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Abstract

We use methods from Martin (2017) to transform risk-neutral moments of stock

returns, calculated from options prices, into physical moments. For the S&P 500 re-

turn distribution, even and odd number higher order moments are strongly negatively

correlated, creating periods where the return distribution is riskier because it is more

left-skewed and fat tailed. The riskiness of the higher order moments varies system-

atically with the state of the financial markets and peaks when variance is low and

prices are high. This time variation has important implications for investors and it is

inconsistent with disaster-based models where higher-moment risk peaks when prices

are low.
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Uncertainty about stock market returns is at the center of asset pricing. Everything else

equal, higher uncertainty makes investment less attractive and depresses asset prices.1 In

this regard, investors care not only about the variance of outcomes but also about higher

order moments of the distribution of outcomes, and in particular whether very bad outcomes

are relatively more likely. To better understand such higher-moment risk, we estimate the

higher order moments of the return distribution for the U.S. market portfolio and establish

new stylized facts that have broad implications for investors, asset prices, and economic

fluctuations more generally.

We base our analysis on ex ante moments that are estimated from options prices. We

first estimate the moments of the risk-neutral distribution of stock returns, which reflect a

combination of the physical return distribution and the stochastic discount factor. Using

methods based on Martin (2017), we translate these risk-neutral moments into physical

moments as perceived by an unconstrained power utility investor who invests in the market

portfolio. These moments are entirely forward looking and, unlike risk-neutral moments,

contain no adjustment for risk, which makes them well suited for studying time-variation in

higher-moment risk.

We first study correlation in higher order moments. We find that the third and the

fifth moments (skewness and hyperskewness) are highly positively correlated, and similarly

that the fourth and the sixth moments (kurtosis and hyperkurtosis) are highly positively

correlated. More importantly, the skewness related moments are negatively correlated with

the kurtosis related moments, meaning that there are periods where the return distribution

becomes both more left-skewed (due to large negative odd number moments) and more fat

tailed (due to large positive even number moments). This comovement in higher order mo-

ments is strong as the first principal component of the space spanned by skewness, kurtosis,

hyperskewness, and hyperkurtosis explains 91% of the joint variation in these moments.

1Sharpe (1964); Lintner (1965); Black (1972).
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The higher order moments vary substantially with the state of the financial markets.

In bad times, such as during the financial crisis, there is hardly any higher-moment risk.

Excess kurtosis is low and skewness is close to zero, meaning that the return distribution is

well approximated by a normal distribution. But going into good times, the shape of the

return distribution changes. The distribution becomes left-skewed and fat tailed, meaning

additional risk builds in the higher order moments.

We document this result in multiple ways. First, we show that the higher-moment risk

is negatively correlated with the variance. When variance decreases, the skewness-related

moments become more negative and the kurtosis-related moments increase. Second, higher-

moment risk is positively correlated with measures of prices. When prices are high, as

measured by a low value of cay (Lettau and Ludvigson, 2001) or high past returns, skewness-

related moments are more negative and kurtosis-related moments are more positive.

In the above results, and our analysis in general, we focus on standardized as opposed

to raw moments. The advantage of working with standardized moments is that they are

informative about the shape of the return distribution. An increase in the fourth standard-

ized moment, for instance, means that the conditional distribution becomes more fat tailed,

something that is not necessarily the case for an increase in the raw fourth moment.2 We

note that one disadvantage of the standardized moments is that they do not fully summarize

risk without knowledge about the variance, as discussed later.

We explore a series of implications of these new stylized facts about variation in higher-

moment risk. First, we emphasize that the variation is inconsistent with consumption-

based asset pricing models. Most importantly, the variation in the higher order moments

is inconsistent with disaster models that appeal to the shape of the return distribution to

explain asset pricing puzzles. Indeed, a higher disaster risk generally makes the return

2The raw moments reflects both the shape of the return distribution and the level of variance, meaning
an increase in the fourth raw moment could be comletely driven by an increase in variance.
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distribution more left-skewed and fat tailed, which is to say that it increases the higher-

moment risk. However, in models with time-varying disaster risk, a high disaster-risk is

generally associated with bad times, as the high disaster risk is the exogenous shock that

depresses asset prices and creates bad times. As such, to the extend that price fluctuations

are driven by disaster risk, we should expect higher-moment risk to increase in bad times,

but we observe the opposite empirically. We make this criqitue precise in simulation studies

of the disaster model by Gabaix (2012). In addition, we note that the log-normal models,

such as Campbell and Cochrane (1999) and Bansal and Yaron (2004) fail to produce the

right higher order moments even unconditionally, as the log-normal distribution imply a

right-skewed distribution of returns, whereas we find that the distribution is left-skewed.

The variation in higher-moment risk also has important implications for investors as it

influences the tail risk of their portfolios. To analyze the tail risk of different investment

strategies, we derive an expression for the probability of a given loss on the market portfolio

as perceived by a power utility investor as a function of option prices. This expression allows

us to study the tail risk on the market portfolio in real time. The term tail risk may refer

to two types of risk: the risk of incurring a large loss, such as 20%, or the risk of incurring a

loss that is large relative to the conditional standard deviation of returns. We refer to these

types of tail risk as the unconditional and conditional tail risk, and we study both.

We first study unconditional tail risk. We consider the tail risk of losing three or five un-

conditional standard deviations on the market portfolio. On average, the unconditional tail

risk is three times bigger than that implied by the normal distribution, illustrating the im-

portance of higher order moments for tail risk. However, time variation in the unconditional

tail risk is largely driven by variance, and not positively correlated with the standardized

higher-order moments.

We next study the risk of losing three conditional standard deviations. This conditional

tail risk is completely driven by higher order moments and would be a constant 0.13% if
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the returns on the market portfolio followed a normal distribution. The probability of such

a tail event varies from from 0.7% to 1.9% over the sample, implying a 271% variation the

conditional in tail risk. The tail risk varies systematically over time with the higher-order

moments.

The conditional tail risk is particularly relevant for sophisticated investors such as hedge

funds, who manage large notionals in constant-volatility portfolios. These portfolios are

scaled to have a constant variance over time with the aim of keeping portfolio risk constant.

However, the risk in the constant-volatility portfolios varies over time because the higher-

moment risk varies. In fact, the tail risk of these portfolios is exactly the same as the

conditional tail risk we study. This tail risk peaks when higher-moment risk peaks, which

is during calm periods, such as just before the onset of the financial crisis. To the extent

that the sophisticated investors who follows volatility targeting strategies have a systematic

influence on asset markets,3 the tendency of these investors to systematically load on tail

risk following market run ups during seemingly calm periods may be worrisome.

Given that constant-volatility portfolios are insufficient for inoculating tail risk, we show

how to create constant-risk portfolios that has a constant value-at-risk over time. Investors

can obtain these portfolios by varying their position in the market portfolio. As such,

the constant-risk portfolios are akin to volatility targeting portfolios, only the constant-

risk portfolios targets all moments of the return distribution, and not just the variance.

We find that the constant-risk portfolio increases its position in the market when variance

decreases to offset the decrease in risk. However, it generally increases its position by less

than the constant-volatility portfolio does because higher-moment risk on average increase

when variance drops, making the market riskier than the variance suggests.

Going beyond the financial markets, higher-moment risk also has potential implications

3See He and Krishnamurthy (2013); He, Kelly, and Manela (2017) for evidence on the effect of levered
investors on asset prices and the economy.
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for the real economy. Indeed, a large literature starting with Bloom (2009) argues that

uncertainty about the economy depresses investment because it increases the option value

of postponing it: when uncertainty is high, firms prefer to see which state of the economy

materializes before they make an investment. Similarly, when higher-moment risk is high,

firms may prefer to delay investment until after the risk of a crash diminishes.

We find empirical evidence consistent with the hypothesis that higher-moment risk deters

investment. We find empirically that a higher probability of a three-sigma loss predicts lower

future industrial production. The effect is stronger the longer the horizon. For the three-year

horizon, the probability of a three-sigma event predicts future industrial production with an

R2 of as much as 11%. In addition, the effect of higher-moment risk on industrial production

is substantially stronger than the effect of political uncertainty as measured by Baker, Bloom,

and Davis (2016), which is only weakly correlated with future industrial production and only

at the short horizon. In contrast, higher-moment risk predicts industrial output even more

strongly if we skip one year and predict growth in industrial production in year two and

three, lending confidence to the idea that higher-moment risk causes low growth, and not

the other way around.

Our paper relates to and extends the existing literature on estimating time-varying mar-

ket tail risk by integrating two different approaches. Previous research on tail risk is based

on either (1) physical moments based on backward looking information, or (2) risk-neutral

moments based on forward looking option prices. We show that physical higher-moment

risks can be estimated in a forward looking manner, and in real time, which complements

the existing literature that uses historical (backward looking) returns to estimate tail risks,

such as Bollerslev and Todorov (2011) who estimate tail risk using high frequency intraday

returns and Kelly and Jiang (2014) who estimate market wide tail risks from the cross-

section of firm-level returns. Our paper also relates to the literature that studies tail risk

using option prices. This existing literature studies risk-neutral moments and probabilities
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(Siriwardane (2015), Gao, Gao, and Song (2018), Bates (2000), and Schneider and Trojani

(2017)), whereas we study physical moments and probabilities. Finally, our paper relates to

the literature on the recovery theorem by Ross (2015), which decomposes investor prefer-

ences and beliefs directly from observable asset prices.4 Unlike Ross, we we fix preferences

and estimate beliefs directly. In addition, we only recover higher-order moments, not the full

return distribution, and thereby avoid a series of challenges with numerical approximations

that arise in this regard.

1 Inferring Ex Ante Moments from Asset Prices

We consider an economy where agents can trade two assets, a risk-free asset and a risky

asset. The risk-free asset earns a gross risk-free rate of return Rf
t,T between time t and time

T . The risky asset has a price of S and earns a random gross return Rt,T . The risky asset pays

dividends, Dt,T , between time t and time T such that its gross return is Rt,T = (ST+Dt,T )/St.

Starting from the standard asset pricing formula, we can relate risk-neutral and physical

expected values of the time T random payoff, XT , as

Et[XTmt,T ] = E∗t [XT ]/Rf
t,T (1)

where the asterisk denotes risk-neutral expectation and mt,T is a stochastic discount factor.

If we define the time T random payoff, Xt,T (n), in the following way

Xt,T (n) = Rn
t,Tm

−1
t,T (2)

4Ross’s results have been sparked a large literature that discusses the empirical validity of the theorem
and extended it along multiple dimensions. See e.g. Walden (2017), Jensen, Lando, and Pedersen (2019),
Borovicka, Hansen, and Scheinkman (2015), Schneider and Trojani (2019), Jackwerth and Menner (2019),
Bakshi, Chabi-Yo, and Gao (2018), Pazarbasi, Schneider, and Vilkov (2019), Martin and Ross (2019), Carr
and Yu (2012), and Ghosh and Roussellet (2019).
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then equation (1) implies that the n’th moment of the risky asset’s physical return distribu-

tion can be expressed in terms of the risk-neutral expectation of Xt,T (n):

Et[R
n
t,T ] = Et[R

n
t,Tm

−1
t,T︸ ︷︷ ︸

Xt,T (n)

mt,T ] = E∗t [R
n
t,Tm

−1
t,T︸ ︷︷ ︸

Xt,T (n)

]/Rf
t,T (3)

So if we know the pricing kernel m, then we can derive all moments of Rt,T directly from risk-

neutral pricing of the claim to Xt,T (n). Following Martin (2017), we compute the physical

expected value of Rn
t,T from the point of view of an unconstrained rational power-utility

investor who chooses to be fully invested in the market. This investor has initial wealth W0

and terminal wealth WT = W0Rt,T . Given the investor’s utility function, U(x) = x1−γ/(1−

γ), with relative risk-aversion, γ, we can determine the investor’s stochastic discount factor.

Specifically, combining the first order condition from the investor’s portfolio choice problem

with the fact that the investor holds the market, the stochastic discount factor becomes

proportional to R−γt,T :

mt,T = kR−γt,T (4)

for some constant k which is unobservable to us. However, we do not need to learn k to

estimate physical moments; we can correct for k by rewriting (3) in the following way. First,

setting n = 0 in (2) we get Xt,T (0) = m−1t,T and the standard asset pricing formula (1) then

implies the relation:

E∗t [m
−1
t,T ] = Rf

t,T (5)

Then, inserting (5) and (4) into (3), we obtain an expression of the n’th physical moment

perceived by an unconstrained rational power utility investor who chooses to be fully invested
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in the market:

Et[R
n
t,T ] =

E∗t [R
n
t,T

m−1
t,T︷ ︸︸ ︷

Rγ
t,T/k]

E∗t [R
γ
t,T/k︸ ︷︷ ︸
m−1
t,T

]
=
E∗t [R

n+γ
t,T ]

E∗t [R
γ
t,T ]

(6)

since k is a constant.

The relation between physical and risk-neutral moments shown in (6) is central to our

empirical analysis. The key insight is that we can estimate the n’th physical moment directly

from risk-neutral pricing of Rγ
t,T and Rn+γ

t,T . Furthermore, by pricing claims to the payoffs

Rm+γ
t,T for m ∈ {1, ..., n}, we can then estimate standardized moments.

To understand how we estimate standardized moments from (6), recall the notion of the

n’th standardized moment formula:

n’th standardized moment of Rt,T = Et

[(
Rt,T − Et[Rt,T ]

Vart[Rt,T ]1/2

)n]
(7)

Expanding (7) and replacing physical moments with risk-neutral counterparts as presented in

equation (6), we can arrive at expressions for all physical standardized moments as functions

of risk-neutral moments. For example, the third standardized physical moment (skewness)

can be expressed in terms of risk-neutral moments by first expanding (7) with n = 3:

Skewnesst[Rt,T ] =
Et[R

3
t,T ]− 3Et[Rt,T ]Et[R

2
t,T ] + 2Et[Rt,T ]3

(Et[R2
t,T ]− Et[Rt,T ]2)3/2

(8)

and then replacing the physical moments in (8) with the risk-neutral counterparts using

equation (6). Similar expressions can be written up for other higher order moments of

interest, as seen in Appendix A. Importantly, the right-hand-side of (6) consists of asset

prices which can be estimated directly from current and observable call and put options
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written on the risky asset. Hence, higher order moments can be estimated in real time,

without using historical realized returns or accounting data.

1.1 Inferring Ex Ante Market Tail Probabilities

Next, we show how we estimate ex ante tail probabilities from option prices written on the

market. To understand our approach, note first that the probability at time t of a market

return that is lower than α at time T can be written as the physical expectation of an

indicator function in the following way

Pt(Rt,T < α) = Et[1{Rt,T<α}] (9)

Using the standard asset pricing formula in (1), we can rewrite the probability in terms of

the risk-neutral measure by adjusting the right hand side of equation (9) for the inverse of

the stochastic discount factor in (4)

Pt(Rt,T < α) =
E∗t [R

γ
t,T1{Rt,T<α}]

E∗t [R
γ
t,T ]

(10)

The right hand side of (10) is an asset price that has the simple representation presented in

Proposition 1, which generalizes Result 2 in Martin (2017) from log-utility to general power

utility for any level of relative risk-aversion.

Proposition 1 For the unconstrained rational power utility investor who wants to hold the

market, the conditional physical probability that market return from time t to T is lower than
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α is:

Pt(Rt,T < α) =
Rf
t,T

E∗t [R
γ
t,T ]

[
αγput′t,T (αSt −Dt,T )− γ

St
αγ−1putt,T (αSt −Dt,T )

+

∫ αSt−Dt,T

0

γ(γ − 1)

S2
t

(
K +Dt,T

St

)γ−2
putt,T (K)dK

]

where put′t,T (αSt−Dt,T ) is the first derivative of the put option price with strike αSt−Dt,T .

Proof. The results of Breeden and Litzenberger (1978) imply the equality

E∗t [R
γ
t,T1{Rt,T<α}] = Rf

t,T

∫ ∞
0

(
K +Dt,T

St

)γ
1{K<αSt−Dt,T }put′′t,T (K)dK

where put′′t,T (K) is the second derivative of the put option price written on the underlying

process S. Splitting the integral at αSt −Dt,T we have

E∗t [R
γ
t,T1{Rt,T<α}] = Rf

t,T

∫ αSt−Dt,T

0

(
K +Dt,T

St

)γ
put′′t,T (K)dK

Proposition 1 then follows from using integration by parts twice.

2 Data and Empirical Implementation

We use the Ivy DB database from OptionMetrics to extract information on vanilla call

and put options written on the S&P 500 index for the last trading day of every month.

The data is from January 1996 to December 2017. We obtain implied volatilities, strikes,

closing bid-prices, closing ask-prices, and maturities. As a proxy for the risk-free rate, we

use the zero-coupon yield curve from the Ivy DB database, which is derived from the LIBOR

rates and settlement prices of CME Eurodollar futures. We also obtain expected dividend

payments. We consider options with times to maturity between 10 and 360 calender days,
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and apply standard filters, excluding options with implied volatility higher than 100%.

2.1 Estimating Market Moments

There is a large body of literature devoted to pricing asset derivatives such as those in

(6), using observable option prices written on the asset. Indeed, Breeden and Litzenberger

(1978), Bakshi and Madan (2000), and Bakshi, Kapadia, and Madan (2003) show that the

arbitrage free price of a claim on some future (twice differentiable) payoff can be expressed

in terms of a continuum of put and call option prices. Specifically for our purposes, using

the results of Breeden and Litzenberger (1978), Martin (2017) shows that we can write the

n’th physical moment of Rt,T as

Et[R
n
t,T ] =

E∗t [R
n+γ
t,T ]

E∗t [R
γ
t,T ]

=
(Rf

t,T )n+γ +Rf
t,T [p(n+ γ) + c(n+ γ)]

(Rf
t,T )γ +Rf

t,T [p(γ) + c(γ)]
(11)

with

p(θ) =

∫ Ft,T

0

θ(θ − 1)

Sθt

(
StR

f
t,T − Ft,T +K

)θ−2
putt,T (K)dK (12)

c(θ) =

∫ ∞
Ft,T

θ(θ − 1)

Sθt

(
StR

f
t,T − Ft,T +K

)θ−2
callt,T (K)dK

where Ft,T is the forward price and callt,T (K) and putt,T (K) are call and put option prices

written on the risky asset at time t with horizon T − t and strike K.

In practice, we do not observe a continuum of call and put options and therefore (11)

must be numerically approximated. To see how we approach this numerical approximation,

let Ft,T be the forward price and, then using the notation from Martin (2017), we can write
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the price, Ωt,T (K), at time t of an out-of-the money option with strike K and maturity T as

Ωt,T (K) =

 callt,T (K) if K ≥ Ft,T

putt,T (K) if K < Ft,T

We let K1, ..., KN be the (increasing) sequence of observable strikes for the N out-of-the

money put and call options and define ∆Ki = Ki+1−Ki−1

2
with

∆Ki =

 Ki+1 −Ki if i = 1

Ki −Ki−1 if i = N .

We approximate the integrals in (12) by observable sums such that the n’th physical moment

becomes:

Et[R
n
t,T ] =

(Rf
t,T )n+γ +Rf

t,T

[∑N
i=1

(n+γ)(n+γ−1)
Sn+γ

(StR
f
t,T − Ft,T +Ki)

n+γ−2Ωt,T (Ki)∆Ki

]
(Rf

t,T )γ +Rf
t,T

[∑N
i=1

γ(γ−1)
Sγ

(StR
f
t,T − Ft,T +Ki)γ−2Ωt,T (Ki)∆Ki

]
(13)

In summary, combining equation (13) with the standardized moment formula in equation

(7), we can express standardized physical moments in terms of the derivatives prices written

on the risky asset.

When we estimate physical moments for a given horizon, say T , for which we do not

observe put and call prices, we linearly interpolate the (standardized) moments between the

two closest horizons available in the data. In a few cases, we need to extrapolate to obtain

moments for the desired horizon.

During our sample period, the number of options traded with different strikes has in-

creased tremendously. In the beginning of our sample (1996), we observe option prices with

strikes ranging from the spot price plus/minus three risk-neutral standard deviations. At the
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end of our sample (2017), we observe option prices with strikes as far as sixteen risk-neutral

standard deviations into the tails of the distribution. It is important that the increase in

the number of strikes with observable prices does not drive our results. Therefore, when es-

timating higher order moments, we exclude all prices that are outside the range of the spot

price plus/minus three risk-neutral standard deviations. The data we use when estimating

higher order moments is therefore comparable over time. In untabulated results, we redo the

analysis using all available option prices. The empirical results are largely similar to those

reported in this paper but there is a clear trend in the estimated higher order moments which

arise due to this increase in traded options. Also, Andersen and Bondarenko (2007) note that

model-free implied volatilities can be hard to measure accurately because of sparse coverage

of option prices with strikes in the tails of the distribution. This concern is also valid when

we estimate higher order moments. Therefore, as robustness, we redo our analysis where we

linearly extrapolate the slope for the implied volatilities. Doing so changes the levels of the

higher order moments slightly, but the results are similar to those reported in the paper.

In conclusion, the choice of cutting observable option prices at the spot plus/minus three

risk-neutral standard deviations when estimating option moments is not important for our

results.

2.2 Estimating Market Tail Probabilities

The main challenge when implementing Proposition 1 is that we have to estimate the first

derivative of the put option price written on the risky asset at strike αSt −Dt,T . To handle

a sparse and discrete set of observed option prices, we smoothen observed option prices

using the best linear prediction of observed implied volatilities (IV) onto their option strikes.

Specifically, in the spirit of Dumas, Fleming, and Whaley (1998), we regress observed implied
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volatilities onto their respective strikes:

IVi = β0 + β1Strikei + ηi (14)

When fitting the entire implied volatility smile at a single horizon, Dumas, Fleming, and

Whaley (1998) suggest using a second degree polynomial in strikes. We choose to use a

first order polynomial since we do not fit the entire volatility smile, rather we restrict the

regression to the range of observable prices from the price with the lowest strike which is

no more than five risk-neutral standard deviations lower than the spot price to the price

with the strike that is closest to αSt −Dt,T . 5 The first order polynomial approximation is

reasonable as long as α is less than one.

Given a smooth set of option prices around the strike αSt −Dt,T , we compute the first

derivative as the slope between the two adjacent prices:

put′t,T (αSt −Dt,T ) =
putt,T (αSt −Dt,T + h)− putt,T (αSt −Dt,T − h)

2h
(15)

where h is the chosen grid step size in the discretization.

We evaluate the integral in Proposition 1 using estimated prices implied from equation

(14). Specifically, we use the fitted implied volatilities to obtain option prices ranging from

0.1 times the spot price to the strike αSt−Dt,T . If 0.1 times the spot price is lower than the

lowest observable option strike then we linearly extrapolate the fitted implied volatilities to

obtain these option prices.

5IWe use a wider grid of observable option prices when estimating tail probabilities compared to when
we estimate the moments. The reason to extend observations beyond the spot minus three risk-neutral
standard deviations as the follows. When we estimate tail probabilities, we rely on the information solely in
the tail of the distribution. Specifically, the integral in Proposition 1 requires observations in the deep left
tail. When we run the regression in Equation (14), it is therefore natural to extend the grid of observable
options further into the tails. On the other hand, when we estimate moments, we rely on information from
the entire distribution. The resulting moments are therefore much less affected by the truncation of option
data as we discussed in the previous section.
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Inserting (15) and the evaluated integral into Proposition 1, we can estimate physical

probabilities.

2.3 Determining Market Risk-Aversion

To estimate physical moments and tail probabilities, we have to choose a level of risk-aversion.

Following Bliss and Panigirtzoglou (2004), we use the Berkowitz (2001) test to estimate the

constant level of risk aversion that best reconciles the cross-section of options prices with the

time-series realizations of the S&P 500 index.6 Doing so, we find that a γ = 3 is the best fit

to monthly returns in our sample, and we therefore rely of this level of risk aversion in our

main analysis. Our estimate is close to the γ = 4 that Bliss and Panigirtzoglou (2004) find

best explains the 1983 to 2001 sample.

Tabel 1 reports moment summary statistics for moments estimated with risk aversion

of 0 (risk-neutral investor), 1 (log-utility), 3 (our baseline case), and 5. The average ex

ante estimated skewness is negative at both monthly and quarterly horizons and all levels

of risk aversion, suggesting that the physical distributions are left-skewed. Consistent with

the results of Neuberger (2012), we find that average skewness is not diminishing in the

horizon, in the sense that skewness is close to the same on a monthly and quarterly horizon.

In addition, average kurtosis is larger than 3 for both horizons and all levels of risk aversion,

suggesting that the physical distributions are leptokurtic (i.e. tails are on average fatter

6The idea behind the Berkowitz test is that, for the true value γ, the distribution of ut,T = Ft,T (Rt,T ) is
uniform and the distribution yt,T = Φ−1(ut,T ) is standard normal. Here Ft,T (Rt,T ) denotes the distribution
function

Ft,T (r) =

∫ r

−∞

πt,T (x)xγ∫∞
−∞ πt,T (y)yγdy

dx

where πt,T is the state price density (Arrow-Debreu prices) and
∫∞
−∞ πt,T (y)yγdy is simply a normalization

constant which ensures that the physical return distribution integrates to one. In the Berkowitz test, we
estimate the coefficients in the regression model:

yt,T = â+ β̂yt−1,T−1 + εt,T , εt,T ∼ N(0, σ̂)

and perform a likelihood ratio test of the joint hypothesis that a = β = 0 and Var(εt,T ) = 1.
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than the normal distribution). We report in later analysis that our results are not sensitive

to the choice of γ = 3 as our baseline case.

3 New Facts About Higher-Moment Risk

We start the empirical analysis by documenting new facts about the higher order moments

of the return distribution for the S&P 500. Section 3.1 studies how the moments relate to

on another over time and Section 3.2 studies how higher order moments relate to key state

variables of financial markets.

3.1 Time Variation and Comovement in Higher Order Moments

Figure 1 and Figure 2 plot the time series of the skewness, kurtosis, hyperskewness, and

hyperkurtosis of the return distribution at the monthly and quarterly horizon. The skew-

ness moments trend down during the sample and the kurtosis moments trend up, suggesting

that higher-moment risk increases during the sample; at the quarterly horizon in particu-

lar, hyperkurtosis and hyperskewness exhibit a substantial drop/rise during the end of the

sample. The results presented throughout the paper are not driven by this latest rise in

higher-moment risk – in fact, our results are generally stronger if we exclude the last two

years.

On average, the moments deviate from the normal distribution. The skewness is on aver-

age negative, and kurtosis is on average well above three, suggesting that the distrubtion is

on average left-skewed and fat tailed. These results add to the evidence from the well-known

histograms of historical returns. These histograms show that the unconditional distribution

of returns is left-skewed and fat tailed, but leave open the possibility that this shape is driven

by time-variation in the mean and variance. Our results rule that out by showing that, on

most days, the conditional distribution is left-skewed and fat tailed.
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Table 2 reports the monthly (Panel A) and quarterly (Panel B) pairwise correlations

between the moments. The green (lower right) box shows pairwise correlations between

higher order moments. Since investors are averse to lower skewness and hyperskewness (i.e.,

averse to a more left-skewed distribution), we have flipped the signs of these moments such

that we can interpret a higher value of the third and fifth moments as higher risk. The

correlations between the higher order moments are all positive and large, suggesting that

the risk in the individual higher order moments tend to move together.

The strong comovement between higher order moments suggests that the joint variation in

higher order moments can be attributed to a single factor. We therefore estimate the principal

components of the space spanned by skewness, kurtosis, hyperskewness, and hyperkurtosis.

The four principal components are shown in Table 3. At both the monthly and quarterly

horizon, the first principal component explains more than 90% of the joint variation in higher

order moments, underlining the strong comovement in higher-moment risks.

The first principal component eigenvector loads negatively on skewness and hyperskew-

ness and positively on kurtosis and hyperkurtosis. We standardize each moment to make

the eigenvector loadings comparable. The size of the loadings for the first principal compo-

nents are very similar across the moments, namely −0.47 (−0.49 quarterly) for skewness,

0.51 (0.50 quarterly) for kurtosis, −0.52 (−0.51 quarterly) for hyperskewness, and 0.50 (0.50

quarterly) for hyperkurtosis, implying that the first principal component is approximately

the average of the standardized higher order moments with the signs flipped for skewness

and hyperskewness. We interpret a high value of the first principal component as times when

higher-moment risk is high (the higher order moments are on average riskier). Accordingly,

we define the first principal component as a higher-moment risk index.

Higher-Moment Risk Index: We define a higher-moment risk index (HRI) as the

first principal component of the space spanned by skewness, kurtosis, hyperskewness, and
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hyperkurtosis.

3.2 Cyclicality in Higher-Moment Risk

Figure 1 and Figure 2 indicate that higher order moments vary with the state of the finan-

cial markets. During the crisis in 2007-2009, the skewness approaches zero and the kurtosis

approaches three, meaning that the deviation from the normal distribution is limited. How-

ever, in the period leading up to the crisis, 2003 until 2007, skewness drops substantially and

kurtosis increases, meaning the distribution deviates substantially from the normal distribu-

tion. In particular, the higher order moments become riskier in that the probability mass in

the (conditional) left tail increases.7

To study such cyclical variation in higher-moment risk, we relate the variation in higher-

moment risk to key state variables of financial markets. We first consider the relation between

higher-moment risk and the variance. Figure 3 displays the time-series plot of the monthly

and quarterly HRIs along with the variances. Both for the monthly and the quarterly

horizon, the two times series are negatively correlated: higher-moment risk is high when

variance is low. For instance, HRI is low during the burst of the tech bubble and during the

financial crisis, during which variance is somewhat high. Conversely, HRI is high during the

low variance period from 2004 to 2007 and the low variance period from 2012 an onwards.

The higher-moment risk index spikes during 2017 where volatility is historically low.

This negative relation between variance and higher-moment risk is highly statistically

significant as shown in Panel A of Table 4. On a monthly horizon, the magnitude of the

correlation between variance and HRI is −0.47 with 95% block bootstrapped confidence

bounds of [−0.54,−0.41]. On the quarterly horizon, the correlation is −0.60 with 95%

confidence bounds of [−0.65,−0.55]. All the higher order moments contribute to the negative

7By left tail, we refer to the conditional left tail, i.e. the left tail measured relative to the conditional
standard deviation. This is different than the unconditional tail.
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correlation between HRI and variance. Indeed, the blue (upper right) box of Panel A of Table

2 shows the pairwise correlations between variance and higher order moments. Variance is

negatively correlated to the negative of skewness, kurtosis, the negative of hyperskewness,

and hyperkurtosis with correlations ranging from −0.48 to −0.40. The results are in line

with the results of Bollerslev, Todorov, and Lai (2015), who investigate market tail risk

premia in a parametric jump-diffusion model. Within their parametric framework, they find

that the left-tail jump intensity increases during low variance periods.

We next study how higher-moment risk relates to past returns. Figure 4 shows time-series

plots of the past two year return and the HRI. The past returns and the HRI are positively

correlated with correlations of 0.35 on the monthly horizon and 0.26 on the quarterly horizon.

Panel A of Table 4 reports the block bootstrapped 95% confidence bounds for the correlations

between the HRI and past returns. The confidence bounds are [0.24, 0.45] on the monthly

horizon and [0.15, 0.36] on the quarterly horizon. Panel B of Table 4 shows the pairwise

correlations between past returns and the individual physical moments. Each of the higher

order moments become riskier when past returns are high.

Finally, we study how higher-moment risk relates to the measure of consumption to

aggregate wealth, cay, from Lettau and Ludvigson (2001). A high value of cay suggests

that prices, or wealth, is relatively low, and that the expected returns are high. As shown in

Panel A of Table 4, the higher-moment risk index is highly negatively correlated with the cay

variable, with tight confidence intervals. Consistent with the findings on past returns, higher-

moment risk appears elevated when prices are higher. Panel C shows that this finding holds

for each of the individual moments on their own. We note, however, that higher-moment

risk is not particularly correlated with the dividend-price ratio in this sample, mainly due

to timing issues during the financial crisis.

Taken together, the results in this section show that higher-moment risk are elevated

when variance is low and prices are high. The next sections explore the implications of this
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finding for asset pricing models, investors, and the economy. Before doing so, we address

potential robustenss concerns.

3.3 Robustness

We conduct several robustness analyses to solidify our results on the systematic variation in

higher-moment risk. First, a potential concern is that option liquidity is low during periods

of financial market turbulence which could be reflected in large option bid-ask spreads during

such periods. Such fluctuations in bid-ask spreads could pose a problem when we use mid

prices to estimate our higher-moment risk index. Figure 5 shows the higher-moment risk

index when using exclusively bid, mid, or ask prices. As seen from the figure, the higher-

moment risk index is almost identical when using either bid, mid, or ask prices. The pairwise

correlations between the higher-moment risk indexes implied by bid or ask prices with the

mid price higher-moment risk index are 0.978 and 0.981 respectively, suggesting that our

results are not driven by time-varying bid-ask spreads on option prices.

A second concern is that our results are sensitive to our choice of a constant risk-aversion

coefficient equal to three (γ = 3). Table 8 shows the pairwise correlations between risk-

neutral higher order moments. Interestingly, the comovements between risk-neutral higher

order moments are similar to those between physical higher order moments. That is, the

green (lower right) box of Table 8 shows the pairwise correlations between the negative of

(risk neutral) skewness, kurtosis, the negative of hyperskewness, and hyperkurtosis. These

correlations are all positive and close to one, suggesting that also under the risk-neutral mea-

sure there is a common component in the higher order moments. Table 9 shows the principal

components of the space spanned by risk-neutral skewness, kurtosis, hyperskewness, and hy-

perkurtosis. The first principal component explains 95% of the joint variation in risk-neutral

higher order moments. The correlation between this first principal component and the first

principal component of the space spanned by physical skewness, kurtosis, hyperskewness,
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and hyperkurtosis is 0.97.

3.4 Expected and Realized Moments

We next confirm that the moments we have extracted from option prices indeed are mean-

ingful measures of the actual moments of the return distribution. We do so by showing that

the option implied moments predict future realized moments, and that they do so better

than trailing realized moments.

To validate a given moment, such as skewness, we create two investment strategies. The

first strategy invests in the market during periods where the ex ante skewness is above the

median. The second strategy invests in the market during periods where the skewness is

below the median. Both strategies keep the ex ante volatility constant by scaling their

position during the period by the ex ante volatility. We then estimate the skewness of the

excess return on each of the strategies and test if the skewness is higher for the high-skewness

strategy.

The motivation for our approach is as follows. First, we cannot use daily returns to

estimate the monthly or quarterly skewness, because there is no natural way to aggregate

daily skewness to the monthly or quarterly horizon (Neuberger, 2012). Instead, to estimate

skewness, we need a set of monthly or quarterly return observations, which we obtain by

dividing the sample into two strategies based on the median moment. Second, even within

each strategy, the variance might vary substantially between periods, making it difficult to

compare returns across periods and therefore difficult to estimate higher order moments. We

circumvent this problem by considering constant-volatility strategies.8

Panel A of Table 5 shows results where we use the ex ante volatility from option prices to

standardize the portfolios. The first column shows the results for sorting on skewness. The

skewness of the standardized returns in the ”Low” bucket is -0.56 and the skewness in the

8We note that our results are similar, but less significant, if we do not scale by volatility.
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”High” bucket is -.44. Accordingly, the realized skewness is 0.12 higher in periods where the

ex ante skewness is higher. However, the block bootstrapped p-value of the null-hypothesis

that High−Low is less than zero is 0.34.

We find more significant, but otherwise similar, results for the other moments. Across the

board, our moments predict realized moments with the right sign. The effect is statistically

significant for the kurtosis moments on the monthly horizon.

For robustness, we redo our analysis using a parametric estimate of expected variance

to standardize the portfolios. We estimate monthly and quarterly variance based on daily

returns and fit an AR(1) model on these estimates, and use the predicted values from this

regression as the expected variance. The results reported in Panel B are similar to before

but the statistical significance is substantially stronger.

Finally, we also ask if trailing realized moments are useful for predicting future moments.

Here, we estimate the trailing moments from realized daily returns in a given period. We

then undertake the same exercise as before, only sorting on realized moments in the past

period instead of the expected moments. We again standardize by the expected variance

from the AR(1) regression. The results in Panel C are weak. The trailing realized moments

predict future moments with the right sign only five out of eight times, and the effect is

generally statistically insignificant. The difficulty of predicting future moments using past

realized moments underline the strength of our expected moments.

4 Implications for Consumption-Based Models

In this section, we explore whether the moments of the return distribution produced by

leading asset pricing models are consistent with the facts we documented in the previous

section.
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4.1 Disaster Models

Disaster models appeal to the shape of the return distribution to generate a high and time-

varying risk premium. In particular, the models generate the counter-cyclical equity risk

premium through counter-cyclical disaster risk (i.e., disaster risk increases in bad times). We

argue, however, that this feature is inconsistent with our new facts about higher-moment

risk. In particular, higher-moment risk is lower during bad times, which is hard to reconcile

with a hightened disaster risk.

To make the critique concrete, we focus on the Gabaix (2012) model. In this model,

bad times are periods where the resilience towards disasters is low, which we will refer to as

a high disaster risk. The high disaster risk generates a higher equity risk premium, which

depresses prices. The disaster risk also changes the return distribution by increasing the

variance and by making it more left-skewed and fat tailed. These dynamics are inconsistent

with the results in the previous section. Indeed, the dynamics counter-factually imply that

bad times are periods with elevated higher-moment risk. More generally, the model implies

that higher-moment risk is positively correlated with variance and negatively correlated with

price levels, both of which appears inconsistent with the data.

We formalize the critique in simulation studies of the model. Figure 6 shows the results

from the simulation studies along with empirical results. Panel A shows relation between

skewness and volatility. In red, we show the option-implied skewness in the model for different

values of option-implied volatility. The figure shows a strong negative correlation between

the two, meaning the distribution is more left-skewed when volatility is higher. This finding

is inconsistent with the data, shown in blue, in which there is a positive correlation between

volatility and skewness. Similarly, Panel B shows that kurtosis and volatility are positively

correlated in the model, which again is inconsistent with the empirical data shown in blue.

In the figure, we compare risk-neutral moments from the model with risk-neutral moments

in the data to avoid any issues of risk corrections. Simulation details are in the Appendix.
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Panel C and D show the relation between higher order moments and valuation ratios in

the model. The model again gets the correlation wrong. As shown in Panel C, skewness is

positively correlated with valuation ratios, meaning the distribution is more left-skewed when

prices are lower. This is inconsistent with the data, plotted in blue. Similarly, Panel D shows

that kurtosis and prices are possitivly correlated in the model, which again is inconsistent

with the data shown in blue.

It is important to emphasize that the disaster model fails to reproduce the stylized facts

about standardized moments, not raw moments. Raw higher order moments indeed becomes

riskier in bad times, both empirically and in the disaster model. However, empirically, this

happens mainly because volatility increases in bad times, not because the shape of the return

distribution becomes riskier. To the extend that disaster models appeal to a time-varying

shape of the return distribution to explain asset pricing movements, and not simply a time-

varying second moment, this ability to only reproduce the raw moments is less of a victory.

In conclusion, our empirical facts are conceptually challenging for distaster models. The

models rely on disaster risk being high in bad times, which is hard to reconcile with the fact

that higher-moment risk goes down in bad times.

4.2 Log-Normal Models

Log-normal asset pricing models, such as Campbell and Cochrane (1999) and Bansal and

Yaron (2004) are generally inconsistent with the higher-moment risk we document in the

paper. In both models, the risk-neutral distribution is log-normal, which means that it is

right skewed. On every single day in the sample, we estimate a left-skewed risk-neutral dis-

tribution, which is a direct rejection of log-normal distributions. These results are anolagous

to the results in Martin (2017), who document that VIX is higher than SVIX in every month

in the sample, which is inconsistent with log-normal distributions.
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5 Implications for Investors

We next analyze the implications of our new stylized facts about higher-moment risk for

investors. We first study how higher-moment risk influences the probability of a tail event

on the market portfolio. We define the tail risk as the probability that the realized market

return is three or five standard deviations below the expected value. We consider tail risk

probabilities relative to both the conditional and unconditional standard deviation of the

market return. Variation in the tail risk relative to the conditional standard deviation is

entirely driven by higher order moments because it is measured relative to the conditional

expected return and variance (i.e., the first two moments). One the other hand, the tail

risk relative to the unconditional standard deviation is also influenced by the conditional

variance, as it is measured relative to the conditional expected return and the unconditional

variance. Throughout the section, we estimate probabilities using Proposition 1.

Figure 7 Panel A plots the time series of the probability that the market return is three

conditional standard deviations below the expected returns. The solid blue line is the tail risk

observed from option prices. This tail risk peaked on October 31th 2017 with a probability

of 1.9%, more than twice the size of its low on May 30th 1997, where the probability was

0.7%. The probability was also high before the financial crisis.

The horizontal dotted line is the probability implied by a normal distribution. The line

is flat, reflecting that the risk of a three-sigma event is constant for a normal distribution.

The gray area between the two lines is higher moment risk: it is the additional risk of a tail

event that arises from the higher order moments of the return distribution. This probability

of a tail loss in excess of what is implied by a normal distribution ranges from 0.6% to 1.8%,

showing that higher order moments constitute most of the tail risk for investors and drives

the time variation.

Panel B of Figure 7 plots the time series of the probability that the market return is
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three unconditional standard deviations below the expected returns. Three unconditional

standard deviations is approximately 15%. The solid blue line is the tail risk observed from

option prices and the dotted line is the probability implied by a normal distribution. The

shaded area between the two lines is again higher moment risk. In many parts of the sample,

higher order moments constitute the majority of the probability of the 15% percent drop

However, most of the variation in tail risk comes from variation in the conditional volatility.

Figure 9 shows similar results for the probability of a five-sigma loss on the market

portfolio. The probability that realized returns are more than five conditional standard

deviation below expected return is shown in Panel A. It peaked on October 31st 2017 with a

probability of 0.5%, which is thirty times the size of its low on November 28th 2008, where

the probability was 0.015%. These probabilities are well above what is implied by a normal

distribution, which is 2.9× 10−5%.

Figure 8 and Figure 10 shows the same probabilities at the quarterly rather than monthly

horizon. The results are similar, except that the importance of higher-moment risk for tail

loss probabilities is larger than at the monthly horizon.

To make the analysis more tangible and to ease the interpretation, we relate the tail risk

probabilities to two different investors. The tail risk relative to the unconditional standard

deviation can be thought of as the risk of a certain percentage loss for a constant notional

investor who keeps the same weight in the market over time. In contrast, the tail risk

relative to the conditional standard deviation can be thought of as the probability of a

certain loss for a volatility targeting investor who varies the position in the market over

time to keep a constant portfolio volatility (and invests the remainder in the risk-free asset).

Such a volatility targeting strategy is common practice among hedge funds and often used

in academic research as well (Moskowitz, Ooi, and Pedersen (2012), Asness, Frazzini, and

Pedersen (2012), Moreira and Muir (2018), and Moreira and Muir (2017)).

To make the tail risk of the two types of investors more precise, consider the unexpected
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return from an investment in the return on the market and the risk-free asset,

ri, shockt,T = ωit,T (Rt,T − Et[Rt,T ])

where ωit,T is the conditional portfolio weight on the market portfolio (and 1 − ωit,T is the

weight in the risk free asset). The conditional portfolio weight for the constant notional

investors is constant. For convenience and without loss of generality, we assume that the

weight is 1. The portfolio weight of the volatility targeting investor is

ωvol target
t,T =

σtarget

σt,T

where σt,T is the ex-ante conditional volatility on the market. For convenience, we assume

that the target volatility (σtarget) is the same as the time series average of the market portfolio,

σ̄. The probability of an unexpected loss which is lower than α for either investor is

Pt(r
i, shock
t,T < α) = Pt

(
ωi
t,T (Rt,T − Et[Rt,T ]) < α

)
= Pt

(
Rt,T − Et[Rt,T ] <

α

ωi
t,T

)

If we, for instance, study the probability of realizing an unexpected loss that is more

than three times the unconditional standard deviation of the market (i.e. α = 3σ̄), then the

probabilities for the constant notional and volatility targeting investors are

Pt(r
constant, shock
t,T < −3σ̄)) = Pt (Rt,T − Et[Rt,T ] < −3σ̄))

for the constant notional investor and

Pt(r
target, shock
t,T < −3σ̄) = Pt (Rt,T − Et[Rt,T ] < −3σt,T )
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for the volatility targeting investor. Accordingly, for the constant notional investor, the

probability is the same as the probability that the return to the market is three unconditional

standard deviation below expectations. For the volatility targeting investor, the probability

is the same as the probability that the return to the market is three conditional standard

deviation below expectations. We thus interpret the results on the unconditional probabilities

as the tail loss of a constant notional investor and the results on the conditional probabilities

as the tail loss of the volatility targeting investor.

5.1 Cyclical Variation in Tail-Loss Probabilities

We next study how different investors tail probabilities relate to the financial state variables

studied in Section 3.2. We first consider the conditional variance. Panel A of Table 6 reports

correlations between log-variance and the probability of a portfolio return that is less than

the threshold α. The first two columns of Panel A shows the correlations between log-

variance and the probability that the market realizes an unexpected return less than −3σ̄

and −5σ̄. The correlations range from 0.65 to 0.84 with tight block bootstrapped confidence

bounds, showing that the conditional variance plays a large role in this probability.

More importantly, Panel A of Table 6 also reports correlations between log-variance and

the probability of a portfolio return of 3σt,T and 5σt,T , which reflect the portfolio risk of the

volatility targeting investor. These probabilities are negatively correlated with log-variance

at −0.81 to −0.47, with tight block bootstrapped confidence bounds. These negative corre-

lations show that the portfolio of the volatility targeting investor is exposed to substantially

more risk at times when variance is low. This finding can potentially help explain why Mor-

eira and Muir (2018) and Moreira and Muir (2017) find that investors can earn high Sharpe

ratios by moving wealth into the market at times of low variance and moving wealth out of

the market when variance increases (in some sense mimicking a volatility targeting strategy).

The relatively (to variance) high expected return in calm periods may be compensation for
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the elevated higher-moment risk.

We next investigate the relation between tail probabilities and past returns. Specifically,

we regress tail probabilities onto past two year returns in the following regression

Pt(r
shock
t,T < −3σt,T ) = β0 + β1rt−24,t + εt,T (16)

Panel B of Table 6 reports β1 coefficients from regressions such as in (16). We find that the

probability of both a −3σt,T and a −5σt,T drop in the market is statistically significant and

positively related to past returns. The economic magnitude is such that a 50% market run-

up over the past two years implies a 0.18 percentage point higher probability of a monthly

−3σt,T drop in the market.

Finally, Panel C of Table 6 reports slope coefficients from similar regressions of the tail

probabilities onto the ex ante value of cay. The conditional tail probabilites are negatively

related to cay, suggesting that the conditional tail risk is higher when cay is low (that is,

prices are high). Unconditional tail probabilities are on the other hand positively related to

cay. The slope coefficients are all statistically significant.

5.2 Value-at-Risk Targeting

Given that volatility targeting does not inoculate tail risk, it is natural to ask what portfolio

might. If investors want the tail risk to be constant over time, how should they invest?

We answer this question by solving for the portfolio weights that create a constant value-

at-risk. Formally, for a desired value-at-risk, say c, we determine the fraction of wealth

invested in the market, ωconstant risk
t,T , such that there is a constant probability, p, for a portfolio
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shock less than c:9

Pt(ω
constant risk
t,T (Rt,T − Et[Rt,T ]) < c) = p

Panel A of Figure 11 shows time-variation in the tail risk of such a constant-risk portfolio.

The portfolio depicted targets a 1.31% probability of a 15% loss.10 The tail risk is constant

by construction at 1.31%. We compare this tail risk to that of a volatility targeting investor

who targets a 5% monthly volatility. The tail risk of the volatility targeting investor varies

from 0.7% to 1.9% over our sample which is a variation of 271%. Panel A of Figure 12

shows similar results for a 25% loss on the quarterly horizon. Here, we assume the volatility

targeting investor targets a 8.33% volatility and the value-at-risk targeting investor targets a

constant probability, 1.17%, for the shock. The tail risk probability of the volatility targeting

investor varies from 0.5% to 2.2% over our sample period, equivalent to a 440% variation in

tail risk.

Panel B of Figure 11 shows the weight the constant-risk investor puts in the market

portfolio over time. It generally decreases in bad times, such as during the financial crisis,

as the variance increases thereby making a 15% loss more likely for any given weight. In

this sense, the constant-risk portfolio trades in the same direction as the constant-volatility

investor, who also decrease her weight in the market when variance goes up.

Importantly, however, the constant-risk investor decrease her weight in the market port-

folio by less than the volatility targeting investor when volatility goes up. To illutstratate

this finding, Panel C of Figure 11 shows the ratios of wealth invested in the market for the

two types of investors:

ωconstant risk
t,T

ωvol target
t,T

− 1

9See Appendix C for details on how we estimate portfolio weights.
10The 1.31% is the average tail risk of a volatility targeting investors who targets 5% monthly volatility.
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When volatility is high, e.g. during the financial crisis, the constant-risk investor has 13%

more wealth in the market than the volatility targeting investor. When volatility is low,

we find that the constant-risk investor has 13% less invested into the market relative to

the volatility targeting investor. Panel C of Figure 12 shows similar results on a quarterly

horizon.

The constant-risk investor trades less than the constant-volatility investor. When volatil-

ity increases, both investors decrease their positions in the market as second-moment risk

goes up, but the constant-risk investor decreases the position by less, as the higher-moment

risk goes down simultaneously. The same dynamics occur when variance decrease. Over

our sample, the difference in trading is substantial. On the quarterly horizon, for example,

the constant-risk investor trades 10% less than the constant-volatility investor.11 This lower

trading activity suggests that the constant-risk portfolio is easier and cheaper to implement

than the constant-volatility strategy.

6 Economic Implications: Higher-Moment Risk, Un-

certainty, and Business Cycles

Time variation in higher-moment risk may also have important implications for the real

economy. Indeed, the growing literature on uncertainty shocks argues that uncertainty about

the economy may drive business cycles because higher uncertainty deters firms from investing.

This may happen through multiple mechanisms, but often the option value of postponing

investments is stressed. Indeed, higher uncertainty about a project increases the option

11Estimated as:∑264
t=2 |ωconstant risk

t,T − ωconstant risk
t−1,T−1 |∑264

t=2 |ω
vol target
t,T − ωvol target

t−1,T−1 |
− 1

over the 264 monthly observations from Jan. 1996 until Dec. 2017.
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value of investment projects, and managers may thus prefer to hold on to that option rather

than undertaking the investment (Dixit, Dixit, and Pindyck, 1994). Similarly, more higher-

moment risk increases the option value of an investment project and therefore increases the

incentive to postpone investment (Dixit, Dixit, and Pindyck, 1994).12 We therefore test

whether more higher-moment risk predicts lower future industrial production.

At each time t, we regress the change in industrial production between period t and t+ i

onto the ex ante probability of a three-sigma loss:

INDt+i − INDt = β0 + β1Pt(r
shock
t,T < −3σt,T ) + εt,T

The results are presented in Table 7 for the three year horizon. The estimate is negative and

statistically significant when measuring tail risk at the quarterly horizon. Accordingly, a high

tail risk predicts lower future industrial production. For shorter horizons the coefficients are

negative but insignificant. However, we note that the lack of predictability on the one and two

year horizons could arise from the fact that it takes time for firms to adjust their investments,

and it takes additional time for their adjustments to ripple through the economy. Finally,

we also find that political uncertainty does not predict changes in industrial production.

In the above regressions, one may be concerned that causality runs the opposite way,

and that it is recessions that cause uncertainty and not the other way around (Berger, Dew-

Becker, and Giglio, 2020). For instance, in the financial crisis volatility spiked in October

2008, which was probably after the great recession had set in motion, meaning that the

uncertainty was unlikely to have started the recession. To mitigate such concerns, we next

run similar regressions where we skip the first year of industrial production, meaning we

12Merton (1976) shows that, keeping the first moment constant, higher tail risk increases the value of a
call option.
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forecast the change in production from one year ahead and onwards:

INDt+i − INDt+12 = β0 + β1Pt(r
shock
t,T < −3σt,T ) + εt,T (17)

These results from regression (17) are presented in columns (4) and (5) of Table 7. Tail

risk still predicts changes in industrial production negatively at the three year horizon. The

results are substantially stronger than in Panel A, with R2 as high as 14%, suggesting that

tail risk may play an important role in business cycle fluctuations. In constrast, political

uncertainty predicts future indstrial production positively, not negatively, questioning its

importance in understanding business cycle fluctuations. The strong relation between tail

risk and industrial production is depcited in Figure 13.

Finally, as a word of caution, the results of the predictive regressions in Table 7 are

based on a small sample and the inference might thus be subject to small sample issues. For

instance, the t-statistics based on Newey-West errors are going to be biased upwards. In

untabulated results, we redo the analysis using standard errors of Lazarus, Lewis, and Stock

(2017), that are robust to small samples, and find that our results remain significant.

7 Conclusion

We employ a new method to estimate forward looking higher order moments of the return

distribution for the S&P 500 index from option prices.

Using this method, we document new stylized facts about higher-moment risk: (1) The

riskiness of higher order moments comove strongly in the sense that the third to sixth

moment tend to become riskier at the same time; (2) the comovement is strong as 91% of

the comovements in higher order moments is explained by their first principal component;

(3) higher-moment risk is high when the second moment, variance, is low; and (4) higher-
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moment risk is high when past returns are high and cay is low.

The movement in higher-moment risk is difficult to align with consumption-based asset

pricing models, and disaster models in particular. Indeed, in disaster models such as Gabaix

(2012), disaster risk peaks in bad times, which runs counter to the fact that higher-moment

risk is low during bad times. If anything, disaster risk appears particularly elevated in good

times.

The movement in higher-moment risk also has important implications for investors. The

variation in higher-moment risk causes the risk of a three-sigma event to vary from 0.7%

to 1.9% over the sample. This probability is higher in periods of low variance, creating

additional risk for investors who lever their portfolios when variance is low, such as volatility

targeting investors. We show how volatility targeting investors can take this additional

higher-moment risk into account when creating portfolios by targeting a particular value-at-

risk instead of a particular level of volatility. Going beyond investors, financial regulators

should worry that volatility targeting investors, such as hedge funds, load up on tail risk

in calm periods, thereby exposing themselves and the financial system to more risk. These

results echo the findings of (Brunnermeier and Sannikov, 2014), who shows theoretically

that the economy and the financial system becomes more vulnerable when volatility is low

because sophisticated investors apply more leverage and creates endogenous risk.

Finally, higher-moment risk is also related to future industrial output. When higher-

moment risk is high, firms produce less during the subsequent three years. The correlation

between future industrial output and higher-moment risk is as high as −0.37, suggesting

a potentially important role for higher-moment risk in understanding firm investments. In

addition, higher-moment risk predicts industrial production better than political uncertainty,

suggesting that higher order moments of returns are relevant measures for understanding the

impact of uncertainty and uncertainty shocks on the business cycle.
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Figure 1: Higher Order Moments of the Return Distribution of the S&P 500
Index (Monthly Horizon). The figures show time series plots of monthly higher order
moments for the S&P 500 index.
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Figure 2: Higher Order Moments of the Return Distribution of the S&P 500
Index (Quarterly Horizon). The figures show time series plots of quarterly higher order
moments for the S&P 500 index.
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Figure 3: The Higher-Moment Risk Index and Variance. This figure shows time
series plots of the monthly and quarterly higher-moment risk index and the second moment
(variance) of the return distribution. The higher-moment risk index is the first principal
component of the space spanned by skewness, kurtosis, hyperskewness, and hyperkurtosis.
The higher the index the more higher-moment risk.
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Figure 4: The Higher-Moment Risk Index and the Past Two Year Returns. This
figure shows time series plots of the monthly and quarterly higher-moment risk index and
the past two-year return on the S&P 500 Index. The higher-moment risk index is the
first principal component of the space spanned by skewness, kurtosis, hyperskewness, and
hyperkurtosis. The higher the index the more higher-moment risk.

43



−
4

−
2

0
2

4
6

Month

H
ig

he
r−

m
om

en
t r

is
k 

in
de

x

1/1996 1/1998 1/2000 1/2002 1/2004 1/2006 1/2008 1/2010 1/2012 1/2014 1/2016 1/2018

−
4

−
2

0
2

4
6

Higher−moment risk index − mid prices
Higher−moment risk index − ask prices
Higher−moment risk index − bid prices

Figure 5: The Higher-Moment Risk Index Using Bid or Ask Prices. This figure
shows the monthly horizon higher-moment risk indexes when using either bid, ask, or mid
prices. The pairwise correlation between the time series range from 0.978 to 0.981, suggesting
that our choice of mid prices does not affect our results.

44



0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Volatility

-2.5

-2

-1.5

-1

-0.5

0

0.5

S
ke

w
ne

ss

Data
Gabaix (2012)

(a)

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Volatility

0

1

2

3

4

5

6

7

8

9

10

11

K
ur

to
si

s

Data
Gabaix (2012)

(b)

0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07

Valuation Ratio

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

S
ke

w
ne

ss

(c)

0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07

Valuation Ratio

3

4

5

6

7

8

9

10

11

K
ur

to
si

s

(d)

Figure 6: Consumption-Based Asset Pricing Models and Higher-Moment Risk.
Panel (a) shows a scatterplot of simulated stock market skewness and volatility in Gabaix
(2012) along with a scatterplot of skewness and volatility in the data. Panel (b) shows a
scatterplot of simulated stock market kurtosis and volatility in Gabaix (2012) along with a
scatterplot of kurtosis and volatility in the data. Panel (c) shows a scatterplot of simulated
stock market skewness and the dividend-price ratio in Gabaix (2012) along with a scatterplot
of skewness and cay from the data. Panel (d) shows a scatterplot of simulated stock market
kurtosis and the dividend-price ratio in Gabaix (2012) along with a scatterplot of kurtosis
and cay from the data. To set cay and the dividend price ratio on the same scale, we
transform the observed cay as: ˜cay = (cay− 0.1)/2. Simulation details of the Gabaix (2012)
model are in Appendix B.
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Figure 7: Probabilities of a Three-Sigma Loss on the S&P 500 Index (Monthly
Horizon). Panel A shows the probability that the monthly S&P 500 return is three condi-
tional standard deviations (3σmonth

t ) below its expected value. The solid blue line shows the
probability as derived from option prices and the dotted line shows the probability implied
by the normal distribution, which is a constant 0.13%. The shaded area between the lines
represents higher-moment risk. Panel B shows the probability that the monthly S&P 500 re-
turn is three unconditional standard deviations below its expected value. The solid blue line
shows the probability as derived from option prices and the dotted line shows the probability
implied by the normal distribution. The unconditional standard deviation is the time series
average of 5.0% per month. The shaded area between the lines represents higher-moment
risk.
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Figure 8: Probabilities of a Three-Sigma Loss on the S&P 500 Index (Quarterly
Horizon). Panel A shows the probability that the quarterly S&P 500 return is three con-
ditional standard deviations (3σmonth

t ) below its expected value. The solid blue line shows
the probability as derived from option prices and the dotted line shows the probability im-
plied by the normal distribution, which is a constant 0.13%. The shaded area between the
lines represents higher-moment risk. Panel B shows the probability that the quarterly S&P
500 return is three unconditional standard deviations below its expected value. The solid
blue line shows the probability as derived from option prices and the dotted line shows the
probability implied by the normal distribution. The unconditional standard deviation is the
time series average. The shaded area between the lines represents higher-moment risk.
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Figure 9: Probabilities of a Five-Sigma Loss on the S&P 500 Index (Monthly
Horizon). Panel A shows the probability that the monthly S&P 500 return is five condi-
tional standard deviations (5σmonth

t ) below its expected value. The solid blue line shows the
probability as derived from option prices and the dotted line shows the probability implied
by the normal distribution, which is a constant 2.9× 10−5%. The shaded area between the
lines represents higher-moment risk. Panel B shows the probability that the monthly S&P
500 return is five unconditional standard deviations below its expected value. The solid
blue line shows the probability as derived from option prices and the dotted line shows the
probability implied by the normal distribution. The unconditional standard deviation is
the time series average of 5.0% per month. The shaded area between the lines represents
higher-moment risk.
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Figure 10: Probabilities of a Five-Sigma Loss on the S&P 500 Index (Quarterly
Horizon). Panel A shows the probability that the quarterly S&P 500 return is five condi-
tional standard deviations (5σmonth

t ) below its expected value. The solid blue line shows the
probability as derived from option prices and the dotted line shows the probability implied
by the normal distribution, which is a constant 2.9× 10−5%. The shaded area between the
lines represents higher-moment risk. Panel B shows the probability that the quarterly S&P
500 return is five unconditional standard deviations below its expected value. The solid
blue line shows the probability as derived from option prices and the dotted line shows the
probability implied by the normal distribution. The unconditional standard deviation is the
time series average. The shaded area between the lines represents higher-moment risk.
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Figure 11: A constant-risk portfolio (Monthly Horizon). Panel A shows the condi-
tional probability of a 15% shock to the monthly return of: (i) a volatility targeting investor
who targets 5% monthly volatility (solid blue line) and (ii) a constant-risk investor who
targets a constant probability of a 15% shock (dashed black line). Panel B shows the weight
invested in the market by the constant-risk investors. Panel C shows the ratio of market
weights between the constant-risk and the volatility targeting investors (solid blue line).
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Figure 12: A constant risk portfolio (Quarterly Horizon). Panel A shows the condi-
tional probability of a 25% shock to the quarterly return of: (i) a volatility targeting investor
who targets 8.33% quarterly volatility (solid blue line) and (ii) a constant-risk investor who
targets a constant probability of a 25% shock (dashed black line). Panel B shows the weight
invested in the market by the constant-risk investors. Panel C shows the ratio of market
weights between the constant-risk and the volatility targeting investors (solid blue line).
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Figure 13: Conditional Tail Loss Probabilities and Industrial Production. Panel
A shows time series of the probability of a −3σmonth

t event (solid) along with the level of
industrial production three years ahead minus the level of industrial production one year
ahead (dashed). Panel B shows time series of the probability of a −3σmonth

t event (solid)
along with the level of industrial production two years ahead minus the level of industrial
production one year ahead (dashed).
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Table 1: Summary Statistics of S&P 500 Moments. This table reports the average
time-series values of the following ex ante moments of the return distribution of the S&P 500:
excess return (ER−Rf), standard deviation (St. dev.), skewness (Skew), kurtosis (Kurt),
hyperskewness (Hskew), and hyperkurtosis (Hkurt). We estimate ex ante moments from
the point of view of a risk-neutral investor (γ = 0), a log-utility investor (γ = 1), and two
power-utility investors (γ = 3, γ = 5).

Annualized (%)

Horizon Risk-aversion ER−Rf St. dev. Skew Kurt Hskew Hkurt

Month γ = 0 0 18.71 -1.11 5.39 -14.03 58.35
Month γ = 1 4.01 18.07 -1.09 5.53 -14.58 63.13
Month γ = 3 11.09 16.97 -1.02 5.71 -15.07 70.98
Month γ = 5 17.25 16.11 -0.91 5.76 -14.74 75.84

Quarter γ = 0 0 19.56 -1.07 4.66 -11.14 40.06
Quarter γ = 1 4.19 18.40 -1.07 4.97 -12.56 48.41
Quarter γ = 3 11.01 16.60 -0.98 5.26 -13.92 61.36
Quarter γ = 5 16.47 15.34 -0.83 5.19 -13.13 65.25
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Table 2: Correlations Between S&P 500 Moments. This table reports the pairwise
correlations between the following S&P 500 moments: expected return (Er), variance (Var),
skewness (Skew), kurtosis (Kurt), hyperskewness (Hskew), and hyperkurtosis (Hkurt). Panel
A reports results for monthly moments and Panel B reports results for the quarterly mo-
ments. We report 95% block bootstrapped confidence bounds in brackets.

Panel A: Month

Er Var −Skew Kurt −Hskew Hkurt

Er 1 0.99 −0.42 −0.44 −0.42 −0.37
[0.99,1] [−0.51,−0.33] [−0.51,−0.38] [−0.49,−0.33] [−0.44,−0.30]

Var 1 −0.46 −0.48 −0.46 −0.40
[−0.55,−0.39] [−0.54,−0.43] [−0.53,−0.38] [−0.47,−0.33]

−Skew 1 0.83 0.90 0.72
[0.78,0.86] [0.88,0.93] [0.65,0.79]

Kurt 1 0.93 0.94
[0.91,0.94] [0.93,0.96]

−Hskew 1 0.93
[0.91,0.95]

Hkurt 1

Panel B: Quarter

Er Var −Skew Kurt −Hskew Hkurt

Er 1 0.99 −0.51 −0.52 −0.54 −0.51
[0.99,0.99] [−0.58,−0.44] [−0.57,−0.47] [−0.60,−0.48] [−0.57,−0.46]

Var 1 −0.58 −0.58 −0.61 −0.57
[−0.64,−0.52] [−0.64,−0.54] [−0.66,−0.56] [−0.62,−0.53]

−Skew 1 0.87 0.95 0.86
[0.85,0.90] [0.93,0.96] [0.82,0.89]

Kurt 1 0.95 0.98
[0.94,0.96] [0.96,0.99]

−Hskew 1 0.97
[0.96,0.98]

Hkurt 1
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Table 3: Principal Components of Higher Order Moments. This table presents the
results of a principal component analysis of the ex ante skewness (Skew), kurtosis (Kurt),
hyperskewness (Hskew), and hyperkurtosis (Hkurt) of the S&P 500. Panel A reports re-
sults on for the monthly moments and Panel B reports results for the quarterly moments.
The rightmost column shows the amount of variation explained by the various principal
components. The last row in each panel shows the correlation between the first principal
component and the different moments.

Panel A: Monthly horizon

Skew Kurt Hskew Hkurt Variation explained

PC 1 eigenvector −0.47 0.51 −0.52 0.50 91%
PC 2 eigenvector −0.78 −0.24 −0.07 −0.58 7%
PC 3 eigenvector 0.07 −0.78 −0.56 0.29 2%
PC 4 eigenvector 0.40 0.28 −0.65 −0.58 0%

PC 1 correlation −0.96 0.93 −0.95 0.82

Panel B: Quarterly horizon

Skew Kurt Hskew Hkurt Variation explained

PC 1 eigenvector −0.49 0.50 −0.51 0.50 95%
PC 2 eigenvector −0.79 −0.39 −0.10 −0.46 4%
PC 3 eigenvector 0.19 −0.74 −0.50 0.41 1%
PC 4 eigenvector −0.33 −0.22 0.69 0.60 0%

PC 1 correlation −0.97 0.89 −0.92 0.83
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Table 4: Cyclicality in Higher-Moment Risk. Panel A reports correlations between
ex ante variance, past two-year return, and cay (Lettau and Ludvigson (2001)) with and
the higher-moment risk index (HRI). Panel B reports correlations between the past two
year returns of the S&P 500 index and the individual moments: variance (Var), skewness
(Skew), kurtosis (Kurt), hyperskewness (Hskew), and hyperkurtosis (Hkurt). Panel C reports
correlations between cay and the individual moments. We report block bootstrapped 95%
confidence intervals in brackets.

Panel A: Correlations between HRI and variance, past 2-year return, and cay

Horizon Variance Past 2-year return Cay

Month −0.47 0.35 −0.50
95% CI [−0.54,−0.41] [0.24, 0.45] [−0.59, −0.41]

Quarter −0.60 0.26 −0.74
95% CI [−0.65,−0.55] [0.15, 0.36] [−0.80, −0.68]

Panel B: Correlations between past 2 year return and individual higher order moments

Horizon Var (%) Skew Kurt Hskew Hkurt

Month −0.42 −0.41 0.28 −0.37 0.27
95% CI [−0.51,−0.30] [−0.51,−0.30] [0.18, 0.38] [−0.47,−0.26] [0.15, 0.38]

Quarter −0.42 −0.37 0.15 −0.28 0.19
95% CI [−0.52,−0.30] [−0.47,−0.26] [0.05, 0.26] [−0.38,−0.17] [0.09, 0.29]

Panel C: Correlations between cay and individual higher order moments

Horizon Var (%) Skew Kurt Hskew Hkurt

Month 0.47 0.55 −0.52 0.46 −0.38
95% CI [0.4, 0.55] [0.46, 0.64] [−0.59,−0.43] [0.36, 0.55] [−0.47,−0.28]

Quarter 0.52 0.71 −0.73 0.72 −0.71
95% CI [0.45, 0.60] [0.64, 0.78] [−0.79,−0.68] [0.66, 0.78] [−0.77,−0.64]
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Table 5: Expected and Realized Moments on Constant-Volatility Portfolios. This
table reports the results of time-series portfolios sorted on ex ante moments. The High
(Low) moment portfolio is a strategy that invests in the market in the periods where the
ex ante moment is above (below) the time-series median. The position in the market is
scaled by the ex ante conditional volatility to create constant-volatility portfolios. We then
calculate standardized moments of realized excess returns to the two portfolios. We report
realized moments of the low- and high-moment portfolios, the difference between the two,
and block bootstrapped p-values for the hypothesis that the difference between the high-
and low-moment portfolios is non-positive. We report significance as: * when p < 0.1, **
when p < 0.05, and *** when p < 0.01. Panel A and B sort on option implied moments
whereas Panel C sort on past realized moments.

Panel A: Portfolios sorted on ex ante moments, weighing by option implied volatility

Monthly horizon Quarterly horizon

Skew Kurt Hskew Hkurt Skew Kurt Hskew Hkurt

Low-moment portfolio −0.56 2.29 −6.38 7.59 −0.75 2.24 −6.26 7.64
High-moment portfolio −0.44 4.09 −2.15 33.04 −0.48 3.70 −2.17 19.37

High−Low 0.12 1.80∗∗∗ 4.23 25.45∗∗∗ 0.27 1.46∗∗ 4.09 11.73
p-value (H0: High−Low ≤ 0) 0.34 0.007 0.16 0.002 0.24 0.05 0.11 0.11

Panel B: Portfolios sorted on ex ante moments, weighing by AR(1) volatility

Monthly horizon Quarterly horizon

Skew Kurt Hskew Hkurt Skew Kurt Hskew Hkurt

Low-moment portfolio −0.83 2.27 −12.52 7.14 −0.74 2.24 −6.82 7.43
High-moment portfolio −0.27 5.00 −1.35 60.62 −0.35 4.01 −1.31 21.07

High−Low 0.56∗ 2.73∗∗∗ 11.17∗∗ 53.18∗∗∗ 0.39 1.77∗∗ 5.51∗ 13.64∗

p-value (H0: High−Low ≤ 0) 0.09 0.001 0.02 0.001 0.16 0.02 0.06 0.09

Panel C: Portfolios sorted on past realized returns, weighing by AR(1) volatility

Monthly horizon Quarterly horizon

Skew Kurt Hskew Hkurt Skew Kurt Hskew Hkurt

Low-moment portfolio −0.70 3.38 −8.90 24.35 −0.63 2.76 −3.06 10.61
High-moment portfolio −0.26 2.63 −1.26 10.24 −0.52 3.27 −3.77 14.19

High−Low 0.44 −0.75 7.64 −14.11 0.11 0.51 −0.71 3.58
p-value (H0: High−Low ≤ 0) 0.17 0.65 0.25 0.64 0.38 0.33 0.63 0.48
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Table 6: Conditional and Unconditional Tail Risk. Panel A reports correlations be-
tween ex ante log-variance and tail loss probabilities. The probabilities are P (rt,T < −3σ̄t,T )
and P (rt,T < −3σt,T ) where rt,T = Rt,T −Et[Rt,T ], σt,T is the ex ante volatility from time t to
T , and we define σ̄ as the time series average of σt,T at the appropriate horizon. We report
block bootstrapped 95% confidence intervals in brackets. Panel B reports regression slope
coefficients for regressions of physical tail loss probabilities onto the past two year returns.
Panel C reports slope coefficients for regressions of tail loss probabilities onto cay (Lettau
and Ludvigson (2001)). We report standard errors in parentheses and significance as: *
when p < 0.1, ** when p < 0.05, and *** when p < 0.01. We correct standard errors for
autocorrelation using Newey and West (1987). We use the automatic bandwidth procedure
of Newey and West (1994) to select the optimal number of lags.

Panel A: Tail probabilities and log-variance (correlation coefficients)

Horizon Pt(rt,T < −3σ̄) Pt(rt,T < −5σ̄) Pt(rt,T < −3σt,T ) Pt(rt,T < −5σt,T )

Month 0.84 0.71 −0.47 −0.79
95% CI [0.82,0.89] [0.66,0.78] [−0.56, −0.36] [−0.83,−0.75]

Quarter 0.83 0.65 −0.59 −0.81
95% CI [0.80,0.87] [0.60,0.72] [−0.67,−0.50] [−0.84,−0.78]

Panel B: Tail probabilities (%) and past return (slope coefficients)

Horizon Pt(rt,T < −3σ̄) Pt(rt,T < −5σ̄) Pt(rt,T < −3σt,T ) Pt(rt,T < −5σt,T )

Month −2.05∗ −0.54 0.36∗∗∗ 0.11∗∗

(s.e.) (1.15) (0.34) (0.08) (0.05)

Quarter −2.00 −0.34 0.34∗∗∗ 0.07
(s.e.) (1.28) (0.25) (0.12) (0.06)

Panel C: Tail probabilities (%) and cay (slope coefficients)

Horizon Pt(rt,T < −3σ̄) Pt(rt,T < −5σ̄) Pt(rt,T < −3σt,T ) Pt(rt,T < −5σt,T )

Month 42.51∗∗∗ 8.82∗∗ −3.69∗∗ −3.10∗∗∗

(s.e.) (14.15) (3.92) (1.85) (0.68)

Quarter 35.58∗∗ 4.63∗ −7.74∗∗∗ −3.31∗∗∗

(s.e.) (14.33) (2.53) (1.90) (0.55)
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Table 7: Tail Risk and Industrial Production. This table reports the results of regressing
industrial production (IND) onto the conditional probability of a tail event. We report
standard errors in parentheses and significance as: * when p < 0.1, ** when p < 0.05, and
*** when p < 0.01. We correct standard errors for autocorrelation using Newey and West
(1987). We use the automatic bandwidth procedure of Newey and West (1994) to select the
optimal number of lags.

Dependent variable:
INDt+36 − INDt INDt+36 − INDt+12

(1) (2) (3) (4) (5) (6)

Pt(rt,t+1 < −3σt,t+1) −801.99 −1021.74∗∗∗

(s.e.) (549.14) (353.49)

Pt(rt,t+3 < −3σt,t+3) −1002.72∗ −982.21∗

(s.e.) (511.71) (544.20)

Economic policy uncertainty 521.91 (544.20)
(s.e.) (704.29) 516.53

No. obs. 235 235 235 235 235 235
Adj. R2 0.06 0.11 0.07 0.14 0.14 0.10
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Table 8: Correlations Between S&P 500 Moments Under Risk-Neutrality. This
table reports pairwise correlations between monthly risk-neutral S&P 500 moments: variance
(Var), skewness (Skew), kurtosis (Kurt), hyperskewness (Hskew), and hyperkurtosis (Hkurt).
We report 95% block bootstrapped confidence bounds in brackets.

Er Var −Skew Kurt −Hskew Hkurt

Er 1 0.99 −0.46 −0.50 −0.48 −0.41
[0.99,1] [−0.56,−0.37] [−0.57,−0.46] [−0.55,−0.43] [−0.48,−0.37]

Var 1 −0.52 −0.54 −0.51 −0.44
[−0.60,−0.43] [−0.60,−0.50] [−0.58,−0.47] [−0.51,−0.40]

−Skew 1 0.80 0.78 0.66
[0.76,0.84] [0.74,0.82] [0.60,0.72]

Kurt 1 0.97 0.93
[0.95,0.98] [0.90,0.95]

−Hskew 1 0.98
[0.97,0.98]

Hkurt 1

Table 9: Principal Components of Higher-Moment Risks Under Risk-Neutrality.
We estimate the four principal components (PC) spanning the space of monthly risk-neutral
skewness (Skew), kurtosis (Kurt), hyperskewness (Hskew), and hyperkurtosis (Hkurt). The
last column of Panel A shows that the first principal component (PC1RN) explains 95% of
the variation in monthly risk neutral higher order moments.

SkewRN KurtRN HskewRN HkurtRN Variation explained

PC1RN eigenvector −0.48 0.51 −0.51 0.50 95%
PC2RN eigenvector 0.78 −0.08 −0.27 0.57 5%
PC3RN eigenvector −0.41 −0.76 0.10 0.49 0%
PC4RN eigenvector −0.00 −0.38 −0.81 −0.44 0%

PC1RN correlation −0.94 0.99 −0.99 0.97
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Appendix A Ex Ante Physical Moments and Risk-Neutral

Pricing

Using equation (6) we can represent physical ex ante moments in terms of asset prices:

Et[R
i
t,T ] =

E∗t [R
i+γ
t,T ]

E∗t [R
γ
t,T ]

for i ∈ {1, ..., 6}. These asset prices can be used to estimate ex ante physical moments

by expanding the standardized moment formula in equation (7). We estimate kurtosis,

hyperskewness, and hyperkurtosis in the following way:

Kurtosist,T =
Et[R4

t,T ]− 3Et[Rt,T ]
4 + 6Et[Rt,T ]

2Et[R2
t,T ]− 4Et[Rt,T ]Et[R

3
t,T ]

(Et[R2
t,T ]− Et[Rt,T ]2)2

Hyperskewnesst,T =
Et[R5

t,T ] + 4Et[Rt,T ]
5 + 10Et[Rt,T ]

2Et[R3
t,T ]− 10Et[Rt,T ]

3Et[R2
t,T ]− 5Et[Rt,T ]Et[R

4
t,T ]

(Et[R2
t,T ]− Et[Rt,T ]2)5/2

Hyperkurtosist,T =
Et[R6

t,T ]− 5Et[Rt,T ]
6 + 15Et[Rt,T ]

4Et[R2
t,T ]− 20Et[Rt,T ]

3Et[R3
t,T ] + 15Et[Rt,T ]

2Et[R4
t,T ]

(Et[R2
t,T ]− Et[Rt,T ]2)3

−
6Et[Rt,T ]Et[R

5
t,T ]

(Et[R2
t,T ]− Et[Rt,T ]2)3
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Appendix B Details on Simulations of Gabaix (2012)

Within the Gabaix (2012) disaster model, we estimate the markets risk-neutral moments

by: (i) simulating option prices, (ii) converting these prices into a risk-neutral density using

Breeden and Litzenberger (1978), (iii) compute moments of the risk-neutral distribution. In

our simulation, we let variation in option prices arise from a time-varying recovery rate of

the market in case of a disaster. Specifically, we let the size of recovery in case of a disaster

be uniform on the interval from 0.1 to 0.95, i.e., if a disaster occurs then the value of the

stock market drops by 10% to 90%. Table 10 summarizes monthly horizon parameter values

used in the simulation.

Table 10: Variables used in the simulation

Variables Values
Time preference parameter 0.55%
Risk aversion 3
Growth rate of dividends 0.21%
Volatility of dividends 3.2%
Probability of disaster 3.63%
Normal time stock volatility 4%

Stocks recovery rate Varies from 0.10 to 0.95
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Appendix C Estimating weights in constant-risk port-

folios

We consider an investor who targets a specific probability (‘target probability’) of a certain

size shock (‘shock’) to her portfolio. We estimate the ‘constant-risk’ weights using the

following algorithm:

1. Make an initial guess on the fraction of wealth invested in the market (initial weight,

ωinitial
t,T ).

2. Using Proposition 1, estimate the probability of a ‘shock’ to the portfolio given the

initial weight, Pt(R
portfolio
t,T < ‘shock’|ωinitial

t,T ).

3a. If the absolute difference between the ‘target probability’ and the estimated probability

of a ‘shock’ is greater than 0.0001 then go to 4.

3b. If the absolute difference between the ‘target probability’ and the estimated probability

of a ‘shock’ is smaller than 0.0001 then end.

4. Update the fraction of wealth invested in the market as:

ωupdated
t,T = ωinitial

t,T + 0.0001× 1{Pt(Rportfolio
t,T <‘shock’|ωinitial

t,T )<‘target probability’}

− 0.0001× 1{Pt(Rportfolio
t,T <‘shock’|ωinitial

t,T )>‘target probability’}

5. Replace the initial weight in 2. with the updated weight and repeat 2.-4. until

|Pt(Rportfolio
t,T < ‘shock’|ωupdated

t,T )− ‘target probability’| < 0.0001.
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