσ(mn =m∣θ = 1)

+P(θ = 1)
∣Jn∣

∑
k=1
∫
m∈M̃0

n(Jn;σ)
∫
h<n∈µ−1n (m,Jn,k)

kdPσ(h<n∣θ = 1,mn =m)dPσ(mn =m∣θ = 1)

= P(θ = 1)
∣Jn∣

∑
k=1
∫
m∈M̃1

n(Jn;σ)
[k ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k)∣θ = 1,mn =m)]dPσ(mn =m∣θ = 1)

+P(θ = 1)
∣Jn∣

∑
k=1
∫
m∈M̃0

n(Jn;σ)
[k ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k)∣θ = 1,mn =m)]dPσ(mn =m∣θ = 1)

(21)
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Similarly, the second term on the R.H.S. of Inequality (20) can be rewritten as

P(θ = 0)∫
a<n

(∣Jn∣ − ∑
i∈Jn

ai) ⋅ µn(M
w
n (Jn, σ)∣a<n)dPσ(a<n∣θ = 0)

= P(θ = 0)
∣Jn∣

∑
k=1
∫
m∈M̃1

n(Jn;σ)
[(∣Jn∣ − k) ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k)∣θ = 0,mn =m)]dPσ(mn =m∣θ = 0)

+P(θ = 0)
∣Jn∣

∑
k=1
∫
m∈M̃0

n(Jn;σ)
[(∣Jn∣ − k) ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k)∣θ = 0,mn =m)]dPσ(mn =m∣θ = 0)

(22)

Combining Equations (21) and (22), we can rewrite Inequality (20) as

ασ(Jn) ⋅ ∣Jn∣

≤

∣Jn∣

∑
k=1
∫
m∈M̃1

n(Jn;σ)
[k ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 1∣mn =m)]dPσ(mn =m)

+

∣Jn∣

∑
k=1
∫
m∈M̃0

n(Jn;σ)
[k ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 1∣mn =m)]dPσ(mn =m)

+

∣Jn∣

∑
k=1
∫
m∈M̃1

n(Jn;σ)
[(∣Jn∣ − k) ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 0∣mn =m)]dPσ(mn =m)

+

∣Jn∣

∑
k=1
∫
m∈M̃0

n(Jn;σ)
[(∣Jn∣ − k) ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 0∣mn =m)]dPσ(mn =m)

+ε ⋅ ∣Jn∣ (23)

According to the definition of M̃1
n(Jn;σ), we know that for any m ∈ M̃1

n(Jn;σ), Jn ∈

{1,2, ..., n − 1}, and k ∈ {0, ..., ∣Jn∣}, we have

Pσ(θ = 1∣h<n ∈ µ
−1
n (m,Jn, k)) ≥

1

2

⇔ Pσ(θ = 1∣h<n ∈ µ
−1
n (m,Jn, k),mn =m) ≥

1

2
⇔ Pσ(θ = 1, h<n ∈ µ

−1
n (m,Jn, k)∣mn =m) ≥ Pσ(θ = 0, h<n ∈ µ

−1
n (m,Jn, k)∣mn =m) (24)

where the first equivalence follows from the fact that mn = m is satisfied for any h<n ∈

µ−1n (m,Jn, k) according to the definition of µ−1n (m,Jn, k), and the second equivalence follows
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from Bayes’ rule. Therefore, according to Inequality (24), for any m ∈ M̃1
n(Jn;σ), we have

k ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 1∣mn =m) + (∣Jn∣ − k) ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 0∣mn =m)

≤ ∣Jn∣ ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 1∣mn =m) + 0 ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 0∣mn =m)

≤ ∣Jn∣ ⋅ σ
a
n(m,Jn) ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 1∣mn =m)

+∣Jn∣ ⋅ (1 − σ
a
n(m,Jn)) ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 0∣mn =m) (25)

where the last step follows from the fact that σan(m,Jn) = 1 for any m ∈ M̃1
n(Jn;σ).

Similarly, for any m ∈ M̃0
n(Jn;σ), we have

k ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 1∣mn =m) + (∣Jn∣ − k) ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 0∣mn =m)

≤ 0 ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 1∣mn =m) + ∣Jn∣ ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 0∣mn =m)

≤ ∣Jn∣ ⋅ σ
a
n(m,Jn) ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 1∣mn =m)

+∣Jn∣ ⋅ (1 − σ
a
n(m,Jn)) ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 0∣mn =m) (26)

Dividing ∣Jn∣ on both sides of Inequality (23), and using inequalities (25) and (26), we

get

ασ(Jn) ≤

∣Jn∣

∑
k=1
∫
m∈M̃1

n(Jn;σ)
[σan(m,Jn) ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 1∣mn =m)]dPσ(mn =m)

+

∣Jn∣

∑
k=1
∫
m∈M̃0

n(Jn;σ)
[σan(m,Jn) ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 1∣mn =m)]dPσ(mn =m)

+

∣Jn∣

∑
k=1
∫
m∈M̃1

n(Jn;σ)
[(1 − σan(m,Jn)) ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 0∣mn =m)]dPσ(mn =m)

+

∣Jn∣

∑
k=1
∫
m∈M̃0

n(Jn;σ)
[(1 − σan(m,Jn)) ⋅ Pσ(h<n ∈ µ−1n (m,Jn, k), θ = 0∣mn =m)]dPσ(mn =m)

+ε (27)
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which is equivalent to

ασ(Jn) ≤ ∫
m∈M̃1

n(Jn;σ)
[σan(m,Jn) ⋅ Pσ(θ = 1∣mn =m)]dPσ(mn =m)

+∫
m∈M̃0

n(Jn;σ)
[σan(m,Jn) ⋅ Pσ(θ = 1∣mn =m)]dPσ(mn =m)

+∫
m∈M̃1

n(Jn;σ)
[(1 − σan(m,Jn)) ⋅ Pσ(θ = 0∣mn =m)]dPσ(mn =m)

+∫
m∈M̃0

n(Jn;σ)
[(1 − σan(m,Jn)) ⋅ Pσ(θ = 0∣mn =m)]dPσ(mn =m)

+ε (28)

Thus,

ασ(Jn) ≤ ∫
m∈Mw

n (Jn,σ)
[σan(m,Jn) ⋅ Pσ(θ = 1∣mn =m)]dPσ(mn =m)

+∫
m∈Mw

n (Jn,σ)
[(1 − σan(m,Jn)) ⋅ Pσ(θ = 0∣mn =m)]dPσ(mn =m) + ε

≤ ∫
m∈Mw

n (Jn,σ)
[σan(m,Jn) ⋅ dPσ(mn =m∣θ = 1)]P(θ = 1)

+∫
m∈Mw

n (Jn,σ)
[(1 − σan(m,Jn)) ⋅ dPσ(mn =m∣θ = 0)]P(θ = 0) + ε (29)

Notice that the first two terms on the R.H.S. of the inequality (29) is agent n’s expected

utility in the event that mn ∈Mw
n (Jn, σ), under the naive strategy σan. Therefore it is smaller

than the ex ante expected utility Pσan,σ−n(an = θ) that agent n gets under σan (because there

may be positive probability that mn /∈Mw
n (Jn, σ)), i.e.,

Pσan,σ−n(an = θ) ≥ ∫
m∈Mw

n (Jn,σ)
[σan(m,Jn) ⋅ dPσ(mn =m∣θ = 1)]P(θ = 1)

+∫
m∈Mw

n (Jn;σ)
[(1 − σan(m,Jn)) ⋅ dPσ(mn =m∣θ = 0)]P(θ = 0) (30)

Finally, inequalities (29) and (30) imply that

Pσan,σ−n(an = θ) ≥ ασ(Jn) − ε

which concludes the proof of this lemma.

Lemma 5. Suppose for agent n and Jn ⊆ {1, ..., n − 1}, we have ασ(Jn) < 1 − ε and

min
a<n

µn(M
w
n (Jn;σ)∣a<n) > 1 − ε. (31)

47



Then in any equilibrium σ, either

Pσ(an = θ) ≥ ασ(Jn) − ε +
1

256
(1 − ασ(Jn))

2 min{G1 (
1 − ασ(Jn)

16
) ,1 −G0 (1 −

1 − ασ(Jn)

16
)}(32)

or

Pσ(an = θ) ≥
1 + ασ(Jn)

2
− ε (33)

Proof. The proof makes use of feasible strategies of agent n to derive lower bounds of his

expected utility, i.e., Pσ(an = θ). Define E1 and E0 as follows (for simplicity of exposition, I

suppress their dependence on n,Jn, and σ):

E1 = Pσ(θ = 1,mn ∈ M̃
0
n(Jn, σ)) and E0 = Pσ(θ = 0,mn ∈ M̃

1
n(Jn, σ)). (34)

E1 is the probability that the true state is 1 but an action-signal in M̃0
n(Jn, σ) (which indicates

that the state is more likely to be 0) is sent to agent n. Similarly, E0 is the probability that

the true state is 0 but an action-signal in M̃1
n(Jn, σ) is sent to agent n. We should note that

mn is generated independently conditional on action-histories before agent n. Hence, E1 and

E0 only depend on the strategy profile of the first n − 1 agents and do not depend on agent

n’s strategy.

We consider three cases (which cover all possibilities):

� E0 + E1 ≤ (1 − ασ(Jn))/2,

� E0 ≥ (1 − ασ(Jn))/4,

� E1 ≥ (1 − ασ(Jn))/4.

Case 1: E1 + E0 ≤ (1 − ασ(Jn))/2

In this case, consider the following naive strategy for agent n which only depends on his

action-signal mn:

σan(mn, sn) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

1, if mn ∈ M̃1
n(Jn, σ)

0, if mn ∈ M̃0
n(Jn, σ)

0, if mn /∈Mw
n (Jn, σ)

(35)
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Now, we can interpret the term E1+E0 as the probability of agent n observing an action-signal

in Mw
n (Jn, σ) that specifies the “wrong” action under the naive strategy σan. In this case

(case 1: E1 + E0 ≤ (1 − ασ(Jn))/2), the probability of such “wrong” specification is assumed

to be no larger than (1 − ασ(Jn))/2.

The expected utility that agent n gets under σan is:

Pσan,σ−n(an = θ) = Pσan,σ−n(θ = 1, an = 1) + Pσan,σ−n(θ = 0, an = 0)

≥ 1 − Pσan,σ−n(θ = 1,mn ∈ M̃
0
n(Jn, σ)) − Pσan,σ−n(θ = 0,mn ∈ M̃

1
n(Jn, σ))

−Pσ(mn /∈ M̃w
n (Jn, σ))

≥ 1 − E1 − E0 − ε

≥
1 + ασ(Jn)

2
− ε

The first inequality follows from the specification of the strategy in (35) and the fact that

Pσ(mn /∈ M̃w
n (Jn, σ)) ≤ ε (implied by (31)); the second and third inequalities follow from

the fact that the distribution of mn is independent of agent n’s strategy profile and the

assumption that E1 + E0 ≤ (1 − ασ(Jn))/2.

Note that σan is a feasible strategy for agent n because M̃1
n(Jn, σ) and M̃0

n(Jn, σ) are

disjoint sets. So we conclude that
1+ασ(Jn)

2 −ε is a lower bound of agent n’s equilibrium payoff

Pσ(an = θ), resulting in (33).

Case 2: E0 ≥ (1 − ασ(Jn))/4

In this case, consider the following fine-tuned naive strategy for agent n which depends

on his action-signal mn and some extreme values of sn:

σfn(mn, sn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if mn ∈ M̃1
n(Jn, σ), 1 − qσn(mn) > ε1, and pn(sn) < ε1

1, if mn ∈ M̃1
n(Jn, σ) and either 1 − qσn(mn) < ε1 or pn(sn) > ε1

0, if mn ∈ M̃0
n(Jn, σ)

0, if mn /∈Mw
n (Jn, σ)

(36)

where pn(sn) = P(θ = 1∣sn), qσn(mn) = Pσ(θ = 1∣mn), and ε1 = (1 − ασ(Jn))/8. Notice that

the strategy σfn differs from the naive strategy σan only in events where mn ∈ M̃1
n(Jn, σ),

1 − qσn(mn) > ε1, and pn(sn) < ε1. These are events where the naive strategy specifies action

1, while the state-signal provides strong evidence that the state is actually θ = 0, i.e., the

naive strategy is recommending the wrong action. The strategy σfn, therefore, “reverses” the
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actions specified by the naive strategy in these events wherein it is very likely that the naive

strategy is wrong. σfn is again a feasible strategy for agent n.

Note that we assumed E0 ≥ (1 − ασ(Jn))/4. This assumption indicates that, when the

state is 0, there is positive probability (bounded away from zero) that the naive strategy

specifies the wrong action (action 1). Therefore, the fine-tuned strategy σfn (by reversing

these actions) should (on average) strictly improve upon σan.

Following this intuition, I will show that the expected utility that agent n gets under σfn

is strictly higher than the utility he gets under σan, which in turn is higher than ασ(Jn) − ε.

In particular:

Pσfn,σ−n(an = θ) ≥ Pσan,σ−n(an = θ) +
ε1
2
G1(

ε1
2
)
1 − ασ(Jn)

16
(37)

and

Pσan,σ−n(an = θ) ≥ ασ(Jn) − ε. (38)

These two inequalities together implies (32), and concludes the proof of case 2.

The proof of (38) follows from Lemma 4. Just to reiterate the intuition: if m ∈ M̃0
n(Jn, σ)

or m ∈ M̃1
n(Jn, σ), agent n can weakly improve upon an average agent in Jn, by choosing

action 0 or 1. Since it is assumed that the probability that m ∈ M̃0
n(Jn, σ) or m ∈ M̃1

n(Jn, σ)

is greater than 1− ε (implied by (31)), agent n’s utility by following the naive strategy must

be higher than the average utility of agents in Jn minus ε.

Now, I explain why (37) is correct: Notice that σfn and σan only differs in the event when

mn ∈ M̃1
n(Jn, σ), 1 − qσn(mn) > ε1, and pn(sn) < ε1. Thus,

Pσfn,σ−n(an = θ) − Pσan,σ−n(an = θ)

= ∫
m∈M̃1

n(Jnσ),qσn(m)<1−ε1
(−1)P(pn(sn) < ε1∣θ = 1)dPσ(mn =m∣θ = 1)P(θ = 1)

+∫
m∈M̃1

n(Jnσ),qσn(m)<1−ε1
1 ⋅ P(pn(sn) < ε1∣θ = 0)dPσ(mn =m∣θ = 0)P(θ = 0)

= ∫
m∈M̃1

n(Jnσ),qσn(m)<1−ε1
(−1)G1(ε1)dPσ(mn =m∣θ = 1)P(θ = 1)

+∫
m∈M̃1

n(Jnσ),qσn(m)<1−ε1
G0(ε1)dPσ(mn =m∣θ = 0)P(θ = 0) (39)

where the first term is the utility loss for σfn from reversing the action of the naive strategy,
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and the second term is the utility gain from reversing the action. What we will show is that

the gain is higher than the loss. According to Lemma 2 in the original paper, we have the

following inequality: for any 0 < z < ε1,

G0(ε1) ≥
1 − ε1
ε1

G1(ε1) +
ε1 − z

2
G1(z) (40)

Take z = ε1/2 and apply inequality (40) to (39):

Pσfn,σ−n(an = θ) − Pσan,σ−n(an = θ)

≥ ∫
m∈M̃1

n(Jnσ),qσn(m)<1−ε1
(−1)G1(ε1)dPσ(mn =m∣θ = 1)P(θ = 1)

+∫
m∈M̃1

n(Jnσ),qσn(m)<1−ε1

1 − ε1
ε1

G1(ε1) +
ε1
4
G1(

ε1
2
)dPσ(mn =m∣θ = 0)P(θ = 0) (41)

Now since qσn(mn) = Pσ(θ = 1∣mn), according to Bayes’ rule, we must have that

Pσ(mn∣θ = 1)P(θ = 1)

Pσ(mn∣θ = 0)P(θ = 0)
=

qσn(mn)

1 − qσn(mn)
(42)

and

Pσ(mn∣θ = 1) = 2qσn(mn)Pσ(mn) (43)

Pσ(mn∣θ = 0) = (1 − qσn(mn))Pσ(mn) (44)

Thus, using (42), we can rewrite (41) as

Pσfn,σ−n(an = θ) − Pσan,σ−n(an = θ)

≥ ∫
m∈M̃1

n(Jnσ),qσn(m)<1−ε1
[

1 − ε1
ε1

−
1 − qσn(m)

qσn(m)
]G1(ε1) +

ε1
4
G1(

ε1
2
)dPσ(mn =m∣θ = 0)P(θ = 0)

Note that for any qσn(m) < 1 − ε1, we have

[
1 − ε1
ε1

−
1 − qσn(m)

qσn(m)
] ≥ 0 (45)
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Therefore,

Pσfn,σ−n(an = θ) − Pσan,σ−n(an = θ)

≥ ∫
m∈M̃1

n(Jnσ),qσn(m)<1−ε1

ε1
4
G1(

ε1
2
)dPσ(mn =m∣θ = 0)P(θ = 0)

≥
ε1
4
G1(

ε1
2
)Pσ(m ∈ M̃1

n(Jnσ), q
σ
n(m) < 1 − ε1∣θ = 0)P(θ = 0) (46)

Note that except the term Pσ(m ∈ M̃1
n(Jnσ), q

σ
n(m) < 1 − ε1∣θ = 0), all other terms on the

R.H.S. of the above inequality are positive constants. We now use the assumption that

E0 > (1 − ασ(Jn))/4 to bound the term Pσ(m ∈ M̃1
n(Jnσ), q

σ
n(m) < 1 − ε1∣θ = 0).

Recall that E0 = Pσ(mn ∈ M̃1
n(Jn, σ), θ = 0), so E0 > (1 − ασ(Jn))/4 is equivalent to

Pσ(mn ∈ M̃
1
n(Jn, σ)∣θ = 0)P(θ = 0) ≥

1 − ασ(Jn)

4
(47)

Note that

Pσ(mn ∈ M̃
1
n(Jn, σ)∣θ = 0)

= Pσ(mn ∈ M̃
1
n(Jn, σ), q

σ
n(m) < 1 − ε1∣θ = 0) + Pσ(mn ∈ M̃

1
n(Jn, σ), q

σ
n(m) > 1 − ε1∣θ = 0)

≤ Pσ(mn ∈ M̃
1
n(Jn, σ), q

σ
n(m) < 1 − ε1∣θ = 0) + ∫

mn∈M̃1
n(Jn,σ),qσn(m)>1−ε1

dPσ(mn =m∣θ = 0)

= Pσ(mn ∈ M̃
1
n(Jn, σ), q

σ
n(m) < 1 − ε1∣θ = 0) + ∫

mn∈M̃1
n(Jn,σ),qσn(m)>1−ε1

2(1 − qσn(m))dPσ(mn =m)

≤ Pσ(mn ∈ M̃
1
n(Jn, σ), q

σ
n(m) < 1 − ε1∣θ = 0) + ∫

mn∈M̃1
n(Jn,σ),qσn(m)>1−ε1

2ε1dPσ(mn =m)

≤ Pσ(mn ∈ M̃
1
n(Jn, σ), q

σ
n(m) < 1 − ε1∣θ = 0) + 2ε1 (48)

where the second equality follows from (44). Therefore, (48) implies that

Pσ(mn ∈ M̃
1
n(Jn, σ), q

σ
n(m) < 1 − ε1∣θ = 0)

≥ Pσ(mn ∈ M̃
1
n(Jn, σ)∣θ = 0) − 2ε1

≥ E0/P(θ = 0) − 2ε1

≥
1 − ασ(Jn)

2
− 2ε1 (49)
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Substitute inequality (49) back to (46), we have

Pσfn,σ−n(an = θ) − Pσan,σ−n(an = θ)

≥
ε1
4
G1(

ε1
2
)Pσ(m ∈ M̃1

n(Jnσ), q
σ
n(m) < 1 − ε1∣θ = 0)P(θ = 0)

≥
ε1
4
G1(

ε1
2
)(E0 − ε1)

≥
1 − ασ(Jn)

32
G1(

1 − ασ(Jn)

16
)(

1 − ασ(Jn)

8
)

≥
(1 − ασ(Jn))2

256
G1(

1 − ασ(Jn)

16
) (50)

where we used the fact that ε1 = (1 − ασ(Jn))/8 and E0 > (1 − ασ(Jn))/4.

Combining inequalities (50) with (38), we conclude that (32) is correct in case 2.

Case 3: E1 ≥ (1 − ασ(Jn))/4

In this case, consider the following fine-tuned naive strategy for agent n which depends

on his action-signal mn and some extreme values of sn:

σf
′
n (mn, sn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if mn ∈ M̃0
n(Jn, σ), 1 − qσn(mn) < 1 − ε1, and pn(sn) > 1 − ε1

0, if mn ∈ M̃0
n(Jn, σ) and either 1 − qσn(mn) > 1 − ε1 or pn(sn) < 1 − ε1

1, if mn ∈ M̃1
n(Jn, σ)

0, if mn /∈Mw
n (Jn, σ)

An analogous argument as in case 2 shows that (32) is again correct.

Proof of Theorem 2. Suppose, by way of contradiction, that information aggregation does

not occur, i.e.,

lim inf
n→∞

Pσ(an = θ) = p̂ < 1.

This implies that for any ε1 > 0, there exists n1(ε1) ∈ N such that for all n > n1(ε1), we have

Pσ(an = θ) ≥ p̂ − ε1

Since ασ(Jn) = ∑i∈Jn Pσ(ai = θ)/∣Jn∣, for any Jn such that mini∈Jn i ≥ n1(ε1) we have

ασ(Jn) ≥ p̂ − ε1
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Since the action-signals are separating, for any ε > 0, there exists n2(ε, ε1) > n1(ε1) such that

for any n > n2(ε, ε1), there exists Jn ∈ {n1(ε1), ..., n − 1} such that for all a<n, we have

µn(Mn(Jn, σ)∣a<n) > 1 − ε

By Lemma 5, this implies that for any n > n2(ε, ε1), there exists Jn ∈ {n1(ε1), ..., n − 1} such

that

Pσ(an = θ) ≥ ασ(Jn) − ε +
1

256
(1 − ασ(Jn))

2 min{G1 (
1 − ασ(Jn)

16
) ,1 −G0 (1 −

1 − ασ(Jn)

16
)}

or

Pσ(an = θ) ≥
1 + ασ(Jn)

2
− ε

Since lim infn→∞ Pσ(an = θ) = p̂ < 1, there exists a subsequence {ni}∞i=1 of agents such that

lim
i→∞

Pσ(ani = θ) = p̂ < 1 (51)

Therefore, for any ε3 > 0, there exists n3(ε3) ∈ N such that for all ni > n3(ε3), we have

Pσ(ani = θ) ≤ p̂ + ε3 (52)

Therefore, for all ni > max{n2(ε, ε1), n3(ε3)}, we have

p̂ + ε3 ≥ ασ(Jni) − ε +
1

256
(1 − ασ(Jni))

2 min{G1 (
1 − ασ(Jni)

16
) ,1 −G0 (1 −

1 − ασ(Jni)

16
)}

(53)

or

Pσ(ani = θ) ≥
1 + ασ(Jni)

2
− ε

Consider the first case, for the inequality to hold for all ni, we must have

lim
n→∞

ασ(Jni) = p̂.
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However, in this case, as ε, ε1, ε3 goes to zero (i.e., ni goes to infinity), the inequality features

p̂ ≥ p̂ +
1

256
(1 − p̂)2 min{G1 (

1 − p̂

16
) ,1 −G0 (1 −

1 − p̂

16
)}

The R.H.S. is strictly larger than p̂ because p̂ ∈ [1/2,1). Therefore, there exists n(ε, ε1, ε3)

large enough such that for all ni > n(ε, ε1, ε3), inequality (54) must be violated. This results

in a contradiction.

Similarly, as n goes to infinity, the case

Pσ(an = θ) ≥
1 + ασ(Jn)

2
− ε

will feature

p̂ ≥
1 + p̂

2

which also results in a contradiction. Thus, our assumption that information aggregation

fails must be wrong. So information aggregation occurs.

B3 Proof of Proposition 3

Proof. First, suppose an action-signal technology µ is deterministically strongly separating.

Then there exist non-empty sets {Jn}∞n=1 s.t. Jn ⊆ {1, ..., n − 1}, lim supn→∞ Jn = ∅ and

lim
n→∞

min
a<n

µn (M
s
n(Jn, ∑

j∈Jn
aj)∣a<n) = 1

Then for any ε, there exists nε ∈ N such that for all n > nε,∀a<n ∈ A<n

µn (M
s
n(Jn, ∑

j∈Jn
aj)∣a<n) > 1 − ε

According to the definition of M s
n(Jn,∑j∈Jn aj) and µ−1n (m,Jn, k), we know that for any

m ∈M s
n(Jn,∑j∈Jn aj) and any k ≠ ∑j∈Jn aj, we have

µ−1n (m,Jn, k) = ∅.

Therefore, given any equilibrium strategy profile σ and any m ∈ M s
n(Jn,∑j∈Jn aj), since

P (θ = 1∣µ−1n (m,Jn,∑j∈Jn aj) must be either weakly larger than 1/2 or weakly smaller than
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1/2 and P (θ = 1∣µ−1n (m,Jn, k) is undefined for all k ≠ ∑j∈Jn aj (because µ−1n (m,Jn, k) = ∅),

we must have m ∈Mw
n (Jn, σ). This implies that

Mn(Jn, ∑
j∈Jn

aj) ⊆M
w
n (Jn, σ).

Hence, for all n > nε, ∀a<n ∈ A<n,

µn (M
w
n (Jn, σ)∣a<n) ≥ µn (M

s
n(Jn, ∑

j∈Jn
aj)∣a<n) > 1 − ε.

Thus,

lim
n→∞

min
a<n

µn (M
w
n (Jn;σ)∣a<n) = 1.

This implies that the action-signals are weakly separating.

B4 Explanation of the Independence Condition in Stochastic Sep-

aration

The assumption that γn are independent is important. Lobel and Sadler (2014) provides an

interesting example: consider a stochastic social network in which agents’ neighborhoods are

correlatedly generated. Let En denote the (realized) set of agents before n whose observes an

completely uninformative action-signal, and define the action-signal mn to be uninformative

with probability 1/(2∣En∣) and to reveal the action and identity of agent maxi∈En i otherwise.

In this example, all agents in the network either have an empty neighborhood or observe

one agent whose neighborhood is empty in turn, so information aggregation fails. It sat-

isfies all conditions in the definition stochastic strong separation except the independence

condition.

B5 Explanation of Example 1 in Section 5.3

To see why the example doe not satisfy strong separation, note that for each agent n, the

action-signal mn has four possible realizations

M = {({n − 1},1), ({n − 1},0), ({n − 2},1), ({n − 2},0)} (54)
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We consider different choices of Jn:

Case 1: n − 1 ∈ Jn

For any action-history a<n such that ai = 1 for all i ∈ Jn⋃{n − 2}, we have

µn(({n − 1},1)∣a<n) = 1/2 and µn(({n − 2},1)∣a<n) = 1/2

For any action-history a′<n such that a′n−2 = 1, a′n−1 = 0, and a′i = 1 for all i ∈ Jn/{n − 1},

we have

µn(({n − 1},0)∣a′<n) = 1/2 and µn(({n − 2},1)∣a′<n) = 1/2

Notice that the action-signal realization ({n − 2},1) are possible given both action-histories

a<n and a′<n. However,

∑
j∈Jn

aj = ∣Jn∣ ≠ ∑
j∈Jn

a′j = ∣Jn∣ − 1.

Thus, according to the definition of the set Mn(Jn, k) in the section on strong separation,

we must have

({n − 2},1) /∈Mn(Jn, ∣Jn∣)

This implies that, for the action-history a<n introduced above such that ai = 1 for all i ∈

Jn⋃{n − 2}, we have

µn (Mn (Jn, ∑
j∈Jn

aj)∣a<n) ≤
1

2
.

This implies that

min
a<n

µn (Mn (Jn, ∑
j∈Jn

aj)∣a<n) ≤
1

2
.

Case 2: n − 2 ∈ Jn Similar argument shows that

min
a<n

µn (Mn (Jn, ∑
j∈Jn

aj)∣a<n) ≤
1

2
.
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Since the argument above is correct for any n ∈ N, we have

lim
n→∞

min
a<n

µn (Mn (Jn, ∑
j∈Jn

aj)∣a<n) ≤
1

2
.

So the action-signals fails to satisfy strong separation. The argument for why the action-

signals do not satisfy weak separation is similar.

B6 Relationship between Strong Separation and Networks with

Expanding Observations

In this subsection, I show how the result on strong separation implies a classic result in the

literature, established by Acemoglu et al. (2011). They study social learning in networks

as follows: each agent n observes the identities and the actions of agents in a stochastic

neighborhood B(n) ⊆ {1,2, ..., n− 1} where B(n) is generated according to some probability

distribution Qn over all subsets of {1,2, ..., n − 1}, and draws from each Qn are independent

from each other for all n and from the realizations of the state-signals.

Definition 13. The network has expanding observations if for all K ∈ N, we have

lim
n→∞

Qn ( max
b∈B(n)

b <K) = 0 (55)

It is shown that if the network has expanding observations and the state-signals are

unboundedly informative, information aggregation occurs in all equilibria. This classic result

is a special case of the result on strong separation in my paper: for any social network that

has expanding observations, there is an outcome-equivalent way to represent the information

environment as one in which agents observe action-signals that are strongly separating.

To see this, consider the following environment: each agent n observes an action-signal

that specifies the identities and the actions of the agent in his stochastic neighborhood, i.e.,

mn = (B(n), ak,∀k ∈ B(n))

and is generated according to the information structure µn(⋅∣a<n) such that

µn((B(n), aB(n))∣a<n) = Qn(B(n)) (56)

Let Mn(J, k) ∶= {(B(n), aB(n)) ∶ B(n) = J,∑j∈B(n) aj = k}. Since Qn is independent of
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the action-history a<n, condition (b) in the definition of strong separation is satisfied. Since

Qn satisfies expanding observations, condition (a) in the definition of strong separation is

satisfied. Finally, it is easy to see that Mn(J, k) ⊆M s
n(J, k) for every n ∈ N, J ⊆ {1, ..., n− 1},

and k ∈ {0, ..., ∣J ∣}, and that the sets {Mn(J, k)}J,k are mutually disjoint. Therefore the

action-signal technology is strongly-separating, and leads to information aggregation when

the state-signals are unboundedly informative.

B7 Proof of Theorem 3

Proof. Since stochastic strong separation implies stochastic weak separation, we only need

to prove that stochastic weak separation give rise to information aggregation when the state-

signals are unboundedly informative.

The proof parallels that of Theorem 2. The critical difference is in the proof of Lemma

4. Instead of using the ασ(Jn) function, we define a function

γn(J) ∶= µn(Mn(J, σ)∣a<n) for all a<n

The function γn is well-defined due to the condition (b) in the definition of weak separation

(Definition 7). Then we define the average utility of agents in sets generated according to

γn to be

ασ(γn) ∶= ∑
J∈Nn−11

(
∑j∈J Pσ(aj = θ)

∣J ∣
) ⋅ γn(J)

Then the same proof technique as in Lemma 4 and 5 shows that for any n, if ασ(γn)

is not 1 and γn(N n−1
k ) is close to 1, then agent n’s ex ante expected utility will be strictly

higher than ασ(γn) (all the derivations in Lemma 4 and 5 will now involve a weighted average

over all J ∈ N n−1
k with weights equal to γn(J)). Then the same argument as in the proof of

Theorem 2 shows that information aggregation must occur.

B8 Proof of Proposition 4

The first part of the statement follows from the fact that M s
n(J, k) ⊆M

w
n (J, σ). The second

part of the statement can be easily shown by taking γn (in the definitions of stochastic

strong and weak separation) to be dirac on the Jn set in the definition of strong and weak

separation.

59



B9 Proof of Theorem 4

Proof. If the action-signals are fullly informative, then herding and information cascade will

occur as studied in Smith and Sorensen (2000).

B10 Proof of Theorem 5

Proof. When there is an infinite sequence of fully ignorant agents, the collection of their

actions will fully reveal the state due to law of large numbers.

Since limn→∞ mina<n µn(M
s
n({ni}, ani)) = 1 for all i, the infinite sequence of ignorant

agents are perfectly observed by the entire population (in the limit), so all agents will asymp-

totically learn the true state.

B11 Proof of Theorem 6

I start by showing that upon observing any finite action-history, an agents’ posterior belief

about the state is always interior. We use h<n to denote a history of actions and action-signals

that occurred before agent n takes his action. That is,

h<n = (m1, a1,m2, a2, ..., an−1,mn).

To distinguish from the action-histories, we will refer to such histories as action-signal-

histories, and use H<n to denote the set of all possible date-n action-signal-histories.

Lemma 6. Given any strategy profile σ, any finite integer k, and any date-k action-history

a<k ∈ A<k, we have Pσ(θ = 1∣a<k) ∈ (0,1).

Proof. We prove the statement by induction. First, we establish that the statement is correct

when k = 1. The distribution of the state-signals (F0,F1) are assumed to not fully reveal the

states. Thus,

Pσ(θ = 1∣a1 = 1) ∈ (0,1) and Pσ(θ = 1∣a1 = 0) ∈ (0,1).

For any h<2 = (m1, a1,m2) ∈ H<2, we must have

Pσ(θ = 1∣h<2) = Pσ(θ = 1∣a1,m2) = Pσ(θ = 1∣a1) ∈ (0,1),
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where the first equality follows from the fact that m1 is uninformative about the state, and

the second equality follows because the action-signal m2 is independent of θ conditional on

a1.

Now, as an inductive step, suppose for k ∈ N+, we have

Pσ(θ = 1∣a<k) ∈ (0,1), ∀a<k ∈ A<k, (57)

Pσ(θ = 1∣h<k) ∈ (0,1), ∀h<k ∈ H<k. (58)

We want to show that, for any a<k+1 ∈ A<k+1 and any h<k+1 ∈ H<k+1, we have Pσ(θ = 1∣a<k+1) ∈

(0,1) and Pσ(θ = 1∣h<k+1) ∈ (0,1).

Since ∣A<k∣ = 2k−1 is finite, tk = maxa<k Pσ(θ = 1∣a<k) and bk = mina<k Pσ(θ = 1∣a<k) exist,

and tk < 1 and bk > 0. According to Bayes’ rule, we have, for anymk ∈ ⋃a<k∈A<k supp(µn(⋅∣a<k)),

Pσ(θ = 1∣mk) =
∫a<k Pσ(θ = 1∣ã<k = a<k,mk)µk(mk∣a<k)Pσ(ã<k = a<k)

∫a<k(mk∣a<k)Pσ(ã<k = a<k)
∈ (bk, tk) ⊂ (0,1), (59)

because Pσ(θ = 1∣ã<k = a<k,mk) = Pσ(θ = 1∣ã<k = a<k) ∈ (bk, tk) for all a<k ∈ A<k and all

mk ∈ ⋃a<k∈A<k supp(µn(⋅∣a<k)).

Next, according to agent k’s optimal decision rule, we know that

Pσ(θ = 1∣h<k, ak = 1)

Pσ(θ = 0∣h<k, ak = 1)
=

Pσ(θ = 1∣h<k)(1 − F1(1 − Pσ(θ = 1∣mk)))

(1 − Pσ(θ = 1∣h<k))(1 − F0(1 − Pσ(θ = 1∣mk)))
(60)

We know that Pσ(θ = 1∣h<k) > bk, Pσ(θ = 0∣h<k) = 1 − Pσ(θ = 1∣h<k) > 1 − tk. Since F1 and

F0 are mutually absolutely continuous, it must be that for any ak that is on the equilibrium

path (i.e. herding have not occurred yet, or the action is one that agent k herd on), we have

Pσ(θ = 1∣h<k, ak = 1)

Pσ(θ = 0∣h<k, ak = 1)
∈ (0,∞) (61)

Thus, Pσ(θ = 1∣h<k, ak = 1) ∈ (0,1). Taking expectation over the realizations of action-signals

(m1, ...,mk), we have

Pσ(θ = 1∣a<k+1) ∈ (0,1) (62)

Finally, we also know that

Pσ(θ = 1∣h<k+1) = Pσ(θ = 1∣h<k, ak,mk+1) = Pσ(θ = 1∣h<k, ak) ∈ (0,1). (63)
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Proof of Proposition 6. Since the action-signals are not news-permitting, there must exist

some ε > 0, k ∈ N, and a sequence of agents {ni}∞i=1 such that for all i ∈ N, there exists some

mi ∈M and ai<k ∈ A<k such that Pσ(ai<k) > 0,20 and

µni(m
i∣a<ni) > ε, ∀ani ∈ Ani with a<k = a

i
<k.

According to Lemma 6, for any equilibrium, there exists some ε1 > 0 such that

Pσ(θ = 1∣ai<k) ∈ (ε1,1 − ε1)

which implies that Pσ(θ = 0∣ai<k) = 1−Pσ(θ = 0∣ai<k) ∈ (ε1,1−ε1). Since A<k has finite elements,

there exists ε2 > 0 such that

Pσ(ai<k) > ε2, ∀i ∈ N+. (64)

This implies that

Pσ(θ = 1,mni =m
i) ≥ Pσ(θ = 1,mni =m

i, a<k = a
i
<k) (65)

= ∫
a<ni ∶a<k=a

i
<k
µni(m∣a<ni)Pσ(θ = 1∣a<ni)dPσ(a<ni) (66)

> ε ⋅ ∫
a<ni ∶a<k=a

i<ni
Pσ(θ = 1∣a<ni)dPσ(a<ni) (67)

≥ ε ⋅ ε1 ⋅ ε2 (68)

Similarly, we have

Pσ(θ = 0,mni =m
i) > ε ⋅ ε1 ⋅ ε2 (69)

We know that

Pσ(mni =m
i, θ = 0, ani = 1) > ε ⋅ ε1 ⋅ ε2 ⋅ (1 −G0(1 − Pσ(θ = 1∣mni =m

i))) (70)

Pσ(mni =m
i, θ = 1, ani = 0) > ε ⋅ ε1 ⋅ ε2 ⋅G1(1 − Pσ(θ = 1∣mni =m

i)) (71)

20For the action-signals to be not news-permitting (uniformly or for a strategy profile σ), we either assumed

that the state-signals are unboundedly informative, which implies Pσ(ai<k) > 0 when k is a fixed finite number,

or we directly assumed Pσ(ai<k) > 0 under state-signals that are boundedly informative.
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Therefore, the probability that agent ni takes the wrong action is such that

Pσ(ani ≠ θ) > ε ⋅ ε1 ⋅ ε2 ⋅max[1 −G0(1 − Pσ(θ = 1∣mni =m
i)),G1(1 − Pσ(θ = 1∣mni =m

i))] (72)

I claim that the R.H.S. of inequality (72) is strictly bounded above zero. To see this, consider

the function f(x) = max[1−G0(x),G1(x)] for x ∈ [0,1]. Suppose that there is a sequence of

real numbers {xi}∞i=1 in the interval [0,1] such that limi→∞ f(xi) = 0. Then, we must have

lim
i→∞

1 −G0(x
i) = 0 and lim

i→∞
G1(x

i) = 0 (73)

Since G0 and G1 are mutually absolutely continuous, when limi→∞ 1 −G0(xi) = 0, we must

have limi→∞ 1−G1(xi) = 0 which contradicts with limi→∞G1(xi) = 0. Thus, there exists ε3 > 0

such that f(x) > ε3 for x ∈ [0,1]. Hence,

Pσ(ani ≠ θ) > ε ⋅ ε1 ⋅ ε2 ⋅ ε3 > 0 (74)

So agent ni takes the correct action with probability strictly less than 1 − ε ⋅ ε1 ⋅ ε2 ⋅ ε3. With

infinite number of agents {ni}∞i=1 taking the correct action with probability strictly bounded

below 1, information aggregation is guaranteed to fail.

C12 Proof of Proposition 5

Proof. As shown in the proof of Theorem 6, for any finite k and any history a<k, the posterior

belief Pσ(θ = 1∣a<k) and Pσ(θ = 1∣mk) must be interior for all mk ∈M. Then according to

Proposition 7, the equilibrium strategy is such that both actions are chosen with positive

probabilities (because pn > 1−Pσ(θ = 1∣mk) and pn < 1−Pσ(θ = 1∣mk) both occur with strictly

positive probabilities. Therefore, by an inductive argument, all finite histories are reached

with positive probabilities.

C13 Proof of Corollary 1

Follows from Proposition 5 and Theorem 6.

63



C Proofs and supplementary materials for Section 6

C1 Proof of Proposition 6

Lemma 7. For any private belief distributions (G0,G1), the following relations hold.

� The ratio G0(x)/G1(x) is non-increasing in x.

� The ratio (1 −G0(x))/(1 −G1(x)) is non-decreasing in x.

� G0(x) > G1(x) for all x ∈ (0,1).

Proof. By Lemma 2, we have for any x ∈ (0,1),

G0(x) = ∫
x

s=0
dG0(s) = ∫

x

s=0
(

1 − s

s
)dG1(s) ≥ ∫

x

s=0
(

1 − x

x
)dG1(s) = (

1 − x

x
)G1(x) (75)

We also have

d(
G0(x)

G1(x)
) =

dG0(x)G1(x) −G0(x)dG1(x)

(G1(x))2

=
dG1(x)

(G1(x))2
[(

1 − x

x
)G1(x) −G0(x)] .

We know that dG1(x) ≥ 0, G1(x) > 0, and the term in brackets above is non-positive by

Equation (75). Therefore,

d(
G0(x)

G1(x)
) ≤ 0 (76)

which implies that the ratio G0(x)/G1(x) is non-increasing. A similar argument proves the

second part of the lemma.

Finally, using the fact that G0(1) = G1(1) = 1, we must have for any x ∈ (0,1), we have

� G0(x) > G1(x)

� 1 −G0(x) < 1 −G1(x)

Proof of Proposition 6. Consider an agent n in week c, and take Jn = {(c − 1)t + 1, ..., ct} to

be the agents in week c−1. For any action-signal realization mn = x<c = (x0, ..., xc−1) ∈ {0,1}c,
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if xc−1 = 1, then I know for sure that

ct

∑
j=(c−1)t+1

aj > φc(x<c−1) (77)

We want to show that for all k > φc(x<(c−1)),

Pσ
⎛

⎝
θ = 1

RRRRRRRRRRR

ct

∑
j=(c−1)t+1

aj = k,1

⎧⎪⎪
⎨
⎪⎪⎩

(r+1)t

∑
j=rt+1

aj > φk(x<r)

⎫⎪⎪
⎬
⎪⎪⎭

= xr for all r = 0,1, ..., c − 2
⎞

⎠
≥ 1/2.

To see this, first note that in the event

1

⎧⎪⎪
⎨
⎪⎪⎩

(r+1)t

∑
j=rt+1

aj > φk(x<r)

⎫⎪⎪
⎬
⎪⎪⎭

= xr for all r = 0,1, ..., c − 2

All agents in week (c−1) observes exactly the same action-signal realization that is equal to

x<(c−1), and have the same posterior belief about the state

µ∗ = Pσ
⎛

⎝
θ = 1

RRRRRRRRRRR

1

⎧⎪⎪
⎨
⎪⎪⎩

(r+1)t

∑
j=rt+1

aj > φk(x<r)

⎫⎪⎪
⎬
⎪⎪⎭

= xr for all r = 0,1, ..., c − 2
⎞

⎠
.

In this case, given state θ, each agent will take action an = 1 if the private belief (induced by

sn) is such that

pn > 1 −Gθ(1 − µ
∗),

and he or she will take action an = 0 if the private belief is such that

pn < 1 −Gθ(1 − µ
∗).

Therefore, denote

µ̂ = Pσ
⎛

⎝
θ = 1

RRRRRRRRRRR

ct

∑
j=(c−1)t+1

aj = k,1

⎧⎪⎪
⎨
⎪⎪⎩

(r+1)t

∑
j=rt+1

aj > φk(x<r)

⎫⎪⎪
⎬
⎪⎪⎭

= xr for all r = 0,1, ..., c − 2
⎞

⎠

Then according to Bayes’ rule and the conditional independence of the state-signals (or
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the private belief), we must have

µ̂

1 − µ̂
=

µ∗

1 − µ∗
(

1 −G1(1 − µ∗)

1 −G0(1 − µ∗)
)

k

(
G1(1 − µ∗)

G0(1 − µ∗)
)

t−k

(78)

Note that, according to Lemma 7, the R.H.S. is increasing in k. By definition of φc(x(c−1)),

the R.H.S. is larger than 1 if k = ⌈φc(x<(c−1))⌉, and thus is also larger than 1 for all k ≥

φc(x<(c−1)). These are precisely the values of ∑Jn aj that can occur, given the action-signal

mn = x<c. Since the posterior belief minus 1/2 all have the same (positive) sign, it satisfies

weak separation. Similar argument works for the case when xc−1 = 0.

C2 Proof of Proposition 7

Proof. When the state-signals are unboundedly informative, we know that all strongly sepa-

rating action-signals give rise to information aggregation. It is obvious from the definition of

strong separation that if an additional signal is disclosed the resulting information environ-

ment will still be strongly separating. This is because the additional signal can only make the

environment more informative about past action-histories. Thus, information aggregation is

robust to third party manipulation.

C3 Proof of Proposition 8

Proof. Since the state-signals are boundedly informative, a manipulation strategy µ� which

fully disclose the action-histories will block information aggregation by inducing herding

behavior.

C4 Proof of Theorem 9

Proof. Notice that in the definition of strong separation. Only the aggregate numbers of

actions in Jn matters, not the individual actions. Therefore, when identity information in

mn is lost, it will make the action-signals less informative, but will not break the strong

separation condition. Thus, information aggregation should still occur.
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D Information Diffusion

In this section, we analyze the long-run efficiency of social learning using the alternative

metric of information diffusion.

Since s̃n are identically independently distributed across n, the distribution of the private

beliefs can be summarized by the distribution of p̃1. Let the convex hall of the support of

the private beliefs be the region [β, β̄], where

β = inf{x ∈ [0,1] ∣P(p̃1 ≤ x) > 0} and β̄ = sup{x ∈ [0,1] ∣P(p̃1 ≤ x) < 1}.

There is a unique binary signal s∗ ∈ {0,1}, a random variable such that

P(θ̃ = 1∣s∗ = 0) = β and P(θ̃ = 1∣s∗ = 1) = β̄.

We shall call s∗ the expert signal.

Definition 14. We say that information diffusion occurs if we have

lim
n→∞

Eσ[u(ãn, θ̃)] ≥ E[u(s̃∗, θ̃)] ≡ u∗.

Intuitively, we have diffusion if agents perform as though they were guaranteed to receive

one of the strongest possible signals. Note that aggregation is generally a stronger criterion

than diffusion; if state-signals are unboundedly informative (i.e., 1 − β = β̄ = 1), the two

metrics coincide. The metric of information diffusion provides an alternative perspective that

emphasizes the role of the social environment π in social learning. Often, when aggregation

turns on whether the state-signals are unboundedly or boundedly informative, information

diffuses according to Definition 14.

With the definition of information diffusion at hand, I will now discuss how the main

characterization results in this paper should be interpreted if we use information diffusion as

the metric for long-run efficiency. First, if the action-signals are not news-permitting, then

information diffusion always fails. So the necessary condition for long-run efficiency remains

the same. Second, if the action-signals are strongly or weakly separating, then information

diffusion occurs regardless of whether the state-signals are boundedly or unboundedly in-

formative. Thus, the sufficient condition for information diffusion is only dependent on the

information structure of the action-signals, not the state-signals. Finally, in terms of the

robustness properties in this paper, information diffusion under strongly separating action-
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signals are robust to manipulation by third-parties who can provide additional information,

and it is robust to distortion caused by agents’ limited cognitive capacity to remember sources

of prior actions in the separating sequence.

In conclusion, if we adopt information diffusion as the metric for long-run learning, the

characterization results are solely on the action-signals. On the downside, the economic

meaning of information diffusion is less-appealing because agents may still choose incorrect

actions when information diffusion occurs, and the metric of information diffusion itself

depends on the information structure of the state-signal.

E Welfare Non-Monotonicity

By focusing on information aggregation, I have offered a simple method to determine whether

an information environment is consistent with the long-run efficiency of social learning. A

normative interpretation of the result is that if individual privacy is preserved in a way

that ensures that a minimum amount of information is revealed in action-signals that are

separating, then long-run efficiency will not be impacted. When short- and medium-run

efficiency are taken into account, one might expect an even simpler relationship between

efficiency and privacy: as more information about past actions is disclosed, agents become

better informed and so make wiser decisions. Thus, efficiency can only be achieved at the

cost of privacy, and it is maximized under full transparency. Indeed, a natural analogy is

with a single agent who receives an informative signal about other agents’ past actions:

the agent’s expected utility increases if his signal becomes more informative about others’

actions, and it is highest if he perfectly learns other individual’s actions.

Proposition 10 offers a sharp contrast to the single-agent benchmark: It shows that there

is a non-monotonic relationship between the informativeness of the action-signals and the

welfare of the agents. In particular, increasing the informativeness of the action-signals may

increase the welfare of earlier agents at the cost of later agents. This result suggests that a

fully transparent environment, which has been the main focus of the prior literature, may

not be socially optimal. From a policy perspective, the result implies that the commonly

perceived “either/or” dichotomy between efficiency and privacy is a “false binary” in social

learning.

Formally, consider a social planner with a discount factor δ ∈ (0,1). Suppose the social

planner can flexibly design the action-signals by choosing any action-signal technology µ =

({µn}∞n=1,M) where µn(⋅∣h<n) ∈ △(M) specifies the distribution of agent n’s action signal
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given the social history h<n = (m1, a1, ...,mn−1, an−1) that specifies the first n − 1 actions and

realizations of the first n − 1 action-signals.21 We use H<n to denote the set of date-n social

histories. The social planner chooses µ to maximize the discounted social welfare:

∞
∑
n=1

δnEσ,µ[u(an, θ)] (79)

where σ is an equilibrium strategy profile under µ. We refer to the optimal action-signal

technology for the social planer as the socially optimal action-signal technology. It may seem

that the socially optimal action-signal technology should be fully informative. However, as

the following proposition shows, this intuition is incorrect.

Proposition 10. There exists [a, b] ⊂ (0,1) such that whenever µ∗n garbles µn for signal

realizations that has posterior outside [a, b] under µn, h<n+1 always become Blackwell more

informative under µ∗n than under µn.

Therefore, the social environment can be optimally opaque when short to medium-run

welfare is taken into account. In practice, we may want to design information environments

that protect individual privacy, which requires making the action-signals less informative

about past actions. Theorem 10 implies that such practices may not be socially inefficient:

unlike single-agent settings (the special case of δ = 0 in the social planer’s problem), efficiency

and privacy do not have a simple “either/or” trade-off.

E1 Proof of Proposition 10

Proof of Theorem 10. Throughout this proof, we assume that the information structures

{µi}n−1i=1 of the first n − 1 action-signals and the equilibrium strategy profiles {σ}n−1i=1 of the

first n − 1 agents are fixed. Therefore, for simplicity of exposition, we will not explicitly

specify the dependence of probabilities measures on {µi, σi}n−1i=1 .

First, note that when we fix {µi, σi}n−1i=1 , the distribution of the histories h<n is fixed. We

compare two information structures of agent n’s action-signal: µn and µ∗n, with measurable

signal spaces M and M∗ respectively. Suppose µ∗n is a garbling of µn, i.e., there exists a

21We allow the information structure to depend on past action-signals so that the social planer has full

flexibility to design the environment. This can also be done in the main characterization theorems.
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transition probability γ(⋅∣m) ∈△(M∗) for each m ∈M such that:

µ∗n(M
∗∣h<n) = ∫

m∈M
γ(M∗∣m)µn(dm∣h<n) for every measurable set M∗ ⊆M∗ (80)

We want to show that there exist equilibrium strategies σn and σ∗n that are optimal

for agent n under µn and µ∗n respectively, such that the history h<n+1 is Blackwell more

informative about the state θ under (µ∗n, σ
∗
n) than it is under (µn, σn). According to the

Blackwell Theorem, this is equivalent to the statement that Pµ∗n,σ∗n(θ = 1∣h<n+1) is a mean-

preserving spread of Pµn,σn(θ = 1∣h<n+1). We will prove this equivalent statement.

Take any measurable set M∗ ⊆M∗, according to Bayes’ rule, we must have

Pµ∗n(θ = 1∣mn ∈M∗)

Pµ∗n(θ = 0∣mn ∈M∗)
=
∑h<n π1P(h<n∣θ = 1)µ∗n(M

∗∣h<n)

∑h<n π0P(h<n∣θ = 0)µ∗n(M
∗∣h<n)

=
∑h<n π1P(h<n∣θ = 1) ∫m γ(M

∗∣m)dµn(m∣h<n)

∑h<n π0P(h<n∣θ = 0) ∫m γ(M
∗∣m)dµn(m∣h<n)

=
∑h<n ∫m γ(M

∗∣m)dPµn(θ = 1, h<n,mn =m)

∑h<n ∫m γ(M
∗∣m)dPµn(θ = 0, h<n,mn =m)

=
∫m γ(M

∗∣m)∑h<n dPµn(θ = 1, h<n,mn =m)

∫m γ(M
∗∣m)∑h<n dPµn(θ = 0, h<n,mn =m)

=
∫m γ(M

∗∣m)dPµn(θ = 1,mn =m)

∫m γ(M
∗∣m)dPµn(θ = 0,mn =m)

=
∫m γ(M

∗∣m)dPµn(θ = 1∣mn =m)

∫m γ(M
∗∣m)dPµn(θ = 0∣mn =m)

(81)

where the second equality follows from Equation (80).

Equation (81) implies that

Pµ∗n(θ = 1∣mn ∈M
∗) =

∫m γ(M
∗∣m)Pµn(θ = 1∣mn =m)dPµn(mn =m)

∫m γ(M
∗∣m)dPµn(mn =m)

(82)

Therefore, the posterior belief Pµ∗n(θ = 1∣mn ∈ M∗) is a weighted average of the posterior

beliefs Pµn(θ = 1∣mn = m) with weights γ(M∗∣m). Since this is true for any measurable set

M∗ and γ is a well-defined transition probability, there must exist a version of the condition

probability Pµ∗n(θ = 1∣mn =m∗) and a function γ′ ∶M×M∗ → R+ such that for all m∗ ∈M∗,

Pµ∗n(θ = 1∣mn =m
∗) =

∫m γ(m,m
∗)Pµn(θ = 1∣mn =m)dPµn(mn =m)

∫m γ(m,m
∗)dPµn(mn =m)

(83)
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This implies that for all m∗ ∈M∗,

min
m∶γ(m,m∗)>0

Pµn(θ = 1∣mn =m) ≤ Pµ∗n(θ = 1∣mn =m
∗) ≤ max

m∶γ(m,m∗)>0
Pµn(θ = 1∣mn =m). (84)

If µ∗n is not identical to µn, there must exist a set M̂∗ in M∗ with positive measure such

that for all m∗ ∈ M̂∗, the inequalities are strict:

min
m∶γ(m,m∗)>0

Pµn(θ = 1∣mn =m) < Pµ∗n(θ = 1∣mn =m
∗) < max

m∶γ(m,m∗)>0
Pµn(θ = 1∣mn =m) (85)

Let M̄(m∗) and M(m∗) denote the sets of signal realizations in M such that the induced

posterior beliefs under µn is strictly larger or smaller than the posterior belief induced by

mn =m∗ under µ∗n, respectively: i.e.,

M̄(m∗) = {m ∈M ∶ Pµn(θ = 1∣mn =m) > Pµ∗n(θ = 1∣mn =m
∗)}

M(m∗) = {m ∈M ∶ Pµn(θ = 1∣mn =m) < Pµ∗n(θ = 1∣mn =m
∗)}

Fix any m∗ ∈ M̂∗ and any h<n ∈ H<n, we adopt the following notations:

ν∗n = Pµ∗n(θ = 1∣mn =m
∗)

ξn = P(θ = 1∣h<n)

Then we can calculate the posterior beliefs of the state induced by the history h<n+1 =

(h<n,mn =m∗, an) under µ∗n and agent n’s optimal strategy σ∗n, for an = 0 and 1 respectively:

Pµ∗n,σ∗n(θ = 1∣h<n,mn =m
∗, an = 1) =

ξn(1 −G1(1 − ν∗n))

ξn(1 −G1(1 − ν∗n)) + (1 − ξn)(1 −G0(1 − ν∗n))

Pµ∗n,σ∗n(θ = 1∣h<n,mn =m
∗, an = 0) =

ξnG1(1 − ν∗n)

ξnG1(1 − ν∗n) + (1 − ξn)G0(1 − ν∗n)

In comparison, we can also calculate the posterior beliefs about the state induced by the

history h<n+1 = (h<n,mn =m,an) under µn and agent n’s corresponding optimal strategy σn,

for an = 0 and 1 respectively:

Pµn,σn(θ = 1∣h<n,mn =m,an = 1) =
ξn(1 −G1(1 − νn(m)))

ξn(1 −G1(1 − νn(m))) + (1 − ξn)(1 −G0(1 − νn(m)))

Pµn,σn(θ = 1∣h<n,mn =m,an = 0) =
ξnG1(1 − νn(m))

ξnG1(1 − νn(m)) + (1 − ξn)G0(1 − νn(m))
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where νn(m) ∶= Pµn(θ = 1∣mn = m) denote the posterior belief about the state induced by

the signal mn =m under µn.

Since m∗ ∈ M̂∗, the sets M̄(m∗) and M(m∗) must have positive measures under µn. For

any m ∈ M̄(m∗), we have νn(m) > ν∗n. Thus, by Lemma 7, we must have

Pµn,σn(θ = 1∣h<n,mn =m,an = 1) < Pµ∗n,σ∗n(θ = 1∣h<n,mn =m
∗, an = 1)

Pµn,σn(θ = 1∣h<n,mn =m,an = 0) < Pµ∗n,σ∗n(θ = 1∣h<n,mn =m
∗, an = 0)

Similarly, for any m ∈M(m∗), we must have

Pµn,σn(θ = 1∣h<n,mn =m,an = 1) > Pµ∗n,σ∗n(θ = 1∣h<n,mn =m
∗, an = 1)

Pµn,σn(θ = 1∣h<n,mn =m,an = 0) > Pµ∗n,σ∗n(θ = 1∣h<n,mn =m
∗, an = 0)

Since the histories that lead to mn = m ∈ M̄(m∗) have higher average posteriors than

mn = m∗, and those that lead to mn = m ∈ M(m∗) have lower average posteriors than

mn =m∗ and that the probability of the two intermediate realizations will go to zero as the

two posteriors become extreme, the above inequalities must imply that the distribution of

the posterior beliefs under µ∗n is a mean-preserving spread of the distribution of posteriors

under µn when the realizations under µn that are garbled involve extreme histories.

F Equilibrium Information Manipulation

Propositions 7 and 8 studies whether there exists a manipulation strategy that blocks infor-

mation aggregation; but will such manipulation strategies be adopted by the third party in

some equilibrium? How does the preference of the third-party affects information manipu-

lation? I focus on a (single) third party who cares about long-run average actions, i.e., the

third party’s utility function V (a, θ) is

V (a, θ) = lim
T→∞

1

T

T

∑
n=1

v(an, θ)

for some v ∶ {0,1}2 → R.

Definition 15. The third party’s preference and the agents’ preference are aligned if v(θ, θ) ≥
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v(1 − θ, θ) for θ ∈ {0,1}, and they are misaligned near state θ if v(θ, θ) < v(1 − θ, θ).

I assume the third party has full commitment power and can flexibly implement any

manipulation technology µ�. In the appendix, I characterize the third party’s problem given

any µ. The problem can be formulated as a variant of a Bayesian persuasion problem with

a lower bound on the receiver’s information. Then I study the optimal information design

for the third party.

As we already know, when the state-signals are unboundedly informative, information

aggregation in AS environments cannot be blocked by the third party. The third party’s

payoff will be π1v(1,1) + π0v(0,0), regardless of his strategy µ�.

Now suppose the action-signal technology is AS and information aggregation occurs, but

the state-signals are boundedly informative near a state θ (i.e., ∃ε > 0 s.t. P(pn ∈ [θ−ε, θ+ε]) =

0). We know from Proposition 8 that information aggregation can be blocked. Whether or

not it will be optimally blocked by the third party depends on his preference.

Proposition 11. Suppose the state-signals are boundedly informative only near state θ and

information aggregation occurs under µ. Then information aggregation fails under any op-

timal µ� for the third party if and only if the third party’s preference is misaligned with that

of the agents’ at θ.

Proof. If the third-party’s preference is aligned with the agents’, inducing information ag-

gregation will maximize the third-parties expected utility because the third party also prefer

the agents to take the correct action given each state.

On the other hand, if the third party’s preference is misaligned with the agents’ at θ, then

the third party can provide fully informative m�
n to agents that are “ignorant” (there has

to be an infinite number of such ignorant agents for information aggregation to occur under

µ), this will induce herding on action θ which is preferred by the third party. However,

if the third party’s preference is misaligned only at 1 − θ, since the state-signals are not

boundedly informative near 1 − θ, blocking information aggregation (by inducing herding)

will not benefit the third party, thus, information aggregation occurs.
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