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Abstract

A data broker sells market segmentations created by consumer data to a producer with

private production cost who sells a product to a unit mass of consumers with heterogeneous

values. In this setting, I completely characterize the revenue-maximizing mechanisms for the

data broker. In particular, every optimal mechanism induces quasi-perfect price discrimi-

nation. That is, the data broker sells the producer a market segmentation described by a

cost-dependent cutoff, such that all the consumers with values above the cutoff end up buy-

ing and paying their values while the rest of consumers do not buy. The characterization of

optimal mechanisms leads to additional economically relevant implications. I show that the

induced market outcomes remain unchanged even if the data broker becomes more active in

the product market by gaining the ability to contract on prices; or by becoming an exclusive

retailer, who purchases both the product and the exclusive right to sell the product from the

producer, and then sells to the consumers directly. Moreover, vertical integration between

the data broker and the producer increases total surplus while leaving the consumer surplus

unchanged, since consumer surplus is zero under any optimal mechanism for the data broker.
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1 Introduction

1.1 Motivation

The rapid development of informational technology has enabled one to collect, process and

analyze vast volumes of consumer data. By the use of consumer data, the scope of price

discrimination has moved far beyond its traditional boundaries such as geography, age, or

gender. Extensive usage of consumer data allows one to identify many characteristics of

consumers that are relevant to the prediction of their values, and therefore to create numer-

ous sorts of market segmentation—a way to split the market demand into several segments

by partitioning the consumers’ characteristics—to facilitate price discrimination. Moreover,

because of their specialization in information technology, several “data brokers” trade vast

amounts of consumer data with retailers, which effectively means these data brokers can

create market segmentations and sell them as a product that facilitates price discrimination.

For instance, online platforms such as Facebook collect and sell1 a significant amount of con-

sumers’ personal information, including personal characteristics, traveling plans, lifestyles,

and text messages via its own platform. Alternatively, data companies such as Acxiom and

Datalogix gather and sell personal information such as government records, financial activi-

ties, online activities and medical records to retailers (Federal Trade Commission, 2014).

This paper studies the design of optimal selling mechanisms of a data broker. In this

paper, I consider a model where there is one producer with privately known constant marginal

cost, who produces and sells a single product to a unit mass of consumers. The consumers

have unit demand and the distribution of their values is described by commonly known

market demand. Into this environment, I introduce a data broker, who does not know the

producer’s marginal cost of production but can sell any market segmentation to the producer

via any selling mechanism. As the data broker is uncertain about the production cost, and

only affects the product market indirectly by selling consumer data to the producer, it is not

obvious how the data broker should sell market segmentations to the producer, what market

segmentations will be created, and how the sale of consumer data affects economic welfare

and allocative outcomes.

The main result of this paper is a complete characterization of the revenue-maximizing

mechanisms for the data broker. The optimal mechanisms feature quasi-perfect price discrim-

ination, which is an outcome where all the purchasing consumers pay exactly their values,

1In practice, “selling” consumer data can take a wide variety of forms, which include not only tra-

ditional physical transactions but also integrated data-sharing agreements/activities. For instance, in a

recent full-scale investigation by The New York Times, Facebook has formed ongoing partnerships with

other firms, including Netflix, Spotify, Apple and Microsoft, and granted these companies accesses to dif-

ferent aspects of consumer data “in ways that advanced its own interests.” See full news coverage at

https://www.nytimes.com/2018/12/18/technology/facebook-privacy.html

https://www.nytimes.com/2018/12/18/technology/facebook-privacy.html
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although not every consumer with values above the marginal cost buys the product. Theo-

rem 1 shows that every optimal mechanism must create quasi-perfect segmentations described

by a cost-dependent cutoff. Namely, all the consumers with values above the cutoff are sep-

arated from each other whereas the consumers with values below the cutoff are pooled with

the separated high-value consumers. When pricing optimally under this segmentation, the

producer only sells to high-value consumers and induces quasi-perfect price discrimination.

Furthermore, the cutoff function under any optimal mechanism is exactly the minimum be-

tween the (ironed) virtual marginal cost function and the optimal uniform price as a function

of marginal cost. With proper regularity conditions, Theorem 2 shows that there is an op-

timal mechanism where conditional on being below the cutoff, the distribution of consumer

values is the same as the market demand in every market segment. This optimal mechanism

can be implemented by a menu of price-recommendation data, in which each item consists of

a list of recommended prices, one for each consumer, as well as an associated amount that has

to be paid to the data broker for this list. Each item in this menu is described by a cutoff, so

that for consumers with values above the cutoff, the recommended prices for them equal to

their values. Meanwhile, for the consumers with values below the cutoff, the recommended

prices for them are distributed in the same way as the consumers’ values conditional on being

above the cutoff.

The characterization of the optimal mechanisms further leads to several economically

relevant implications. As the defining feature of quasi-perfect price discrimination, under

any optimal mechanism, all the consumers pay their values conditional on buying. This

implies that the consumer surplus under any optimal mechanism is zero (Theorem 3). In

other words, in terms of consumer surplus, it is as if all the information about the consumers’

values is revealed to the producer. The fact that the data broker only affects the product

market indirectly via data provision does not benefit the consumers. Furthermore, Theorem 1

also allows a comparison between data brokership and uniform pricing, where no consumer

data can be shared. More specifically, I show that data brokership always increases total

surplus (Theorem 4), and can even be Pareto-improving compared with uniform pricing if

the data broker has to purchase the data from the consumers (before they learn their values,

see Theorem 5).

In addition to the welfare implications, another set of relevant questions pertain to how

different market regimes would affect market outcomes. More specifically, how would the

market outcomes differ if the data broker, instead of merely providing consumer data to the

producers, plays a more active role in the product market? The characterization given by

Theorem 1 allows comparisons across several other natural market regimes in addition to data

brokership, including vertical integration, where the data broker and the producer merge and

all the private information about production cost is revealed; direct acquisition, where the
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data broker is able purchase the entire production technology from the producer; exclusive

retail, where the data broker negotiates with the producer and purchases the product, as

well as the exclusive right to sell the product, from the producer; and price-controlling data

brokership, where the data broker can prescribe what price to charge in addition to providing

consumer data. Using the main characterization, I show that vertical integration between

the data broker and producer increases total surplus while leaving the consumer surplus

unchanged (Theorem 6). Furthermore, in terms of market outcomes (i.e., data broker’s

revenue, producer’s profit, consumer surplus and the allocation of the product), I show that

data brokership is equivalent to both exclusive retail and price-controlling data brokership

(Theorem 7). Together with the closed-form characterization of the data broker’s optimal

selling mechanism, it can be calculated whether direct acquisition is more profitable than the

other market regimes.

The rest of this paper is organized as follows. Continuing in this section, several related

literatures are discussed. In Section 2, I provide an illustrative example to demonstrate the

design of the data broker’s optimal selling mechanism and its implications. The preliminaries

and the model are presented in Section 3. In Section 4, I characterize the optimal mechanisms

of the data broker. Consequences of consumer-data brokership are discussed in Section 5.

Finally, relaxations of the assumptions and several extensions can be found in Section 6 and

some further discussions are in Section 7.

1.2 Related Literature

This paper is related to various streams of literature. In the literature of price discrimination,

several theoretical works center around the welfare effects of price discrimination (see, for

instance, Varian (1985), Aguirre et al. (2010) and Cowan (2016)) and provide conditions

under which third-degree price discrimination increases or decreases total surplus and output.

In addition, Bergemann et al. (2015) show that any surplus division between the consumers

and a monopolist can be achieved by some market segmentation.2 In these papers, market

segmentation is treated as an exogenous object, whereas in my paper, market segmentation

is determined endogenously by a data broker’s revenue-maximization behavior. Furthermore,

Wei and Green (2019) study another channel of price discrimination that does not involve

market segmentation (i.e., through providing differential information).

Furthermore, this paper is related to the recent literature of the sale of information by

a monopolistic information intermediary. Admati and Pfleiderer (1985) and Admati and

Pfleiderer (1990) consider a monopoly who sells information about an asset in a speculative

market. Bergemann and Bonatti (2015) explore a pricing problem of a data provider who

2See also: Haghpanah and Siegel (2019), who further consider segmentations in environments that feature

second-degree price discrimination.
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provides data to facilitate targeted marketing. Bergemann et al. (2018) solve a mechanism

design problem in which the designer sells experiments to a decision maker who has private

information about his belief. Yang (2019) considers a model where an intermediary can pro-

vide information about the product to the consumers and charge the seller for such services.

Segura-Rodriguez (2019) studies the revenue maximization of a data broker who sells data

to firms that differ in the consumer characteristics they wish to forecast.3

Methodologically, this paper is related to the literature of mechanism design and infor-

mation design (see, for instance, Mussa and Rosen (1978), Myerson (1981), Kamenica and

Gentzkow (2011) and Bergemann and Morris (2016)). More particularly, my paper can be

regarded as a mechanism design problem where the information structure is also part of the

design object (see, for instance, Bergemann and Pesendorfer (2007), Yamashita (2017) and

Dworczak (2019)).

Among the aforementioned papers, Bergemann et al. (2015), Bergemann et al. (2018) and

Yang (2019) are the closest to my paper. Specifically, Bergemann et al. (2015) explore the

welfare implications of different market segmentations, while I introduce a data broker who

designs the market segmentation in order to maximize revenue. Bergemann et al. (2018)

study an environment where the agent has private information about his prior belief and

characterize the optimal mechanism in a binary-action, binary-state case; or in a binary-

type case, while my paper studies a revenue maximization problem where the agent’s private

information is part of her intrinsic preference and has a rich action space. Also, this paper

allows a large class of priors, including those with infinite support. Finally, Yang (2019)

solves for optimal mechanisms of an intermediary that can provide information about the

product to the consumers, while in this paper I consider the case where an intermediary sells

information about the consumers’ values to the producer.

2 An Illustrative Example

To fix ideas, consider the following simple example. A publisher sells an advanced textbook

for graduate study. Her (constant) marginal cost of production c is her private information

and takes two possible values, 1/4 or 3/4, with equal probability. There is a unit mass of

consumers with three possible occupations: faculty, undergraduate students, and graduate

students. Each of them constitutes 1/3 of the entire population. It is common knowledge

that the textbook has has value v = 1 for an undergraduate student, value v = 2 for a

graduate student and value v = 3 for a faculty member. In addition, suppose that among

all the undergraduate students, 1/2 live in houses and 1/2 live in apartments, whereas all

3Relatedly, Acemoglu et al. (2019), Bergemann et al. (2019) and Ichihashi (2019) examine environments

where a data broker buys data from the consumers and then sells the consumer data to downstream firms.
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the graduate students live in apartments and all the faculty members live in houses. This

economy can be represented by Figure 1, where Figure 1a plots the partitions of the consumers

induced by their occupations and residence types and Figure 1b plots the (inverse) market

demand D0.

Figure 1: Representation of the market

(v = 3) (v = 2) (v = 1)
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(a) Partitioning consumers
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(b) Market demand D0

Suppose that there is a data broker who owns all the data about the consumers (e.g.,

income, medical records, occupations and residential information) and thus is able to provide

any partition on the line in Figure 1a to the publisher. How should the data broker sell

these data to the publisher? An intuitive guess is that the data broker should sell the most

informative data. That is, he should provide the publisher with occupation data so that

each consumer’s value can be fully revealed. Upon receiving such data, the publisher is able

to perfectly price discriminate the consumers. The value-revealing data creates a market

segmentation that decomposes the market into three market segments, and each market

segment enables the publisher to perfectly identify the value of the consumers in that market

segment. As a result, if the price of the value-revealing data is τ and if the publisher with

cost c ∈ {1/4, 3/4} buys the data, her net profit would be

1

3
(1− c) +

1

3
(2− c) +

1

3
(3− c)− τ.

Alternatively, if the publisher with cost c does not buy any data, she would then charge

an optimal uniform price (either 1, 2 or 3, since these are the only possible consumer values)

and earn profit

max

{
(1− c), 2

3
(2− c), 1

3
(3− c)

}
.

Therefore, for any τ , the publisher with cost c would buy the value-revealing data if and only

if
1

3
(1− c) +

1

3
(2− c) +

1

3
(3− c)− τ ≥ max

{
(1− c), 2

3
(2− c), 1

3
(3− c)

}
,
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which simplifies to τ ≤ (2− c)/3. Thus, since c ∈ {1/4, 3/4}, when τ ≤ 5/12, the publisher

would always buy the value-revealing data regardless of her marginal cost. When 5/12 < τ ≤
7/12, the publisher would buy the data only if c = 1/4. Therefore, charging a price τ = 5/12

gives the data broker revenue 5/12 whereas charging a price τ = 7/12 gives the data broker

revenue 7/12 × 1/2 = 7/24 < 5/12. Hence the optimal price for the value-revealing data is

5/12 and it gives the data broker revenue 5/12.

However, the data broker can in fact improve his revenue by creating a menu consisting

of not just the value-revealing data. To see this, consider the following menu of data

M∗ =

{(
residential data, τ =

1

3

)
,

(
value-revealing data, τ =

7

12

)}
.

Notice that the residential data creates a market segmentation with two segments described

by two demand functions, DH and DA. Segment DH contains all of the consumers with

v = 3 and 1/2 of the consumers with v = 1 (i.e., those who live in houses), while segment

DA contains all of the consumers with v = 2 and 1/2 of the consumers with v = 1 (i.e., those

who live in apartments). Figure 2 plots this market segmentation. From Figure 2, it can

be seen that DH + DA = D0. Moreover, for the publisher with c = 1/4, the difference in

profit between charging price 3 (2) and charging price 1 in segment DH (DA) is exactly the

difference between the area of the darker region and the area of the lighter region depicted

in Figure 2. Therefore, since the area of the lighter region is smaller than the area of the

darker region, charging a price of 3 (2) is better than charging a price of 1 in segment DH

(DA). Thus, as there are only two possible values in each segment, charging a price of 3 (2)

is optimal for the publisher under segment DH (DA). This is also the case when her cost

is c = 3/4, since the area of the lighter region would decrease and the area of the darker

region would remain unchanged when the marginal cost changes from 1/4 to 3/4. As a result,

regardless of her marginal cost, the publisher will sell to all the consumers with values v = 3

and v = 2 by charging exactly their values upon receiving the residential data.

With this observation, it then follows that when c = 1/4, the publisher would prefer

buying the value-revealing data (at the price of τ = 7/12) whereas when c = 3/4, the

publisher would prefer buying the residential data (at the price of τ = 1/3). Therefore, when

menu M∗ is provided, the data broker’s revenue is

(0.5)
1

3
+ (0.5)

7

12
=

11

24
>

5

12
,

which is higher than what can be obtained by selling value-revealing data alone. The intuition

behind such an improvement is simple. When selling the value-revealing data alone, the

publisher with lower marginal cost retains more rents because the broker would have to

incentivize the high-cost publisher to purchase. However, by creating a menu containing

both the value-revealing data and the residential data, the data broker can further screen the
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Figure 2: Market segmentation induced by residential data
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publisher. To see this, notice that even though the residential data is less informative than the

value-revealing data, the only extra benefit of the value-revealing data is for the publisher to

be able to price discriminate the consumers with v = 1. Thus, when the publisher’s marginal

cost is high (i.e., c = 3/4), the additional information given by the value-revealing data is

less useful to the publisher because the gains from selling to consumers with v = 1 are small.

In contrast, when the publisher has a low marginal cost (i.e., c = 1/4), the value-revealing

data is more valuable to the publisher since the gains from selling to consumers with v = 1

are larger. Therefore, by providing a menu that contains two different datasets with different

prices, the data broker can screen the publisher and extract more revenue from the publisher

with lower marginal cost than by selling the value-revealing data alone.

In fact, as it will be shown in Section 4,M∗ is an optimal mechanism of the data broker.

The optimal mechanismM∗ has several notable features. First, when c = 3/4, the high-value

consumers (v = 2 and v = 3) are separated from each other whereas the low-value consumers

(v = 1) are pooled together with the high-value consumers. This induces a market outcome

where consumers with values v = 2 and v = 3 are buying the textbook by paying their

values, whereas the consumers with v = 1 do not buy, even if their value is greater than the

publisher’s marginal cost 3/4. In other words, in order to maximize revenue, the data broker

would sometimes discourage (ex-post) efficient trades. Second, all the purchasing consumers

are paying exactly their values, which implies that consumer surplus is zero. Finally, even

though every purchasing consumer pays their value, the high-cost publisher never learns

exactly each individual consumer’s value. These features are not specific to this simple

example. In fact, all of them hold in a general class of environments, which will be explored

later in this paper.
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3 Model

3.1 Notation

The following notation is used throughout the paper. For any Polish space X, ∆(X) denotes

the set of probability measures on X where X is endowed with the Borel σ-algebra and ∆(X)

is endowed with the with weak-* topology. When X = [x, x] ⊆ R is an interval, let D(X)

denote the collection of nonincreasing and left-continuous functions D : X → [0, 1] such that

D(x) = 1, D(x) = 0. Since D(X) and ∆(X) are bijective, for any D ∈ D(X), let mD ∈ ∆(X)

be the probability measure associated with D and define the integral∫
A

h(x)D(dx) :=

∫
A

h(x)mD(dx),

for any measurable h : X → R. Then, endow D(X) with the weak-* topology and the Borel

σ-algebra using this integral (details in Appendix A). Also, write supp(D) := supp(mD).

3.2 Primitives

There is a single product, a unit mass of consumers with unit demand, a producer for this

product (she), and a data broker (he). Across the consumers, their values v for the product

are distributed according to a commonly known probability measure m0 ∈ ∆(V ) and thus

can be described by a market demand D0 ∈ D := D(V ), where D0(p) := m0([p, v]) is the

share of consumers whose values are above p and V = [v, v] ⊂ R+ is a compact interval.

Each consumer knows their own value. For the rest of the paper, D0 is said to be regular if

the marginal revenue function induced by D0 is decreasing.4

The producer has a constant marginal cost of production c ∈ C = [c, c] ⊂ R+ for some

0 ≤ c < c < ∞. The marginal cost c is private information to the producer and follows a

distribution G, where G has a density g > 0 and induces a virtual (marginal) cost function

φG, defined as φG(c) := c+G(c)/g(c) for all c ∈ C. Henceforth, G is said to be regular if φG

is increasing.

The data broker owns all the consumer data and can create any market segmentation,

which is a probability measure s ∈ ∆(D) that satisfies the following condition∫
D
D(p)s(dD) = D0(p), ∀p ∈ V. (1)

That is, a segmentation is a way to split the market demand D0 into different market seg-

ments.5 Let S denote the set of segmentations.

4More specifically, D0 is regular if the function p 7→ pD0(p) is single-peaked.
5As illustrated in the motivating example, different consumer data induce different partitions of consumers’

characteristics and thus different ways to split D0 into a collection of demand functions that sum up to
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3.3 Timing of the Events

First, the data broker proposes a mechanism, which contains a set of available messages that

the producer can send, as well as mappings that specify the market segmentation and the

amount of transfers as functions of the messages. Then, the producer decides whether to

participate in the mechanism. If the producer does not, she only operates under D0 without

any further segmentations and pays nothing. If the producer participates in the mechanism,

she sends a message from the message space, pays the associated transfer, and then operates

under the associated market segmentation.

Given any segmentation s ∈ S, the producer engages in price discrimination by choosing

a price pD ≥ 0 in each segment D ∈ supp(s).6 To maximize profit, for any segment D ∈
supp(s), the producer with marginal cost c solves

max
p∈R+

(p− c)D(p).

For any c ∈ C and any D ∈ D, let PD(c) denote the set of optimal prices for the producer with

marginal cost c under market segment D. As a convention, regard P as a correspondence

on D × C and if p is a selection for P , write p ∈ P .7 Furthermore, for any c ∈ C and any

D ∈ D, let

πD(c) := max
p∈R+

(p− c)D(p)

denote the maximized profit of the producer. Also, let

pD(c) := maxPD(c)

D0. Thus, given a market segmentation s, each market segment D ∈ supp(s) can be interpreted as a

group of consumers who have some common characteristics (e.g., house residents). Notice that by allowing

the data broker to provide any market segmentation, it is implicitly assumed that the data broker always

has enough to data to identify each consumer’s value and is able to segment the consumers according to

their values arbitrarily. In Section 6, I further discuss an extension that permits the data broker to have

incomplete information about the consumers’ values. In Section 7, I argue that as long as the consumer

characteristics are “rich enough”, this definition of market segmentation is equivalent to partitioning the

consumer characteristics.
6It is without loss of generality to restrict attention to posted price mechanisms even though the producer

has private information about c when designing selling mechanisms. This is because the environment features

independent private values and quasi-linear payoffs, and both the producer’s and the consumers’ payoffs are

monotone in their types. By Proposition 8 of Mylovanov and Tröger (2014), it is as if c is commonly known

when the producer designs selling mechanisms. Therefore, since the consumers have unit demand, according

to Myerson (1981) and Maskin and Zeckhauser (1983), it is without loss to restrict attention to posted price

mechanisms.
7For notational conveniences, I restrict the feasible prices for each producer to a large enough compact

interval V ⊂ R+ such that V ( V . With this restriction, PD(c) would be a subset of a compact interval for

all D ∈ D and for all c ∈ C. Since V itself is bounded, this restriction is simply a notational convention and

does not affect the model at all.
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be the largest optimal price for the producer with marginal cost c under market segment D.8

For conciseness, let p0 := pD0
.

Throughout Section 4 and Section 5, I impose the following technical assumption on the

market demand D0 and the distribution G.

Assumption 1. The function c 7→ max{g(c)(φG(c)− p0(c)), 0} is nondecreasing.

Assumption 1 permits a wide class of (D0, G) and includes many common examples.9

Also, it does not require regularities of either D0 or G (nor is it implied by regularities of D0

and G). In Section 6, I will further discuss this assumption, including how the results rely

on it, its relaxations, as well as several economically interpretable sufficient conditions.

3.4 Mechanism

When proposing mechanisms, by the revelation principle (Myerson, 1979), it is without loss

to restrict the data broker’s choice of mechanisms to incentive compatible and individually

rational direct mechanisms that ask the producer to report her marginal cost and then provide

the segmentation and determine the transfer accordingly.10

Formally, a mechanism is a pair (σ, τ), where σ : C → S, τ : C → R are measurable

functions. Given a mechanism (σ, τ), for each c ∈ C, σ(c) ∈ S stands for the market

segmentation provided to the producer, τ(c) ∈ R stands for the amount the producer pays

to the data broker. Moreover, any measurable σ : C → S is called a segmentation scheme

(or sometimes, a scheme).

A mechanism (σ, τ) is incentive compatible if for all c, c′ ∈ C,∫
D
πD(c)σ(dD|c)− τ(c) ≥

∫
D
πD(c)σ(dD|c′)− τ(c′). (IC)

Also, since the producer can always sell to the consumers by charging a uniform price, a

mechanism (σ, τ) is individually rational if for all c ∈ C,∫
D
πD(c)σ(dD|c)− τ(c) ≥ πD0(c). (IR)

Henceforth, a mechanism (σ, τ) is said to be incentive feasible if it is incentive compatible and

individually rational, and a segmentation scheme σ is said to be implementable if there exists

8p is well-defined by Lemma 6 in Appendix B. Moreover, according to the notational convention stated

in footnote 7, whenever c > max(supp(D)), pD(c) = maxV .
9For instance, if D0 is linear demand and G is uniform; or if both D0 and G are exponential on some

intervals; or if D0 and G are such that D0(v) = (1 − v)β , G(c) = cα, for all v ∈ [0, 1], c ∈ [0, 1], for any

α, β > 0; or if D0 and G take one of the aforementioned forms.
10Henceforth, unless otherwise noted, a mechanism stands for a direct mechanism.
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a measurable τ : C → R such that (σ, τ) is incentive feasible. The goal of the data broker is

to maximize expected revenue EG[τ(c)] by choosing an incentive feasible mechanism.

The data broker’s revenue maximization problem exhibits several noticeable features.

First, the object being allocated is infinite dimensional. After all, the data broker sells

market segmentations to the producer as opposed to a one-dimensional quality or quantity

variable in classical mechanism design problems (e.g., Mussa and Rosen (1978), Myerson

(1981) and Maskin and Riley (1984)). In particular, it is not clear whether there exists a

partial order on the space of market segmentations that would lead to the single-crossing

property commonly assumed in low-dimensional screening problems. Second, the producer’s

outside option is type-dependent. This is because the producer has access to the consumers,

and is only buying the additional information about the consumers’ values.

As another remark, the model introduced above is equivalent to a model where there is

one producer with private cost c and one consumer with private value v, where c and v are

independently drawn from G and m0, respectively. With this interpretation, a segmentation

s ∈ S is then equivalent to a Blackwell experiment that provides the producer with informa-

tion regarding the consumer’s private value. Throughout the paper, the analyses and results

are stated in terms of the version with a continuum of consumers, yet every statement and

interpretation has an equivalent counterpart in the version with one consumer who has a

private value.

4 Optimal Segmentation Design

In what follows, I characterize the data broker’s optimal mechanisms. To this end, I first

introduce a crucial class of mechanisms. Then I characterize the optimal mechanisms by this

class.

4.1 Quasi-Perfect Segmentations and Quasi-Perfect Price Discrimination

As illustrated in the motivating example, to elicit private information from the producer,

the data broker may sometimes wish to discourage sales even when there are gains from

trade. In addition, the data broker would wish to extract more surplus by providing market

segmentations under which all the purchasing consumers pay their values. These two features

jointly lead to a specific form of market segmentation, which will be referred as quasi-perfect

segmentations.

Definition 1. For any c ∈ C and any κ ≥ c, a segmentation s ∈ S is a κ-quasi-perfect

segmentation for c if for s-almost all D ∈ D, either D(c) = 0, or the set {v ∈ supp(D) : v ≥ κ}
is a singleton and is a subset of PD(c).



13

A κ-quasi-perfect segmentation for c is a segmentation that separates all the consumers

with v ≥ κ while pooling the rest of the consumers together with them so that when the

producer’s marginal cost is c, every market segment with positive trading volume11 must

contain one and only one consumer-value v ≥ κ and this v is an optimal price for the

producer. Notice that a κ-quasi-perfect segmentation for c induces κ-quasi-perfect price

discrimination when the producer’s marginal cost is c and when she charges the largest

optimal price in (almost) all segments. Namely, a consumer with value v buys the product

if and only if v ≥ κ and all purchasing consumers pay exactly their values. For instance, in

the example given by Section 2, the residential data creates a 2-quasi-perfect segmentation

for both c ∈ {1/4, 3/4}. With Definition 1, I now define the following:

Definition 2. Given any function ψ : C → R with c ≤ ψ(c) for all c ∈ C:

1. A segmentation scheme σ is a ψ-quasi-perfect scheme if for G-almost all c ∈ C, σ(c) is

a ψ(c)-quasi-perfect segmentation for c.

2. A mechanism (σ, τ) is a ψ-quasi-perfect mechanism if σ is a ψ-quasi-perfect scheme and

if the producer with marginal cost c, when reporting truthfully, has net profit πD0(c).

4.2 Characterization of the Optimal Mechanisms

With the definitions above, the main characterization of this paper can be stated. To this

end, for any c ∈ C, define ϕG(c) := min{ϕG(c),p0(c)}, where ϕG is the ironed virtual cost

function.12

Theorem 1 (Optimal Mechanism). The set of optimal mechanisms is nonempty and is

exactly the set of incentive feasible ϕG-quasi-perfect mechanisms. Furthermore, every optimal

mechanism induces ϕG(c)-quasi-perfect price discrimination for G-almost all c ∈ C.

From the definition of quasi-perfect segmentations, there are some degrees of freedom

regarding the ways to pool the low-value consumers with the high-values. Therefore, The-

orem 1 implies that there might be multiple optimal mechanisms—as long as the low-value

consumers are pooled with the high-values in a way such that the mechanism is incentive

feasible and is ϕG-quasi-perfect. Nevertheless, the outcome induced by any optimal mecha-

nism is unique. That is, under any optimal mechanism, for (almost) all marginal cost c ∈ C,

a consumer with value v buys the product if and only if v ≥ ϕG(c) and all the purchasing

consumers pay their values. In other words, the multiplicity only accounts for the off-path

incentives. Furthermore, there is always an explicit construction of an optimal mechanism

11Notice that when the producer’s marginal cost is c, no trade occurs in market segment D if and only if

D(c) = 1.
12Ironing in the sense of Myerson (1981).
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Figure 3: Market segment D
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(see details in Appendix D). In fact, when the market demand D0 is regular, this construction

takes a particularly simple form: The low-value consumers are pooled with the high values in

a way that preserves the likelihood ratios among values below the cutoff. More specifically,

for any c ∈ C and for any v ≥ ϕ(c), define market segment D
ϕG(c)
v ∈ D as

DϕG(c)
v (p) :=


D0(p), if p ∈ [v, ϕ(c)]

D0(ϕ(c)), if p ∈ (ϕ(c), v]

0, if p ∈ (v, v]

, (2)

for all p ∈ V . Moreover, for any c ∈ C and for any p ∈ [ϕG(c), v], let

σ∗
({
DϕG(c)
v : v ≥ p

} ∣∣c) :=
D0(p)

D0(ϕG(c))
. (3)

In other words, for any c ∈ C, σ∗(c) only assigns positive measure to market segments

{DϕG(c)
v }v∈[ψ(c),c] and its distribution is exactly the distribution of consumers’ values condi-

tional on being above the cutoff ϕG(c) given by the market demand. Figure 3 illustrates

σ∗ by plotting the (inverse) demand13 of a generic market segment D
ϕG(c)
v induced by σ∗(c)

(the dashed line represents the market demand D0). This inverse demand has a jump at

D0(ϕG(c)). To the left of D0(ϕG(c)), all the consumer values are concentrated at v, whereas

the distribution of the consumer values to the right of D0(ϕG(c)) remains the same as that

under D0.

With this definition, it turns out that when D0 is regular, as it will be shown below,

there exists a unique transfer scheme τ ∗ : C → R such that (σ∗, τ ∗) is an incentive feasible

ϕG-quasi-perfect mechanism. Thus, by Theorem 1, (σ∗, τ ∗) is optimal. Henceforth, whenever

D0 is regular, I refer the mechanism (σ∗, τ ∗) as the canonical ϕG-quasi-perfect mechanism.

13See Appendix A for the formal definition of inverse demands.
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Theorem 2. Suppose that D0 is regular. Then the canonical ϕG-quasi-perfect mechanism

(σ∗, τ ∗) is optimal.

In what follows, I will describe the main steps of the proof of Theorem 1 (which also lead to

the proof of Theorem 2). Details of the proof can be found in Appendix D. Specifically, I first

derive a revenue-equivalence formula and characterize the incentive compatible mechanisms.

Next, I identify an upper bound R̄ for the data broker’s revenue. Then, I construct a feasible

mechanism that attains R̄, which would in turn imply every incentive feasible ϕG-quasi-

perfect mechanism is optimal. Finally, I argue that any mechanism that gives revenue R̄

must be a ϕG-quasi-perfect mechanism.

To highlight the main insights and avoid unnecessary complications, in this subsection, I

impose some further assumptions in addition to Assumption 1. More precisely, throughout

the remaining part of Section 4.2, I assume that D0 and G are regular and that

φG(c) ≤ p0(c), ∀c ∈ C. (4)

Notice that (4) is a sufficient condition for Assumption 1. With these additional conditions,

ϕG(c) = φG(c) for all c ∈ C and hence ϕG can be replaced by the virtual cost function φG.

Among these assumptions, regularity of G is purely for conciseness, it can be relaxed by

ironing φG. Regularity of D0 simplifies the construction of the mechanism that attains R̄.

Without the regularity of D0, the construction would be more involved and can be found

in the Appendix D. Lastly, (4) allows a straightforward construction of the revenue upper

bound R̄. Without (4), the upper bound R̄ may not be attainable and a tighter upper bound

would be needed, which will be discussed in Section 5. Also, it is noteworthy that all the

lemmas stated in this section do not rely on any of these assumptions, nor on Assumption 1.

The Revenue Equivalence Formula and an Upper Bound for Revenue

Even though the data broker’s problem is more convoluted comparing to a standard monop-

olistic screening problem due to the high-dimensionality nature of market segmentations, a

revenue-equivalence formula can still be derived by properly invoking the envelope theorem.

To see this, notice that for any incentive compatible mechanism (σ, τ), the indirect utility of

a producer with marginal cost c is

U(c) :=

∫
D
πD(c)σ(dD|c)− τ(c)

= max
c′∈C

∫
D
πD(c)σ(dD|c′)− τ(c′)

By the envelope theorem, the derivative of U is simply the partial derivative of the objective

function evaluated at the optimum, that is,

U ′(c) =

∫
D
π′D(c)σ(dD|c).
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Moreover, since πD(c) is the optimal profit of the producer with marginal cost c under segment

D, again by the envelope theorem, for all c ∈ C,

π′D(c) = −D(pD(c)). (5)

Together,

U(c) = U(c) +

∫ c

c

(∫
D
D(pD(z))σ(dD|z)

)
dz, ∀c ∈ C.

Therefore, under any incentive compatible mechanism (σ, τ), if a producer with marginal cost

c misreports a marginal cost c′ and sets prices optimally, the deviation gain can be written

as

U(c)−
(∫
D
πD(c)σ(dD|c′)− τ(c′)

)
=

∫
D

[πD(c)− πD(c′)]σ(dD|c′)− (U(c)− U(c′))

=

∫ c′

c

[∫
D
−π′D(z)σ(dD|c′)−

∫
D
D(pD(z))σ(dD|z)

]
dz

=

∫ c′

c

[∫
D
D(pD(z))σ(dD|c′)−

∫
D
D(pD(z))σ(dD|z)

]
dz

Together, these lead to Lemma 1 below.

Lemma 1. A mechanism (σ, τ) is incentive compatible if and only if

1. For all c ∈ C,

τ(c) =

∫
D
πD(c)σ(dD|c)−

∫ c

c

(∫
D
D(pD(z))σ(dD|z) dz

)
− U(c).

2. For all c, c′ ∈ C, ∫ c′

c

(∫
D
D(pD(z))(σ(dD|z)− σ(dD|c′))

)
dz ≥ 0.

Furthermore, p can be replaced by any p ∈ P for the “only if” part.

The proof of Lemma 1 can be found in Appendix D. It formalizes the heuristic arguments

above by using the envelope theorem of Milgrom and Segal (2002). In essence, condition 1

in Lemma 1 is a generalized revenue-equivalence formula stating that the transfer τ must

be determined by σ up to a constant, whereas condition 2 in Lemma 1 is stronger than the

usual monotonicity condition due to the high-dimensionality nature of the allocation space

and the lack of the single-crossing property.
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From Lemma 1, for any incentive compatible mechanism (σ, τ), the data broker’s expected

revenue can be written as

E[τ(c)] =

∫
C

(∫
D

(pD(c)− φG(c))D(pD(c))σ(dD|c)
)
G(dc)− U(c), (6)

which can be interpreted as the expected virtual profit net of a constant. That is, maximiz-

ing the data broker’s expected revenue by choosing an incentive feasible mechanism (σ, τ)

is equivalent to maximizing the expected virtual profit—the profit of the producer if her

marginal cost c is replaced by the virtual marginal cost φG(c) but she still prices optimally

according to marginal cost c—by choosing an implementable scheme σ.

With (6), there is an immediate upper bound for the data broker’s revenue. To see this,

first notice that since the producer’s outside option is πD0(c) when her cost is c, for an

incentive compatible mechanism (σ, τ) to be individually rational, it must be that U(c) ≥
π̄ := πD0(c). Moreover, notice that for any c ∈ C,∫

D
(pD(c)− φG(c))D(pD(c))σ(dD|c) ≤

∫
D

max
p∈R+

[(p− φG(c))D(p)]σ(dD|c)

≤
∫
{v≥φG(c)}

(v − φG(c))D0(dv),

where the second inequality holds because the last term is the total gains from trade in the

economy when the producer’s marginal cost is φG(c). Together with (6), it then follows that

R̄ :=

∫
C

(∫
{v≥φG(c)}

(v − φG(c))D0(dv)

)
G(dc)− π̄

≥
∫
C

(∫
D

(pD(c)− φG(c))D(pD(c))σ(dD|c)
)
G(dc)− U(c)

=EG[τ(c)].

In other words, the upper bound R̄ is constructed by ignoring the individual rationality

constrains, the global incentive compatibility constraints (i.e., condition 2 in Lemma 1) and

by compelling the producer to charge prices that are optimal when her marginal cost is

replaced by the virtual marginal cost.

Attaining R̄

By the definition of quasi-perfect segmentations, for any nondecreasing function ψ : C → R+

and for any ψ-quasi-perfect scheme σ, given any report c ∈ C, σ(c) must induce ψ(c)-quasi-

perfect price discrimination when the producer charges the largest optimal price in (almost)

every segment. That is, all the consumers with v ≥ ψ(c) would buy the product by paying

exactly their values whereas all the consumers with values v < ψ(c) would not buy. As a
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result, all the surplus of consumers with v ≥ ψ(c) would be extracted and the trade volume

must be the share of consumers with v ≥ ψ(c).14 Specifically, for all c ∈ C,∫
D
pD(c)D(pD(c))σ(dD|c) =

∫
{v≥ψ(c)}

vD0(dv)

and ∫
D
D(pD(c))σ(dD|c) = D0(ψ(c)).

As a result, if there is an incentive feasible φG-quasi-perfect mechanism (σ, τ), then by

Lemma 1, the data broker can attain revenue

E[τ(c)] =

∫
C

(∫
D

(pD(c)− φG(c))D(pD(c))σ(dD|c)
)
G(dc)− π̄

=

∫
C

(∫
{v≥φG(c)}

(v − φG(c))D0(dv)

)
G(dc)− π̄ (7)

=R̄.

However, not every quasi-perfect scheme is implementable. To ensure incentive compati-

bility, the integral inequality given by condition 2 in Lemma 1 must be satisfied. While this

condition involves a continuum of constraints and is difficult to check, the following lemma

provides a simpler sufficient condition.

Lemma 2. For any nondecreasing function ψ : C → R+ with ψ(c) ≥ c for all c ∈ C, and

for any ψ-quasi-perfect scheme σ, there exists a transfer scheme τ : C → R such that (σ, τ)

is incentive compatible if for any c ∈ C,

ψ(z) ≤ pD(z), (8)

for (Lebesgue)-almost all z ∈ [c, c] and for all D ∈ supp(σ(c)).

In essence, Lemma 2 reduces the integral inequalities given by condition 2 of Lemma 1

to pointwise conditions. Details about the proof can be found in Appendix D. The crucial

step is to notice that for a ψ-quasi-perfect scheme, there are always no downward-deviation

incentives (i.e., a producer with cost c would never have an incentive to misreport c′ < c),

as a higher-cost producer would find the gains from reducing the cutoff less beneficial than

the increment in transfer. With this observation, as the pointwise condition (8) is sufficient

to rule out upward-deviation incentives, Lemma 2 then follows.

After simplifying the incentive constraints, the following lemma then provides a crucial

sufficient condition for there to exist an incentive compatible ψ-quasi-perfect mechanism.

14The formal arguments can be found in the proof of Lemma 11 in Appendix C.



19

Lemma 3. For any nondecreasing function ψ : C → R+ such that that c ≤ ψ(c) ≤ p0(c) for

all c ∈ C, there exists a ψ-quasi-perfect scheme σ∗ that satisfies (8).

A direct consequence of Lemma 2 and Lemma 3 is that there exists an incentive compatible

φG-quasi-perfect mechanism (σ∗, τ ∗), provided that G is regular and (4) holds. Furthermore,

for any c ∈ C, (4) also implies that∫ c

c

D0(φG(z)) dz ≥
∫ c

c

D0(p0(z)) dz.

Together, by Lemma 1 and (5), after possibly adding a constant to τ ∗ so that the indirect

utility of the producer with cost c equals to π̄, (σ∗, τ ∗) is an incentive feasible φG-quasi-perfect

mechanism, which in turn implies that (σ∗, τ ∗) is optimal. Together with (7), it then follows

that any incentive feasible φG-quasi-perfect mechanism is optimal.

The proof of Lemma 3 is by construction and the details can be found in Appendix D. This

construction is especially simple when D0 is regular (equivalently, when the profit function

p 7→ (p − c)D0(p) is single-peaked on supp(D0) for all c ∈ C). Specifically, for any c ∈ C

and for any v ∈ [ψ(c), v], let D
ψ(c)
v ∈ D be defined as (2) with ϕG being replaced by ψ(c).

Also, let σ∗ : C → ∆(D) be defined as (3) with ϕG being replaced by ψ. By construction,

σ∗(c) ∈ S for all c ∈ C. Furthermore, σ∗ is a ψ-quasi-perfect scheme satisfying (8). To see

this, consider any c ∈ C. By regularity of D0 and by the hypothesis that ψ(c) ≤ p0(c),

when the producer’s marginal cost is c, she would prefer charging price ψ(c) (or the lowest

price in supp(D0) that is above ψ(c), if ψ(c) /∈ supp(D0)) than charging any price p < ψ(c)

under D0. Therefore, for any v ≥ ψ(c) and for any p < ψ(c), since D
ψ(c)
v (p) = D0(p) and

D
ψ(c)
v (v) = D0(ψ(c)), charging price v in segment D

ψ(c)
v must be optimal for the producer as

v ≥ ψ(c). On the other hand, when the producer has marginal cost z < c, for any v ≥ ψ(c),

since p
D
ψ(c)
v

is nonincreasing, it must be that either p
D
ψ(c)
v

(z) = v or p
D
ψ(c)
v

(z) < ψ(c). In the

former case, since ψ is nondecreasing, it then follows that p
D
ψ(c)
v

(z) ≥ ψ(c) ≥ ψ(z). In the

latter case, as D
ψ(c)
v (p) = D0(p) for all p < ψ(c), p

D
ψ(c)
v

(z) must have been optimal for the

producer under D0 as well. Therefore, it must be that p0(z) ≤ p
D
ψ(c)
v

(z). Combining with

the hypothesis that ψ(z) ≤ p0(z), this then implies that ψ(z) ≤ p
D
ψ(c)
v

(z). As a result, σ∗ is

indeed a ψ-quasi-perfect scheme satisfying (8). Notice that this also proves Theorem 2, even

without the additional assumption that G is regular and (4), since c ≤ ϕG(c) ≤ p0(c) for all

c ∈ C.

In general, for any arbitrary D0 ∈ D, the construction is more convoluted. In brief, the

segmentation scheme σ∗ is constructed by approximating D0 with a sequence of step functions

{Dn} ⊆ D that converges to D0, followed by finding a desired segmentation scheme σn of

each Dn. Together with several continuity lemmas in Appendix B, the limit of {σn} converges

to the desired segmentation scheme σ∗.
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Uniqueness

To see why any optimal mechanism of the data broker is a φG-quasi-perfect mechanism,

suppose that (σ, τ) is optimal. Then,

R̄ =

∫
C

(∫
{v≥φG(c)}

(v − φG(c))D0(dv)

)
G(dc)− π̄

=

∫
C

(∫
D

(pD(c)− φG(c))D(pD(c))σ(dD|c)
)
G(dc)− π̄, (9)

which in turn implies that for (almost) all c ∈ C,∫
{v≥φG(c)}

(v − φG(c))D0(dv) =

∫
D

(pD(c)− φG(c))D(pD(c))σ(dD|c), (10)

since the left-hand side is the efficient surplus in an economy where the producer’s cost is

φG(c) and hence must be an upper-bound of the right-hand side, and (9) implies that the

right-hand side must attain this upper bound.

It then follows σ must be a φG-quasi-perfect mechanism. Indeed, if σ is not a φG-quasi-

perfect scheme, it must be that there is a positive G-measure of c ∈ C and a positive σ(c)-

measure of D ∈ supp(σ(c)) such that either D(v) > 0 for some v > pD(c), or D(φG(c)) 6=
D(pD(c)). That is, either there are some consumers with v ≥ φG(c) who do not buy the

product or buy the product at a price below v, or there are some consumers with v < φG(c)

who end up buying the product. This contradicts (10). As a result, (σ, τ) must be a φG-quasi-

perfect mechanism. Moreover, (σ, τ) must also induce quasi-perfect price discrimination since

p can be replaced with any p ∈ P according to Lemma 1.

4.3 Further Remarks and Implementation

Theorem 1 underlines a noteworthy feature of the optimal mechanisms. According to The-

orem 1, for any optimal mechanism (σ, τ), the segmentation scheme σ does not generate

value-revealing segmentations in general. Specifically, for any report c such that ϕG(c) > v,

there are market segments D ∈ supp(σ(c)) containing consumers with distinct values. The

reason is that in order to incentivize the producer to set prices in desirable ways and to elicit

information from the producer, some market segments must contain consumers with values

below the desirable threshold ϕG(c). By pooling the high-value consumers with the low-value

ones in the same market segment while separating them from other high-value consumers,

the data broker is able to incentivize the producer to set prices at the highest value in each

market segment and induce ϕG(c)-quasi-perfect price discrimination for all c, which in turn

enables the data broker to elicit private information by discouraging trade and extract sur-

plus from the purchasing consumers at the same time. This also means it is not optimal for

the data broker to release all the information about consumers’ values.
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As an example for an optimal mechanism, consider the case where D0 is linear and G is

a uniform distribution with V = C = [0, 1]. It then follows ϕG(c) = 2c for all c ∈ [0, 1/3] and

ϕG(c) = (1 + c)/2 for all c ∈ (1/3, 1]. In this case, the canonical ϕG-quasi-perfect mechanism

is described by a uniform distribution on the market segments {DϕG(c)
v }v∈[ϕG(c),1], where each

market segment D
ϕG(c)
v is defined by (2).

As another example, notice that in the motivating example (Section 2), the optimal menu

M∗, which consists of the value-revealing data (with a price of 7/12) and the residential data

(with a price of 1/3), implements the canonical quasi-perfect mechanism with a desirable

cutoff function. Indeed, the residential data induces a 2-quasi-perfect segmentation for c =

3/4 as it only separates the high-value consumers (graduate students and professors) and

pools the low-value consumers (undergraduate students) with them while preserving their

mass. On the other hand, the value-revealing data induces a 1-quasi-perfect segmentation

for c = 1/4. According to the characterization above, since market demand D0 is regular

and since the virtual costs are 1/4 and 5/4 (for costs 1/4 and 3/4, respectively),15 the menu

M∗ is indeed optimal.

Furthermore, the quasi-perfect mechanisms (and thus the optimal mechanisms) can be im-

plemented by a menu of price-recommendation data, and the implementation is particularly

straightforward for the canonical ϕG-quasi-perfect mechanism (σ∗, τ ∗) when D0 is regular.

More specifically, to implement (σ∗, τ ∗), the data broker can first generate an auxiliary char-

acteristic u ∈ [0, 1] independently according to a uniform distribution for each consumer.

Then, he can create a menu in which each item is indexed by c ∈ C. Upon choosing item

c ∈ C, the producer has to pay τ ∗(c) to the data broker. The data broker then segments

the consumers according to the partition {Cp}p∈[ϕG(c),v], as illustrated by Figure 4, where for

each p ∈ [ϕG(c), v]

Cp := {(v, u) : v = p}
⋃{

(v, u) : v < ϕG(c), u =
D0(ϕG(c))−D0(p)

D0(ϕG(c))

}
is the set of consumers who either have value v = p, or have value v < ϕG(c) and auxiliary

characteristic u = (D0(ϕG(c)) − D0(p))/D0(ϕG(c)). Finally, for every p ∈ [ϕG(c), v], the

consumers belonging to Cp are attached with a recommended price p and the producer

receives a list of recommended prices, one for each consumer.

It can be verified that the producer would choose item c when her marginal cost is c.

Moreover, among the consumers who are attached with recommended price p, their values

are distributed according to D
ϕG(c)
p , which then implies it is optimal for the producer to

charge them price p. As such, the mechanism (σ∗, τ ∗) is implemented.

15Although the characterization is stated for cost distributions that admit densities, as in standard mech-

anism design problems, there is a straightforward analogous notion of virtual cost function when the cost

distribution has atoms.
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Figure 4: Price-Recommendation Data
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5 Consequences of Consumer-Data Brokership

5.1 Surplus Extraction

One of the most pertinent questions about consumer-data brokership is how it affects con-

sumer surplus. Are the data broker’s possession of consumer data and the ability to sell them

to a producer detrimental for the consumers? If so, to what extent? Meanwhile, can the con-

sumers benefit from the fact that the data broker does not have access to the consumers and

only affects the product market indirectly by selling data to the producer? While currently

being a focus of policy debates, the following result, as an implication of Theorem 1, answers

a certain aspect of this question.

Theorem 3 (Surplus Extraction). Consumer surplus is zero under any optimal mechanism.

Theorem 3 follows directly from the characterization given by Theorem 1. Indeed, ac-

cording to Theorem 1, any optimal mechanism must induce ϕG(c)-quasi-perfect price dis-

crimination for (almost) all c ∈ C, which means that every purchasing consumer must be

paying their values. Notably, Theorem 3 provides an unambiguous and substantial assertion

about the consumer surplus under data brokership. According to Theorem 3, even though

the data broker does not sell the product to the consumers directly and only affects the mar-

ket by creating market segmentations for the producer, it is as if the consumers are perfectly

price discriminated and all the surplus is extracted away (even though the optimal mecha-

nisms do not induce perfect price discrimination in general). This means that as long as the

data broker possesses consumer data and can sell them to a producer, from the consumers’

perspective, it is the same as buying the product from a monopolist who can implement



23

perfect price discrimination. More practically, this result means it is impossible to expect

the consumers to benefit from the gap between the ownership of production technology and

ownership of consumer data.

5.2 Comparisons with Uniform Pricing

Although Theorem 3 indicates data brokership is undesirable for the consumers, it does not

imply that data brokership is detrimental to the entire economy. After all, by facilitating

price discrimination, data brokership may increase total surplus comparing to uniform pricing

where no information about the consumers’ values is revealed. Theorem 1, together with

Proposition 1, allows such a comparison.

Proposition 1. The data broker’s optimal revenue is no less than the consumer surplus

under uniform pricing.

An immediate consequence of Proposition 1 is that total surplus under data brokership

is greater compared with uniform pricing, as summarized below.

Theorem 4 (Total Surplus Improvement). Data brokership always increases total surplus

compared with uniform pricing.

Theorem 4 means that even though data brokership is extremely harmful to the con-

sumers, in terms of total surplus it creates, however, it is always better than the environment

where no information about the consumers’ values can be disclosed.

Another implication of Proposition 1 pertains to the source of consumer data. So far, it

has been assumed that the data broker owns all the consumer data and is able to perfectly

predict each consumer’s value. In contrast, a different ownership structure of consumer data

can be considered. In this setting, the data broker does not have any data in the first

place and has to purchase them from the consumers.16 Proposition 1 immediately implies

that, if the data broker has to purchase data by compensating the consumers with monetary

transfers before they learn their values,17 then the optimal mechanism would be to purchase

16For simplicity, a “purchase” of data here means that the data broker gains access to all the consumer

data, in the sense that he can provide any segmentation of D0 to the producer once he makes the purchase. In

the Supplemental Material, I further extend the model and allow the data broker to make a take-it-or-leave-it

offer to purchase any kind of consumer data and then sell them to the producer. (i.e., offer any segmentation

of D0 that is a mean-preserving contraction of the segmentation induced by the purchased data.)
17It is crucial here the data broker purchases before the consumers learn their value, since otherwise he

would also have to screen the consumers to elicit their private information. Such ex-ante purchase of consumer

data is plausibly suitable for online activities. After all, in online settings, consumers often do not consider

their values about a particular product when they agree that their personal data such as browsing histories,

IP address and cookies, can be collected by the data brokers. Nevertheless, other purchase timing would also

be a relevant question, which can be explored in future research.

https://kaihaoyang.com/wp-content/uploads/2019/10/Optimal-Market-Segmentaion-Design-and-its-Consequences-Supplemental-Materials.pdf
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all the data by paying the consumers their ex-ante surplus under uniform pricing and then

use any optimal mechanism characterized by Theorem 1 to sell these data to the producer.

Furthermore, since the data broker’s revenue is greater than the consumer surplus under

uniform pricing according to Proposition 1, and since the producer always has an outside

option of uniform pricing, this outcome is in fact Pareto improving compared with uniform

pricing in the ex-ante sense, as stated below.

Theorem 5 (Data Ownership). If the consumers own their data and if the data broker

can purchase data from the consumers before they learn their values, then data brokership is

Pareto improving compared with uniform pricing in the ex-ante sense.

5.3 Comparisons across Market Regimes

In addition to its welfare implications, the characterization of Theorem 1 provides further in-

sights about the comparisons across different regimes of the market. Indeed, other than selling

consumer data to the producer, there are several other market regimes under which the data

broker can profit from the consumer data he owns. Therefore, it would be policy-relevant to

compare the outcomes induced by these different market regimes. In what follows, I consider

several other market regimes in addition to data brokership, including vertical integration,

direct acquisition, exclusive retail, and price-controlling data brokership. Then, I

compare the implications among these different regimes using the characterization provided

by Theorem 1.

Vertical Integration— The producer’s marginal cost of production becomes common

knowledge (for exogenous reasons such as regulation or technological improvements) and

the data broker vertically integrates with the producer. That is, the vertically integrated en-

tity is able to produce the product and sell to the consumers via perfect price discrimination.

Direct Acquisition— The producer’s marginal cost of production is still private, but the

data broker is allowed to acquire the producer by offering her a lump-sum transfer t ≥ 0. If

the producer rejects the offer, she receives her optimal uniform pricing profit and the data

broker receives zero. If the producer accepts the offer, she receives t and the data broker

acquires the production technology, learns the marginal cost of production, and is able to

perfectly price discriminate the consumers.

Exclusive Retail— The producer’s marginal cost of production remains private. The data

broker negotiates with the producer to purchase the product as well as the exclusive right to

sell the product. That is, the data broker can offer a menu, where each item in this menu

specifies the quantity q ∈ [0, 1] that the producer has to produce and supply to the data

broker, as well as the amount of payment the data broker has to pay to the producer t. If
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the producer chooses an item (q, t) from this menu, she receives profit t− cq while the data

broker pays t and can sell at most q units exclusively to the consumers through any market

segmentation and at any prices. If the producer rejects this menu, she retains her optimal

uniform profit and the data broker receives zero.

Price-Controlling Data Brokership— The producer’s marginal cost of production is pri-

vate information. The data broker, in addition to being able to create market segmentations

and sell them to the producer, can further specify what price should be charged in each

market segment as a part of the contract. If the producer rejects, she retains her optimal

uniform pricing profit and the data broker receives zero. That is, the data broker offers a

mechanism (σ, τ,γ) such that for all c, c′ ∈ C,∫
D×R+

(p− c)D(p)γ(dp|D, c)σ(dD|c)− τ(c) ≥
∫
D×R+

(p− c)D(p)γ(dp|D, c′)σ(dD|c′)− τ(c′)

and for all c ∈ C, ∫
D×R+

(p− c)D(p)γ(dp|D, c)σ(dD|c)− τ(c) ≥ πD0(c),

where for each c ∈ C, σ(c) ∈ S is the market segmentation provided to the producer, τ(c) ∈ R
is the payment from the producer to the data broker, and γ(c) : D → ∆(R+) is a transition

kernel so that γ(·|D, c) specifies the distribution which prices charged in segment D must be

drawn from.

With these definitions, for each market regime, there is an associated profit maximization

problem. Henceforth, two market regimes are said to be outcome-equivalent if every solution

of the profit maximization problems associated with either market regime induces the same

market outcome (i.e., consumer surplus, producer’s profit, data broker’s revenue and the

allocation of the product).

An immediate consequence of Theorem 1 is the comparison between data brokership and

vertical integration. To see this, recall that any optimal mechanism (σ, τ) of the data broker

must induce ϕG-quasi-perfect price discrimination but not perfect price discrimination in

general, as ϕG(c) > c for all c > c. Thus, whenever there are some consumers with values

between c and ϕG(c) for a positive measure of c, any optimal mechanism would not lead to

an efficient allocation because there would be some consumers who end up not buying the

product even though their values are greater than the marginal cost. Together with Theo-

rem 3, this means that vertical integration between the data broker and producer increases

total surplus while leaving the consumer surplus unchanged when D0 has full support on V

and there is no common knowledge of gains from trade. After all, consumer surplus is always

zero under both regimes, whereas the integrated entity after vertical integration does not

create any friction and would perfectly price-discriminate the consumers whose values are

above the marginal cost.
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Theorem 6 (Vertical Integration). Compared with data brokership, vertical integration in-

creases total surplus and leaves the consumer surplus unchanged if D0 is strictly decreasing

and v < c.

To compare other market regimes, it is noteworthy that since prices are contractable under

price-controlling data brokership, for any mechanism (σ, τ,γ), the producer’s private marginal

cost affects her profit only through the quantity produced and sold to the consumers induced

by (σ,γ). This effectively reduces allocation space under price-controlling data brokership to

a one-dimensional quantity space, which is the same as the allocation space under exclusive

retail. In fact, as stated in Lemma 4 below, price-controlling data brokership is always

equivalent to exclusive retail.

Lemma 4. Exclusive retail and price-controlling data brokership are outcome-equivalent.

With Lemma 4, to compare exclusive retail and price-controlling data brokership with

data brokership, it suffices to compare only price-controlling data brokership with data bro-

kership. This comparison is particularly convenient since the price-controlling data broker’s

revenue maximization problem is a relaxation of the data broker’s. After all, with the extra

ability to contract on prices, the constraints in the price-controlling data broker’s problem

must be weaker. Nevertheless, as an implication of Theorem 1 and Proposition 2 below, it

turns out that the data broker’s optimal revenue is in fact the same as the price-controlling

data broker’s optimal revenue.

Proposition 2. Any optimal mechanism of the price-controlling data broker induces ϕ̄G(c)-

quasi-perfect price discrimination for G-almost all c ∈ C. In particular, the optimal revenue

is

R∗ =

∫
C

(∫
{v≥ϕG(c)}

(v − φG(c))D0(dv)

)
G(dc)− π̄.

According to Theorem 1 and Lemma 1, the optimal revenue of the data broker must also

be R∗. This means that the additional ability to control prices does not benefit the data

broker at all. In fact, as stated by Theorem 7 below, this ability is entirely irrelevant in

terms of market outcomes.

Theorem 7 (Outcome-Equivalence). Exclusive retail, price-controlling data brokership and

data brokership are outcome-equivalent.

In other words, Theorem 7 means that even though the data broker only affects the

product market indirectly by selling consumer data, the market outcomes he induces are the

same as those when he has more control over the product market by either becoming a price-

controlling data broker or an exclusive retailer. More specifically, from the data broker’s

perspective, having control over how the product is sold in addition to consumer data adds



27

no extra values to his revenue. As for the producer, her profit in face of a data broker is

the same as if she sells the product, as well as the exclusive right to sell the product, to this

data broker. Preserving the access to consumers and the right to sell the product is in fact

not more profitable. In addition, the allocation of the product induced by a data broker is

the same as that induced by an exclusive retailer. Therefore, the channel through which the

product is sold to the consumers does not affect the amount of products being produced, nor

does it affect to whom the product is sold.

This outcome-equivalence result has several further implications. First, it implies that

there are no incentives for the data broker to become more active, as the data broker’s revenue

would remain the same even if he becomes a price-controlling data broker or an exclusive

retailer. Second, from a policymaker’s perspective, it means that no further concerns should

be raised even if a data broker eventually becomes more active. After all, the market outcomes

and the amount of deadweight loss would remain the same.

As another remark, the fact that the price-controlling data broker’s optimal revenue R∗

is an upper bound for the data broker’s optimal revenue completes the intuition behind the

proof of Theorem 1 without the additional assumption (4) imposed in Section 4.2. To see this,

since the price-controlling data broker’s optimal mechanisms always induce ϕG-quasi-perfect

price discrimination for (almost) all c ∈ C according to Proposition 2, proving Theorem 1 is

essentially reduced to finding an incentive feasible ϕG-quasi-perfect mechanism. Furthermore,

by the definition of ϕG, c ≤ ϕG(c) ≤ p0(c) for all c ∈ C, and hence ϕG satisfies the condition

required by Lemma 3. As a result, combining Lemma 2 and Lemma 3, there is indeed an

incentive feasible ϕG-quasi-perfect mechanism.

Finally, to compare direct acquisition with other market regimes, first notice that under

direct acquisition, given a proposed transfer t, the producer would accept this offer if and only

if πD0(c) ≤ t. As a result, the profit maximization problem associated with direct acquisition

is

max
t≥0

∫
{c∈C:πD0

(c)≤t}

(∫
{v≥c}

(v − c)D0(dv)− t
)
G(dc).

By Theorem 7, it suffices to compare direct acquisition with exclusive retail. Compared

with exclusive retail, on the one hand, direct acquisition allows the data broker to learn the

marginal cost of production conditional on acquiring the producer, whereas the exclusive

retailer can never completely learn the marginal cost but can only screen the producer to

elicit this private information. On the other hand, direct acquisition creates severe adverse

selection as only when the publisher’s marginal cost is high enough would she be willing to sell

the production technology at a given price. As a result, even with successful acquisition, the

data broker can only operate with a relatively inferior production technology. Consequently,

whether direct acquisition is more profitable than exclusive retail depends on the distribution

of marginal cost G and the market demand D0. Nevertheless, with the complete characteri-
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zation given by Theorem 1, direct acquisition can be compared with data brokership through

direct calculations.

Example 1. Suppose that supp(D0) = supp(G) = [0, 1] and D0(p) = (1 − p), G(c) = c

for all p, c ∈ [0, 1]. Then φG(c) = 2c for all c ∈ C, ϕG(c) = 2c for all c ∈ [0, 1/3] and

ϕG(c) = (1 + c)/2 for all c ∈ (1/3, 1]. Also, πD0(c) = (1− c)2/4. In this case,

R∗ =

∫ 1
3

0

(∫ 1

2c

(v − 2c) dv

)
dc+

∫ 1

1
3

(∫ 1

1+c
2

(v − 2c) dv

)
dc =

1

18
.

In contrast, for any t ≥ 0,∫
{c∈C:

(1−c)2
4
≤t}

(∫
{v≥c}

(v − c) dv − t
)

dc ≤ 0.

As a result, data brokership (and hence price-controlling data brokership and exclusive retail)

yields more revenue to the data broker than direct acquisition.

Example 2. Suppose that supp(D0) = supp(G) = [0, 1] and D0(p) = (1 − p), G(c) = c
1
n for

all p, c ∈ [0, 1], for some n ∈ N. Then φG(c) = (n+ 1)c for all c ∈ C, ϕG(c) = (n+ 1)c for all

c ∈ [0, 1/(1 + 2n)] and ϕG(c) = (1 + c)/2 for all c ∈ (1/(1 + 2n), 1]. Also, πD0(c) = (1− c)2/4.

In this case, for n large enough (n > 15 to be more precise),

R∗ <

∫ 1

0

(∫
{v≥c}

(v − c) dv − 1

4

)
1

n
c−

n−1
n dc.

Hence, for n large enough, data brokership (and hence price-controlling data brokership and

exclusive retail) yields less revenue to the data broker than direct acquisition.

6 Extensions

6.1 Sufficient Conditions and Relaxations of Assumption 1

Despite being a technical condition, Assumption 1 has an economically interpretable sufficient

condition (4). To better understand this, recall that by definition, φG(c) = c + G(c)/g(c),

and therefore φG(c) is the actual marginal cost c plus the information rent G(c)/g(c). On the

other hand, instead of regarding p0(c) as the optimal uniform price for the producer when

her marginal cost is c, p0(c) can be written as p0(c) = c+ξ0(c), where ξ0(c) := p0(c)−c is the

monopoly mark-up that the producer charges under uniform pricing. From this perspective,

(4) is equivalent to
G(c)

g(c)
≤ ξ0(c), ∀c ∈ C.

That is, the information rent that the producer retains due to asymmetric information about

her marginal cost is less than her monopoly mark-up.
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Furthermore, (4) can also be interpreted as the gains from trade being large enough.

More specifically, for any demand D0 ∈ D, define a location family {Dk
0}k≥0 by moving the

support of D0 without changing the shape of the distribution. That is, Dk
0(p) := D0(p − k)

for all p ∈ V and for all k > 0. Within this family, it is natural to rank the gains from trade

by the location parameter k. In the Supplemental Material, I show that there exists k ≥ 0

such that (4) holds if and only if k ≥ k.18

Although the results introduced above rely on Assumption 1, the sole purpose of As-

sumption 1 is to ensure that as a revenue upper bound, the price-controlling data broker’s

problem has a closed form solution. After all, by Lemma 4, the price-controlling data bro-

ker’s problem is essentially a nonlinear screening problem with one-dimensional allocation

space and type-dependent outside options. A common feature of such problems is that the

characterization of the optimal mechanisms involves Lagrange multipliers in general (see, for

instance, Lewis and Sappington (1989) and Jullien (2000)). Assumption 1, however, yields

a closed form solution for the price-controlling data broker’s problem (Proposition 2), which

in turn allows an explicit construction of an incentive feasible mechanism for the data broker

that attains the revenue upper bound.

Consequently, many of the results can be extended to environments without Assump-

tion 1. First, Theorem 3 actually does not rely on Assumption 1 at all. A strengthened

version of Theorem 3 can be found in the Supplemental Material, which ensures both the

existence of an optimal mechanism for the data broker and the fact that any optimal mecha-

nism must yield zero consumer surplus. A crucial step of the proof is to take any mechanism

(σ, τ) under which the consumers retain positive surplus and apply Lemma 3 to every market

segment D ∈ supp(σ(c)) for every report c, with the cutoff function ψ being pD. This would

induce another segmentation scheme. The fact that all the market segments D ∈ supp(σ(c))

are decomposed according to a pD(c)-quasi-perfect segmentation and the hypothesis that con-

sumers retain positive surplus under (σ, τ) yield a strict improvement on the data broker’s

revenue. Moreover, (8) ensures that such decomposition relaxes the incentive compatibility

and individual rationality constraints.

In addition, the main characterization (Theorem 1) can be generalized as well. More

specifically, in the Supplemental Material, I show that as long as D0 is continuous, there

exists a nondecreasing function ϕ∗ such that every optimal mechanism must be a ϕ∗-quasi-

perfect mechanism. However, unlike ϕG, the cutoff function ϕ∗ cannot be concisely defined by

the model primitives. Nevertheless, the proof of this result gives a (partial) characterization

of this cutoff function. A crucial property of this cutoff function ϕ∗ is that ϕ∗(c) > c for

18Clearly, if k is large enough so that v ≥ φG(c), then there is common knowledge of gains from trade

even after incorporating the information rents and hence the value-revealing scheme would be optimal. In

the Supplemental Material, I show that there exists k such that (4) holds even then v < φG(c).

https://kaihaoyang.com/wp-content/uploads/2019/10/Optimal-Market-Segmentaion-Design-and-its-Consequences-Supplemental-Materials.pdf
https://kaihaoyang.com/wp-content/uploads/2019/10/Optimal-Market-Segmentaion-Design-and-its-Consequences-Supplemental-Materials.pdf
https://kaihaoyang.com/wp-content/uploads/2019/10/Optimal-Market-Segmentaion-Design-and-its-Consequences-Supplemental-Materials.pdf
https://kaihaoyang.com/wp-content/uploads/2019/10/Optimal-Market-Segmentaion-Design-and-its-Consequences-Supplemental-Materials.pdf
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all c > c. Therefore, together with the fact that consumer surplus must be zero under any

optimal mechanism, the characterization of optimal mechanisms guarantees the validity of

the comparison between vertical integration and data brokership. That is, as long as D0 is

continuous, Theorem 6 does not require Assumption 1 either. Finally, without Assumption 1,

the outcome equivalence result Theorem 7 may not hold. The price-controlling data broker’s

optimal revenue is sometimes strictly greater than the data broker’s. However, from the

characterization of the optimal cutoff function ϕ∗, it can be shown that price-controlling

data brokership (and hence exclusive retail) Pareto-dominates data brokership whenever D0

is continuous.

6.2 Consumers’ Private Information

Given the amount of consumer data that can be collected, their predictive power is approach-

ing perfect estimations of consumers’ values. Nonetheless, it is still imperative to explore the

economic implications of the possibility when the consumers have some private information.

This section extends the baseline model in Section 3 and allows the consumers to retain some

pieces of information.

To formally model this, let Θ be a Polish space that denotes a set of consumer character-

istics which can be disclosed by the data broker. Suppose that among the consumers, their

available characteristics θ are distributed according to β0 ∈ ∆(Θ). These characteristics are

informative about the consumers’ values but there may still be variation in values even among

the consumers who share the same characteristics. Specifically, given any θ ∈ Θ, suppose

that among the consumers who share characteristic θ, their values are distributed according

to mθ ∈ ∆(V ) and mθ induces a demand Dθ ∈ D (i.e., Dθ(p) := mθ([p, v]) for all p ∈ P ) for

each θ ∈ Θ. The data broker is only able to segment the market according to θ but not v.

In this environment, a market segmentation is then defined by s ∈ ∆(∆(Θ)) such that∫
∆(Θ)

β(A)s(dβ) = β0(A),

for any measurable A ⊆ Θ. As a result, there is now a limit on how predictive the data can

be and the environment is described by ({Dθ}θ∈Θ, β0).

To simplify analyses, I further specialize the environment. Suppose that there are finitely

many possible characteristics. That is, |Θ| < ∞. Moreover, suppose that {supp(Dθ)}θ∈Θ

forms a partition of V and supp(Dθ) is an interval for all θ ∈ Θ. This specialization will be

referred as partitional. In other words, the data broker only has partial information about

the consumers’ values and can at most identify which interval a consumer’s value belongs

to. Even when θ is perfectly revealed, the producer would still be unable to identify each
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consumer’s value. In this environment, the market demand D0 is given by

D0(p) :=
∑
θ∈Θ

Dθ(p)β0(θ),

for all p ∈ V . Moreover, a market segmentation s induces market segments {Dβ}β∈supp(s)

and ∑
β∈supp(s)

Dβ(p)s(β) = D0(p),

for all p ∈ V , where Dβ(p) :=
∑

θ∈ΘDθ(p)β(θ) for any β ∈ ∆(Θ) and any p ∈ V .

When the consumers’ values can never be fully disclosed, it is clear that their surplus will

increase. After all, it is no longer possible for the producer to charge the consumers their

values as the additional variation in values given by Dθ always allows some consumers to

buy the product at a price that is below their values. Nevertheless, as shown in Theorem 8,

under any optimal mechanism, consumer surplus must be lower than the case when all the

information about θ is revealed to the producer. That is, the main implication of Theorem 3—

for the consumers, the presence of a data broker is no better than a scenario where their data

is fully revealed to the producer—is still valid even when the consumers retain some private

information through a partitional ({Dθ}θ∈Θ, β0).

Theorem 8. For any partitional ({Dθ}θ∈Θ, β0) and any distribution of marginal cost G, an

optimal mechanism exists. Furthermore, the consumer surplus under any optimal mechanism

of the data broker is lower than the case when θ is fully disclosed.

The intuition behind Theorem 8 is simple. Since there are only finitely many characteris-

tics, identifying the consumers’ characteristic θ effectively enables the producer to categorize

the consumers into finitely many “blocks” so that every possible value belongs to one and

only one block. As a result, when changing prices within each block of values, the trading

volume is only affected by purchasing decisions of the consumers whose values are within

that block. Such separability allows an analogous argument as in the proof of the generalized

version of Theorem 3 (provided in the Supplemental Material) which shows that the data

broker can always construct a mechanism that increases its revenue if the consumer surplus

is higher than that when the characteristic θ is not full-revealed.

In addition to the surplus extraction result, the characterization of the optimal mecha-

nisms can be generalized as well. That is, with proper regularity conditions, there is an op-

timal mechanism that is analogous to the canonical ϕG-quasi-perfect mechanism introduced

in Section 4. To state this result, given any partitional ({Dθ}θ∈Θ, β0), for each θ ∈ Θ, write

supp(Dθ) as [l(θ), u(θ)]. For any p ∈ V , let θp ∈ Θ be the unique θ such that p ∈ (l(θ), u(θ)].

For any c ∈ C, let p̂0(c) be the largest optimal price for the producer with marginal cost c ∈ C

https://kaihaoyang.com/wp-content/uploads/2019/10/Optimal-Market-Segmentaion-Design-and-its-Consequences-Supplemental-Materials.pdf


32

under the demand whose support contains p0(c).19 Also, let ϕ̂G(c) := min{ϕG(c), p̂0(c)} for

all c ∈ C. Furthermore, given any function ψ : C → R+, say that a mechanism (σ, τ) is a

canonical ψ-quasi-perfect segmentation if the producer with marginal cost c, when reporting

truthfully, recevies π̄, and if for any c ∈ C, and for any β ∈ supp(σ(c)), either

β(θ′) = βθψ(c)(θ
′) :=


β0(θ′), if u(θ′) < ψ(c) and u(θ) ≥ ψ(c)∑

{θ̂:u(θ̂)≥ψ(c)} β0(θ̂), if u(θ′) ≥ ψ(c) and θ′ = θ

0, otherwise

, (11)

for any θ, θ′ ∈ Θ, or

supp(β) = {θ′ : l(θ′) ≤ ψ(c)} ∪ {θ} (12)

for some θ ∈ Θ with l(θ) ≥ ψ(c) and

β(θ′) = β0(θ′). (13)

for all θ′ ∈ Θ such that u(θ′) < ψ(c).

With these definitions, Theorem 9 below prescribes an optimal mechanism for the data

broker.

Theorem 9. For any partitional ({Dθ}θ∈Θ, β0) and any distribution of marginal cost G such

that the function c 7→ max{(φG(c)− p̂0(c)), 0} is nondecreasing and that D0 is regular, there

is a canonical ϕ̂G-quasi-perfect mechanism that is optimal.

6.3 Targeted Marketing

So far, the discussions have been abstracting away the possibility that the data broker can

use consumer data to facilitate targeted marketing by assuming there is only one product. In

fact, one of the most common arguments in favor of the usage and provision of consumer data

is that it also benefits the consumers because more relevant products can be advertised to

the consumers and therefore more surplus can be created. The following extension explores

this aspect.

Formally, suppose that, instead of a single product, there are J ∈ N different producers

who sell J different products. In addition, there are I ∈ N (equally populated) groups of

consumers. Each group of consumers has different preferences about different products. More

specifically, let J := {1, . . . , J} be the set of producers and let I := {1, . . . , I} be the set of

all possible groups. For each i ∈ I and each j ∈ J , the distribution of consumers’ values in

group i for product j is Dij
0 ∈ D. For one of the results below, it is further assumed that

for each product j ∈ J , {Dij
0 }i∈I can be ranked by pointwise ordering. The interpretation is

19That is, p̂0(c) := pDθp0(c)
(c). Notice that p̂0(c) ≤ p0(c) for all c ∈ C. Moreover, in the case where the

data broker can disclose all the information about the value v, p̂0(c) = p0(c) for all c ∈ C.
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that for each product, different groups value a product differently and some group prefers a

product more than others.

For each producer j ∈ J , her marginal production cost cj ∈ Cj = [cj, cj] is her private

information that follows a distribution Gj. Assume that the marginal costs are independent

across producers. Define C :=
∏

j∈J Cj and use c = (c1, . . . , cJ) to denote a typical element

of C. Also, let G :=
∏

j∈J Gj be the joint distribution of the producers’ marginal costs. As

in the baseline model, each producer can sell her product to the consumers but does not

know the individual consumer’s value a priori. Furthermore, the producer does not have

the targeting technology and thus the consumers she faces in absence of the data broker are

summarized by

Dj
0 :=

1

I

∑
i∈I

Dij
0 .

That is, without targeting, the consumers who see producer j’s product are uniformly drawn

from each group.

The data broker can create market segmentations and sell them to the producers. In

addition, he can help the producers target their products to different group of consumers.

Formally, for any i ∈ I and any j ∈ J , let Sij denote the collection of s ∈ ∆(D) sat-

isfying (1) with D0 being replaced by Dij
0 . A mechanism is defined as a tuple (σ, τ, q) =

(σij, τj, qij)i∈I,j∈J , where for each i ∈ I, j ∈ J , σij : C → Sij is the segmentation scheme;

qij : C → [0, 1] such that
∑

i∈I qij ≤ 1 is the targeting scheme so that qij(c) stands for the

fraction of consumers of group i that can see product j;20 and τj : C → R is the transfer

scheme for producer j. A mechanism (σ, τ, q) is said to be incentive compatible if for any

j ∈ J and for any cj, c
′
j ∈ Cj,

Ec−j

[∑
i∈I

∫
D
πD(cj)σij(dD|cj, c−j)qij(cj, c−j)− τj(cj, c−j)

]

≥Ec−j

[∑
i∈I

∫
D
πD(cj)σij(dD|c′j, c−j)qij(c′j, c−j)− τj(c′j, c−j)

]
,

and is individually rational if for any j ∈ J and any cj ∈ Cj,

Ec−j

[∑
i∈I

∫
D
πD(cj)σij(dD|cj, c−j)qij(cj, c−j)− τj(cj, c−j)

]
≥ πDj0

(cj).

Theorem 3 can be generalized to the environment in which targeted marketing is possible,

as summarized in Theorem 10.

20Targeting can only re-direct the consumers who are able to see each product but cannot create new

demand. As such, the total volume of consumers who can see product j must be less than
∑
i∈I 1/I = 1.
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Theorem 10. For any demands {Dij
0 }i∈I,j∈J and any marginal cost distributions {Gj}j∈J ,

there exists an incentive feasible mechanism that maximizes the data broker’s revenue. More-

over, under any revenue-maximizing mechanism, consumers retain zero surplus.

Theorem 10 implies that even with the additional targeting technology, the consumers still

retain no surplus. The reason is that, even though the ability to target consumers increases

total surplus, the data broker can always design segmentations and targeting schemes that

extract all of the additional surplus created by targeting. The groups of consumers whose

values are low will not be exposed to a product, whereas the surplus of the groups of con-

sumers whose values are high enough are entirely extracted away due to price discrimination,

even if they are targeted.

In addition to the implications for consumer surplus, since every group of consumer can

buy from all of the J producers as long as they see the product, the data broker’s problem is

in fact similar to that in the baseline model. To maximize revenue, he will simply select the

most profitable group of consumers for producer j and target producer j’s product to that

group. This observation leads to the following generalization of Theorem 7. That is, even in

environments where targeted marketing is possible, under certain appropriate assumptions

about the distributions of marginal costs and the market demands, data brokership and

price-controlling data brokership are still outcome-equivalent.

Theorem 11. For any demands {Dij
0 }i∈I,j∈J ⊂ D such that {Dij

0 }i∈I is ordered according

to pointwise ordering for each j ∈ J , and for any regular distributions of marginal costs

{Gj}j∈J , suppose that for any i ∈ I and any j ∈ J ,φGj(c) ≤ min{pDij0 (c),pDj0
(c)} for all

c ∈ C. Then data brokership is outcome-equivalent to price-controlling data brokership.

7 Discussions

7.1 Creating Market Segmentations by Consumer Data

Throughout the paper, a market segmentation is defined as a probability measure s ∈ S
that “splits” the market demand D0 into several segments D ∈ D. Although this formal-

ization of market segmentations is well-aligned with the literature on price discrimination,

a more practical way to describe a market segmentation—especially in environments where

segmentations are generated by consumer data—is to define a market segment as a subset

of consumer characteristics that determine the consumers’ values of a product and are dis-

tributed according to some commonly known distribution. With this description, the sale

of consumer data can then be interpreted as creating a partition of the characteristic set by

only providing partial information about the characteristics.

Clearly, if the data broker can create other variables (e.g., purchasing propensity scores

or price recommendations) that are not parts of the existing consumer characteristics, then
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these two modeling approaches are equivalent (see Section 4.3 for an example ). However,

there might be situations (due to, say, regulation or technological constraints) where the data

broker cannot create additional variables but can only choose what existing characteristics

to disclose and how detailed the disclosures are. In the Supplemental Material, I establish a

formal result stating that these two modeling approaches are still equivalent, provided that

the characteristic space is “rich enough”. As a result, any market segmentation s ∈ S can be

created by partitioning the underlying characteristic space and vice versa. That is, as long

as the dataset contains enough of consumer characteristics, the data broker can create any

s ∈ S by simply providing partial consumer data and does not need to generate additional

variables.

7.2 Policy Implications

The results above have several broader policy implications. First, in terms of welfare, al-

though Theorem 3 implies that data brokership is undesirable for the consumers, Theorem 4

shows that the total surplus is always higher with the presence of a data broker compared

with an environment where no information about the consumers’ values can be disclosed.

As a result, the answer to the question of whether a data broker is beneficial must depend

on the objective of the policymaker and the kinds of redistributional policy tools available.

If the policymaker’s objective is simply maximizing total surplus, or if redistributional tools

such as lump-sum transfers are available, then it is indeed beneficial to allow a data broker

to sell consumer data. On the other hand, however, if the policymaker also concerns them-

selves with consumer surplus, and if no effective redistributional policies are available, then

the presence of a data broker can be extremely unfavorable. Therefore, regarding the policy

debates about whether a data broker should be allowed to collect, use and trade consumer

data, it is imperative to first identify the available redistributional tools and the relative

importance among consumer surplus, producer profit and total surplus.

In the case where the policymaker does wish to improve consumer surplus and no effective

redistributional policies are available, Theorem 8 and Theorem 10 imply that there are limited

possible policies that can be used to improve consumer surplus. Clearly, policies that help the

consumers preserve some private information can improve consumer surplus. Nonetheless,

according to Theorem 8, from the consumers’ perspective, data brokership is still no better

than all the characteristics being revealed. On the other hand, targeted marketing does not

benefit the consumers either. As shown in Theorem 10, even though targeting technology

can be used to further increase the total surplus, all the benefits will be extracted away from

the consumers via price discrimination.

Furthermore, even if a policymaker attempts to improve consumer surplus by monitoring

price discrimination, Theorem 1 implies that it is not enough to monitor only whether there

https://kaihaoyang.com/wp-content/uploads/2019/10/Optimal-Market-Segmentaion-Design-and-its-Consequences-Supplemental-Materials.pdf
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is personalized pricing (i.e., first degree price discrimination). In fact, the optimal mecha-

nisms given by Theorem 1 do not exhibit perfect price discrimination. Instead, it is a certain

kind of third degree price discrimination (i.e., quasi-perfect price discrimination, induced by

the quasi-perfect segmentations) that will arise in this environment. For a policymaker, pro-

hibiting personalized pricing would not be effective in improving consumer surplus. Rather,

identifying whether third degree price discrimination is operated in the form of quasi-perfect

segmentation is indispensable for improving consumer surplus. Nevertheless, quasi-perfect

segmentations may sometimes be difficult to identify. As illustrated in the motivating exam-

ple in Section 1, this kind of segmentation can be implemented by disclosing simple consumer

characteristics such as residence types. In general, it might be difficult to distinguish quasi-

perfect segmentations from other basic forms of third degree price discrimination unless the

policymaker has complete knowledge of the correlation between the disclosed consumer char-

acteristics and the consumers’ values. Whether it is possible to identify an quasi-perfect

segmentation with less knowledge remains as a topic for future studies.

In contrast to the seemingly pessimistic implications discussed above, Theorem 5 pre-

scribes a rather positive solution, both in terms of consumer surplus and in terms of total

welfare. According to Theorem 5, if the data broker has to purchase the data from the con-

sumers, and if the purchase takes place before the consumers learn their values, then data

brokership would be Pareto-improving compared with uniform pricing. As a result, if the

policymaker can establish the consumers’ property right for their own data,21 as well as a

channel for the data broker to compensate the consumers, then not only the consumers can

secure their surplus as if their data is not used for price discrimination (via compensation),

but also the entire economy can benefit from data brokership, because less deadweight loss

will be generated.

Finally, regardless of the policymaker’s objective, as long as it depends only on the market

outcomes, the discussions in Section 5.3 facilitates the evaluation of whether a certain market

regime is desirable than another. According to Theorem 6, if the policymaker is able to

eliminate the asymmetric information regarding the production cost, integrating the data

broker with the producer can be beneficial. This result is due to the fact that even when

the data broker only sells consumer data to the producer, the consumer surplus is still

zero. Consequently, revealing the producer’s private marginal cost and encouraging vertical

integration are beneficial as it does not affect the consumer surplus but eliminates all the

informational frictions. In addition, the equivalence result given by Theorem 7 implies that

as long as it is the producer who bears the production cost, however active the data broker is

21For instance, just as what is stipulated by the recent regulation of the European Union, General Data

Protection Regulation (GDPR, Art. 7), consumers’ property right for their own data can be better protected

by prohibiting all the processing of personal data unless the data subject has consented the use.
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in the product market does not affect market outcomes at all. This means that, on the one

hand, the data broker has no incentive to become even more active in the product market

rather than only selling consumer data. In fact, together with other potential costs that are

abstracted away from the model (e.g., inventory costs, shipping costs and other transaction

costs), participating directly in product market can be less profitable than merely selling

consumer data to the producer. On the other hand, even if the data broker does become

more active in the product market, it still raises no further concerns to the policymaker.

Thus, any policy intervention that prohibits the data broker entering the product market

by either gaining control over prices (e.g., by establishing an online platform and allows the

producer to trade on this platform while controlling the prices) or obtaining the exclusive

right to (re)-sell the product would be unnecessary.22

8 Conclusion

In sum, this paper studies a scenario where a data broker sells consumer data and creates

market segmentations. In this paper, I characterize the optimal mechanisms of the data

broker and conclude that consumer surplus is always zero, that data brokership generates

more total surplus than uniform pricing, and that the ability to control prices in the product

market is irrelevant. Several extensions are also considered, including the case in which

consumers possess some private information that cannot be disclosed and the environment

where targeted marketing is available.

Several aspects can become future study topics. First, although one of the extensions of

this paper considers a scenario where targeted marketing is possible, it abstracts away from

the possibility that a data broker can generate “match values” between the producers and

consumers. By assuming that every group of consumers can buy every product as long as

they see it, the matching aspect between consumers and producers is omitted. After all, there

is effectively no competition among the producers when there is no “scarcity” of consumers.

Furthermore, the consumers’ characteristics that govern the match values can also be their

private information. Second, although one of the extensions consider the case where the

consumers can preserve some private information, it is restricted to certain environments.

A natural direction of future research is to explore the data broker’s optimal mechanisms

and their implications in a setting where the feasible market segmentation is restricted by

22Indeed, price-controlling data brokerpship and exclusive retail are arguably extreme benchmarks. In

practice, it is likely that the producer would still be able to negotiate prices with the price-controlling data

broker or to operate in the marker even after selling the product to the exclusive retailer. Nevertheless,

since these more practical scenarios all generate less revenue to the data broker comparing to the extreme

benchmarks, Theorem 7 still implies that the data broker would prefer only selling consumer data and not

entering the product market.
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a Blackwell upper bound. Lastly, the producer is assumed to be a product monopoly in

this paper. It would be economically relevant to explore the consequences of consumer-data

brokership under different industrial structures.
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Appendix

A Notational Conventions

Below I first discuss more formally about the properties of the set D. Recall that D = D([v, v]) is the

collection of nonincreasing and left-continuous functions D on [v, v] such that D(v) = 1 and D(v) = 0. Since

for every D ∈ D, there exists a unique probability measure mD ∈ ∆(V ) such that D(p) = mD({v ≥ p}) for

all p ∈ V , I define the topology on D by the following notion of convergence: For any {Dn} ⊆ D and any

D ∈ D, {Dn} → D if and only if for any bounded continuous function f : V → R,

lim
n→∞

∫
V
f(v)mDn(dv) =

∫
V
f(v)mD(dv).

This would corresponds to the weak-* topology on ∆(V ) and hence this topology on D is also called the

weak-* topology. As a result, D is a Polish space. Furthermore, notice that under this topology, {Dn} → D

if and only if {Dn(p)} → D(p) for all p ∈ V at which D is continuous.

Now I introduce some more notational conventions that are implicitly used in the main text and will

be used throughout the proof. For any measurable sets X and Y , the collection of measurable functions

f : X → Y is denoted by XY . Moreover, for any f ∈ RX , define f+ by f+(x) := max{f(x), 0} for all

x ∈ X. For any f, g ∈ RX and for any α, β ∈ R, define αf + βg ∈ RX by [αf + βg](x) := αf(x) + βg(x) for

all x ∈ X. If X ⊂ Rn and the partial derivative of f with respect to xi exists for some i ∈ {1, . . . , n}, use

fi(x1, . . . , xn) :=
∂

∂xi
f(x1, . . . , xn)

to denote this partial derivative. When X ⊆ R, for any x ∈ int(X), let

f(x+) := lim
x′↓x

f(x′) and f(x−) := lim
x′↑x

f(x′)

be the right and the left limits of f at x provided they exist, respectively.

For any measurable space X, let ∆f (X) ⊆ ∆(X) be the collection of probability measures on X that

have finite support. The collection of probability measures ∆(X) is endowed with the algebraic structure

so that for any µ1, µ2 ∈ ∆(X),

[λµ1 + (1− λ)µ2](A) := λµ1(A) + (1− λ)µ2(A),

for any measurable A ⊆ X. Furthermore, for any x ∈ X, δ{x} denotes the Dirac measure that assigns

probability 1 to the element x (whenever {x} is measurable). For any probability measure µ ∈ ∆f (X) with

finite support and for any measurable set A ⊆ X, the simplifying notation∑
x∈A

µ(x) :=
∑

x∈A∩supp(µ)

µ({x})

will be used.

Finally, for any D ∈ D, let SD denote the collection of s ∈ ∆(D) such that (1) holds with D0 being

replaced by D (so that SD0 = S). Also, let D−1 denote the inverse demand of D, where D−1 is defined as

D−1(q) := sup{p ∈ V : D(p) ≥ q}, ∀q ∈ [0, 1]. (14)
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B Technical Lemmas and Proofs

This section contains technical lemmas that establish continuities of several critical objects. These continuity

results are crucial for proving the main results.

Lemma 5. For any D ∈ D, πD ∈ RC+ is continuous and convex. Furthermore, for any p ∈ P , and for any

c ∈ C, −D(pD(c)) is a subgradient of πD at c. In particular, for any c ≤ c < c′ ≤ c,

πD(c)− πD(c′) =

∫ c′

c
D(pD(z)) dz (15)

for any p ∈ P

Proof. By definition of πD, for any c ∈ C,

πD(c) = max
p∈R+

(p− c)D(p).

As such, πD is convex for all D ∈ D since it is the pointwise supremum of a family of affine functions.

Moreover, for any p ∈ P and for any c, c′ ∈ C,

0 ≤πD(c′)− (pD(c)− c′)D(pD(c))

=πD(c′) + c′D(pD(c))− pD(c)D(pD(c))

=πD(c′)− cD(pD(c)) + c′D(pD(c))− (pD(c)− c)D(pD(c))

=πD(c′)− [−D(pD(c))(c′ − c) + πD(c)].

Thus, −D(pD(c)) is a subgradient of πD at c. Together with convexity of πD, πD is differentiable almost

everywhere and

π′D(c) = −D(pD(c)),

for almost all c ∈ C. Thus, since πD is convex, for any c ≤ c < c′ ≤ c,

πD(c)− πD(c′) =

∫ c′

c
D(pD(z)) dz,

for any p ∈ P .

For continuity, notice that for any c ∈ C,

πD(c) = max
(p,q)∈Ξ

(p− c)q,

where Ξ := cl({(p,D(p)) : p ∈ V }) is a compact set in R2. Therefore, by Berge’s theorem of maximum, πD

is continuous on C. �

Lemma 6. The correspondence P is compact-valued and thus

pD(c) := maxPD(c)

and

p
D

(c) := minPD(c)

are well-defined for all c ∈ C, D ∈ D. Furthermore, for any D ∈ D, the correspondence PD : C ⇒ R+ is

upper-hemicontinuous. In particular, pD ∈ RC+ is right-continuous and p
D
∈ RC+ is left-continuous.
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Proof. Consider any c ∈ C and D ∈ D. Suppose that {pn} ⊆ PD(c) and {pn} → p for some p ∈ R+. Since

the function p 7→ (p− c)D(p) is upper-semicontinuous,

πD(c) = lim sup
n→∞

(pn − c)D(pn) ≤ (p− c)D(p) ≤ πD(c).

Thus, p ∈ PD(c). As a result, since PD(c) ⊆ V (see footnote 7), for all c ∈ C and D ∈ D, PD(c) is a closed

subset of a compact set, which implies that pD(c) and p
D

(c) are well-defined.

Now consider any D ∈ D. To show upper-hemicontinuity of PD, it suffices to show that for any sequences

{cn} ⊆ C and {pn} ⊆ R+ such that {pn} → p ∈ R+ and {cn} → c ∈ C and that pn ∈ PD(cn) for all n ∈ N,

p ∈ PD(c). Indeed, for any n ∈ N, since pn ∈ PD(cn), πD(cn) = (pn − cn)D(pn) for all n ∈ N. Moreover,

since πD ∈ RC+ according to Lemma 5,

lim
n→∞

πD(cn) = πD(c).

Therefore, since D is upper-semicontinuous,

πD(c) = lim
n→∞

πD(cn) = lim sup
n→∞

(pn − cn)D(pn) ≤ (p− c)D(p) ≤ πD(c).

Thus, p ∈ PD(c) as desired. Finally, since for any p ∈ P , pD ∈ RC+ is nondecreasing, upper-hemicontinuity

of pD then implies right-continuity of pD and left-continuity of p
D

. This completes the proof. �

Lemma 7. For any D ∈ D, the function c 7→ D(pD(c)) is right-continuous.

Proof. Consider any D ∈ D and any c ∈ C. By Lemma 6,

lim
c′↓c
pD(c′) = pD(c).

Together with continuity of πD, which is due to Lemma 5,

(pD(c)− c)D(pD(c)) =πD(c)

= lim
c′↓c

πD(c′)

= lim
c′↓c

(pD(c′)− c′)D(pD(c′))

=(pD(c)− c) · lim
c′↓c

D(pD(c′)),

and hence

lim
c′↓c

D(pD(c′)) = D(pD(c)),

as desired. �

Lemma 8. For any c ∈ C, the function D 7→ πD(c) is continuous on D.

Proof. Since V ⊆ R+ is bounded, this lemma is a special case of Theorem 12 of Hart and Reny (2018) when

k = 1. �

Lemma 9. For any c ∈ (c, c), the function D 7→ D(pD(c)) is lower-semicontinuous on D.
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Proof. For any c ∈ (c, c) and for any D ∈ D, define π′D(c+) as

π′D(c+) := lim
c′↓c

πD(c′)− πD(c)

c′ − c
.

Since πD is convex, π′D(c+) is well-defined. Furthermore, by Lemma 5, −D(pD(c)) is a subgradient of πD

at c and therefore, for any c′ > c,
πD(c′)− πD(c)

c′ − c
≥ −D(pD(c)),

which implies that

π′D(c+) ≥ D(pD(c)). (16)

Meanwhile, by (15), for any c′ > c,

πD(c′)− πD(c)

c′ − c
=

1

c′ − c

∫ c′

c
−D(pD(z)) dz ≤ −D(pD(c′)).

Thus, by Lemma 7,

π′D(c+) ≤ lim
c′↓c
−D(pD(c′)) = −D(pD(c)). (17)

Combining (16) and (17),

π′D(c+) = D(pD(c)).

Now consider any D ∈ D and any {Dn} ⊆ D such that {Dn} → D, Lemma 8 implies that {πDn} → πD

pointwise. Thus, for any c ∈ (c, c), by Theorem 24.5 of Rockafellar (1970),

− lim inf
n→∞

Dn(pDn(c)) = lim sup
n→∞

π′Dn(c+) ≤ π′D(c+) = −D(pD(c)).

Therefore, for any c ∈ (c, c),

lim inf
n→∞

Dn(pDn(c)) ≥ D(pD(c)),

as desired. �

Lemma 10. For any c ∈ C, the function D 7→ pD(c) is upper-semicontinuous on D.

Proof. Consider any c ∈ C and any sequence {Dn} ⊆ D such that {Dn} → D for some D ∈ D. Let

p̄ := lim sup
n→∞

pDn(c).

Take a subsequence {Dnk} ⊆ {Dn} such that

lim
k→∞

pDnk
(c) = p̄.

First notice that since D ∈ D is upper-semicontinuous, for any sequence {δk} ⊂ R+ such that {δk} → 0,

lim sup
k→∞

(pDnk
(c)− c)Dnk(pDnk

(c)− δk) ≤ (p̄− c)D(p̄). (18)

Moreover, by the definition of the Lévy Prokhorov metric, for any k ∈ N,

Dnk(pDnk
(c)) ≤ D

(
pDnk

(c)−
(
ρ(Dnk , D) +

1

k

))
−
(
ρ(Dnk , D) +

1

k

)
, (19)
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where ρ : D×D → R+ is the Lévy Prokhorov metric. Together, since {ρ(Dnk , D)} → 0 as k →∞, which is

because {Dnk} → D as k →∞, we have

πD(c) = lim
k→∞

πDnk (c)

= lim
k→∞

(pDnk
(c)− c)Dnk(pDnk

(c))

≤ lim sup
k→∞

(pDnk
(c)− c)

[
D

(
pDnk

(c)−
(
ρ(Dnk , D) +

1

k

))
−
(
ρ(Dnk , D) +

1

k

)]
≤(p̄− c)D(p̄)

≤πD(c),

where the first equality follows from Lemma 8, the first inequality follows from (19), and the second inequality

follows from {ρ(Dnk , D)} → 0 as k → ∞, (18), as well as the fact that pDnk
(c) ≤ max V̄ (see footnote 7).

As a result, it then follows that p̄ ∈ PD(c) and therefore p̄ ≤ pD(c). Thus,

lim sup
n→∞

pDn(c) = p̄ ≤ pD(c),

as desired. �

C Crucial Properties of Quasi-Perfect Schemes

This section summarizes some crucial properties of a ψ-quasi-perfect scheme.

Lemma 11. Consider any nondecreasing function ψ ∈ RC+ with c ≤ ψ(c) for all c ∈ C. Suppose that for

any c ∈ C, σ(c) ∈ S is a ψ(c)-quasi-perfect segmentation for c. Then,

1.
∫
DD(p)σ(dD|c) = D0(p) for all p ∈ V and for all c ∈ C.

2. σ : C → ∆(D) is measurable.

3.
∫
DD(pD(c))σ(dD|c) = D0(ψ(c)) for all c ∈ C.

4.
∫
D pD(c)D(pD(c))σ(dD|c) =

∫
{v≥ψ(c)} vD0(dv) for all c ∈ C.

Proof. For any nondecreasing function ψ ∈ RC+ with c ≤ ψ(c) for all c ∈ C, since for any c ∈ C, σ(c) ∈ S is

a ψ(c)-quasi-perfect segmentation for c, by definition,∫
D
D(p)σ(dD|c) = D0(p), (20)

for all p ∈ V , which proves assertion 1. Furthermore, since ψ is nondecreasing and is thus continuous except

at countably many points, σ : C → ∆(D) is measurable, which establishes assertion 2. For assertion 3,

notice that for any c ∈ C, since σ(c) ∈ S is a ψ(c)-quasi-perfect segmentation for c, for any D ∈ supp(σ(c))

such that D(pD(c)) > 0,

D(pD(c)) = D(max(supp(D))) = D(ψ(c))

and thus ∫
D
D(pD(c))σ(dD|c) =

∫
D
D(ψ(c))σ(dD|c) = D0(ψ(c)),
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where the last equality follows from (20). This proves assertion 3. Finally, to prove assertion 4, consider

any c ∈ C. First notice that if D0(c) = 0, then assertion 4 clearly holds as both sides would be zero. Now

suppose that D0(c) > 0. The fact that σ(c) ∈ S is a ψ(c)-quasi-perfect segmentation for c ensures that

D0(ψ(c)) > 0. Then, for any v ∈ [ψ(c), v], let

H(v) := σ({D ∈ D : max(supp(D)) ≤ v}|c).

Since σ(c) is a probability measure, H is nondecreasing and right-continuous and hence induces a Borel

measure µH on [ψ(c), v]. On the other hand, for any measurable sets A,B ⊆ [ψ(c), v], define

K(A|B) :=

∫
{D∈D:max(supp(D))∈A}

mD(B)σ(dD|c).

Notice that for any measurable set B ⊆ [ψ(c), v], K(·|B) is a measure and is absolutely continuous with

respect to µH and hence there exists a (essentially) unique Radon-Nikodym derivative v 7→ mv(B) such that

for any measurable A ⊆ [ψ(c), v],

K(A|B) =

∫
v∈A

mv(B)H(dv). (21)

In particular, by definition of K and by (20), for any measurable set B ⊆ [ψ(c), v],∫
[ψ(c),v]

mv(B)H(dv) = K([ψ(c), v]|B) =

∫
D
mD(B)σ(dD|c) = m0(B). (22)

Moreover, since for any measurable set A ⊆ [ψ(c), v], K(A|·) is a measure on [ψ(c), v] and thus mv is also

a measure on [ψ(c, v)] for µH -almost all v ∈ [ψ(c), v]. Furthermore, since σ(c) ∈ S is a ψ(c)-quasi-perfect

segmentation for c, for any measurable sets A,B ⊆ [ψ(c), c],

K(A|B) = m0(A ∩B) = K(B|A)

and hence, for any measurable sets A,B ⊆ [ψ(c), v],∫
A
mv(B)H(dv) =

∫
B
mv(A)H(dv). (23)

As a result, ∫
D
pD(c)D(pD(c))σ(dD|c) =

∫
D
pD(c)D(ψ(c))σ(dD|c)

=

∫
D

max(supp(D))mD([ψ(c), v])σ(dD|c)

=

∫
[ψ(c),v]

vK(dv|[ψ(c), v])

=

∫
[ψ(c),v]

vmv([ψ(c), v])H(dv)

=

∫
v∈[ψ(c),v]

∫
v′∈[ψ(c),v]

vmv(dv′)H(dv)

=

∫
v∈[ψ(c),v]

v

(∫
v′∈[ψ(c),v]

mv′(dv)H(dv′)

)

=

∫
[ψ(c),v]

vD0(dv),
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where the second equality follows from the fact that σ(c) is a ψ(c)-quasi-perfect segmentation for c, the third

equality follows from the definition of K, the fourth equality follows from (21), the sixth equality follows

from (23), and the last equality follows from (22). This completes the proof. �

Lemma 12. For any nondecreasing function ψ ∈ RC+ with c ≤ ψ(c) for all c ∈ C, suppose that σ ∈ SC is a

ψ-quasi-perfect scheme. Then for any c, c′ ∈ C with c < c′,∫ c′

c

(∫
D
D(pD(z))(σ(dD|c)− σ(dD|z))

)
dz ≥ 0.

Proof. Consider any c, c′ ∈ C such that c < c′. Notice that since σ ∈ SC is a ψ-quasi-perfect scheme, by

Lemma 11, ∫
D
D(pD(z))σ(dD|z) = D0(ψ(z)).

In addition, since σ(c) is a ψ(c)-quasi-perfect segmentation for c, for any z > c and for any D ∈ supp(σ(c)), if

D(c) > 0 and max(supp(D)) ≥ z, then pD(z) = pD(c). On the other hand, if D(c) > 0 and max(supp(D)) <

z, then D(pD(z)) = 0. Also, notice that D(c) = 0 implies D(z) = 0. Together, if z ≤ ψ(c),∫
D
D(pD(z))σ(dD|c) =

∫
D
D(pD(c))σ(dD|c) = D0(ψ(c))

and if z > ψ(c), ∫
D
D(pD(z))σ(dD|c) =

∫
{D∈D:max(supp(D))≥z}

D(pD(c))σ(dD|c)

=

∫
D
D(z)σ(dD|c)

=D0(z).

As a result, ∫ c′

c

(∫
D
D(pD(z))(σ(dD|c)− σ(dD|z))

)
dz

=

∫ c′

c

(∫
D
D(pD(z))σ(dD|c)−

∫
D
D(pD(z))σ(dD|z)

)
dz

=

∫ c′

c
(min{D0(ψ(c)), D0(z)} −D0(ψ(z))) dz

≥0,

where the inequality follows from the fact that z ≤ ψ(z) and ψ(c) ≤ ψ(z) for all z ∈ [c, c′], which in turn

relies on the hypothesis that c ≤ ψ(c) for all c ∈ C and that ψ is nondecreasing. This completes the

proof. �

Lemma 13. Consider any function ψ ∈ RC+ with c ≤ ψ(c) for all c ∈ C. Given any {Dn} ⊂ D and

{σn} ⊂ SCDn. Suppose that {σn} → σ pointwise and {Dn} → D0 for some σ ∈ ∆(D)C and D0 ∈ D.

Then σ ∈ SCD0
. Moreover, suppose further that σn is a ψ-quasi-perfect scheme for all n ∈ N. Then σ is a

ψ-quasi-perfect scheme.
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Proof. First notice that since σn ∈ SCDn is a ψ-quasi-perfect scheme, Lemma 11 ensures that σn is measurable.

Then, since {σn} → σ pointwise, σ is also measurable. Moreover, since {Dn} → D0 and {σn} → σ, for any

bounded continuous function f : V → R and for any c ∈ C∫
V
f(v)

(∫
D
D(dv)σ(dD|c)

)
=

∫
D

(∫
V
f(v)D(dv)

)
σ(dD|c)

= lim
n→∞

∫
D

(∫
V
f(v)D(dv)

)
σn(dD|c)

= lim
n→∞

∫
V
f(v)

(∫
D
D(dv)σ(dD|c)

)
= lim
n→∞

∫
V
f(v)Dn(dv)

=

∫
V
f(v)D0(dv),

where the first and the third equality follow from interchanging the order of integrals, the second equality

follows from the fact that the integrand in the parentheses is a bounded continuous function of D and from

weak-*convergence of {σn(c)}, the fourth equality is due to the fact that σn(c) ∈ SDn , and the last equality

follows from the weak-* convergence of {Dn}. Thus, by the Riesz representation theorem,∫
D
D(p)σ(dD|c) = D0(p), ∀p ∈ V, c ∈ C.

This proves that σ ∈ SC .

Now suppose that σn is a ψ-quasi-perfect scheme for all n ∈ N and suppose that, by way of contradiction,

σ ∈ SC is not a ψ-quasi-perfect scheme. Then there exists a positive G-measure of c and a positive

σ(c)-measure of D ∈ D such that D({v > c}) > 0 and either #{v ∈ supp(D) : v ≥ ψ(c)} 6= 1 or

max(supp(D)) /∈ PD(c) (i.e., D(pD(c)) > 0). As such, there is a positive G-measure of c and a positive

σ(c)-measure of D such that∫
{v≥ψ(c)}

(v − ψ(c))D(dv) ≥
∫
{v≥pD(c)}

(v − ψ(c))D(dv)

=(pD(c)− ψ(c))D(pD(c)) +

∫
{v≥pD(c)}

(v − pD(c))D(dv)

≥(pD(c)− ψ(c))D(pD(c)),

with at least one inequality being strict. Thus, there exists a positive G-measure of c ∈ C such that∫
D

(pD(c)− ψ(c))D(pD(c))σ(dD|c) <
∫
V

(v − ψ(c))+D0(dv).
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However, by Lemma 8 and Lemma 9, for Lebesgue almost all c ∈ C,∫
D

(pD(c)− ψ(c))D(pD(c))σ(dD|c)

=

∫
D
πD(c)σ(dD|c)− (ψ(c)− c)

∫
D
D(pD(c))σ(dD|c)

≥ lim
n→∞

∫
D
πD(c)σn(dD|c)− lim inf

n→∞
(ψ(c)− c)

∫
D
D(pD(c))σn(dD|c)

= lim sup
n→∞

[∫
D
πD(c)σn(dD|c)− (ψ(c)− c)

∫
D
D(pD(c))σn(dD|c)

]
(24)

= lim sup
n→∞

∫
V

(v − ψ(c))+Dn(dv)

= lim
n→∞

∫
V

(v − ψ(c))+Dn(dv)

=

∫
V

(v − ψ(c))+D0(dv),

a contradiction. Here, the first inequality follows from the fact that {σn(c)} → σ(c), Lemma 8 and Lemma 9;

the second equality follows from the properties of the lim inf and lim sup operators;23 the third equality

follows from the fact that σn(c) ∈ SDn and is a ψ(c)-quasi-perfect segmentation for c; and the last two

equalities follow from the fact that the function (v − ψ(c))+ is bounded and continuous in v and that

{Dn} → D0. Therefore, σ must be a ψ-quasi-perfect scheme. �

D Proofs for Optimal Mechanisms

D.1 Proof of Proposition 2

In this section, I first prove Proposition 2 and obtain an upper bound for the data broker’s revenue. That

is, I first solve the relaxed problem where the prices are also contractable. To this end, I first introduce the

revenue-equivalence formula for the price-controlling data broker.

Lemma 14. For the price-controlling data broker, a mechanism (σ, τ,γ) is incentive compatible if and only

if

1. There exists some τ̄ ∈ R such that for any c ∈ C,

τ(c) =

∫
D

∫
R+

(p− c)D(p)γ(dp|D, c)σ(dD|c)−
∫ c

c

∫
D

∫
R+

D(p)γ(dp|D, z)σ(dD|z) dz − τ̄ .

23 More precisely, this follows from the following properties: For any real sequences {an}, {bn},

− lim inf
n→∞

bn = lim sup
n→∞

(−bn).

Moreover, if {an} is convergent, then

lim sup
n→∞

(an + bn) = lim
n→∞

an + lim sup
n→∞

bn.
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2. The function

c 7→
∫
D

∫
R+

D(p)γ(dp|D, c)σ(dD|c)

is nonincreasing.

Proof. For necessity, consider any incentive compatible mechanism (σ, τ,γ). Let

u(c, c′) :=

∫
D

(∫
R+

(p− c)D(p)γ(dp|D, c′)
)
σ(dD|c′)− τ(c′), ∀c, c′ ∈ C

denote the producer’s net profit when her marginal cost is c and reports c′. By incentive compatibility, for

any c ∈ C
U(c) := u(c, c) ≥ u(c, c′),

Since u1(c, c′) = −
∫
D
∫
R+
D(p)γ(dp|D, c)σ(dD|c′) is bounded for all c′ ∈ C, by the envelope theorem

(Milgrom and Segal, 2002), for any c ∈ C

U(c) = U(c)−
∫ c

c
u1(z, z) dz = U(c) +

∫ c

c

(∫
D

(∫
R+

D(p)γ(dp|D, c)
)
σ(dD|z)

)
dz.

Also, by definition,

U(c) =

∫
D

(∫
R+

(p− c)D(p)γ(dp|D, c)
)
σ(dD|c)− τ(c).

Rearranging, and letting τ̄ := U(c), for any c ∈ C,

τ(c) =

∫
D

(∫
R+

(p− c)D(p)γ(dp|D, c)
)
σ(dD|c)−

∫ c

c

(∫
D

(∫
R+

D(p)γ(dp|D, z)
)
σ(dD|z)

)
dz − τ̄ ,

which proves assertion 1. Furthermore, since u(c, c′) is affine in c for all c′, U is convex as it is a pointwise

maximum of a family of affine functions. Therefore, it’s (almost everywhere) derivative

−
∫
D

∫
R+

D(p)γ(dp|D, c)σ(dD|c)

is nondecreasing. This proves assertion 2.

Conversely, given a mechanism (σ, τ,γ) that satisfies assertions 1 and 2, for any c, c′ ∈ C,

u(c, c)− u(c, c′)

=

(∫
D

(∫
R+

(p− c)D(p)γ(dp|D, c)
)
σ(dD|c)− τ(c)

)
−
(∫
D

(∫
R+

(p− c)D(p)γ(dp|D, c′)
)
σ(dD|c′)− τ(c′)

)
=

∫ c′

c

∫
D

(∫
R+

D(p)γ(dp|D, z)
)
σ(dD|z) dz −

∫
D

(∫
R+

D(p)γ(dp|D, c′)
)
σ(dD|c′)(c′ − c)

=

∫ c′

c

(∫
D

(∫
R+

D(p)γ(dp|D, z)
)
σ(dD|z)−

∫
D

(∫
R+

D(p)γ(dp|D, c′)
)
σ(dD|c′)

)
dz

≥0,

where the inequality follows from assertion 2. As such, the mechanism (σ, τ,γ) is indeed incentive compatible.

�
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With Lemma 14, the producer’s expected profit under an incentive compatible mechanism (σ, τ,γ) of

the price-controlling data broker can be written as

U(c) = U(c) +

∫ c

c

∫
D

(∫
R+

D(p)γ(dp|D, z)
)
σ(dD|z) dz.

As such, an incentive compatible mechanism is individually rational if and only if

U(c) +

∫ c

c

∫
D

(∫
R+

D(p)γ(dp|D, z)
)
σ(dD|z) dz ≥ π̄ +

∫ c

c
D0(p0(z)) dz.

Also, for any incentive compatible mechanism (σ, τ,γ), the price-controlling data broker’s expected revenue

can be written as

E[τ(c)] =

∫
C

(∫
D

(∫
R+

(p− φG(c))D(p)γ(dp|D, c)
)
σ(dD|c)

)
G(dc)− U(c).

Therefore, the price-controlling data broker’s revenue maximization problem can be written as

sup
σ,γ

∫
C

(∫
D

(∫
R+

(p− φG(c))D(p)γ(dp|D, c)
)
σ(dD|c)

)
G(dc)− π̄

s.t. c 7→
∫
D

(∫
R+

D(p)γ(dp|D, c)
)
σ(dD|c) is nonincreasing,∫ c

c

∫
D

(∫
R+

D(p)γ(dp|D, z)
)
σ(dD|z) dz ≥

∫ c

c
D0(p0(z)) dz, ∀c ∈ C,

where the supremum is taken over all segmentation schemes σ ∈ SC and all measurable function γ that

maps from C to the collection of transition kernels from D to ∆(R+).

In what follows, let Γ be the collection of transition kernels that maps from D to ∆(R+). Let s̄ ∈ S
denote the value-revealing segmentation and let σ̄ ∈ SC be the segmentation scheme such that σ̄(c) = s̄ for

all c ∈ C. Furthermore, for any q ∈ [0, 1], let ρq := D−1
0 (q), where D−1

0 is defined by (14). Notice that by

definition of D−1
0 ,

q ∈ [D0(ρ+
q ), D0(ρq)].

If D0(ρq) = D0(ρ+
q ), then let γ̃q ∈ ∆(R+)V be defined as

γ̃q(·|v) := δ{v}, ∀v ∈ V.

On the other hand, if D0(ρq) > D0(ρ+
q ), then define γ̃q ∈ ∆(R+)V as

γ̃q(·|v) :=

 δ{v}, if v 6= ρq
q−D0(ρ+

q )

D0(ρq)−D0(ρ+
q )
δ{v} +

D0(ρq)−q
D0(ρq)−D0(ρ+

q )
δ{v̄}, if v = ρq

, ∀v ∈ V.

Finally, let γq ∈ Γ be defined as

γq(A|D) :=

∫
V
γ̃q(A|v)D(dv),

for any measurable A ⊆ V and for any D ∈ D. In other words, combining the segmentation s̄ and the

randomized price γq, this means that when the producer uses the randomized price γq under segmentation
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s̄, then all the consumers with values above the (1− q)th-percentile buy the product by paying exactly their

values while the other consumers do not buy, so that the traded quantity is exactly q. That is,∫
D

(∫
R+

D(p)γq(dp|D)

)
s̄(dD) = q. (25)

With this notation, I now introduce the second auxiliary lemma.

Lemma 15. For any q ∈ [0, 1], let R̄(q) be the value of the maximization problem

sup
s∈S,γ∈Γ

∫
D

(∫
R+

pD(p)γ(dp)

)
s(dD)

s.t.

∫
D

(∫
R+

D(p)γ(dp)

)
s(dD) ≤ q. (26)

Then

R̄(q) =

∫ q

0
D−1

0 (y) dy,

where D−1
0 is defined by (14). Moreover, (s̄, γq) is a solution of (26).

Proof. Consider the dual problem of (26). That is, for any ν ≥ 0, let

d(ν) := sup
s∈S,γ∈Γ

[∫
D

(∫
R+

pD(p)γ(dp|D)

)
s(dD) + ν

(
q −

∫
D

(∫
R+

pD(p)γ(dp|D)

)
s(dD)

)]
= sup
s∈S,γ∈Γ

∫
D

(∫
R+

(p− ν)D(p)γ(dp|D)

)
s(dD) + νq.

Clearly, d(ν) ≥ R̄(q) for any ν ≥ 0. Thus, by weak duality, to solve (26), it suffices to find ν∗ and (s∗, γ∗)

such that (s∗, γ∗) is feasible in the primal problem (26), (s∗, γ∗) solves the dual problem

sup
s∈S,γ∈Γ

∫
D

(∫
R+

(p− ν∗)D(p)γ(dp|D)

)
s(dD) (27)

and that the complementary slackness condition

ν∗
[
q −

∫
D

(∫
R+

pD(p)γ∗(dp|D)

)
s∗(dD)

]
= 0 (28)

holds. Since this would imply that

R̄(q) ≤ d∗ = inf
λ≥0

d(λ) ≤ d∗(ν∗) = R̄(q)

and hence (s∗, γ∗) must be a solution to (26).

To this end, let

ν∗ := D−1
0 (q).

and consider the pair (s̄, γq). Notice that by definition, (s̄, γq) perfectly price-discriminates all the consumers

with v > ν∗ and does not sell to any consumers with v < ν∗. Therefore,∫
D

(∫
R+

(p− ν∗)D(p)γ(dp|D)

)
s̄(dD) =

∫
V

(v − ν∗)+D0(dv)
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Furthermore, notice that for any s ∈ S and any γ ∈ Γ∫
D

(∫
R+

(p− ν∗)D(p)γ(dp|D)

)
s(dD)

≤
∫
D

max
p∈R+

(p− ν∗)D(p)s(dD)

≤
∫
V

(v − ν∗)+D0(dv).

Therefore, (s̄, γq) solves the dual problem (27). On the other hand, by (25),∫
D

(∫
R+

D(p)γq(dp|D)

)
s̄(dD) = q.

Together with s̄ ∈ S and γq ∈ Γ, it follows that (s̄, γq) is feasible in the primal problem (26) and, furthermore,

the complementary slackness condition (28) also holds. Thus, (s̄, γq) is a solution to the primal problem

(26).

Finally, notice that by the definition of D−1
0 and (s̄, γq),∫

D

(∫
R+

pD(p)γq(dp|D)

)
s̄(dD) =

∫ q

0
D−1

0 (y) dy.

This completes the proof. �

With the two auxiliary lemmas above, the price-controlling data broker’s problem can be effectively

reduced to a one-dimensional screening problem with type-dependent individual rationality constraints. As

stated by Lemma 16 below.

Lemma 16. There exists an incentive feasible mechanism that maximizes the price-controlling data broker’s

revenue. Furthermore, the price-controlling data broker’s optimal revenue is

R∗ = max
q∈Q

∫
C

(∫ q(c)

0
(D−1

0 (q)− φG(c)) dq

)
G(dc)− π̄ (29)

s.t. π̄ +

∫ c

c
q(z) dz ≥ π0(c), ∀c ∈ C,

where Q is the collection of nonincreasing functions in [0, 1]C .

Proof. Consider any incentive feasible mechanism (σ, τ,γ) for the price-controlling data broker, I will first

show that there exists q ∈ [0, 1]C such that the mechanism (σ̄, τq,γq) generates weakly higher revenue for

price-controlling data broker and is incentive feasible, where

γq(c) := γq(c), ∀ c ∈ C

and τq is the transfer determined by (σ̄,γq) when the constant is chosen so that U(c) = π̄ according to

Lemma 14. Then, I will show that maximizing revenue across the family of incentive feasible mechanisms

(σ̄, τq,γq) is equivalent to solving (29). Finally, the existence of the optimal mechanism can then be ensured

by the existence of the solution of (29).



54

To this end, for any c ∈ C, let

q(c) :=

∫
D

(∫
R+

D(p)γ(dp|D, c)
)
σ(dD|c).

By Lemma 14, incentive compatibility of (σ, τ,γ) implies that q ∈ [0, 1]C is nonincreasing and, by (25), for

any c ∈ C, ∫
D

(∫
R+

D(p)γq(dp|D, c)
)
σ̄(dD|c) =

∫
D

(∫
R+

D(p)γq(c)(dp|D)

)
s̄(dD) = q(c).

Thus, by Lemma 15, (σ̄(c),γq(c)) solves the problem (26) with the quantity constraint being q(c) and hence,

since (σ(c),γ(c)) is also feasible in this problem,∫
D

(∫
R+

pD(p)γ(dp|D, c)
)
σ(dD|c) ≤

∫
D

(∫
R+

pD(p)γq(dp|D, c)
)
σ̄(dD|c) = R̄(q(c)). (30)

As a result, ∫
C

(∫
D

(∫
R+

(p− φG(c))D(p)γ(dp|D, c)
)
σ(dx|c)

)
G(dc)

=

∫
C

(∫
D

(∫
R+

pD(p)γ(dp|D, c)
)
σ(dx|c)

)
G(dc)−

∫
C
φG(c)q(c)G(dc)

≤
∫
C

(R̄(q(c))− φG(c)q(c))G(dc)

=

∫
C

(∫
D

(∫
R+

pD(p)γq(dp|D, c)
)
σ̄(dx|c)

)
G(dc)−

∫
C
φG(c)q(c)G(dc)

=

∫
C

(∫
D

(∫
R+

(p− φG(c))D(p)γq(dp|D, c)
)
σ̄(dx|c)

)
G(dc),

where the first and the third equalities follows from the definition of q(c) and from (25), and the inequality

and the second equality follows from (30). Moreover, by (25), since q is nonincreasing, the function

c 7→
∫
D

(∫
R+

D(p)γq(dp|D, c)
)
σ̄(dD|c)

is nonincreasing. Together with Lemma 14 and individual rationality of (σ, τ,γ), for any c ∈ C,∫ c

c

(∫
D

(∫
R+

D(p)γq(dp|D, z)
)
σ̄(dD|z)

)
dz =

∫ c′

c
q(z) dz

=

∫ c

c

(∫
D

(∫
R+

D(p)γ(dp|D, z)
)
σ(dD|z)

)
dz

≥
∫ c

c
D0(p0(z)) dz,

these imply that (σ̄, τ q,γq) is incentive feasible.

Now notice that by (25) and Lemma 15, for any q ∈ [0, 1]C and for any c ∈ C,∫
D

(∫
R+

(p− φG(c))D(p)γq(dp|D, c)
)
σ̄(dD|c) = R̄(q(c)) =

∫ q(c)

0
D−1

0 (q) dq.
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On the other hand, by (25) and by Lemma 15, (σ̄, τq,γq) is incentive feasible if and only if q is nonincreasing

and ∫ c

c
q(z) dz ≥

∫ c

c
D0(p0(z)) dz, ∀c ∈ C.

Therefore, maximizing revenue among all incentive feasible mechanism is equivalent to solving (29).

Finally, notice that for the maximization problem (29), endow the set of nonincreasing functions with

the L1 norm. Helly’s selection theorem and the Lebesgue dominated convergence theorem then imply that

this set is compact. Furthermore, since for any sequence {qn} that converges to q in the L1 norm, there

exists a subsequence {qnk} that converges to q pointwise, by the Lebesgue dominated convergence again,

the objective function of (29) is continuous and the feasible set is a closed subset of a compact set, and

hence is itself compact. Together, the problem (29) has a solution. This completes the proof. �

With Lemma 16, the price-controlling data broker’s revenue maximization problem can be solved ex-

plicitly.

Proof of Proposition 2. Recall that Q ⊂ [0, 1]C denotes the set of nonincreasing functions [0, 1]C . Using

(15) and Lemma 16, rewrite the price-controlling data broker’s problem (29) as

sup
q∈Q

∫
C

(∫ q(c)

0
(D−1

0 (q)− φG(c)) dq

)
G(dc)− π̄ (31)

s.t. π̄ +

∫ c

c
q(z) dz ≥ π̄ +

∫ c

c
D0(p0(z)) dz.

Let R∗ be the value of (31) and write objective function of (31) as

R(q) :=

∫
C

(∫ q(c)

0
(D−1

0 (q)− φG(c)) dq

)
G(dc)− π̄, ∀q ∈ Q.

Consider the dual problem of (31). That is, for any Borel measure µ on C, let

d(µ) := sup
q∈Q

[
R(q) +

∫
C

(∫ c

c
(q(z)−D0(p0(z))) dz

)
µ(dc)

]
and let

d∗ := inf
µ
d(µ),

where the infimum is taken over all Borel measures on C. Then clearly

d∗ ≥ R∗.

Moreover, if there exists a Borel measure µ∗ on C and a feasible choice q∗ ∈ Q of the primal problem (31)

such that d(µ∗) = R(q∗), then

R∗ ≤ d∗ ≤ d(µ∗) = R(q∗) ≤ R∗,

and hence q∗ ∈ Q is a solution of the primal problem (31). As a result, to solve (31), it suffices to find a

Borel measure µ∗ and a feasible q∗ ∈ Q such that q∗ is a solution of

sup
q∈Q

[
R(q) +

∫
C

(∫ c

c
(q(z)−D0(p0(z))) dz

)
µ∗(dc)

]
(32)
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and that ∫
C

(∫ c

c
(q∗(z)−D0(p0(z))) dz

)
µ∗(dc) = 0. (33)

To this end, define M∗ ∈ [0, 1]C as the following

M∗(c) := lim
z↓c

g(z)(φG(z)− p0(z))+, ∀c ∈ C. (34)

By definition, M∗ is right-continuous. Also, by Assumption 1, M∗ is nondecreasing and hence M∗ a CDF.

Let µ∗ be the Borel measure induced by M∗. Notice that supp(µ∗) = [c∗, c], where

c∗ := inf{c ∈ C : φG(c) > p0(c)}.

Notice that for any q ∈ Q, by interchanging the order of integrals,∫
C

(∫ c

c
(q(z)−D0(p0(z))) dz

)
µ∗(dc) =

∫
C
M∗(c)(q(c)−D0(p0(c))) dc

and therefore for any q ∈ Q,

R(q) +

∫
C

(∫ c

c
(q(z)−D0(p0(z))) dz

)
µ∗(dc)

=

∫
C

(∫ q(c)

0
(D−1

0 (q)− φG(c)) dq

)
G(dc)− π̄ +

∫
C
M∗(c)(q(c)−D0(p0(c))) dc

=

∫
C

(∫ q(c)

0
(D−1

0 (q)− φG(c)) dq

)
G(dc)− π̄ −

∫
C
M∗(c)D0(p0(c)) dc,

where φG := min{φG,p0}. As only the first term depends on the choice variable q, the solution of (32) is

the same as the solution of

sup
q∈Q

∫
C

(∫ q(c)

0
(D−1

0 (q)− φG(c)) dq

)
G(dc). (35)

To solve (35), consider first the case when G is regular so that φG is nondecreasing. In this case, notice

that for any q ∈ Q and for all c ∈ C,∫ q(c)

0
(D−1

0 (q)− φG(c)) dq ≤
∫ qφG (c)

0
(D−1

0 (q)− φG(c)) dq,

where for any function ψ,

qψ(c) := sup{y ∈ [0, 1] : D−1
0 (q) ≥ ψ(c)}.

Moreover, the function φG is nondecreasing since both φG and p0 are nondecreasing, also, the function D−1
0

is nonincreasing. As a result, qφG ∈ Q is a solution of (35) and thus is a solution of (32). Furthermore, by

definition, for any c ∈ C,

D0(φG(c)) = qφG(c)

In particular, since φG ≤ p0, qφG is feasible in the primal problem (31). That is, for any c ∈ C,

π̄ +

∫ c

c
qφG(z) dz ≥π̄ +

∫ c

c
D0(φG(z)) dz

≥π̄ +

∫ c

c
D0(p0(z)) dz.
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Finally, notice that since φG(c) = p0(c) for all c ∈ (c∗, c] and since M∗(c) = 0 for all c ∈ [c, c∗), the

complementary slackness condition (33) also holds for φG and µ∗. That is,∫
C
M∗(c)(qφG(c)−D0(p0(c))) dc =

∫ c

c∗
M∗(c)(D0(φG(c))−D0(p0(c))) dc

=

∫ c

c∗
M∗(c)(D0(p0(c))−D0(p0(c))) dc

=0.

Together, when G is regular, qφG ≡ D0 ◦ φG solves the primal problem (31).

Now consider the case for a general G, to solve (35) Let ϕG be the ironed virtual valuation. That is, ϕG

is defined by the following procedure: Let h : [0, 1]→ R+ be defined as

h(q) := φG(G−1(q)) = G−1(q) +
q

g(G−1(q))
.

and define H : [0, 1]→ R+, K : [0, 1]→ R+ as

H(q) :=

∫ q

0
h(s) ds

and

K := co(H).

Finally, for every q ∈ [0, 1] let k(q) := K ′(q). ϕG is then defined as

ϕG(c) := k(G(c)).

Also, let ϕG := min{ϕG,p0}. With this definition, notice that for any q ∈ Q,∫
C

(∫ q(c)

0
(D−1

0 (q)− φG(c)) dq

)
G(dc)

=

∫
C

(∫ q(c)

0
(D−1

0 (q)− ϕG(c)) dq

)
G(dc) +

∫
C

(ϕG(c)− φG(c))q(c)G(dc). (36)

Moreover, using integration by parts, since K(0) = H(0) and K(1) = H(1),∫
C

(ϕG(c)− φG(c))q(c)G(dc) =

∫
C

(ϕG(c)− φG(c))q(c)G(dc)

=−
∫
C

(K(G(c))−H(G(c)))q(dc) (37)

≤0,

where the first equality follows from the observation that φG(c) = ϕG(c) = φG(c) = ϕG(c) = p0(c) for all

c ≥ c∗, which is due to Assumption 1, and the inequality follows from the fact that K = co(H) and that q

is nonincreasing for any q ∈ Q.

On the other hand, notice that for any q ∈ Q and for all c ∈ C,∫ q(c)

0
(D−1

0 (q)− ϕG(c)) dq ≤
∫ qϕG (c)

0
(D−1

0 (q)− ϕG(c)) dq,
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and hence∫
C

(∫ q(c)

0
(D−1

0 (q)− ϕG(c)) dq

)
G(dc) ≤

∫
C

(∫ qϕG(c)

0
(D−1

0 (q)− ϕG(c)) dq

)
, ∀q ∈ Q.

In addition, since ϕG(c) = φG(c) = p0(c) for all c ∈ (c∗, c] and since K(G(c)) < H(G(c)) on an interval

[c1, c2] if and only if ϕG is a constant on that interval, which implies that qϕG is a constant on that interval,

it must be that ∫
C

(ϕG(c)− φG(c))qϕG(c)G(dc) = −
∫
C

(K(G(c))−H(G(c)))qϕG(dc) = 0. (38)

Together with (36) and (37), for any q ∈ Q,∫
C

(∫ q(c)

0
(D−1

0 (q)− φG(c)) dq

)
G(dc) ≤

∫
C

(∫ qϕG (c)

0
(D−1

0 (q)− φG(c)) dq

)
G(dc).

Also, since ϕG is nondecreasing by definition, qϕG is indeed a solution of (35) and hence a solution of (32).

Moreover, by definition, for any c ∈ C,

qϕG(c) = D0(ϕG(c)). (39)

Thus, since ϕG ≤ p0,

π̄ +

∫ c

c
qϕG(z) dz =π̄ +

∫ c

c
D0(ϕG(c)) dz

≥π̄ +

∫ c

c
D0(p0(z)) dz, ∀c ∈ C

and hence qϕG ∈ Q is feasible choice in the primal problem (31). Furthermore, since M∗(c) = 0 for all

c ∈ [c, c∗) and since ϕG(c) = p0(c) for all c ∈ (c∗, c], the complementary slackness condition (33) is also

satisfied. That is,∫
C
M∗(c)(qϕG(c)−D0(p0(c))) dc =

∫
C
M∗(c)(D0(ϕG(c))−D0(p0(c))) dc

=

∫ c

c∗
M∗(c)(D0(p0(c))−D0(p0(c))) dc

=0.

Together, qϕG ≡ D0 ◦ ϕG is indeed a solution of (31).

Finally, by (39), it then follows that

R∗ =

∫
C

(∫ qϕG (c)

0
(D−1

0 (q)− φG(c)) dq

)
G(dc)− π̄

=

∫
C

(∫ D0(ϕG(c))

0
(D−1

0 (q)− φG(c)) dq

)
G(dc)− π̄

=

∫
C

(∫
{v≥ϕG(c)}

(v − φG(c))D0(dv)

)
G(dc)− π̄.
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The see that any solution of the price-controlling data broker’s problem must induce ϕG(c)-quasi-perfect

price discrimination for G almost all c ∈ C, consider any optimal mechanism (σ, τ,γ) of the price-controlling

data broker. By optimality, it must be that EG[τ(c)] = R∗ and that the indirect utility of the producer with

marginal cost c is π̄. Also, by Lemma 14, it must be that

R∗ =EG[τ(c)]

=

∫
C

(∫
D

(∫
R+

(p− φG(c))D(p)γ(dp|D, c)
)
σ(dD|c)

)
G(dc)− π̄,

which implies that∫
C

(∫
D

(∫
R+

(p− φG(c))D(p)γ(dp|D, c)
)
σ(dD|c)

)
G(dc) =

∫
C

(∫
{v≥ϕG(c)}

(v − φG(c))D0(dv)

)
G(dc).

(40)

Thus, ∫
C

(∫
D

(∫
R+

(p− ϕG(c))D(p)γ(dp|D, c)
)
σ(dD|c)

)
G(dc)

+

∫
C

(ϕG(c)− φG(c))

(∫
D

(∫
R+

D(p)γ(dp|D, c)
)
σ(dD|c)

)
G(dc)

=

∫
C

(∫
D

(∫
R+

(p− φG(c))D(p)γ(dp|D, c)
)
σ(dD|c)

)
G(dc) (41)

=

∫
C

(∫
{v≥ϕG(c)}

(v − φG(c))D0(dv)

)
G(dc)

=

∫
C

(∫
{v≥ϕG(c)}

(v − ϕG(c))D0(dv)

)
G(dc) +

∫
C

(ϕG(c)− φG(c))D0(ϕG(c))G(dc)

where the second equality follows from (40). Moreover, since for any c ∈ C,∫
D

(∫
R+

(p− ϕG(c))D(p)γ(dp|D, c)
)
σ(dD|c)

≤
∫
D

max
p∈R+

[(p− ϕG(c))D(p)]σ(dD|c) (42)

≤
∫
V

(v − ϕG(c))+D0(dv),

it must be that∫
C

(ϕG(c)− φG(c))

(∫
D

(∫
R+

D(p)γ(dp|D, c)
)
σ(dD|c)

)
G(dc) ≥

∫
C

(ϕG(c)− φG(c))D0(ϕG(c))G(dc).
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Together with (37) and (38), we have∫
C

(φG(c)− φG(c))

(∫
D

(∫
R+

D(p)γ(dp|D, c)
)
σ(dD|c)

)
G(dc)

≥
∫
C

(ϕG(c)− φG(c))

(∫
D

(∫
R+

D(p)γ(dp|D, c)
)
σ(dD|c)

)
G(dc)

≥
∫
C

(ϕG(c)− φG(c))D0(ϕG(c))G(dc) (43)

=

∫
C

(φG(c)− φG(c))D0(ϕG(c))G(dc).

Furthermore, since φG(c) = p0(c) ≤ φG(c) for all c ∈ (c∗, c] and φG(c) = φG(c), by the definition of M∗

given by (34), and by using integration by parts, (43) is equivalent to∫
C

(∫ c

c

(∫
D

(∫
R+

D(p)γ(dp|D, z)
)
σ(dD|z)−D0(p0(z)

)
dz

)
M∗(dc) ≤ 0

Furthermore, since (σ, τ,γ) is individually rational, for any c ∈ C,∫ c

c

(∫
D

(∫
R+

D(p)γ(dp|D, z)
)
σ(dD|z)

)
dz ≥

∫ c

c
D0(p0(z)) dz.

Thus, ∫
C

(∫ c

c

(∫
D

(∫
R+

D(p)γ(dp|D, z)
)
σ(dD|z)−D0(p0(z))

)
dz

)
M∗(dc) = 0

and hence∫
C

(ϕG(c)− φG(c))

(∫
D

(∫
R+

D(p)γ(dp|D, c)
)
σ(dD|c)

)
G(dc) =

∫
C

(ϕG(c)− φG(c))D0(ϕG(c))G(dc),

which, together with (41), implies that∫
C

(∫
D

(∫
R+

(p− ϕG(c))D(p)γ(dp|D, c)
)
σ(dD|c)

)
G(dc)

=

∫
C

(∫
{v≥ϕG(c)}

(v − ϕG(c))D0(dv)

)
G(dc).

Moreover, by (42), it then follows that for G-almost all c ∈ C,∫
D

(∫
R+

(p− ϕG(c))D(p)γ(dp|D, c)
)
σ(dD|c) =

∫
V

(v − ϕG(c))+D0(dv), (44)

which implies that for G-almost all c ∈ C, (σ(c),γ(c)) must induce perfect price discrimination for the

economy where the producer’s marginal cost is ϕG(c), or equivalently, (σ(c),γ(c)) must induce ϕG(c)-quasi-

perfect price discrimination for G-almost all c ∈ C. This completes the proof. �
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D.2 Proof of Lemma 1

Proof of Lemma 1. For necessity, consider any incentive compatible mechanism (σ, τ). First notice that, by

Lemma 5, πD : C → R+ is convex and continuous on C for any D ∈ D and

π′D(c) = −D(pD(c))

for any p ∈ P and for almost all c ∈ C. Moreover, since for any D ∈ D and for any p ∈ P∣∣π′D(c)
∣∣ =

∣∣D(pD(c))
∣∣ ≤ 1,

for almost all c ∈ C, the order of integral and differential can be interchanged. That is, for any c, c′ ∈ C,

d

dc

∫
D
πD(c)σ(dD|c′) =

∫
D
π′D(c)σ(dD|c′) = −

∫
D
D(pD(c))σ(dD|c′). (45)

As such, if Π is defined as

Π(c, c′) :=

∫
D
πD(c)σ(dD|c′), ∀c, c′ ∈ C,

then Π(·, c′) is convex for all c′ ∈ C. Moreover, (45) implies that

Π1(c, c′) = −
∫
D
D(pD(c))σ(dD|c′), (46)

for any c′ ∈ C, any p ∈ P , and for almost all c ∈ C. Now let u(c, c′) := Π(c, c′) − t(c′) for all c, c′ ∈ C be

a producer’s interim expected profit if her report is c′ and marginal cost is c. By the Lebesgue dominated

convergence theorem, u(·, c′) is convex and absolutely continuous on C for all c′ ∈ C as πD is absolutely

continuous for all D ∈ D. Furthermore, since the mechanism (σ, τ) is incentive compatible,

U(c) := u(c, c) ≥ u(c, c′), ∀c, c′ ∈ C.

By the envelope theorem again,

U(c) = U(c)−
∫ c

c
u1(z, z) dz.

Moreover, since for any p ∈ P and for almost all c ∈ C,

u1(c, c) = Π1(c, c) = −
∫
D
D(pD(c))σ(dD|c), (47)

it must be that for any p ∈ P and for any c ∈ C,

Π(c, c)− τ(c) = U(c) = U(c) +

∫ c

c

∫
D
D(pD(z))σ(dD|z) dz.

Rearranging, and use the definition of Π, it follows that

τ(c) =

∫
D
πD(c)σ(dD|c)−

∫ c

c

∫
D
D(pD(z))σ(dD|z)− U(c),
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which proves assertion 1. Furthermore, by incentive compatibility, for any c, c′ ∈ C,

0 ≤U(c)− u(c, c′)

=U(c)− (Π(c, c′)− τ(c′))

=U(c)− (Π(c, c′)−Π(c′, c′))− U(c′)

=(U(c)− U(c′)) + (Π(c′, c′)−Π(c, c′))

=

∫ c′

c
(u1(z, z) + Π1(z, c′)) dz

=

∫ c′

c

(∫
D
D(pD(z))σ(dD|z)−

∫
D
D(pD(z))σ(dD|c′)

)
dz

=

∫ c′

c

(∫
D
D(pD(z))(σ(dD|z)− σ(dD|c′))

)
dz,

for any p ∈ P , where the forth equality follows from the fundamental theorem of calculus, and the last

equality follows from (46) and (47). This proves assertion 2.

Conversely, suppose that a mechanism (σ, τ) satisfies assertions 1 and 2. Then, for any c, c′ ∈ C,

(Π(c, c)− τ(c))− (Π(c, c′)− τ(c′))

=Π(c, c)− τ(c)− (Π(c, c′)−Π(c′, c′))− (Π(c′, c′)− τ(c′))

=

∫ c′

c

(∫
D
D(pD(z))σ(dD|z) + Π1(z, c′)

)
dz

=

∫ c′

c

(∫
D
D(pD(z))σ(dD|z)−

∫
D
D(pD(z))σ(dD|c′)

)
dz

=

∫ c′

c

(∫
D
D(pD(z))(σ(dD|z)− σ(dD|c′))

)
dz

≥0,

where the second equality follows from assertion 1 and the fundamental theorem of calculus, the last equality

follows from (46), and the last inequality follows from assertion 2. As such, the mechanism (σ, τ) is incentive

compatible. �

D.3 Proof of Lemma 2

Proof of Lemma 2. Given any nondecreasing function ψ ∈ RC+, and any ψ-quasi-perfect segmentation σ ∈ S,

suppose that for any c ∈ C,

ψ(z) ≤ pD(z),
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for Lebesgue almost all z ∈ [c, c] and for all D ∈ supp(σ(c)). Then, for any c, c′ ∈ C with c < c′,∫ c′

c

(∫
D
D(pD(z))(σ(dD|z)− σ(dD|c′))

)
dz

=

∫ c′

c

(∫
D
D(pD(z))σ(dD|z)−

∫
D
D(pD(z))σ(dD|c′)

)
dz

=

∫ c′

c

(
D0(ψ(z))−

∫
D
D(pD(z))σ(dD|c′)

)
dz

≥
∫ c′

c

(
D0(ψ(z))−

∫
D
D(ψ(z))σ(dD|c′)

)
dz

=

∫ c′

c
(D0(ψ(z))−D0(ψ(z))) dz

=0,

where the second equality follows from assertion 3 of Lemma 11, the inequality follows from (8), and the

third equality follows from σ(z) ∈ S for all z ∈ [c, c′]. Together with Lemma 12, this implies that∫ c′

c

(∫
D
D(pD(z))(σ(dD|z)− σ(dD|c′))

)
dz ≥ 0

for all c, c′ ∈ C. Therefore, by Lemma 1, there exists a transfer τ such that (σ, τ) is incentive compatible,

as desired. �

D.4 Proof of Lemma 3

Proof of Lemma 3. I first prove the lemma for D0 being a step function. Consider step function D ∈ D and

any ψ ∈ RC+ such that c ≤ ψ(c) ≤ pD(c) for all c ∈ C and fix any c ∈ C, let

V + := {v ∈ supp(D) : v ≥ ψ(c)}

and let

ĉ := inf{z ∈ C : pD(z) ≥ ψ(c)}.

Since pD is nondecreasing, it then follows pD(z) ≥ ψ(c) for all z ∈ [ĉ, c] and pD(z) ≤ ψ(c) for all z ∈ [c, ĉ).

Moreover, since ψ(c) ≤ pD(c), ĉ ≤ c. Furthermore, by definition of ĉ, it must be either ĉ = c or ĉ > c

and p
D

(ĉ) < ψ(c) ≤ pD(ĉ), since otherwise, if ĉ > c and p
D

(ĉ) ≥ ψ(c), then for ε > 0 small enough, as

|supp(D)| <∞, pD(ĉ−ε) = p
D

(ĉ) ≥ ψ(c), contradicting to the definition of ĉ. Consider first the case where

ĉ > c. In this case, for each v ∈ V +, define m̂v recursively as the following

m̂v(v′) :=


0, if v′ ≥ ψ(c) and v′ 6= v

mD(v′), if v′ = v

β∗(v|v′)mD(v′), if p
D

(ĉ) ≤ v′ < ψ(c)

α∗(v)mD(v′), if v′ < p
D

(ĉ)

, ∀v′ ∈ supp(D), ∀v ∈ V +,

where for all v ∈ V + and all v′ ∈ supp(D) s.t. p
D

(ĉ) ≤ v′ < ψ(c),

β∗(v|v′) :=
(v − ĉ)mD(v)− (v′ − ĉ)

∑
v̂>v′ m̂

v(v̂)∑
v≥ψ(c)

[
(v − ĉ)mD(v)− (v′ − ĉ)

∑
v̂>v′ m̂

v(v̂)
] ,
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and for all v ∈ V +,

α∗(v) :=

∑
v̂≥p

D
(ĉ) m̂

v(v̂)∑
v̂≥p

D
(ĉ)m

D(v̂)
.

By construction, ∑
v∈V +

α∗(v) =
∑
v∈V +

β∗(v|v′) = 1 (48)

for all v′ ∈ supp(D) with p
D

(ĉ) ≤ v′ < ψ(c). As such,∑
v∈V +

m̂v(v′) = mD(v′), ∀v′ ∈ supp(D). (49)

Notice that since ĉ ≤ p
D

(ĉ) < ψ(c) ≤ pD(ĉ), it must be that∑
v≥ψ(c)

(v − ĉ)mD(v) ≥
∑

v≥pD(ĉ)

(v − ĉ)mD(v) ≥ (pD(ĉ)− ĉ)D(pD(ĉ)) = (p
D

(ĉ)− ĉ)D(p
D

(ĉ)). (50)

Now consider any v′ ∈ supp(D) such that p
D

(ĉ) ≤ v′ < ψ(c). Notice first that

∑
v≥ψ(c)

[
(v − ĉ)mD(v)− (v′ − ĉ)

∑
v̂>v′

m̂v(v̂)

]

=
∑

v≥ψ(c)

(v − ĉ)mD(v)− (v′ − ĉ)
∑
v̂>v′

mD(v̂)

≥(p
D

(ĉ)− ĉ)D(p
D

(ĉ))− (v′ − ĉ)
∑
v̂>v

mD(v̂)

≥(v′ − ĉ)
∑
v̂≥v′

mD(v̂)− (v′ − ĉ)
∑
v̂>v′

mD(v̂)

=(v′ − ĉ)mD(v′)

≥0,

where the first equality follows from (49), the first inequality follows from (50), the second inequality follows

from the fact that p
D

(ĉ) ∈ PD(ĉ), and the last inequality follows from p
D

(ĉ) ≥ ĉ. As such, for any

v′ ∈ supp(D) with p
D

(ĉ) ≤ v′ < ψ(c) and for any v ∈ V +, if

(v − ĉ)mD(v)− (v′ − ĉ)
∑
v̂>v′

m̂v(v̂) ≥ 0,

then β∗(v|v′) ≥ 0 and

m̂v(v′) ≤
(v − ĉ)mD(v)− (v′ − ĉ)

∑
v̂>v′ m̂

v(v̂)

(v′ − ĉ)mD(v′)
mD(v′)

⇐⇒ (v′ − ĉ)m̂v(v′) + (v′ − ĉ)
∑
v̂>v′

m̂v(v̂) ≤ (v − ĉ)mD(v)

⇐⇒ (v′ − ĉ)
∑
v̂≥v′

m̂v(v̂) ≤ (v − ĉ)m̂v(v),

which in turn implies that

(v − ĉ)mD(v)− (v′′ − ĉ)
∑
v̂>v′′

m̂v(v̂) > (v − ĉ)mD(v)− (v′ − ĉ)
∑
v̂≥v′

m̂v(v̂) ≥ 0,
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where v′′ ∈ supp(D) is the largest element of {v̂ ∈ supp(D) : p
D

(ĉ) ≤ v̂ < v′}. Moreover, if v′ = max{v̂ ∈
supp(D) : p

D
(ĉ) ≤ v̂ < ψ(c)}, then clearly, for all v ∈ V +,

(v − ĉ)mD(v)−
∑
v̂>v′

m̂v(v′) = (v − v′)mD(v) ≥ 0.

Therefore, by induction, for any v′ ∈ supp(D) such that p
D

(ĉ) ≤ v′ < ψ(c), it must be that β∗(v|v′) ≥ 0 for

all v ∈ V + and that

(v′ − ĉ)
∑
v̂≥v′

m̂v(v̂) ≤ (v − ĉ)m̂v(v). (51)

Together with (48), this also ensures that

α∗ ∈ ∆(V +) (52)

and

β∗(v′) ∈ ∆(V +), (53)

for all v′ ∈ supp(D) such that p
D

(ĉ) ≤ v′ < ψ(c).

On the other hand, for any v′ ∈ supp(D) with v′ ≤ p
D

(ĉ) and any v ∈ V +, notice that by the definition

of α∗, ∑
v̂≥v′

m̂v(v̂) = α∗(v)
∑

v′≤v̂<p
D

(ĉ)

mD(v̂) +
∑

v̂≥p
D

(ĉ)

m̂v(v̂) = α∗(v)
∑
v̂≥v′

mD(v̂). (54)

Thus, for any v′ ∈ supp(D) with v′ < p
D

(ĉ) and any v ∈ V +,

(v′ − ĉ)
∑
v̂≥v′

m̂v(v̂) =α∗(v)(v′ − ĉ)D(v′)

≤α∗(v)(p
D

(ĉ)− ĉ)D(p
D

(ĉ))

=(p
D

(ĉ)− ĉ)
∑

v̂≥p
D

(ĉ)

m̂v(v̂) (55)

≤(v − ĉ)m̂v(v),

where both equalities follow from (54), the first inequality follows from the fact that p
D

(ĉ) ∈ PD(ĉ), and

the last inequality follows from (51) by taking v′ = p
D

(ĉ).

Moreover, by (54), for any z ∈ [c, ĉ), and any v ∈ V +, since pD(z) ≤ p
D

(ĉ), it must be that for all

v′ ≤ pD(z),

(v′ − z)
∑
v̂≥v′

m̂v(v̂) =α∗(v)(v′ − z)D(v′)

≤α∗(v)(p
D

(z)− z)D(p
D

(z)) (56)

=(p
D

(z)− z)
∑

v̂≥p
D

(z)

m̂v(v̂).

Finally, if ĉ = c, then define {m̂v}v∈V + as

m̂v(v′) :=


mD(v′), if v′ = v

0, if v′ ≥ ψ(c) and v′ 6= v

α∗(v)mD(v′), if v′ < ψ(c)

, ∀v′ ∈ V, v ∈ V +, v ≥ pD(c)
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and

m̂v(v′) :=

{
mD(v′), if v′ = v

0, if v′ 6= v
, ∀v′ ∈ V, v ∈ V +, ψ(c) ≤ v < pD(c)

where

α∗(v) :=
mD(v)∑

v′≥pD(c)m
D(v′)

.

Again, ∑
v≥pD(c)

α∗(v) = 1 (57)

and hence ∑
v∈V +

m̂v(v′) = mD(v′), ∀v′ ∈ V. (58)

Then, for any v ≥ pD(c) and any v′ ∈ supp(D) with v′ < ψ(c),

(v′ − c)
∑
v̂≥v′

m̂v(v′) = α∗(v)(v′ − c)D(v′) ≤ α∗(v)(pD(c)− c)D(pD(c)) ≤ (v − c)m̂v(v). (59)

Together, in both of the cases above, from the constructed {m̂v}v∈V + , for each v ∈ V +, let

mv(v′) :=
m̂v(v′)∑
v̂∈V m̂

v(v̂)
, ∀v′ ∈ supp(D)

and let Dv(p) := mv([p, v]). By (52), (53) and (57), in each case, Dv ∈ D for all v ∈ V +. Now define

σ(c) ∈ ∆f (D) by

σ(Dv|c) :=
∑
v′∈V

m̂v(v′), ∀v ∈ V +.

By (49) and (58), in each case, σ(c) ∈ SD. Furthermore, since mv is proportional to m̂v for all v ∈ V +,

(51), (55) and (59) ensure that in each case, σ(c) is a ψ(c)-quasi-perfect segmentation for ĉ. Meanwhile,

since ĉ ≤ c, σ(c) is also a ψ(c)-quasi-perfect segmentation for c. Finally, since mv is proportional to m̂v,

(56) implies that for any z ∈ [c, ĉ),

pD′(z) ≥ pD(z), ∀D′ ∈ supp(σ(c)).

In addition, by the conclusion that σ(c) is a ψ(c)-quasi-perfect segmentation for ĉ ≤ c, for any z ∈ [ĉ, c],

since c ≤ ψ(c) and since pD is nondecreasing for any D′ ∈ D,

pD′(z) ≥ pD′(ĉ) ≥ ψ(c), ∀D′ ∈ supp(σ(c)).

In particular, σ(c) is also a ψ(c)-quasi-perfect segmentation for c. Together with the fact that ψ is nonde-

creasing and that ψ ≤ pD, it then follows that for any z ∈ [c, c] and for any D ∈ supp(σ(c)), , ψ(z) ≤ pD(z).

Since c ∈ C is arbitrary, this ensures that there exists a ψ-quasi-perfect scheme σ ∈ SCD that satisfies (8).

Now consider any D0 ∈ D and any nondecreasing ψ ∈ RC+ with c ≤ ψ(c) ≤ p0(c) for all c ∈ C. I first

construct a sequence of step functions {Dn} ⊆ D such that {Dn} → D0 and that c ≤ ψ(c) ≤ pDn(c) for

all c ∈ C and for all n ∈ N. To this end, for each n ∈ N, first partition V by v = v0 < v1 < . . . < vn = v

and let Vk := [vk−1, vk]. Then define Dn by Dn(p) := D0(vk), for all p ∈ Vk, for all k ∈ {1, . . . , n} (i.e., by
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moving all the masses on interval Vk to the top vk). By construction, it must be that pDn(c) ≥ p0(c) for all

c ∈ C and for all n ∈ N and hence c ≤ ψ(c) ≤ pDn(c) for all c ∈ C and for all n ∈ N. Also, by construction,

{Dn} → D0, as desired.

As such, as shown above, for each n ∈ N, there exists a ψ-quasi-perfect scheme σn such that for all

c ∈ C,

ψ(z) ≤ pD(z)

for all D ∈ supp(σn(c)) and for all z ∈ [c, c]. Furthermore, according to Helly’s selection theorem, by possibly

taking a subsequence,24 {σn} → σ for some σ : C → ∆(D). By Lemma 13, σ ∈ SC and is a ψ-quasi-perfect

scheme.

It then remains to show that σ satisfies (8). To this end, fix any c ∈ C and consider any D ∈ supp(σ(c)),

by definition, for any δ > 0, σ(Nδ(D)|c) > 0.25 Furthermore, since σ(c) has at most countably many atoms,

there exists a sequence {δk} ⊂ (0, 1] such that {δk} → 0, σ(Nδk(D)|c) > 0 and σ(∂Nδk(D)|c) = 0 for all k ∈
N. As a result, since {σn(c)} → σ(c) under the weak-* topology, limn→∞ σn(Nδk(D)|c) = σ(Nδk(D)|c) > 0

for all k ∈ N. Thus, for each k ∈ N, there exists nk ∈ N such that σnk(Nδk(D)|c) > 0. Moreover, since

σn(c) has finite support as Dn is a step function and σn(c) ∈ SDn , there must be some Dnk ∈ Nδk(D) such

that Dnk ∈ supp(σnk(c)). Notice that for the subsequence {nk}, {Dnk} → D and Dnk ∈ supp(σnk(c)) for

all k ∈ N. As a result, together with Lemma 10, since σnk satisfies (8) for all k ∈ N, for Lebesgue almost all

z ∈ [c, c],

ψ(z) ≤ lim sup
k→∞

pDnk
(z) ≤ pD(z).

Since c ∈ C and D ∈ supp(σ(c)) are arbitrary, this completes the proof. �

D.5 Proof of Theorem 1

Proof of Theorem 1. I first show that the data broker’s optimal revenue must be the same as the price-

controlling data broker’s optimal revenue R∗. To see this, since c ≤ ϕG(c) ≤ p0(c) for all c ∈ C and

ϕG ∈ RC+ is nondecreasing, by Lemma 3, there exists a ϕG-quasi-perfect scheme σ∗ ∈ SC that satisfies (8).

Together with Lemma 2, there exists a transfer τ∗ such that (σ∗, τ∗) is incentive compatible. Moreover,

since σ ∈ SC is a ϕG-quasi-perfect scheme, by assertion 3 and assertion 4 of Lemma 11, for any c ∈ C,∫
D

(pD(c)− φG(c))D(pD(c))σ∗(dD|c) =

∫
{v≥ϕG(c)}

(v − φG(c))D0(dv). (60)

24See, for instance, Porter (2005) for a generalized version of Helly’s selection theorem. To apply this theorem,

notice that the family of functions {σn} is of bounded p-variation due to the quasi-perfect structure. Furthermore, for

any c ∈ C, the set cl({σn(c)}) is closed in a compact metric space ∆(D) and hence is itself compact. As such, there

exists a pointwise convergent subsequence of {σn}.
25 Nδ(D) is the δ-ball around D under the Lévy-Prokhorov metric on D.
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Also, by possibly adding a constant to the transfer τ∗, the indirect utility of the producer with cost c, U(c),

equals to π̄ under the mechanism (σ∗, τ∗). Thus, for any c ∈ C,∫
D
πD(c)σ∗(dD|c)− τ(c) =U(c) +

∫ c

c

(∫
D
D(pD(z))σ∗(dD|z)

)
dz

=π̄ +

∫ c

c
D0(ϕG(z)) dz

≥π̄ +

∫ c

c
D0(p0(z)) dz

=π0(c),

where the first equality follows from Lemma 1, the second equality follows from assertion 3 of Lemma 11, the

inequality follows from ϕG ≤ p0 and the last equality follows from (5). As a result, (σ∗, τ∗) is individually

rational and, together with (60) and Lemma 1,

E[τ∗(c)] =

∫
C

(∫
D

(pD(c)− φG(c))D(pD(c))σ∗(dD|c)
)
G(dc)− π̄

=

∫
C

(∫
{v≥ϕG(c)}

(v − φG(c))D0(dv)

)
G(dc)− π̄

=R∗,

as desired.

Since the data broker’s optimal revenue is R∗ and since (60) holds for any ϕG-quasi-perfect scheme σ,

by Lemma 1, any incentive feasible ϕG-quasi-perfect mechanism must give revenue R∗ and hence is optimal.

Conversely, to see why any optimal mechanism must be a ϕG-quasi-perfect mechanism, consider any

optimal mechanism (σ, τ). As it is optimal and incentive compatible, by Lemma 1,

R∗ = E[τ(c)] =

∫
C

(∫
D

(pD(c)− φG(c))D(pD(c))σ(dD|c)
)
G(dc)− π̄, (61)

for any p ∈ P . Also, since (σ, τ) is incentive compatible, for any p ∈ P , the function Dσ
p ∈ [0, 1]C , defined

as

Dσ
p(c) :=

∫
D
D(pD(c))σ(dD|c), ∀c ∈ C

is nonincreasing.26 Thus, by (37),∫
C
φG(c)

(∫
D
D(pD(c))σ(dD|c)

)
G(dc) ≥

∫
C
ϕG(c)

(∫
D
D(pD(c))σ(dD|c)

)
G(dc). (62)

Moreover, since (σ, τ) is individually rational, by Lemma 1, it must be that∫ c

c

(∫
D
D(pD(z))σ(dD|z)

)
dz ≥

∫ c

c
D0(p0(z)) dz, ∀c ∈ C. (63)

26To see this, notice that U is convex since it is a pointwise supremum of convex functions, which is because πD(c)

is convex for all D. Lemma 1 implies that the derivative of U is −Dσ
p and thus Dσ

p must be nonincreasing.
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Furthermore, since σ∗ is a ϕG-quasi-perfect scheme, Lemma 11 implies that, for all c ∈ C,

Dσ∗
p (c) =

∫
D
D(pD(c))σ∗(dD|c) = D0(ϕG(c)).

Together with (38) and (39), we have∫
C
ϕG(c)D0(ϕG(c))G(dc) =

∫
C
φG(c)D0(ϕG(c))G(dc). (64)

Now suppose that (σ, τ) is not a ϕG-quasi-perfect mechanism or it does not induce ϕG(c)-quasi-perfect

price discrimination for a positive G-measure of c, then there exists p ∈ P , a positive G-measure of c and

a positive σ(c)-measure of D ∈ D such that either pD(c) < pD(c), or D(c) > 0 and either #{v ∈ supp(D) :

v ≥ ϕG(c)} 6= 1 or max(supp(D)) /∈ PD(c), which imply that there is a positive G-measure of c and a

positive σ(c)-measure of D such that∫
{v≥ϕG(c)}

(v − ϕG(c))D(dv) ≥
∫
{v≥pD(c)}

(v − ϕG(c))D(dv)

=(pD(c)− ϕG(c))D(pD(c)) +

∫
{v≥pD(c)}

(v − pD(c))D(dv)

≥(pD(c)− ϕG(c))D(pD(c)),

with at least one inequality being strict. Therefore,∫
C

(∫
D

(pD(c)− ϕG(c))D(pD(c))σ(dD|c)
)
G(dc) <

∫
C

(∫
V

(v − ϕG(c))+D0(dv)

)
G(dc). (65)

Moreover, by (61), since∫
C

(∫
D

(pD(c)− ϕG(c))D(pD(c))σ(dD|c)
)
G(dc)

+

∫
C

(ϕG(c)− φG(c))

(∫
D
D(pD(c))σ(dD|c)

)
G(dc)

=

∫
D

(∫
D

(pD(c)− φG(c))D(pD(c))σ(dD|c)
)
G(dc)

=

∫
C

(∫
{v≥ϕG(c)}

(v − φG(c))D0(dv)

)
G(dc)

=

∫
C

(∫
V

(v − ϕG(c))+D0(dv)

)
G(dc) +

∫
C

(ϕG(c)− φG(c))D0(ϕG(c))G(dc),

together with, (65), it must be that∫
C

(φG(c)− φG(c))

(∫
D
D(pD(c))σ(dD|c)

)
G(dc)

≥
∫
C

(ϕG(c)− φG(c))

(∫
D
D(pD(c))σ(dD|c)

)
G(dc)

>

∫
C

(ϕG(c)− φG(c))D0(ϕG(c))G(dc)

=

∫
C

(φG(c)− φG(c))D0(ϕG(c))G(dc),
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where the first inequality follows from (62) and the equality follows from (64). Furthermore, since φG(c) =

φG(c) for all c ∈ [c, c∗] and φG(c) = ϕG(c) = p0(c) for all c ∈ (c∗, c], it then follows that∫ c

c∗
(φG(c)− p0(c))

(∫
D
D(pD(c))σ(dD|c)

)
G(dc) <

∫ c

c∗
(φG(c)− p0(c))D0(p0(c))G(dc),

Using integration by parts, this is equivalent to∫ c

c∗

(∫ c

c

(∫
D
D(pD(z))σ(dD|z)

)
dz

)
M∗(dc) <

∫ c

c∗

(∫ c

c
D0(p0(z)) dz

)
M∗(dc),

where M∗ is defined in (34). However, by (63) and by the fact that M∗ is a CDF of a Borel measure, which

is due to Assumption 1,∫ c

c∗

(∫ c

c

(∫
D
D(pD(z))σ(dD|z)

)
dz

)
M∗(dc) ≥

∫ c

c∗

(∫ c

c
D0(p0(z)) dz

)
M∗(dc),

a contradiction. Therefore, σ must be a ϕG-quasi-perfect scheme and must induce ϕG(c)-quasi-perfect price

discrimination for G-almost all c ∈ C. Together with Lemma 1, and the fact that U(c) = π̄ under any

optimal mechanism, (σ, τ) must be a ϕG-quasi-perfect mechanism. This completes the proof. �

D.6 Proof of Theorem 2

Notice that from the proof of Lemma 3, for any step function D ∈ D that is regular, by replacing ψ with

ϕG, the resulting scheme σ ∈ SCD must take form of

σ

(
D
ϕG(c)
v

∣∣∣∣c) =
mD(v)

D(ϕG(c))
(66)

for all c ∈ C and for all v ∈ [ϕG(c), v], where D
ϕG(c)
v is defined by (2) with D0 being replaced by D.

Now, for any regular D0 ∈ D, take a sequence of regular step functions {Dn} ⊆ D such that {Dn} → D0

and take the associated segmentation scheme σn defined by (66) for each n ∈ N. By the proof of Lemma 3,

{σn} → σ for some ϕG-quasi-perfect scheme σ ∈ SC that satisfies (8). Moreover, by the same argument as

in the proof of Lemma 3, for all c ∈ C and for all D ∈ supp(σ(c)), there exists a subsequence {Dnk} such

that Dnk ∈ supp(σnk(c)) and {Dnk} → D. This then implies that D(p) = D0(p) for every p ∈ [v, ϕG(c))

at which D0 is continuous. Finally, since σ(c) is a ϕG(c)-quasi-perfect segmentation for c, it must be that

for any p ∈ [ϕG(c), v], D(p) ∈ {D0(ϕG(c)), 0} and for any p ∈ [v, ϕG(c)), D(p) = D0(p), which means that

D = D
ϕG(c)
v for some v ∈ [ϕC(c), v] and

σ

({
D
ϕG(c)
v : v ≥ p

} ∣∣∣∣c) =
D0(p)

D0(ϕG(c))
(67)

for any p ∈ [ϕG(c), v], where D
ϕG(c)
v is defined by (2)

Finally, by the proof of Lemma 3, σ is a ϕG-quasi-perfect scheme satisfying (8) and hence, by Lemma 2,

there exists a transfer scheme τ such that (σ, τ) is incentive feasible. Thus, by Theorem 1, (σ, τ) is optimal,

and by (67), (σ, τ) is the canonical ϕG-quasi perfect mechanism.



71

E Proofs of Other Main Results

E.1 Proof of Theorem 3

Proof of Theorem 3. Let (σ, τ) be any optimal mechanism. By Theorem 1, (σ, τ) must be a ϕG-quasi-perfect

mechanism and induces ϕG-quasi-perfect price discrimination. Therefore, for G-almost all c ∈ C and for

σ(c)-almost all D ∈ D, D(p) = 0 for any p > pD(c) = max(supp(D)) and consumer surplus under (σ, τ) is∫
D

(∫
{v≥pD(c)}

(v − pD(c))D(dv)

)
σ∗(dD|c).

Using integration by parts, it then follows that∫
D

(∫
{v≥pD(c)}

(v − pD(c))D(dv)

)
σ∗(dD|c) =

∫
D

(∫ v

pD(c)
D(z) dz

)
σ∗(dD|c) = 0.

for G-almost all c ∈ C. Together,∫
C

(∫
D

(∫
{v≥pD(c)}

(v − pD(c))D(dv)

)
σ∗(dD|c)

)
G(dc)

=

∫
C

(∫
D

(∫ v

pD(c)
D(z) dz

)
σ∗(dD|c)

)
G(dc)

=0.

This completes the proof. �

E.2 Proof of Proposition 1

Proof of Proposition 1. By Theorem 1, the data broker’s optimal revenue is

R∗ =

∫
C

(∫
{v≥ϕG(c)}

(v − φG(c))D0(dv)

)
G(dc)− π̄.

On the other hand, since P0(c) is a singleton for (Lebesgue)-almost all c ∈ C and since G is absolutely

continuous, consumer surplus under uniform pricing is∫
C

(∫
{v≥p0(c)}

(v − p0(c))D0(dv)

)
G(dc).

Furthermore, for any c ∈ C,∫
{v≥ϕG(c)}

(v − φG(c))D0(dv) =

∫
{v≥p0(c)}

(v − φG(c))D0(dv) +

∫
[ϕG(c),p0(c))

(v − φG(c))D0(dv). (68)
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Notice first that for any c ∈ C,∫
{v≥p0(c)}

(v − φG(c))D0(dv)−
∫
{v≥p0(c)}

(v − p0(c))D0(dv)− π̄

=(p0(c)− φG(c))D0(p0(c))− π̄

=π0(c)− G(c)

g(c)
D0(p0(c))− π̄

=

∫ c

c
D0(p0(z)) dz − G(c)

g(c)
D0(p0(c)),

and thus ∫
C

(∫
{v≥p0(c)}

(v − φG(c))D0(dv)−
∫
{v≥p0(c)}

(v − p0(c))D0(dv)

)
G(dc)− π̄

=

∫
C

(∫ c

c
D0(p0(z)) dz − G(c)

g(c)
D0(p0(c))

)
G(dc) (69)

=

∫
C
G(c)(D0(p0(c))−D0(p0(c))) dc

=0.

On the other hand, for any c ∈ C,∫
[ϕG(c),p0(c))

(v − φG(c))D0(dv)

=

∫
[ϕG(c),p0(c))

(v − ϕG(c))D0(dv) + (ϕG(c)− φG(c))(D0(ϕG(c))−D0(p0(c))),

and thus, ∫
C

(∫
[ϕG(c),p0(c))

(v − φG(c))D0(dv)

)
G(dc)

=

∫
C

(∫
[ϕG(c),p0(c))

(v − ϕG(c))D0(dv)

)
G(dc)

+

∫
C

(ϕG(c)− φG(c))(D0(ϕG(c))−D0(p0(c)))G(dc)

≥
∫
C

(ϕG(c)− φG(c))(D0(ϕG(c))−D0(p0(c)))G(dc) (70)

=

∫
C

(ϕG(c)− φG(c))D0(ϕG(c))G(dc)−
∫
C

(ϕG(c)− φG(c))D0(p0(c)))G(dc)

≥0,
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where the first inequality follows from ϕG = min{ϕG,p0} and the second inequality follows from the fact

that p0 is nondecreasing, (37) and (38). Together, combining (68), (69) and (70),∫
C

(∫
{v≥ϕG(c)}

(v − φG(c))D0(dv)

)
G(dc)− π̄ −

∫
C

(∫
{v≥p0(c)}

(v − p0(c))D0(dv)

)
G(dc)

=

∫
C

(∫
{v≥p0(c)}

(v − φG(c))D0(dv)−
∫
{v≥p0(c)}

(v − p0(c))D0(dv)

)
G(dc)− π̄

+

∫
C

(∫
[ϕG(c),p0(c))

(v − φG(c))D0(dv)

)
G(dc)

≥0,

as desired. �

E.3 Proof of Lemma 4

To prove Lemma 4, first notice that by the revelation principle, it is without loss to restrict attention to

the collection of incentive feasible mechanisms (q, t), where q(c) stands for the quantity purchased for each

report c ∈ C and t(c) stands for the amount of payment from the exclusive retailer to the producer for each

report c ∈ C. (q, t) is incentive compatible if for any c, c′ ∈ C,

t(c)− cq(c) ≥ t(c′)− cq(c′) (IC**)

and is individually rational if for any c ∈ C,

t(c)− cq(c) ≥ πD0(c).

The exclusive retailer’s problem is then to choose (q, t) to maximize∫
C

[R̄(q(c))− t(c)]G(dc)

subject to (IC**) and (IR**), where R̄ is defined by (26).

Proof of Lemma 4. Consider the exclusive retailer’s problem. First notice that by standard arguments,

(q, t) is incentive compatible if and only if q is nonincreasing and there exists a constant t̄ such that

t(c) = cq(c) +

∫ c

c
q(z) dz − t̄,

for all c ∈ C. Moreover, any incentive compatible mechanism must give the producer indirect utility

U(c) +

∫ c

c
q(z) dz

when her cost is c ∈ C. Together, the exclusive retailer’s profit maximization problem can be wirtten as

max
q∈Q

∫
C

[R̄(q(c))− φG(c)q(c)]G(dc)

s.t. π̄ +

∫ c

c
q(z) dz ≥ π̄ +

∫ c

c
D0(p0(z)) dz. (71)
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Furthermore, by Lemma 15, the objective function of (71) can be written as∫ q(c)

0
(D−1

0 (q)− φG(c))G(dc).

Thus, together with Lemma 16, the exclusive retailer’s profit maximization problem is equivalent to the

price-controlling data broker’s revenue maximization problem. This completes the proof. �

E.4 Proof of Theorem 7

Proof of Theorem 7. By Lemma 4, it suffices to prove outcome-equivalence between data brokership and

price-controlling data brokership. By Proposition 2 and Theorem 1, both the exclusive retailer and the data

broker have optimal revenue R∗. Furthermore, for any optimal mechanism (σ, τ) of the data broker and any

optimal mechanism (σ̂, τ̂ , γ̂) of the price-controlling data broker, both of them must induce ϕG(c)-quasi-

perfect price discrimination for G-almost all c ∈ C. In particular, for G-almost all c ∈ C, all the consumers

with v ≥ ϕG(c) buys the product by paying their values and all the consumers with v < ϕG(c) do not buy

the product. Thus, the consumer surplus and the allocation of the product induced by (σ, τ) and (σ̂, τ̂ , γ̂)

are the same.

In addition, for the data broker’s optimal mechanism (σ, τ), Theorem 1 implies that σ must be a ϕG-

quasi-perfect scheme and hence by Lemma 11, for G-almost all c ∈ C,∫
D
D(pD(c))σ(dD|c) = D0(ϕG(c))

and ∫
D

(pD(c)− φG(c))D(pD(c))σ(dD|c) =

∫
{v≥ϕG(c)}

(v − φG(c))D0(dv).

Therefore, for Lebesgue almost all c ∈ C, by Lemma 1,∫
D
πD(c)σ(dD|c)− τ(c) =π̄ +

∫ c

c

(∫
D
D(pD(z))σ(dD|z)

)
dz

=π̄ +

∫ c

c
D0(ϕG(z)) dz. (72)

On the other hand, for the price-controlling data broker’s optimal mechanism (σ̂, τ̂ , γ̂), since it induces

ϕG(c)-quasi-perfect price discrimination for almost all c ∈ C, it must be that,∫
D

(∫
R+

D(p)γ̂(dp|D, c)
)
σ̂(dD|c) = D0(ϕG(c)),

for G-almost all c ∈ C. Together with (44), we have∫
D

(∫
R+

(p− φG(c))D(p)γ̂(dp|D, c)
)
σ̂(dD|c) =

∫
{v≥ϕG(c)}

(v − φG(c))D0(dv).

Therefore, by Lemma 14, for any c ∈ C,∫
D

(∫
R+

(p− c)D(p)γ̂(dp|D, c)
)
σ̂(dD|c)− τ̂(c)

=π̄ +

∫ c

c

(∫
D

(∫
R+

D(p)γ̂(dp|D, z)
)
σ̂(dD|z)

)
dz

=π̄ +

∫ c

c
D0(ϕG(z)) dz.
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Thus, the producer’s profit under both (σ, τ) and (σ̂, τ̂ , γ̂) are the same. This completes the proof. �

F Proofs for Extensions

F.1 Proof of Theorem 8

Proof of Theorem 8. For each θ ∈ Θ, write supp(Dθ) as [l(θ), u(θ)]. Also, for any p ∈ V , let θp be the

unique θ such that p ∈ (l(θ), u(θ)]. Notice that since {(l(θ), u(θ))}θ∈Θ is disjoint, for any β ∈ ∆(Θ), any

θ ∈ Θ, and any p ∈ supp(Dβ),

Dβ(p) =
∑

{θ′:u(θ′)≥u(θp)}

Dθ′(p)β(θ′) = Dθ(p)β(θ) +
∑

{θ′:u(θ′)>u(θp)}

β(θ′).

In particular, different prices set in supp(Dθ) does not affect the probability of trade through θ′ ∈ Θ such

that u(θ′) > u(θ).

As a result, the construction in the proof of Lemma 3 is still valid, with the demands being replaced by

Dβ. Specifically, for any β ∈ ∆(Θ) and any c ∈ C, there exists {βi}ni=1 ⊆ ∆f (V ) such that:

1. β ∈ co({βi}ni=1).

2. For each i ∈ {1, . . . , n}, the set

{θ ∈ supp(βi)|u(θ) ≥ pDβi (c)}

is nonempty and is a singleton.

3. For each i ∈ {1, . . . , n},
PDβi (c)

⋂
supp(Dθ̄βi

) 6= ∅,

where θ̄βi := max{u(θ) : θ ∈ supp(βi)}.

4. For each i ∈ {1, . . . , n} and any z ∈ [c, c],

pDβi
(z) ≥ pDβ (z).

This further implies that, by Lemma 11, and by the same argument as in the proof of Lemma 2, for any

β ∈ ∆(Θ), there exists σβ ∈ ∆f (∆(Θ))C such that

5. For any c ∈ C, ∑
β′∈supp(σβ(c))

(pDβ′ (c)− pDβ (c))Dβ′(pD′β
(c))σβ(β′|c)

=
∑

{θ:u(θ)≥θ(pDβ (c))}

(pDθ(c)− pDβ (c))Dθ(pDθ(c))β(θ).

6. For any c ∈ C,
∑

β′∈supp(σβ(c))Dβ′(pDβ′ (c))σ
β(β′|c) = Dβ(pDβ (c)).

7. For any c ∈ C,
∑

β′∈supp(σβ(c)) β
′σβ(β′|c) = β.
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8. For any β′ ∈ supp(σβ(c′)),

pDβ′ (c) ≥ pDβ (c),

for any c, c′ ∈ C such that c < c′ and∑
β′∈supp(σβ(c))

Dβ′(pDβ′ (c))σ
β(β′|c) ≥ D(pDβ (c)),

for any c, c′ ∈ C such that c > c′.

Now consider any mechanism (σ, τ). Suppose that there is a selection p ∈ P and a positive G-measure

of c such that there exists some β ∈ supp(σ(c)) and with

{θ ∈ supp(β) : u(θ) > u(θpDβ (c))} 6= ∅. (73)

Then, for such p ∈ P , c ∈ C and β ∈ supp(σ(c)), there exists σβ(c) ∈ ∆f (∆(Θ)) such that assertions 5

through 8 above hold. In particular, assertions 5 and 6 imply that∑
β′∈supp(σβ(c))

(pDβ′ (c)− φG(c))Dβ′(pDβ′ (c))σ
β(β′|c)

=
∑

β′∈supp(σβ(c))

(pDβ′ (c)− pDβ (c))Dβ′(pDβ′ (c))σ
β(β′|c) + (pDβ (c)− φG(c))Dβ(pDβ (c))

≥
∑

{θ:u(θ)≥u(θpDβ
(c))}

(pDθ(c)− pDβ (c))Dθ(pDθ(c))β(θ) + (pDβ (c)− φG(c))Dβ(pDβ (c))

>(pDβ (c)− φG(c))Dβ(pDβ (c)),

where the second equality follows from 5 and 6 and the inequality is strict due to (73).

As such, together with assertion 7, σβ(c) induces another segmentation σ̂(c) through

σ̂(β̂|c) :=
∑

β∈supp(σ(c))

σβ(β̂|c)σ(β|c), ∀β̂ ∈
⋃

β∈supp(σ(c))

supp(σβ(c))

As (73) holds with positive G-measure of c ∈ C, the induced segmentation scheme σ̂ ∈ ∆f (∆(Θ))C strictly

improves the data broker’s revenue. Finally, as argued in the proof of Theorem S1 in the Supplemental

Material, assertions 6 and 8 above and Lemma 1 ensure that there exists a transfer τ̂ such that (σ̂, τ̂) is

incentive compatible and individually rational and strictly improves the data broker’s revenue.

Together, any optimal mechanism (σ, τ) must be such that for G-almost all c ∈ C and for all β ∈
supp(σ(c)),

{θ ∈ supp(β) : u(θ) > u(θpDβ (c))} = ∅.

which, together with the fact that
∑

β∈supp(σ(c)) σ(β|c) = β0 for all c ∈ C, implies that for G-almost all

c ∈ C, the consumer surplus must be lower than the case when all the information about θ is revealed. �

F.2 Proof of Theorem 9

To prove Theorem 9, I first introduce two useful lemmas.

https://kaihaoyang.com/wp-content/uploads/2019/10/Optimal-Market-Segmentaion-Design-and-its-Consequences-Supplemental-Materials.pdf
https://kaihaoyang.com/wp-content/uploads/2019/10/Optimal-Market-Segmentaion-Design-and-its-Consequences-Supplemental-Materials.pdf
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Lemma 17. For any c ∈ C, any ν ≥ c and any segmentation s ∈ ∆f (∆(Θ)),∫
∆(Θ)

(pDβ (c)− ν)Dβ(pDβ (c))s(dβ) ≤
∫
{θ:pDθ (c)≥ν}

(pDθ(c)− ν)Dθ(pDθ)β0(dθ),

Proof. I first show that for any segmentation s ∈ ∆f (∆(Θ)), there must exist another segmentation ŝ such

that for any β ∈ supp(ŝ), either β({θ : u(θ) < c}) = 1 or pDβ (c) = pDθ̄β
(c) and∫

∆(Θ)
(pDβ − ν)D(pβ(c))s(dβ) ≤

∫
∆(Θ)

(pDβ − ν)D(pβ(c))ŝ(dβ),

where θ̄β := max(supp(β)). Indeed, consider any segmentation s ∈ ∆f (∆(Θ)). For any β ∈ supp(s), by

definition, it must be that supp(β) ∩ {θ ∈ Θ : u(θ) ≥ pDβ (c)} 6= ∅. Now define β̂θ as

β̂θ(θ′) :=


β(θ), if θ′ ≤ pDβ (c)∑

{θ̂:u(θ̂)≥pDβ (c)} β(θ̂), if θ′ = θ

0, otherwise

,

for any θ′ ∈ supp(β) and for any θ ∈ supp(β) with u(θ) ≥ pDβ (c). Notice that by construction, β ∈
co({β̂θ}θ≥pDβ (c)) and hence there exists Kβ ∈ ∆f (∆(Θ)) such that β =

∑
β̂K

β(β̂). Therefore, by splitting

every β according to Kβ, and by the same arguments as in the proof of Lemma 3, the resulting segmentation

ŝ ∈ ∆f (Θ) must be such that for any β̂ ∈ supp(ŝ), pDβ̂
(c) is in the interval described by max(supp(β̂)).

Moreover, since {(l(θ), u(θ))}θ∈Θ is disjoint, it follows that pDθ̄
β̂

(c) = pDβ̂
(c). Furthermore, since for any

β ∈ supp(s),

(pDβ (c)− ν)Dβ(pβ(c)) =(pDβ (c)− ν)
∑

{θ:u(θ)≥pDβ (c)}

Dθ(pβ(c))β(θ)

≤
∑

{θ:u(θ)≥pDβ (c)}

(pDθ(c)− ν)Dθ(pDθ(c))β(θ)

=
∑

β̂∈supp(Kβ)

(pDβ̂
(c)− ν)Dβ̂(pDβ̂

(c))Kβ(β̂).

As a result, since ŝ(β̂) =
∑

βK
β(β̂)s(β), it then follows that∫

∆(Θ)
(pDβ (c)− ν)Dβ(pDβ (c))s(dβ) ≤

∫
∆(Θ)

(pDβ (c)− ν)Dβ(pDβ (c))ŝ(dβ).

Finally, since for any β ∈ supp(ŝ), either β({θ : u(θ) < c}) = 1 or pDβ (c) = pDθ̄β
(c), it must be that∫

∆(Θ)
(pDβ (c)− ν)Dβ(pDβ (c))ŝ(dβ) ≤

∫
{θ:pDθ (c)≥ν}

(pDθ(c)− ν)Dθ(pDθ(c))β0(dθ),

as desired. �

Lemma 18. Suppose that D0 is regular. For any c ∈ C and for any ν ∈ [c,p0(c)],

D0(p0(c)) ≤
∑

{θ:u(θ)≥ν}

Dθ(pDθ(c))β0(θ) (74)
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and

D0(p0(c)) ≥
∑

{θ:l(θ)≥p0(c)}

Dθ(pDθ(c))β0(θ). (75)

Proof. Consider any c ∈ C. I first show that for any θ ∈ Θ such that l(θ) ≥ p0(c), pDθ(c) = l(θ). Indeed,

since D0 is regular, for any θ ∈ Θ such that l(θ) ≥ p0(c) and for any p ∈ (l(θ), u(θ)],

(p− c)

Dθp(p)β0(θp) +
∑

{θ′:l(θ′)≥p}

β0(θ′)


=(p− c)

∑
{θ′:u(θ′)≥p}

Dθ′(p)β0(θ′)

=(p− c)D0(p)

≤(l(θ)− c)D0(l(θ))

=(l(θ)− c)

 ∑
{θ′:u(θ′)≥l(θ)}

Dθ′(l(θ))β0(θ′)


=(l(θ)− c)

Dθ(l(θ))β0(θ) +
∑

{θ′:l(θ′)≥l(θ)β0(θ′)}

 .
As such, since p ∈ (l(θ), u(θ)] and u(θp) = u(θ), it must be that

(p− c)Dθ(p) < (l(θ)− c)Dθ(l(θ)),

which then implies that pDθ(c) = l(θ).

Now, I show that p0(c) ≥ p̂0(c) := pDθp0(c)
(c). Indeed, by definitions,

=(p̂0(c)− c)

Dθp0(c)
(p̂0(c))β0(θp0(c)) +

∑
{θ′:l(θ′)≥p̂0(c)}

β0(θ′)


=(p̂0(c)− c)D0(p̂0(c))

≤(p0(c)− c)D0(p0(c))

=(p0(c)− c)

Dθp0(c)
(p0(c)) +

∑
{θ′:l(θ′)≥p0(c)}

β0(θ′)

 ,
and

(p0(c)− c)Dθp0(c)
(p0(c)) ≤ (p̂0(c)− c)Dθp(c)

(p̂0(c)).

As a result, it must be that p̂0(c) ≤ p0(c).

Consequently, ∑
{θ:l(θ)≥p0(c)}

Dθ(pθ(c))β0(θ) =
∑

{θ:l(θ)≥p0(c)}

β0(θ)

≤
∑

{θ:l(θ)≥p0(c)}

β0(θ) +Dθp0(c)
(p0(c))β0(θp0(c))

≤D0(p0(c)),
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which proves (75). On the other hand, for any ν ∈ [c,p0(c)]∑
{θ:u(θ)≥ν}

Dθ(pDθ(c))β0(θ)

=
∑

{θ:ν≤u(θ)<p0(c)}

Dθ(pDθ(c))β0(θ) +
∑

{θ:u(θ)≥p0(c)}

Dθ(pDθ(c))β0(θ)

≥
∑

{θ:u(θ)≥p0(c)}

Dθ(pDθ(c))β0(θ)

=Dθp0(c)
(p̂0(c)) +

∑
{θ′:l(θ′)≥p0(c)}

Dθ′(l(θ
′))β0(θ′)

≥Dθp0(c)
(p0(c)) +

∑
{θ′:l(θ′)≥p0(c)}

β0(θ′)

=D0(p0(c)),

which proves (74) �

Proof of Theorem 9. To prove Theorem 9, first notice that Lemma 1 still applies and hence the data broker’s

maximization problem can be written as

max
σ

∫
C

(∫
∆(Θ)

(pDβ (c)− φG(c))Dβ(pDβ (c))σ(dβ|c)

)
G(dc)

s.t.

∫ c′

c

(
Dβ(pβ(z))(σ(dβ|z)− σ(dβ|c′))

)
dz ≥ 0, ∀c, c′ ∈ C (76)

π̄ +

∫ c

c

(∫
∆(Θ)

Dβ(pβ(z))σ(dβ|z)

)
dz ≥ π̄ +

∫ c

c
D0(p0(z)) dz, ∀c ∈ C,

where the maximum is taken over all σ : C → ∆(∆(Θ)) such that σ(c) is a segmentation for all c ∈ C.

Consider first a relaxed problem of (76) where the first constraint is relaxed to Dσ ∈ [0, 1]C being

nonincreasing, where

Dσ(c) :=

∫
∆(Θ)

Dβ(pDβ (c))σ(dβ|c),

for all c ∈ C. By the same duality argument as in the proof of Lemma 16, it suffices to find a feasible σ∗

and a Borel measure µ∗ on C such that

σ∗ ∈ argmax
σ∈Σ

[ ∫
C

(∫
∆(Θ)

(pDβ (c)− φG(c))Dβ(pDβ (c))σ(dβ|c)

)
G(dc)

+

∫
C

(∫ c

c

(∫
∆(Θ)

Dβ(pβ(z))σ(dβ|z)−D0(p0(z))

)
dz

)
µ∗(dc)

]
,

where Σ is the collection of segmentation schemes such that Dσ is nonincreasing, and that∫
C

(∫ c

c

(∫
∆(Θ)

Dβ(pDβ (z))σ∗(dβ|z)−D0(p0(z))

)
dz

)
µ∗(dc) = 0.

To this end, let M∗ be defined as

M∗(c) := lim
c′↓c

g(c)(φG(c)− p̂0(c))+.
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Since c 7→ g(c)(φG(c) − p̂0(c))+ in nondecreasing, M∗ is nondecreasing and right-continuous and hence

induced a Borel measure µ∗ with supp(µ∗) = [c∗, c] for some c∗ ≤ c. Then, by the same arguments as in the

proof of Lemma 16 (in particular, the definition of ϕ̂G, (37) and (38)),

max
σ∈Σ

[ ∫
C

(∫
∆(Θ)

(pDβ (c)− φG(c))Dβ(pDβ (c))σ(dβ|c)

)
G(dc)

+

∫
C

(∫ c

c

(∫
∆(Θ)

Dβ(pβ(z))σ(dβ|z)−D0(p0(z))

)
dz

)
µ∗(dc)

]
is equivalent to

max
σ∈Σ

∫
C

(∫
∆(Θ)

(pDβ (c)− ϕ̂G(c))Dβ(pDβ (c))σ(dβ|c)

)
G(dc). (77)

To solve (77), notice that for any c ∈ [c, c∗),∑
{θ:u(θ)≥ϕ̂G(c)}

Dθ(pDθ(c)) > D0(p0(c)),

which is due to ϕ̂G(c) = ϕG(c) ≤ p̂0(c) ≤ p0(c) and (75). On the other hand, for any c ∈ (c∗, c], there exists

a unique λ(c) such that

λ(c)Dθϕ̂G(c)
(p̂0(c)) +

∑
{θ:l(θ)≥ϕ̂G(c)}

Dθ(pDθ(c)) = D0(p0(c)),

which is due to the fact that ϕ̂G(c) = p̂0(c) for all c ∈ (c∗, c] and (74). Furthermore, Since D0 is regular, for

any θ ∈ Θ such that u(θ) ≥ ϕ̂G(c) and for any p ≤ l(θϕ̂G(c)),

(p− c)Dβθ
ϕ̂G(c)

(p) =
∑

{θ′:u(θ′)≥u(θp)}

(p− c)Dθ′(p)β
θ
ϕ̂G(c)(θ

′)

=(p− c)D0(p)

≤(l(θϕ̂G(c))− c)D0(l(θϕ̂G(c)))

≤(l(θ)− c)D0(l(θϕ̂G(c))) (78)

=(l(θ)− c)
∑

{θ′:u(θ′)≥ϕ̂G(c)}

βθϕ̂G(c)(θ
′)

=(l(θ)− c)Dβθ
ϕ̂G(c)

(l(θ))

=(pDθ(c)− c)Dβθ
ϕ̂G(c)

(pDθ(c)),

where βθϕ̂G(c) is defined in (11). In addition, by the same construction as in the proof of Lemma 3, for any

c ∈ (c∗, c], there exists a segmentation σ̃(c) ∈ ∆f (∆(Θ)) such that supp(σ̃(c)) = {β̃θp̂0(c) : l(θ) ≥ p̂0(c)}, with

β̃θp̂0(c) satisfying (12) and (13) and that

(p− c)Dβ̃θ
p̂0(c)

(p) ≤ (l(θ)− c)Dθ(l(θ)) = (pDθ(c)− c)Dθ(pDθ(c)) (79)

for all θ ∈ Θ such that l(θ) ≥ p0(c), as well as

pD
β̃θ
p̂0(c)

(z) ≥ pD0
(z) ≥ p̂0(z) (80)
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for all z ∈ [c, c] and for all θ ∈ Θ such that l(θ) ≥ p0(c).

Now define σ∗ as follows.

σ∗(c) :=

{
σ1(c), if c ∈ [c, c∗]

σ2(c), if c ∈ (c∗, c]
,

where

σ1(βθϕG(c)|c) :=
β0(θ)∑

{θ′:u(θ′)≥ϕG(c)} β0(θ′)

for all c ∈ [c, c∗] and for all θ ∈ Θ such that u(θ) ≥ ϕG(c), whereas

σ2(β|c) :=


λ(c) β0(θ)∑

{θ′:u(θ′)≥p̂0(c)} β0(θ′) , if β = βθp̂0(c), u(θ) ≥ p̂0(c)

(1− λ(c))σ̃(β̃θp̂0(c)|c), if β = β̃θp̂0(c), l(θ) ≥ p̂0(c)

0, otherwise

,

for all c ∈ (c∗, c]. It then follows that, by (78) and (79),∫
C

(∫
∆(Θ)

(pDβ (c)− ϕ̂G(c))Dβ(pDβ (c))σ∗(dβ|c)

)
G(dc)

=

∫
C

 ∑
{θ:pDθ (c)≥ϕ̂G(c)}

(pDθ(c)− ϕ̂G(c))Dθ(pDθ(c))β0(θ)

G(dc),

which, together with Lemma 17, implies that σ∗ is a solution of (77).

Furthermore, for any c > c∗, by the definition of σ2(c) and λ(c), by (78) and (79), and by the fact that

ϕ̂G(c) = p̂0(c), ∫
∆(Θ)

Dβ(pβ(c))σ∗(dβ|c) = D0(p0(c)).

Therefore, ∫
C

(∫ c

c

(∫
∆(Θ)

Dβ(pβ(z))σ∗(dβ|z)−D0(p0(z))

)
dz

)
µ∗(dc) = 0.

Finally, by definition of ϕ̂G and by Lemma 18,∫
∆(Θ)

Dβ(pβ(c))σ∗(dβ|c) ≥ D0(p0(c))

for all c ∈ [c, c∗). Together with monotonicity of ϕ̂G, σ∗ ∈ Σ and is a solution of the relaxed problem of

(76).

It then suffices to show that σ∗ is implementable. Notice that for any c ∈ C and for any z ∈ [c, c] and

for any βθϕ̂G(c) ∈ supp(σ∗(c)), if

PD
βθ
ϕ̂G(c)

(z) ∩ supp(Dθ) = ∅,

then it must be that

(p− z)D0 =(p− z)Dβθ
ϕ̂G(c)

(p)

≤(pD
βθ
ϕ̂G(c)

(z)− z)Dβθ
ϕ̂G(c)

(pD
βθ
ϕ̂G(c)

(z))

=(pD
βθ
ϕ̂G(c)

(z)− z)D0(pD
βθ
ϕ̂G(c)

(z)),
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for all p ≤ pD
βθ
ϕ̂G(c)

(z). Therefore,

pD
βθ
ϕ̂G(c)

(z) ≥ p0(z) ≥ p̂0(z) ≥ ϕ̂G(z),

for all z ∈ [c, c]. Together with (80), by the same argument as the proof of Lemma 2, σ∗ is indeed

implementable. This completes the proof. �

F.3 Proof of Theorem 10

Before proving Theorem 10. I first introduced the counterpart of Lemma 1 when targeting is available. The

proof of this result is entirely analogous to the proof of Lemma 1 and therefore omitted.

Lemma 19. A mechanism (σ, τ, q) is incentive compatible if and only if there exists constants {τ j}j∈J ⊂ R
such that for all j ∈ J and for all cj , c

′
j ∈ Cj,

1.

Ec−j [τj(c)]

=Ec−j

[∑
i∈I

∫
D
πD(cj)σij(dD|c)qij(c)

]

−
∫ cj

cj

Ec−j

[∑
i∈I

∫
D
D(pjD(z))σij(dD|z, c−j)qij(z, c−j)

]
dz − τ j ,

2. ∫ c′j

cj

(
Ec−j

[∑
i∈I

∫
D
D(pjD(z))σij(dD|z, c−j)qij(z, c−j)

])
dz

−
∫ c′j

cj

(
Ec−j

[∑
i∈I

∫
D
D(pjD(z))σij(dD|c′j , c−j)

]
qij(c

′
j , c−j)

)
dz ≥ 0

With the characterization given by Lemma 19, the data broker’s expected revenue can again be written

as ∫
C

∑
i∈I

∑
j∈J

(∫
D

(pjD(cj)− φGj (cj))D(pjD(cj))σij(dD|c)qij(c)
)
G(dc)−

∑
j∈J

π̄j ,

where π̄j := π
Dj0

(cj). Using this observation,

Proof of Theorem 10. Existence of solutions is ensured by compactness of the feasible set and continuity of

the objective function, which rely on Lemma 8, Tychonoff’s theorem, and the Lebesgue dominate conver-

gence theorem.

Now consider any mechanism (σ, τ, q). Suppose that the consumers retain positive surplus. That is∑
i∈I

∑
j∈J

∫
C

∫
D

(v − pD(cj))D(dv)σij(dD|c)qij(c)G(dc) > 0.
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It then suffices to show that there exists an incentive feasible mechanism (σ̂, τ̂ , q̂) that strictly improves the

data broker’s revenue.

Notice that under (σ, τ, q), the data broker’s revenue is∑
i∈I

∑
j∈J

∫
C

∫
D

(pD(cj)− φGj (cj))D(pD(cj))σij(dD|c)qij(c)G(dc)−
∑
j∈J

Uj(cj), (81)

where Uj is the indirect utility of producer j. On the other hand, notice that for any i ∈ I, j ∈ J , since

the segmentation scheme σij ∈ SC
Dij0

is measurable, the mapping σij : Cj → D, defined as

σij(cj) := Ec−j [σij(cj , c−j)], ∀cj ∈ Cj

is also measurable and thus is also in SC
Dij0

. As a result, as shown in the proof of Theorem S1 in the

Supplemental Material, for any j ∈ J and any i ∈ I, there exists a measurable function σ̃ij : Cj → D such

that ∫
D
Dσ̃ij(dD|cj) = Dij

0 , ∀cj ∈ Cj , (82)

and that ∫
Cj

∫
D

(pD(cj)− φGj (cj))D(pD(cj))σ̃ij(dD|cj)Gj(dc)

≥
∫
Cj

∫
D

(pD(cj)− φGj (cj))D(pD(cj))σij(dD|cj)Gj(dcj) (83)

+

∫
Cj

∫
D

∫
{v≥pD(cj)}

(v − pD(cj))D(dv)σij(dD|cj)Gj(dcj)

≥
∫
Cj

∫
D

(pD(cj)− φGj (cj))D(pD(cj))σij(dD|c)Gj(dcj).

By (81), there exists i∗ ∈ I and j∗ ∈ J such that∫
Cj

∫
D

∫
{v≥pD(cj)}

(v − pD(cj))D(dv)σij(dD|cj)qij(cj)Gj(dcj) > 0,

where qij(cj) := Ec−j [qij(cj , c−j)] for all i ∈ I, j ∈ J , cj ∈ Cj . As such, since qi∗j∗ ∈ [0, 1], we must have∫
C∗j

∫
D

∫
{v≥pD(c∗j )}

(v − pD(c∗j ))D(dv)σi∗j∗(dD|cj∗)qi∗j∗(c∗j )G(dc∗j ) > 0

and hence the last inequality in (83) must be strict inequality for some i ∈ I, j ∈ J . Therefore, if σ̂ ∈ DC

is defined as

σ̂ij(c) := σ̃ij(cj), ∀i ∈ I, j ∈ J , c ∈ C,

then ∑
i∈I

∑
j∈J

∫
C

∫
D

(pD(cj)− φGj (cj))D(pD(cj))σ̂ij(dD|c)qij(c)G(dc)

>
∑
i∈I

∑
j∈J

∫
C

∫
D

(pD(cj)− φGj (cj))D(pD(cj))σij(dD|c)qij(c)G(dc). (84)

https://kaihaoyang.com/wp-content/uploads/2019/10/Optimal-Market-Segmentaion-Design-and-its-Consequences-Supplemental-Materials.pdf
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On the other hand, as shown in the proof of Theorem S1 in the Supplemental Material, such {σ̃ij} are

such that for any i ∈ I and j ∈ J , for Lebesgue-almost all cj ∈ Cj ,∫
D
D(pD(cj))σ̃ij(dD|cj) =

∫
D
D(pD(cj))σij(dD|cj). (85)

Moreover, for all cj , c
′
j ∈ Cj with c′j > cj ,∫ c′j

cj

(∫
D
D(pD(z))σ̃ij(dD|z)

)
dz ≥

∫ c′j

cj

(∫
D
D(pD(z))σ̃ij(dD|cj)

)
dz, (86)

and, ∫ c′j

cj

(∫
D
D(pD(z))σ̃ij(dD|z)

)
≤
∫ c′j

cj

(∫
D
D(pD(z))σ̃ij(dD|c′j)

)
. (87)

These imply that, as qij(cj) ∈ [0, 1] for all cj ∈ Cj , for all j ∈ J ,

∫ c′j

cj

(
Ec−j

[∑
i∈I

∫
D
D(pD(z))σ̂ij(dD|z, c−j)qij(z, c−j)

])
dz

−
∫ c′j

cj

(
Ec−j

[∑
i∈I

∫
D
D(pD(z))σ̂ij(dD|c′j , c−j)qij(c′j , c−j)

])
dz

=

∫ c′j

cj

(∑
i∈I

∫
D
D(pD(z))σ̃ij(dD|z)qij(z)

)
dz

−
∫ c′j

cj

(∑
i∈I

∫
D
D(pD(z))σ̃ij(dD|c′j)qij(c′j)

)
dz (88)

≥
∫ c′j

cj

(∑
i∈I

∫
D
D(pD(z))σij(dD|z)qij(z)

)
dz

−
∫ c′j

cj

(∑
i∈I

∫
D
D(pD(z))σij(dD|c′j)qij(c′j)

)
dz

=

∫ c′j

cj

(
Ec−j

[∑
i∈I

∫
D
D(pD(z))σij(dD|z, c−j)qij(z, c−j)

])
dz

−
∫ c′j

cj

(
Ec−j

[∑
i∈I

∫
D
D(pD(z))σij(dD|c′j , c−j)qij(c′j , c−j)

])
dz

≥0,

for all j ∈ J , cj , c′j ∈ Cj , where the first equality follows from the definitions of σ̂ij and qij , the first

inequality follows from (85), (86) and (87), the second equality follows from the definition of σij and the

https://kaihaoyang.com/wp-content/uploads/2019/10/Optimal-Market-Segmentaion-Design-and-its-Consequences-Supplemental-Materials.pdf
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last inequality follows from the incentive compatibility of (σ, τ, q). Furthermore, for any j ∈ J , cj ∈ Cj ,∫ cj

cj

(
Ecj

[∑
i∈I

∫
D
D(pD(z))σ̂ij(dD|z, c−j)q(z, c−j)

])
dz

=

∫ cj

cj

(∑
i∈I

∫
D
D(pD(z))σ̃ij(dD|z)qij(z)

)
dz

=

∫ cj

cj

(∑
i∈I

∫
D
D(pD(z))σij(dD|z)qij(z)

)
dz (89)

=

∫ cj

cj

(
Ecj

[∑
i∈I

∫
D
D(pD(z))σij(dD|z, c−j)q(z, c−j)

])
dz

≥ πj(cj ,m∗j )− π̄j ,

where the first equality follows from the definition of σ̂ij and qij , the second equality follows from (85), the

third equality follows from the definition of σij and the last inequality follows from the individual rationality

of (σ, τ, q) and Lemma 19.

Together, by (88), (89), (82) and Lemma 19, there exist transfers {τ̂j} such that (σ̂, τ̂ , q) is an incentive

compatible and individually rational mechanism. Moreover, by (84), this mechanism improves the data

broker’s revenue. As such, (σ, τ, q) cannot be optimal. This completes the proof. �

F.4 Proof of Theorem 11

Proof of Theorem 11. First notice that by Lemma 19, for any incentive feasible mechanism (σ, τ, q), the

data broker’s expected revenue is at most

∑
j∈J

[∫
Cj

(∑
i∈I

∫
D

(pD(cj)− φGj (cj))D(pD(cj))σij(dD|cj)qij(c)

)
Gj(dcj)− π̄j

]
,

where for any i ∈ I, j ∈ J , cj ∈ Cj ,

σij(cj) := Ecj [σij(c)], qij(cj) := Ec−j [qij(c)].

Furthermore, notice that for any i ∈ I, j ∈ J and any cj ∈ Cj ,∫
D

(pD(cj)− φGj (cj))D(pD(cj))σij(dD|cj) ≤
∫
D

max
p∈R+

(p− φGj (cj))D(p)σij(dD|cj)

≤
∫
V

(v − φGj (cj))+Dij
0 (dv).
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Therefore,

∑
j∈J

[∫
Cj

(∑
i∈I

∫
D

(pD(cj)− φGj (cj))D(pD(cj))σij(dD|cj)qij(c)

)
Gj(dcj)

]

≤
∑
j∈J

[∫
Cj

(∑
i∈I

∫
D

max
p∈R+

(p− φGj (cj))D(p)σij(dD|cj)qij(c)

)
Gj(dcj)

]
(90)

≤
∑
j∈J

[∫
Cj

(∫
V

(v − φGj (cj))+Dij
0 (dv)

)
qij(cj)Gj(dcj)

]

=

∫
C

∑
j∈J

(∑
i∈I

(∫
V

(v − φGj (cj))+Dij
0 (dv)

)
qij(c)

)
G(dc).

Since
∑

i∈I qij ≤ 1 for all j ∈ J , the data broker’s revenue is bounded from above by

R̄ :=
∑
j∈J

∫
C

[
max
i∈I

(∫
V

(v − φGj (cj))+Dij
0 (dv)

)
Gj(dcj)

]
−
∑
j∈J

π̄j .

I first show that there exists an incentive feasible mechanism that attains the upper bound R̄. To see

this, notice that for any i ∈ I, j ∈ J , since cj ≤ φGj (cj) ≤ pDij0 (cj) for all cj ∈ Cj , as shown in the proof of

Theorem 1, there exists a segmentation scheme σ∗ij : Cj → D such that for all cj ∈ Cj and for any p ∈ V ,∫
D
D(p)σ∗ij(dD|cj) = Dij

0 (p). (91)

Moreover, for Gj-almost all cj ∈ Cj ,∫
D

(pD(cj)− φGj (cj))D(pD(c))σ∗ij(dD|cj) =

∫
V

(v − φGj (cj))+Dij
0 (dv). (92)

Furthermore, for Lebesgue-almost all cj ∈ Cj ,∫
D
D(pD(cj))σ

∗
ij(dD|cj) = Dij

0 (φGj (cj)), (93)

and for all cj , c
′
j ∈ Cj with cj < c′j , then∫ c′j

cj

(∫
D
D(pD(z))σ∗ij(dD|c′j)

)
dz ≤

∫ c′j

cj

Dij
0 (φGj (z)) dz, (94)

while for Lebesgue-almost all cj , c
′
j ∈ Cj with c′j < cj ,∫
D
D(pD(cj))σ

∗
ij(dD|c′j) = Dij

0 (φGj (c
′
j)). (95)

Now let q∗ be defined as

q∗ij(c) :=
1

|Wj(cj)|
1

{∫
V

(v − φGj (cj))+Dij
0 (dv) = max

i′∈I

∫
V

(v − φGj (cj))+Di′j
0 (dv)

}
,

where

Wj(cj) :=

{
i ∈ I

∣∣∣∣ ∫
V

(v − φGj (cj))+Dij
0 (dv) = max

i′∈I

∫
V

(v − φGj (cj))+Di′j
0 (dv)

}
.
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Then the data broker’s revenue under σ∗ and q∗ attains the upper R̄. Furthermore, notice that since the

function

z 7→
∫
{v≥z}

(v − z)D(dv)

is nonincreasing for any D ∈ D and since φGj is nondecreasing, q∗ij is nonincreasing for each i ∈ I. As a

result, for each j ∈ J , for any cj , c
′
j ∈ Cj∫ c′j

cj

(
Ec−j

[∑
i∈I

∫
D
D(pD(z))σ∗ij(dD|z, c−j)q∗ij(z, c−j)

])
dz

−
∫ c′j

cj

(
Ec−j

[∑
i∈I

∫
D
D(pD(z))σ∗ij(dD|c′j , c−j)

]
q∗ij(c

′
j , c−j)

)
dz

=

∫ c′j

cj

(∫
D

∑
i∈I

D(pD(z))σ∗ij(dD|z)q∗ij(z)−
∫
D

∑
i∈I

D(pD(z))σ∗ij(dD|c′j)q∗ij(c′j)

)
dz (96)

≥
∫ c′j

cj

∑
i∈I

(
Dij

0 (φGj (z))q
∗
ij(z)−D

ij
0 (φGj (c

′
j))q

∗
ij(c
′
j)
)

dz

≥0,

where the equality follows from the fact that σ∗ij and q∗ij do not depend on c−j , the first inequality follows

from (93), (94), and (95); and the last inequality follows from monotonicity of φGj and q∗ij for each i ∈ I.

Finally, notice that since for each j ∈ J , {Dij
0 }i∈I is ordered by pointwise dominance, for any cj ∈ Cj ,

any i, i′ ∈ I ∫
V

(v − φGj (cj))+Dij
0 (dv) ≥

∫
V

(v − φGj (cj))+Di′j
0 (dv)

⇐⇒ mDij0 ≥FOSD mDi
′j

0 (97)

⇐⇒ Dij
0 ≥ D

i′j
0 .

As a result, for any j ∈ J , for any cj ∈ Cj ,∫ cj

cj

(
Ec−j

[∑
i∈I

∫
D
D(pD(z))σ∗ij(dD|z, c−j)q∗ij(z, c−j)

])
dz

=

∫ cj

cj

∑
i∈I

(∫
D
D(pD(z))σ∗ij(dD|z)q∗ij(z)

)
dz

=

∫ cj

cj

∑
i∈I

Dij
0 (φGj (z))q

∗
ij(z) dz (98)

=

∫ cj

cj

∑
i∈Wj(z)

Dij
0 (φGj (z))

1

|Wj(z)|
dz

≥
∫ cj

cj

∑
i∈I

Dij
0 (φGj (cj))

1

I
dz

≥
∫ cj

cj

Dj
0(p

Dj0
(z)) dz,
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where the first equality follows from the fact that σ∗ij and q∗ij do not depend on c−j for all i ∈ I, the second

equality follows from (93), the third equality is from the definition of {q∗ij}, the fourth equality follows from

the definition of q∗ and from (97), and the last equality follows from that fact that φGj ≤ pDj0 for all j ∈ J .

Together, from (96) and (98), there exists transfers {τ∗j }j∈J such that (σ∗, τ∗, q∗) is incentive compatible.

Moreover, for each j ∈ J , by taking τ∗j (cj) as
∫
{v≥cj}

∑
i∈I(v − cj)D

ij
0 (dv)q∗ij(cj) − π̄j , together with (92),

(98) and Lemma 1, the mechanism (σ∗, τ∗, q∗) is indeed incentive feasible and attains the upper bound R̄.

Finally, it remains to show that the producers’ gross expected profit and the allocation of the product

under any optimal mechanism are the same as those under the price-controlling data broker’s optimal

mechanism. Since the optimal mechanism (σ∗, τ∗, q∗) constructed above attains the upper bound R̄, all the

inequalities in (90) are binding, by exactly the same arguments as in the proof of Proposition 2 and Theorem 7

and by noticing that any optimal mechanism (σ, τ, q) for the data broker of any optimal mechanism (σ, τ, q,γ)

for the price-controlling data broker must entail

qij(c) > 0 ⇐⇒
∫
V

(v − φGj (cj))D
ij
0 (dv) = max

i′∈I

∫
V

(v − φGj (cj))D
i′j
0 (dv),

under any optimal mechanism of either the data broker or the price-controlling data broker, the allocation

of the product must be such that for each product j, all the consumers in group i(j) buys product j by

paying their values and the rest of the consumers do not buy, where i(j) is the group that prefers j the most

(i.e. i(j) is such that D
i(j)j
0 ≥ Dij

0 for all i ∈ I), while each producer j ∈ J must have expected profit

max
i∈I

∫
Cj

∫
{v≥φGj (cj)}

(v − cj)Dij
0 (dv),

which are exactly the allocation and the gross profit producer j ∈ J earns when facing the price-controlling

data broker, respectively. This completes the proof. �
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