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Abstract  

We show that firms reduce emissions at their local plants following EPA enforcement 

actions against nearby plants of peer firms operating in the same product market. The 

emission reductions are larger for plants located close to socially responsible mutual 

funds (SRMFs) that hold the parent firm’s shares and for plants belonging to firms with 

high operational flexibility. The close proximity to SRMFs is also associated with the 

adoption of abatement measures. While plants increase emissions again in the long run, 

these reversals are prevented for plants located close to SRMFs. We provide evidence that 

the threat of exit by SRMFs has real consequences for how the local plants respond to the 

enforcement action. The results suggest that local SRMF monitoring complements EPA 

enforcement. 
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1. Introduction 

Governments devote large amounts of resources in regulating the environmental impact 

of firms’ production activities, and firms, in turn, spend significant amounts in complying 

with these regulations. In the U.S., the Environmental Protection Agency (EPA) is the 

primary body responsible for setting up the regulatory framework for environmental 

monitoring under various statutes such as the Clean Air Act.1 Increasingly, however, the 

EPA is not the only actor in the area of environmental monitoring. Socially responsible 

investors (henceforth, SRIs)—who have sustainability goals when making investment 

decisions—are arguably an influential stakeholder because they can use voice and threat 

of exit to influence a firm (Dimson, Karakas, and Li, 2015; Dyck, Lins, Roth, and Wagner, 

2019; Hong, Karolyi, and Scheinkman, 2020; Krueger, Sautner, and Starks, 2020).2  

The presence of socially responsible funds in a region raises an important question 

on which empirical evidence is still limited: Do these investors complement the EPA in 

monitoring environmental compliance of their investee firms? Economic theory does not 

provide unambiguous guidance for this question.3 On one hand, heightened enforcement 

activities in a region by the EPA could cause SRIs to spend less resources on pursuing 

environmental actions. On the other hand, EPA enforcement could alert SRIs about 

                                                           
1 The Clean Air Act (CAA), along with the Clean Water Act (CWA) and the Resource Conservation and 
recovery Act (RCRA), get the bulk of the resources for monitoring and enforcement (Shimshack, 2014). 
While the primary authority of inspections and enforcements under the various acts belongs to the states’ 
departments of environment and local authorities, these “primary authorities” work closely with the 
regional and federal EPA offices. The latter also conduct their own inspections (especially when the local 
efforts are deemed inadequate and the potential for harm is especially high), and impose penalties on their 
own on violators. Penalties include administrative, civil, as well as criminal penalties. 
2 Recently, courts have also joined forces with shareholders and regulators. For example, a Dutch court has 
recently ruled that Royal Dutch Shell is obliged to cut its carbon emissions by 45% by the year 2030 to align 
with the goals of the Paris Agreement. Community organizations and other non-governmental 
organizations (NGOs) are also important stakeholders (Grant and Grooms, 2017; Grant and Langpap, 2019; 
Heyes and King, 2020). In general, our understanding of the role of non-government enforcement and how 
it complements the EPA enforcement is limited, perhaps due to the lack of granular data on the 
involvement of these agents. For this reason, our study of SRIs offers insights into this important issue. 
3 A theoretical literature in regulatory and public economics suggests that whether the monitoring actions 
of multiple agents are substitutes or complements depends on, among other factors, the relative costs of 
private versus agency enforcement, the expected penalty, the public information production from each 
type of monitoring, and the nature of the “enforcement game” (Langpap, 2007; Goeshl and Jürgens, 2012). 
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regulatory risk to their portfolio firms, especially when these firms are more likely to 

come under the regulator’s scrutiny following the enforcement action. Moreover, SRIs 

may not have genuine social purposes after all, as has been claimed in recent studies (e.g. 

Michaely, Ordonez-Calafi, and Rubio, 2021). Ultimately, whether SRIs complement EPA 

enforcement is an empirical issue that we investigate in this study.4  

The issue of whether SRIs “walk their talk” has been at the center of recent debate, 

and our study attempts to shed light on this debate. Both practitioners and regulators 

have raised concern that a “green” posture enables fund managers to attract funds and 

benefit from higher fees associated with ESG (Environmental, Social and Governance)-

oriented funds, but investments by these funds do not deliver anything tangible to the 

investors either in terms of higher returns or better ESG performance by the portfolio 

firms.5 Some recent research also suggests that the environmental footprints of their 

investments do not reflect their publicly disclosed purposes (Gibson Brandon, Glossner, 

Krueger, Matos, and Steffen, 2021; Heath, Macciocchi, Michaely, and Ringgenberg, 2021; 

Liang, Sun, and Teo, 2021). On the other hand, Dyck, Lins, Roth, and Wagner (2019) find 

that higher levels of institutional ownership are associated with higher firm-level E&S-

scores worldwide, especially when the institutional investors are signatories to the UN 

Principles on Responsible Investing.6 

                                                           
4 Grant and Grooms (2017) examine the role of nonprofits and compliance with the Clean Water Act, and 
their effect on government monitoring and enforcement. They find that nonprofits engage directly with the 
facilities, and severe violations and government inspections both decrease as the number of local groups 
increases. Grant and Langpap (2019) find that increased presence of watershed groups results in higher 
proportions of swimmable and fishable water bodies, and that increased donations to and expenditures by 
the groups also improve water quality. 
5 This practice has been termed “greenwashing”, which is now an official entry in the Meriam-Webster 
dictionary, which defines it as, “expressions of environmentalist concerns especially as a cover for products, 
policies, or activities”. 
6 Dimson, Karacaş and Li (2021) study engagements by coalitions of PRI signatories under the PRI 
Collaboration Platform with target firms, and find that the coalition targets firms with more equity holding 
by the coalition, and higher ESG scores than their peers (possibly reflecting reputational concerns of target 
firms). Success rates are higher when a local signatory leads the coalition. Pension funds with pro-
environmental goals can also pressure portfolio firms to improve environmental performance 
(Naaraayanan, Sachdeva, and Sharma, 2021). Financial institutions can sponsor and support ESG-oriented 
shareholder proposals (Cao, Liang, and Zhan, 2019; Kim, Wan, Wang, and Yang, 2019). Akey and Appel 
(2019) find that a possibly unintended outcome of hedge fund activism is a decrease in toxic chemical 
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 Not much is known about what triggers SRI engagement, if any. Dyck, Lins, Roth, 

and Wagner (2019) show that firms with more institutional ownership improve 

environmental performance following the BP Deepwater Horizon oil spill. Thus, it is 

plausible that complementary effects via SRI engagement occur if, for example, the EPA 

enforcement sends a signal about the prevailing compliance level in a region that leads 

SRIs to elevate their monitoring efforts. Heath, Macciocchi, Michaely, and Ringgenberg 

(2021) distinguish between “selection” and “treatment”. Selection refers to investing in 

companies because of their better ESG footprints, and treatment involves actively 

engaging with the companies to improve their environmental and social performance. 

While selection in the absence of engagement could be associated with greenwashing, as 

the authors note, the threat of entry or exit by SRI funds could change firm behavior. 

More importantly, it could also make SRI engagement more credible. This is because the 

SRI fund is likely to care for its reputation or ESG rating/profile if that helps attract 

investor fund inflow, and this will motivate it to engage with a portfolio firm if it behaves 

badly. In addition, engagement with these firms can be more effective since other ESG-

conscious shareholders may join the call and make their voices heard (e.g., through 

shareholder-initiated ESG proposals and the shareholder voting process). Other SRIs will 

join because this will further enhance their reputations as being socially responsible 

(Dimson, Karacaş, and Li, 2021).7  

We contribute to this debate by using a unique setting in which the EPA first takes 

an enforcement action against a violating plant. We then investigate whether and how, 

after such EPA enforcement actions, local socially responsible mutual funds (SRMFs) 

play a role in ensuring the environmental compliance of local plants that produce similar 

products and use similar technology as the violating plant but are not targeted by the 

EPA. We show evidence consistent with the interpretation that monitoring or 

                                                           
emissions by plants of the targeted firms. However, the decrease is not driven by abatement measures, 
rather, more operational efficiency. 
7 Dimson, Karacaş, and Li (2021) note that the argument has parallels with the idea of “wolf-pack activism” 
by hedge funds (Brav, Dasgupta, and Matthews, 2021). 
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engagement by SRMFs becomes more effective after such EPA enforcement actions, and 

emissions at monitored plants are reduced both in the short term and in the longer term.   

We introduce a notion of compliance slack whereby a firm’s operating practice does 

not comply with environmental regulations, possibly unbeknown to the EPA, and is at 

risk of EPA scrutiny, which potentially exposes it to an enforcement action. Compliance 

slack can arise because, given limited resources, the EPA is unable to detect and pursue 

all noncompliant firms (Yaeger, 1991; Heyes and Rickman, 1999). Zou (2021) shows that 

non-continuous enforcement in a region by the EPA can lead to higher pollution levels 

on non-monitoring days. Similarly, the full extent of compliance slack could also be 

unknown to local SRMFs (until they are alerted by an EPA enforcement action in the 

region) because fund managers do not monitor investees’ plants on a regular basis. 

To guide our empirical analysis, we present in Appendix A a simple model that 

motivates most of our hypotheses and empirical tests for the spillover effects of EPA 

enforcement on non-target plants and the role of local SRMFs. In the presence of 

compliance slack, our first prediction is that a firm would reduce its toxic emissions at a 

local plant after observing an EPA enforcement action taken against a peer firm’s plant 

that is located in close proximity.8 Peer firms are those operating in the same product 

market according to Hoberg and Phillips’s (2016) Text-based Network Industry 

Classifications (TNIC3), which is calibrated to be as fine as 3-digit SIC. The EPA provides 

detailed industry-specific guidelines based on the nature of the production process (Xu 

and Kim, 2021).9 We empirically verify that the quantities of emissions of harmful 

chemicals from plants of TNIC3-peer firms are more correlated with each other than 

emissions from plants of the broader TNIC2 network, which is calibrated to be as coarse 

as 2-digit SIC.  

An EPA enforcement action in a region could raise concerns among peer plants that 

they could be the targets of investigations. This risk possibly ensues from the EPA’s 

                                                           
8 Empirically, we use 100-mile radius to define vicinity. This choice balances the need for a large enough 
sample of treated plants that are close enough to a violating plant for a meaningful spillover effect. We 
show that the spillover effect becomes weaker as the distance from the violating plant is larger. 
9 See also https://www.epa.gov/regulatoryinformation-sector. 

https://www.epa.gov/regulatoryinformation-sector
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“neutral selection” inspection policy, which is in part based on geographic proximity to 

other facilities scheduled to be inspected (Shimshack, 2014). Once the EPA uncovers a 

violation, the violating plant will be subjected to more intensive inspections (Blundell, 

Gowrisankaran, and Langer, 2020), which potentially increases the risk that nearby plants 

will also be visited and inspected by the regulatory authorities. These heightened 

regulatory activities in the area, coupled with the high similarity of toxic releases among 

peer plants, suggest that, after observing an EPA enforcement action against a peer plant, 

treated plants (i.e. same-TNIC3 plants that are located in close proximity to the violating 

peer plant) would have stronger incentives to take actions to reduce emissions to avoid 

being the next enforcement target.10 

Consistent with the presence of compliance slack, we find that treated plants 

significantly reduce their toxic emissions in the three years following an enforcement 

action against a nearby peer plant. We obtain this finding using a stacked difference-in-

differences regression analysis with TNIC2 firms acting as the control group and 

controlling for plant, year, and county fixed effects. The effect is economically meaningful 

– equivalent to drop in toxic releases from the 60th percentile level to the median level of 

the sample distribution.  

We carefully check for parallel trends to establish the validity of our difference-in-

differences methodology. In addition, our results remain robust when we proxy for plant-

level emissions using air quality index that is objectively measured using monitoring 

stations located within 1-mile radius from a plant.11 We also find that the spillover effects 

are more pronounced when EPA enforcement penalties imposed on the local violating 

                                                           
10 Throughout this paper, we refer to the plant facing enforcement action as the target plant or violating 
peer plant, and the firm that owns the target plant as the target firm. We refer to same-TNIC3 plants that 
are located in close proximity to a violating peer plant as treated plants or non-target treated plants. 
11 A county can be placed under nonattainment status if its air quality is below an environmental 
benchmark specified by the EPA. Such a status will subject the county to stricter regulatory monitoring 
than attainment counties (Dai, Duan, and Ng, 2021). It is therefore plausible that plants respond to their 
counties’ nonattainment status rather than a nearby peer enforcement action. In untabulated analysis, we 
obtain historical data on county-level nonattainment status in a given year from the EPA, which evaluates 
a county’s air quality based on six criteria pollutants, namely, carbon monoxide, particulate matter, sulfur 
dioxide, ozone, lead, and nitrogen. We find that our effects remain strong regardless of a county’s 
nonattainment status, suggesting that nonattainment status does not confound our results. 
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peer plant are higher and when the enforcement action involves a violation of a major 

environmental law. This result suggests that treated plant response is stronger when local 

regulatory risk is higher. Last, consistent with the existence of compliance slack, we find 

that treated plants’ responses are stronger when the EPA did not take any enforcement 

actions in the area over the past five years.  

We next examine our main question of whether a treated plant’s reduction of toxic 

releases is stronger when it is located close to an SRMF, who holds shares in the treated 

plant’s firm. We contend that an enforcement action against a nearby peer plant indicates 

heightened regulatory risk in the area, possibly prompting a local SRMF to make plant 

visits and engage with local treated plants more intensively. While a direct test of SRMF 

engagement at the plant level is not possible due to the lack of such granular data, we 

conduct tests based on the predictions derived from the monitoring role of SRMFs.  

A recent literature finds that technology adoption, management practices, and 

knowledge spillovers have a significant geographic component, and decline with 

geographic distance (Dougal, Parsons, and Titman, 2015; Agha and Molitor, 2018; Bloom, 

Brynjolfsson, Foster, Jarmin, Patnaik, Saporta-Eksten, and Van Reenen, 2019; Matray, 

2021). Proximity is important for soft information gathering even in the present day, 

especially for the fund management industry (Bai and Massa, 2021). Based on this 

literature, we argue that the local presence of an SRMF matters for two reasons. First, an 

SRMF’s prior information about potential violations by peer plants is likely to be of higher 

quality when it is local, which makes it cost-effective for it to engage with the local plants 

after the EPA action once the perceived regulatory threat increases. Second, engagement 

is less costly when the plant is local. Therefore, we expect that following the enforcement 

action, the SRMF engages with nearby plant managers to ensure that necessary 

abatement measures are taken to mitigate emissions; however, we expect its influence is 

more pronounced on close plants than distant plants. Consistent with this prediction, we 

find that when an SRMF is located in close proximity (within 100 miles) to the investee’s 

plant and to the violating peer plant, the total reduction of toxic releases at the investee’s 

treated plant is quantitatively twice as large as that of treated plants without a close 
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SRMF.  We also find that the effects of SRMF decay monotonically as the distance from a 

treated plant to its nearest SRMF increases.12 We obtain similar findings by matching 

treated plants located close to SRMFs to those located far away from SRMFs based on 

plants’ parent firms’ environmental scores, suggesting that better monitoring ability of 

SRMFs located closer to the treated plants, rather than the self-reaction of firms with good 

environmental performance, explain our results. 13 

Not all firms can respond to EPA enforcement by reducing local emissions, possibly 

due to high compliance costs. Those firms that could respond to heightened regulatory 

risk in a region could take advantage of their operational flexibility. Indeed, we find that 

treated plants that reduce emissions following a nearby peer’s enforcement action are 

those belonging to parent firms with sufficient operational flexibility or resources, such 

as those with higher levels of inventory holding, more plants, and a lower value of a 

measure of inflexibility which is based on the range of variation of a firm’s operating cost-

to-sales ratio.  

For a typical flexible firm, we find that it reduces emissions at the local treated plants 

by engaging in short-term, opportunistic tactics such as using up its inventory (possibly 

to meet current customers’ demand and reduce production at the same time) or shifting 

toxic emissions to other distant plants (possibly by reallocating productions to distant 

plants). Yet we find that the net emissions reduction at the aggregate firm level is still 

large and statistically significant. Further investigation into the destination to which these 

flexible firms shift emissions reveals that the distant plants are located in regions where 

the local EPA office does not scrutinize their industries intensively (as proxied by the 

number of past enforcement actions taken against these industries in the region).  

                                                           
12 These results are not driven by institutional investors that hold both the violating peer firm and the 
treated firm.  
13 It is possible that treated firms respond more strongly to EPA enforcement in the presence of local SRMFs 
because the latter’s monitoring could crowd out EPA monitoring, which, in turn, causes more compliance 
slack. This hypothesis, however, implies that SRMFs are actively monitoring treated plants and are unlikely 
to be surprised by a nearby enforcement action. The tests discussed below on how (i) SRMFs adjust their 
portfolios when a local plant fails to respond to nearby enforcement action, and (ii) the role of close SRMFs 
in mitigating emissions in the longer term by local plants, provide additional evidence in support of the 
complementarity of EPA and SRMF enforcement. 
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These findings suggest that environmental compliance is costly even for a typical 

flexible firm as it finds ways to opportunistically reduce exposure to heightened 

regulatory risk in a region. Local SRMF engagement is complementary to and reinforces 

EPA enforcement. If local SRMFs become more active in monitoring following a nearby 

EPA enforcement action, we expect that the opportunistic behavior of flexible firms will 

also be mitigated. Indeed, we find that the transfer of emissions is thwarted when treated 

plants are close to an SRMF who owns the parent firms’ shares. We next conduct a 

number of tests to examine how local SRMFs influence local plants’ emissions. 

First, we study the adoption of abatement measures as an indication of plant-level 

actions to tackle emissions. For treated plants that are located close to an SRMF, we find 

that, following a nearby enforcement action, these plants are more likely to implement 

abatement initiatives involving manufacturing process modifications such as modifying 

equipment, changing input chemicals, or improving chemical reaction conditions.  

Second, we examine whether the treated firms (i.e. firms that have treated plants 

close to SRMFs) implement abatement measures at distant plants that are located outside 

100 miles of the violating peer plant. In the three years after a peer enforcement action, 

we do not observe changes in abatement at these distant plants. However, in the period 

from 4 to 10 years after the enforcement action, we find that these distant plants are more 

likely to undertake abatement investment to reduce emissions. Again, this gradual 

adoption is consistent with the nature of abatement investment, which is costly and takes 

several years to implement. While local SRMFs influence the treated firm to implement 

abatement measures at local treated plants in the short run because these plants face an 

immediate regulatory risk, they also demand a comprehensive plan to reduce emissions 

at distant plants in the longer run.  

Third, we show that in the absence of a close SRMF, the opportunistic behavior of 

treated firms does not sustain in the longer term. Over the period from years t+4 to t+10 

after an enforcement action against a local peer plant in year t, emissions at treated plants 

increase back to 100% of the short-run reduction amount (after removing confounding 
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enforcement actions over the same period). By contrast, treated plants that are located 

close to an SRMF continue to reduce emissions in the longer term.  

We also examine whether the long-run effects of local SRMFs on the firm-level 

emissions aggregated across all plants. Consistent with the plant-level results, we find 

that treated firms increase their aggregate emissions again in the long run, but these long-

run reversals are prevented for treated firms with treated plants located close to an 

SRMF.14 Taken together, these results are consistent with the notion that local SRMFs 

elevate their monitoring intensity after observing a nearby enforcement action, and the 

abatement measures that are taken by firms held by these SRMFs are effective. 

Next, we provide evidence that the threat of exit by SRMFs has real consequences for 

how the local plants respond to the enforcement action.15 We find that all SRMFs reduce 

the portfolio weights of firms whose treated plants do not reduce emissions immediately 

after a local enforcement action (hereafter referred to as non-responding treated plants), 

and this effect is larger if the SRMF is located in close proximity (i.e. within 100 miles of 

the target and treated plants). In contrast, SRMFs increase the portfolio weights in firms 

whose treated plants reduce emissions after observing an enforcement action against a 

local peer plant, and again, the effect is larger if the SRMF is located in close proximity. 

The mere threat of exit arising from local SRMFs’ selling of non-responding treated 

firms’ shares could cause the responding treated firms to keep their emissions low in the 

long run. We find that when responding treated plants are located close to a non-

responder, long-term emission reversals at these plants are mitigated. These long-run 

reversals of emissions are completely prevented when the local non-responder has an 

SRMF located in close proximity.   

Related Literature and Contribution 

Our study contributes to a strand of climate finance literature that examines the 

effects of regulations on firm environmental behavior. Prior research has examined how 

                                                           
14 These firm-level results are inconsistent with the window-dressing hypothesis, which implies that the 
effects of SRMFs on long-run emissions at the aggregate firm level are insignificant. 
15 Edmans (2020) contends that institutional investors’ threat of exit is a powerful mechanism that 
influences firms to undertake socially responsible investment, thereby benefiting the society as a whole. 
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firm response to environmental regulations is determined by reputation (Karpoff, Lott, 

and Wehrly, 2005), financial constraints (Cohn and Deryugina, 2018; Goetz, 2018; 

Bartram, Hou, and Kim, 2021; Xu and Kim, 2021), supply chain (Schiller, 2018; Dai, Liang, 

and Ng, 2021), and corporate legal and listing status (Shive and Forster, 2020; Akey and 

Appel, 2021). Other studies examine the effects of environmental regulatory risks in 

financial markets (de Greiff, Delis, and Ongena, 2018; Hoepner, Oikonomou, Sautner, 

Starks, and Zhou, 2020; Seltzer, Starks, and Zhu, 2020). Whereas prior research focuses 

on the direct effects of environmental regulations on firms, our study examines the 

spillover effects of EPA enforcement actions on local peer firms.16  

To the best of our knowledge, our paper is also the first to empirically examine the 

interactions between the monitoring roles of socially responsible financial institutions 

and regulators. We find strong evidence that local SRMF’s monitoring complements EPA 

enforcement especially in ensuring local plants’ long-run environmental compliance. 

Examining the direct effects of SRMF on a firm could be confounded by an EPA 

enforcement action taken against the firm itself, which forces the firm to reduce 

emissions. Our setting overcomes this issue by taking advantage of the action chain by 

the EPA and local SRMFs. Specifically, in our setting, an EPA enforcement action against 

a peer plant triggers local SRMF’s monitoring of other local plants that are not targeted 

by the enforcement action, thereby allowing us to empirically attribute the emissions 

reductions at non-target treated plants to the local SRMF’s influence following the 

enforcement action. We provide a detailed discussion of the role of SRMF and related 

endogeneity concerns in Section 4.6. Our findings have important policy implications as 

environmental activism by private monitors is increasing rapidly, and economic theory 

does not provide definitive answers as to whether private monitoring increases the 

                                                           
16 In addition to regulatory risk, the climate finance literature also examines the effects of physical climate 
risk (Barrot and Sauvagnat, 2016; Dessaint and Matray, 2017; Hsu, Lee, Peng, and Yi, 2018; Bernstein, 
Gustafson, and Lewis, 2019; Hong, Li, and Xu, 2019; Alok, Kumar, and Wermers, 2020; Baldauf, Garlappi, 
and Yannelis, 2020; Painter, 2020; Giglio, Maggiori, Rao, Stroebel, and Weber, 2021; Goldsmith-Pinkham, 
Gustafson, Lewis, Schwert, 2021; Massa and Zhang, 2021; Huynh and Xia, 2021) and the effects of transition 
risk/carbon emissions (Barnett, Brock, and Hansen, 2020; Choi, Gao, and Jiang, 2020; Hsu, Li, and Tsou, 
2020; Bolton and Kacperczyk, 2021a, 2021b). 
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efficacy of public monitoring (Langpap, 2007; Goeshl and Jürgens, 2012).17 An important 

policy implication of our findings is that the returns to repeat inspections and 

enforcement actions by the EPA are lower when socially responsible institutions are also 

present locally, and this could inform the EPAs monitoring and enforcement strategy. 

Our results provide strong evidence in support of SRI engagement in the mitigation 

of adverse environmental issues, consistent with Dimson, Karakaş, and Li (2015, 2021), 

Dyck, Lins, Roth, and Wagner (2019), and others. It is notable that SRMFs in our study 

are based in the U.S. Several recent papers find that U.S.-based SRI’s, in contrast to those 

based in some countries with higher country-level norms on social and environmental 

issues, are either less likely to influence portfolio firms on E&S issues, or deviate from 

their stated pro-E&S positions in terms of the ESG footprints of their portfolio firms (e.g. 

Gibson Brandon, Glossner, Krueger, Matos, and Steffen, 2021). Our results are related to 

Heath, Macciocchi, Michaely, and Ringgenberg (2021) who study how unexpected 

increases in SRI fund-flows affect emissions of portfolio firms. They do not find such 

inflows to have any effects on several E&S categories, including emissions. Finally, the 

issue of “engagement” versus “portfolio selection” (exit or not enter when a firm’s ESG 

footprint is below the mark) has received much attention, with some arguing that the 

former is more effective (Broccardo, Hart, and Zingales, 2020). We find that entry and exit 

are related to how firms respond to a perceived increase in regulatory risk, and this effect 

is particularly strong for a local SRMF. 

 

2. Data and Variable Construction 

Our sample includes plants of U.S. public non-financial firms over the 1990-2015 

period. We obtain data on plants and their parent firms from several data sources: plant-

level toxic releases from EPA Toxics Release Inventory (TRI) program,18 enforcement 

                                                           
17 For example, in models of “regulatory dealing” inspired by Harrington (1988), the regulator optimally 
tolerates some non-compliance. Private enforcement in this setting can undermine regulator monitoring 
(Heyes and Rickman, 1999). 
18 More information on EPA TRI program is available via the link. 

https://www.epa.gov/toxics-release-inventory-tri-program
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cases from EPA compliance and enforcement data, plant-level location information from 

the National Establishment Time-Series (NETS) database, Hoberg and Phillips Text-

based Network Industry Classifications (TNIC) from Hoberg-Phillips Data Library, air 

quality indexes measured at air monitoring sites from EPA Air Quality data, and firm-

level accounting and market data sourced from Compustat Fundamentals Annual file 

and Center for Research in Securities and Prices (CRSP). The definitions of all the key 

variables are detailed in Appendix Table B1. 

 

2.1. Plant-level Toxic Releases Measure 

We obtain a plant’s toxic emission information from EPA Toxics Release Inventory 

(TRI) program. The EPA requires all plants that meet their reporting criteria (e.g. have at 

least 10 employees, operate in certain industry sectors, use certain type of chemicals) to 

report emissions data.19 In the reporting form, plants are required to provide the number 

of pounds per chemical that are released into the ground, air, and water. The TRI database 

also provides information on the plant’s identifier, each chemical’s identification 

information, quantities of each chemical released on-site at the plant each year, and 

quantities of each chemical transferred off-site to other locations each year.  

To identify whether a chemical in TRI is harmful to humans, we obtain information 

on the toxicity of chemicals from the EPA’s Integrated Risk Information System (IRIS), 

which assesses, characterizes, and standardizes the health hazards of over 400 chemicals 

in the environment.20 Using the common chemical identifier—Chemical Abstract Services 

(CAS) numbers—we match IRIS chemicals with TRI to identify chemicals that cause 

potential harms to human health. Our plant-level toxic emissions measure, Toxic, is then 

a plant’s total amount of on-site releases of all identified harmful chemicals. To ensure 

that toxic releases are comparable across plants, we standardize toxic releases using the 

industry mean and standard deviation in each year. We confirm that our results do not 

qualitatively change when we do not standardize toxic releases. 

                                                           
19 The TRI reporting criteria is listed on EPA website. 
20 Details information on IRIS is available via the link. 

https://www.epa.gov/toxics-release-inventory-tri-program/basics-tri-reporting
https://www.epa.gov/iris
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While it is mandatory for plants to disclose their toxic releases, TRI data could be 

subject to self-reported bias. Recent research, however, suggests that such bias is 

idiosyncratic and likely to be negligible on average (Brehm and Hamilton, 1996, EPA, 

1998, De Marchi and Hamilton, 2006, Akey and Appel, 2021). Moreover, truthful reports 

of high emissions are not automatically penalized (Greenstone, 2003). Indeed, the EPA’s 

policy on “Incentives for Self-Policing: Discovery, Disclosure, Correction and Prevention 

of Violations” is designed to encourage plants to voluntarily disclose violations, allowing 

violators to avoid up to 100% of severity-based penalties and criminal prosecution if they 

are cooperative and their disclosure meets the conditions under the policy.21 In contrast, 

plants that misreport their emissions can face civil penalties or criminal charges 

(Greenstone, 2003, Xu and Kim, 2021).  

While high emissions are not automatically penalized, it does not necessarily imply 

that plants do not have to reduce emissions. Blundell, Gowrisankaran, and Langer (2020) 

document that, once the EPA uncovers a violation, it will place the plant under a 

“violator” status, which subjects the plant to additional inspections, potentially 

uncovering more violations and fines. Plants will only return to compliance status once 

those violations have been resolved. Thus, the cost to the plant of being a violator comes 

not only from the investment cost required to resolve outstanding violations, but also 

from an increased level of regulatory oversight. Given these potential costs, plants have 

an incentive to reduce toxic releases if they wish to avoid being labelled a violator.  

Plants may also reduce toxic releases due to pressure from local stakeholders. As we 

will show in later sections, SRMFs that are located in the area and are in a position to be 

aware of a local plant’s violation can exert pressure on the nearby plants of firms they 

have ownership positions in to reduce toxic releases. Moreover, because plants in the 

same product market tend to release similar harmful chemicals (as shown in Appendix 

Table B2), an enforcement action against a plant could lead the EPA to scrutinize close 

peer plants in the area, making it riskier for these plants to maintain the existing level of 

                                                           
21 Information on EPA’s audit policy is available via the link. 

https://www.epa.gov/compliance/epas-audit-policy
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harmful chemical releases. Taken together, it is plausible that enforcement actions against 

nearby peer plants can cause firms to respond by reducing emissions. 

 

2.2. EPA Air Quality Index Data  

To formally address the concern that TRI data are self-reported, our sensitivity 

analysis uses air quality index obtained from the EPA’s Air Quality System (AQS) 

database. The EPA calculates daily air quality indexes based on five major air pollutants: 

ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, and fine particulate matter 

smaller than 2.5 micrometers. The daily aggregate air quality index is then calculated as 

the average of these five daily individual indexes. The EPA measures air quality using 

thousands of independent monitoring stations located throughout the U.S. and thus, it is 

arguably an objective estimate of the pollution level. A disadvantage of this measure, 

however, is that it could be noisy, since air quality could be affected by the local weather 

or the activities of close plants.  

To measure the air quality index at a plant’s location, we compute the average of the 

daily aggregate air quality index across all monitoring stations located within one-mile 

radius from the plant. For a given plant, we construct an annual measure of air quality 

(AQI), which is calculated as the average of daily AQI over a year. A high AQI indicates 

a higher emissions level.  

 

2.3. Plant Data  

We obtain information on plants of U.S. public firms from the NETS database 

between 1990 and 2015, which is supplied by Dun and Bradstreet (D&B) and is 

maintained by Walls and Associates. An important feature of the NETS database is that 

it does not suffer from survivorship bias (Addoum, Ng, and Ortiz-Bobea, 2020). Each 

plant is given a unique identifier (DUNS number), which does not change even when the 

plant changes its location. Therefore, it allows us to trace a plant’s locations throughout 

its entire life. We obtain the plant’s historical location information (FIPS code, state, 

county, and longitude and latitude coordinates) and its parent company names from 



16 
 

NETS. We then match parent companies in the NETS database with firms in Compustat 

and the Center for Research in Security Prices (CRSP) by their historical legal names, 

supplemented with careful manual checking. We merge plant toxic emissions data from 

TRI with plant historical locations from NETS using a TRI linking table obtained from the 

EPA, which provides links between DUNS number and TRI plant identifier. For TRI 

plants that do not have a DUNS number, we manually match them with plants in NETS 

using the plant identifying information such as location, name, and parent firm name. 

The NETS database has become increasingly popular in finance research (Addoum, 

Ng, and Ortiz-Bobea, 2020; Barrot and Nanda, 2020; Akey and Appel, 2021). Neumark, 

Wall, and Zhang (2011) find that the correlations between NETS and Current 

Employment Statistics (CES) and Quarterly Census of Employment and Wages (QCEW) 

are 0.99 and 0.95 at the county-by-industry level, respectively. Barrot and Nanda (2020) 

note that business entities are required to register with Dun & Bradstreet (who supplies 

the source data to NETS) and obtain a DUNS number if they wish to bid for government 

contracts. The NETS database and the Census database generally have differences 

regarding information on sales and the number of employees, rather than plant locations. 

Moreover, these differences are more pronounced for private firms, rather than publicly-

listed firms.  

 

2.4. EPA Enforcement Actions Data  

We obtain data on all enforcement actions from the EPA’s Integrated Compliance 

Information System (ICIS), which contains civil, judicial, and administrative federal EPA 

enforcement cases. ICIS provides historical records of all enforcement actions taken by 

the U.S. EPA  under the following environmental statutes: the Clean Air Act (CAA), the 

Clean Water Act (CWA), the Resource Conservation and Recovery Act (RCRA), the 

Emergency Planning and Community Right-to-Know Act (EPCRA) Section 313, the Toxic 

Substances Control Act (TSCA), the Federal Insecticide, Fungicide, and Rodenticide Act 

(FIFRA), the Comprehensive Environmental Response, Compensation, and Liability Act 
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(CERCLA or Superfund), the Safe Drinking Water Act (SDWA), and the Marine 

Protection, Research, and Sanctuaries Act (MPRSA).  

We collect all formal EPA enforcement cases with a conclusion (i.e. final decision). 

For each enforcement case, we obtain information on the case unique identifier, milestone 

dates (from initiation to conclusion), plants charged in the case, and the amount of 

penalties (i.e. the state/local penalties, the total compliance costs, and the federal cost 

recovery amounts). We match these enforcement cases to plants in NETS/TRI using the 

TRI linking table provided by the EPA. We identify a plant as violator if the EPA takes 

an enforcement action against it in a given year. 

 

2.5. Text-based Network Industry Classifications and Peer Firms  

To identify a firm’s competing peers in the same product market, we employ Hoberg 

and Phillips Text-based Network Industry Classifications (TNIC) which are based on 

firm pairwise similarity scores from a textual analysis of product descriptions in firm 10-

K annual filings. Based on the notion that firms operating in the same product market 

use many similar words to describe their products, this industry classification method 

provides firm-by-firm pairwise word similarity scores in a given year and then identifies 

competing peers of each firm using the similarity scores. Since firms update their 10-K 

filings on an annual basis, TNIC is time-varying and is updated as firms change their 

products. This is one of the major features that distinguishes TNIC from the traditional 

industry classifications, such as SIC and NAICS, which do not reflect in a timely manner 

when firms change their products over time (Hoberg and Phillips, 2016). Since our 

hypothesis concerns peer firms in the same product market, TNIC is more suitable for 

our empirical analysis.  

We obtain TNIC data from the Hoberg-Phillips Data Library and use the TNIC3 

classification to identify a firm’s direct competing peers.22 TNIC3 requires peer firms to 

have pairwise similarity scores with a given firm to be above a certain threshold, which 

                                                           
22 The data are available at http://hobergphillips.tuck.dartmouth.edu/. We thank the authors for making 
their data available. 

http://hobergphillips.tuck.dartmouth.edu/
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is calibrated to approximate three-digit SIC codes (Hoberg and Phillips, 2010, 2016). We 

also employ the TNIC2 classification, which is constructed to match the level of the 

coarseness of the two-digit SIC classification. Given the low similarity between firms in 

the same TNIC2 product market, firm pairs identified as the same TNIC2 but different 

TNIC3 product markets are deemed to be non-peers. Only firm pairs operating in the 

same TNIC3 product market are identified as competing peers.  

 

2.6. Sample and Summary Statistics 

After combining TRI data, NETS data, enforcement actions data, and TNIC data, for 

each plant, we identify its nearby TNIC3-peer plants that are located within a radius of 

100 miles. In a given year, we identify a plant as a treated plant if the EPA takes an 

enforcement action against any of its nearby (i.e., within 100 miles) peer plants during 

the year. Since a treated plant’s own environmental violation can confound the effect of 

its peer’s violation, we remove plant-year observations if in the event year and the three 

years after the enforcement action, the EPA takes enforcement action against the treated 

plant itself. To construct a control group of plants whose products are reasonably related 

to those of the treated plant and the violating peer plant, we drop plants of firms that are 

not in the same TNIC2 product market. We also require plants to have available toxic 

releases information, location data, and non-missing firm control variables. After 

constructing cohorts of treated and control plants for the stacked difference-in-differences 

(DiD) framework, we obtain our final sample which contains 158,211 plant-year 

observations between 1990 and 2015. Section 3.1 describes the construction of the stacked 

DiD cohorts. 

Table 1 Panel A reports the summary statistics of the key variables used in the 

baseline analysis. Toxic has a mean of 0 and a standard deviation of 1 as the measure is 

standardized using the industry mean and standard deviation. An average firm in our 

sample has a market capitalization of $2.54 billion, a Book-to-Market ratio of 0.49, a Return 

on Assets ratio of 0.14, Ln(Sale) of 8.08, and a Leverage ratio of 0.20. 

[Insert Table 1 About Here] 
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3. Empirical Results 

Our analysis focuses on non-target plants defined as those that do not experience an 

EPA enforcement action over the past three years. The first hypothesis we examine in this 

study is that, in the presence of compliance slack, non-target plants respond to an EPA 

enforcement action against a nearby TNIC3-peer plant by reducing harmful toxic 

releases. To motivate the use of Hoberg and Phillips TNIC3 classification, in Appendix 

Table B2, we examine whether plant pairs operating in the same TNIC3 product market 

release similar chemicals that are harmful to human health. Using a plant-pair level 

measure of correlations of toxic releases between TNIC plant-pairs and a firm-pair level 

measure of technological proximity between TNIC firm-pairs, we find that these 

correlations are stronger among TNIC3 peers than non-TNIC3 peers (including those 

peers in the same TNIC2 but outside TNIC3 classification). These results suggest that 

TNIC3 reasonably reflects the similarity of harmful toxic releases as well as the similarity 

of technology between peer firms.  

 

3.1. Non-Target Plants’ Responses to Nearby Enforcement Actions 

Having shown that peer plants in the same TNIC3 tend to release similar harmful 

chemicals than non-peer plants, we now examine whether non-target plants reduce their 

toxic releases after the EPA takes an enforcement action against a peer plant in close 

proximity. We argue that following an enforcement action against a peer plant, nearby 

plants from the same industry may anticipate being under increased regulatory scrutiny 

(we show in Section 4.1 that inspections indeed become more frequent for local plants). 

As a result, they will step up compliance and toxic emissions will decrease. The reasons 

why the threat of inspections can lower emissions are twofold. First, penalties could be 

lower if emissions are not excessive. Second, the plant could be in violation of EPA 

guidelines, and invest in abatement measures that make them more compliant and at the 
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same time lower emissions.23 In Appendix A, we outline a model which generates this 

and some of the other testable implications that follow from this setting.   

Specifically, we use the stacked difference-in-differences (DiD) framework to 

compare changes in toxic releases of treated plants and control plants around the time of 

EPA enforcement actions. Following Gormley and Matsa (2011), for each year that has 

enforcement actions, we construct a sample (cohort) of treated plants and control plants 

using plant-year observations for the three years before and the three years after an 

enforcement event. We remove the event year from the sample. Treated plants are those 

that are not targeted by the EPA but are located within 100-mile radius of a violating 

TNIC3-peer plant.24 Control plants include other plants of the same parent firm as a 

treated plant but located outside 100 miles radius of the violating peer plant (irrespective 

of their proximity to treated plants), plants of other TNIC3-peer firms located outside 

100-mile radius of the violating peer plant, and plants of firms that are outside TNIC3 but 

in the same TNIC2 product market as treated plants (irrespective of their proximity to 

the target plant). We remove plants of firms that are outside the TNIC2 network of a 

treated plant’s parent firm. To avoid any contamination of our control group, we require 

that control plants in each cohort have not been treated in a past cohort and will not 

become treated in the six years after an enforcement event (Baker, Larcker, and Wang, 

2021). This procedure results in a total of 20 cohorts over our sample period, each 

representing a year that has enforcement actions.25 In Table 1 Panel B, we report the 

number of treated plants and the number of control plants in each event year (cohort). 

                                                           
23 In Section 4.5, we provide evidence that plants step up investment in abatement measures. 
24 Our results are not affected if we include or exclude treated plants that become treated again (i.e. being 
close to another enforcement action against a violating peer plant) during the post-event window. 
25 While the identification of treated plants and control plants is based on proximity to an enforcement 
event, following Gormley and Matsa (2011) we pool all events in the same event year as one cohort. This 
approach also accounts for cases where a plant can be close to multiple violating peer plants in a given 
year. The first cohort is in 1993 (three years after the beginning of our sample) because the pre-event 
window uses plant-year observations in the three years before each event. Similarly, the last cohort is in 
2012 (not 2015) because the post-event window uses plant-year observations in the three years after each 
event. 
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On average, a cohort contains 313 treated plants and 2,206 control plants. We stack these 

cohorts across all years and estimate the following plant-year panel regression: 

 

𝑇𝑜𝑥𝑖𝑐𝑝,𝑐,𝑡 = 𝛽0 + 𝛽1 𝑃𝑜𝑠𝑡 𝐶𝑙𝑜𝑠𝑒𝑃𝑒𝑒𝑟𝐸𝐴𝑝,𝑐,𝑡 + 𝜑 + 𝜏 + 𝜇 + 휀𝑝,𝑐,𝑡        (1) 

where 𝑇𝑜𝑥𝑖𝑐𝑝,𝑐,𝑡 is the total on-site harmful chemical releases of (non-target) treated plant 

p of cohort c standardized to have zero mean and unit standard deviation using the 

industry mean and standard deviation in each year t. Post ClosePeerEA is a dummy 

variable that is equal to 1 for treated plant-year observations in the three years after the 

EPA takes an enforcement action against a peer plant located in close proximity and 0 

otherwise.26 φ, τ, and μ are vectors for the plant × cohort, year × cohort, and county × 

cohort fixed effects , respectively.27 Following Gormley and Matsa (2011, 2016), we do not 

include control variables in this baseline regression to avoid the issues of bad controls 

that potentially bias the estimate of 𝛽1 (Angrist and Pischke, 2009). Nevertheless, we 

confirm that none of our conclusions change when we include standard control variables 

such as size, book-to-market, return on assets, sales, and leverage. It is also useful to note 

that our stacked DiD approach differs from the traditional generalized DiD method in 

which estimation bias may arise as the control group comprises of previously treated 

plants (Goodman-Bacon, 2021; Sun and Abraham, 2021). As shown in recent studies 

(Gormley and Matsa, 2011, 2016; Baker, Larcker, and Wang, 2021; Goodman-Bacon, 2021), 

the stacked DiD method is superior to the generalized DiD approach because the 

construction of each cohort removes all control plants that were already treated in the 

past cohorts. Nevertheless, we also confirm that all of our results continue to hold when 

                                                           
26 For each enforcement action, we use the year of case conclusion as event year when the EPA finalizes the 
total penalty and the number of violations. We confirm that our findings do not qualitatively change when 
we use the initiation year of an enforcement action or when we require that the duration between 
conclusion date and initiation date is less than one year. These results are expected given that the median 
duration between initiation and conclusion dates is 29 days. 
27 County × cohort fixed effects control for time-invariant unobservable characteristics of individual 
counties in each cohort. These fixed effects can be estimated together with plant × cohort fixed effects 
because plants may relocate. Since the NETS database is survivorship-bias free, it can identify those 
relocations (Addoum, Ng, and Ortiz-Bobea, 2020; Chen, Dasgupta, Huynh, and Xia, 2021; Huynh and Xia, 
2021).  



22 
 

we use the generalized DiD approach, although the economic magnitudes of the 

estimated treatment effects are larger in the generalized DiD setting.  

Table 2 presents the estimation results. Column 1 displays the regression 

specification with plant × cohort and year × cohort fixed effects, and the regression in 

Column 2 includes plant × cohort, year × cohort, and county × cohort fixed effects fixed 

effects. In both specifications, we do not include control variables. In Columns 3 and 4, 

we repeat the regressions in the first two columns but include a set of standard control 

variables, namely the natural logarithm of market capitalization, book-to-market ratios, 

return on asset, the natural logarithm of sales, and book leverage. In all specifications, the 

coefficients on Post ClosePeerEA are negative and statistically significant at the 1% level, 

suggesting that treated plants’ toxic releases are lower following an EPA enforcement 

action against a nearby peer plant. The effect is also economically significant. For 

instance, as the dependent variable is standardized to have unit standard deviation, the 

coefficient on Post ClosePeerEA in Column 2 indicates that treated plants reduce harmful 

chemical releases by 0.026 unit after an environmental enforcement action against a 

nearby peer plant. This reduction is equivalent to drop in toxic releases from the 60th 

percentile level to the median level of the sample distribution. 

[Insert Table 2 About Here] 

Treated plant could have local knowledge of its peer’s risk of enforcement action and 

thus, take precautionary action to avoid being the next target. In this case, we expect to 

observe that the difference in toxic releases between treated plants and control plants 

exists prior to the enforcement action. To examine this possibility, we repeat regression 

(1) but add two dummy variables, Pre1 ClosePeerEA and Pre2 ClosePeerEA, which, 

respectively, take a value of 1 for one year and two years before an enforcement action 

and zero otherwise (the third year before the enforcement action occurs thus serves as 

the baseline). Panel B of Table 2 reports the estimation results. None of the coefficients on 

these pre-event dummy variables are significant, whereas the coefficient on the post-

event dummy variable, Post ClosePeerEA, remains negative and significant.  
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Figure 1 depicts the trends in the differences of toxic releases between treated and 

control plants over the [-3, 3] window of an enforcement action. Consistently, we observe 

that, in the pre-event years, the differences are stable and statistically insignificant, 

suggesting that there were no pre-trends. Following an enforcement action against a 

nearby peer plant, the differences between the two groups become negative and 

statistically significant.  

 [Insert Figure 1 About Here] 

 

3.2. Is the Reduction in Toxic Releases Driven by the Self-Reported Bias? 

Since emission levels are self-reported, there could be concern that treated plants 

under-report emissions in response to the enforcement action to avoid attracting the 

EPA’s attention. However, as noted before, plants that misreport their emissions can face 

civil penalties or criminal charges (Greenstone, 2003; Xu and Kim, 2021). Moreover, in 

our context, an enforcement action against a peer firm could indicate that the EPA’s 

attention has been shifted to the area, heightening the risk of scrutiny for other plants in 

close proximity. Thus, to the extent that compliance slack is widespread, these close 

plants could have stronger incentives to report correctly following a nearby enforcement 

action to avoid potential penalties for misreporting. 

As an alternative estimate of pollution levels, we use air quality index (AQI) 

computed using data from monitoring stations located within one-mile radius from a 

plant. We repeat regression (1) but replace the dependent variable with average annual 

AQI. Appendix Table B3 reports the estimation results. We find that the coefficient on 

Post ClosePeerEA remains negative and statistically significant, suggesting that air quality 

index around a plant improves after the EPA takes an enforcement action against a 

nearby peer plant.28 

 

                                                           
28 We confirm that our results are robust to using individual components of air quality indexes that are 
computed based on individual criteria pollutants, namely, ozone, particulate matter smaller than 2.5 
micrometres, sulfur dioxide, carbon monoxide, and nitrogen.  
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3.3. Decaying Effects of Enforcement Actions and Proximity to Peer Plant 

Our next analysis examines whether the spillover effects of enforcement actions 

depend on the proximity between a treated plant and the violating peer plant. We do so 

by re-estimating regression (1) but including two additional dummy variables for plant 

p, Post PeerEA(100, 200) and Post PeerEA(>200), which are equal to 1 for the three years after 

the EPA takes an enforcement action against its violating peer plant that is located 

between 100 miles and 200 miles and greater than 200 miles, respectively, and zero for 

plants that are located outside these distance ranges of an enforcement action and other 

control plants as defined in Equation (1). Appendix Table B4 displays the estimation 

results. We observe decaying effects of a peer enforcement action on a plant’s toxic 

releases as its proximity to the violating peer plant increases. Specifically, the coefficient 

on our main variable, Post ClosePeerEA, remains negative and statistically significant at 

the 1% level, whereas the coefficient on Post PeerEA(100, 200) is smaller in magnitude and it 

becomes insignificant for Post PeerEA(>200).29 This result is consistent with the notion that 

enforcement threat is local and its effect on plant emissions decreases with proximity. 

 

3.4. Severity of Peer Plants’ Violations, Historical Exposure to Enforcement 

Actions, and Treated Plant’s Response 

If the non-target plant is concerned about ex-ante regulatory threats coming from an 

enforcement action against a nearby peer plant, we expect that its response would be 

more pronounced when the peer’s violation is more severe. To examine this prediction, 

we conduct two tests using two alternative proxies for the severity of the peer plant’s 

violation. In the first test, we employ the total penalty given to nearby enforcement cases 

as a proxy for severity. The total penalty for each case is computed as the sum of state 

and/or local penalty, the total compliance costs (e.g. the dollar values of injunctive relief 

and the physical or nonphysical costs of returning the facility to compliance), and the cost 

                                                           
29 Formal statistical tests show that the differences in the coefficients between Post ClosePeerEA and Post 
PeerEA(>200) are statistically significant at the 1% level, while the differences in the coefficients between Post 
ClosePeerEA and Post PeerEA(100,200) are not significant at the conventional levels.  
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that the defendant agrees to undertake in settlement of an enforcement action to clean up 

the environment (if any). We then create a dummy variable, HighCost, that is equal to 1 if 

the total penalty is above the sample median and zero otherwise. 

In the second test, we obtain data on the type of each violation from the EPA. There 

are approximately 220 types of violations ranging from violations of a specific 

environmental law to failures to comply with reporting requirements. Based on these 

violation charges, we create a dummy variable, MajorViolation, that is equal to 1 if an 

enforcement action involves major violations such as violation of an environmental law, 

violation of environmental safety standards, violation of chemical discharge permit, or 

illegal dumping of chemicals and zero for other violation types (e.g. failure to maintain 

records, failure to file reports, or refusal to allow inspection or sampling).  

We then re-estimate regression (1) but include an additional interaction term between 

Post ClosePeerEA and either HighCost or MajorViolation. Results reported in Appendix 

Table B5 show that the coefficient on the interaction term between Post ClosePeerEA and 

the indicator of violation severity is negative and statistically significant, suggesting that 

a treated plant’s reduction of toxic releases is more pronounced when the peer plant’s 

violation is more severe. These results are consistent with the notion that a more serious 

violation by the target plant is likely to invite more intensive monitoring of the plant by 

the regulators, and hence the likelihood of nearby plants being inspected by the 

regulators is higher. As a result, nearby plants step up their compliance and emissions 

decrease further when the violation is of a more serious nature.   

A plant’s response to a nearby peer EPA enforcement action may be weaker if its local 

peer plants experienced EPA enforcement in the past. By contrast, a plant that is located 

in an area where its local peers have not experienced a recent enforcement action may 

respond more strongly, possibly because compliance slack is higher. In Appendix Table 

B6, we repeat the baseline regression in two samples: Group 1 contains treated plants 

whose close peers have not experienced any enforcement action over the past 5 years and 

Group 2 consists of treated plants that observe at least one EPA enforcement action taken 

against a local peer plant over the past 5 years. The regression for Group 1 shows that the 
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coefficient on Post ClosePeerEA is −0.034, which is statistically significant at the 1% level, 

whereas the regression for Group 2 has the coefficient on Post ClosePeerEA of −0.012, 

which is significant at the 10% level. Consistent with the prediction of compliance slack, 

these results suggest that the spillover effects are more pronounced when the EPA was 

historically less active.30 

 

4. Mechanisms 

While non-target treated plants could be conscious of heightened regulatory risk, the 

extent to which they take actions to reduce emissions could be limited because changes 

to the production process are costly. In this section, we examine the roles of SRMFs and 

firm operational flexibility in explaining why plants have the incentive to reduce toxic 

releases and how they can plausibly do so.  

First, a contemporary literature shows that SRIs have non-pecuniary motives when 

making investment decisions and they are willing to sacrifice returns for social impact 

(Baker, Bergstresser, Serafeim, and Wurgler, 2018; Hartzmark and Sussman, 2019; Barber, 

Morse, and Yasuda, 2021). Another strand of literature shows that SRIs engage with 

portfolio firms and improve their ESG performance (Dyck, Lins, Roth, and Wagner, 2019; 

Dimson, Karacaş, and Li, 2021). However, other studies find no causal evidence (Heath, 

Macciocchi, Michaely, and Ringgenberg, 2021), and some argue that SRIs engage in 

greenwashing (Liang, Sun, and Teo, 2021). In particular, U.S.-based SRIs, in comparison 

with SRIs from countries with higher social norms, are found to deviate from their stated 

pro-E&S positions (Gibson Brandon, Glossner, Krueger, Matos, and Steffen, 2021). 

 We investigate whether the local presence of an SRMF has a material impact on the 

emissions of investees’ local treated plants following a nearby EPA enforcement action. 

We do not directly observe monitoring by SRMFs. However, we argue that if monitoring 

is an objective, SRMFs would prefer to invest in firms located in close proximity because 

it is easier and less costly for them to monitor local firms. In Appendix Table B7, we show 

                                                           
30 By construction, treated plants do not experience an enforcement action themselves over the future 3 
years.  
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that SRMFs’ holdings of local firms with good environmental ratings are significantly 

larger than their holdings of distant firms with the same environmental profile. We, 

however, do not find a corresponding result for mutual funds that are not classified as 

socially responsible. These results suggest that local SRMFs have superior local 

knowledge about local plants’ operating practice. Knowing that the treated plant and the 

peer violator have similar toxic releases, a nearby EPA enforcement action could prompt 

these local SRMFs to exert pressure on the parent firm (whose shares they hold) to cut 

toxic releases at the local treated plant.  

Second, we contend that a firm’s ability to respond to heightened local regulatory 

risk depends on its operational flexibility. Operational flexibility concerns a firm’s ability 

to respond to shocks to business conditions by making functional changes in the 

production process, using substitute raw materials, or shifting production between 

manufacturing plants located in different counties (Slack, 1983; Gerwin, 1986; Kogut and 

Kulatilaka, 1994; Gu, Hackbarth, and Johnson, 2018). As such, we posit that operational 

flexibility is a plausible determinant of a firm’s ability to respond to a nearby enforcement 

action against a violating peer plant. In what follows, we explore these two potential 

channels.31 

 

4.1.  The Impact of Close Socially Responsible Mutual Funds 

Examining the role of SRMFs requires data obtained from three sources. First, we 

collect data on actively managed, open-ended U.S. equity mutual funds from CRSP 

Survivor-Bias-free Mutual Fund database. The information on fund locations is available 

starting from 2000. Second, for each fund in the CRSP dataset, we obtain its stock holdings 

from Thomson Reuters Mutual Fund Holdings database.32 To ensure that fund managers 

have sufficient interests in a firm, we require that a fund holds at least 0.5% of the firm’s 

total number of shares outstanding. We ensure that our results remain robust when we 

                                                           
31 The model outlined in Appendix A spells out some details of these mechanisms. 
32 We eliminate index funds using CRSP-defined style indicators and fund names. We further exclude 
international funds, municipal bonds funds, and bond funds using Thomson objective code. 
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vary this threshold from 0.1% to 1%.33 Last, for each firm in a fund portfolio, we collect 

data on its environmental scores from MSCI KLD ESG database, which provides 

evaluations of various aspects of environmental performance, such as the adoption of 

waste management and greater use of renewable energy (Engle, Giglio, Kelly, Lee, and 

Stroebel, 2020). Following prior research, we compute the environmental score, EScore, 

for each firm in a given year as the difference between environmental strengths and 

concerns. 

We follow Hwang, Titman, and Wang (2018) and Cao, Titman, Zhan, and Zhang 

(2021) to identify socially responsible financial institutions. In each quarter, we sort funds 

in our sample into two groups, based on the average environmental score of firms in their 

portfolio holdings, where the top group contains institutions with a high average 

portfolio EScore and the bottom group consists of institutions with a low average portfolio 

EScore. Financial institutions in the top group are deemed socially responsible.34 Note that 

we determine the SRMF designation using a fund’s holdings as of the year before an EPA 

enforcement event. Thus, the identification of SRMFs is not affected by an investee’s ex-

post response to an enforcement action. 

After combining the fund location information, the fund holdings of each parent firm, 

and the parent firm’s plant locations, we create a dummy variable, CloseSRMF, which is 

equal to 1 if there is a socially responsible mutual fund, which holds shares in the parent 

firm to which a non-target treated plant belongs, located within 100 miles from the treated 

plant and within 100 miles from the violating peer plant. We then re-estimate regression 

(1) but include an additional interaction term between Post ClosePeerEA and CloseSRMF. 

                                                           
33 This 0.5% threshold is equivalent to the 90th percentile value in our sample (the mean, median, the 25th 
percentile, and the 95th percentile are, respectively, 0.35%, 0.03%, 0.01%, and 1.16%, with a standard 
deviation of 2.92%). Note that these statistics are seemingly small because they are computed for a single 
fund’s holding of a stock. When we aggregate all SRMF holdings in a stock, the average value is 5.1% of 
the total number of shares outstanding with a standard deviation of 7%. 
34 This method better reflects the true sustainability orientation of a fund, as compared to a fund’s self-
declared objectives. Chen, Cohen, and Gurun (2021) find that funds misclassify their styles into a different 
category than they should be if their actual holdings were used. MorningStar also uses fund holdings to 
classify funds as socially responsible (Hartzmark and Sussman, 2019). We confirm that our results are 
robust to alternative definitions of SRMF such as sorting funds into three or five groups based on EScore 
and identifying funds in the top group as socially responsible funds.  
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Columns 1 and 2 of Table 3 Panel A report the estimation results. We observe a negative 

and significant coefficient on Post ClosePeerEA × CloseSRMF, suggesting that treated 

plants, whose SRMFs are located in close proximity, reduce toxic releases more than other 

treated plants.  

The local advantages of SRMFs imply that the impact of these funds depends on their 

proximity to the enforcement action (Coval and Moskowitz, 2001). To examine this 

prediction, for each treated plant, we create two dummy variables, SRMF(100, 200) and 

SRMF(>200), which are equal to 1 if the distance from both the treated plant and the 

violating peer plant to the nearest SRMF, which holds shares of the treated plant’s parent 

firm, is between 100 miles and 200 miles, and greater than 200 miles, respectively. We 

then repeat the regressions in Columns 1 and 2 but include the interaction term between 

each of these dummy variables and Post ClosePeerEA. Columns 3 and 4 of Table 3 Panel 

A present the estimation results. We observe decaying effects of SRMF as the distance is 

larger. Specifically, in Column 4, the coefficient on Post ClosePeerEA × CloseSRMF is -0.030, 

which is statistically significant at the 1% level. The coefficient on Post ClosePeerEA × 

SRMF(100, 200) is -0.016 and the coefficient estimate on Post ClosePeerEA × SRMF(>200) is 

0.007.35 These results suggest that the influence of local SRMFs on treated plants is 

stronger than distant SRMFs.  

[Insert Table 3 About Here] 

Pre-Event Trends and Local SRMFs 

To examine the differential emissions between treated plants that are close to an 

SRMF and other treated plants before enforcement actions, we interact each of the pre-

event year dummy variables with CloseSRMF. In Panel B of Table 3, we find that the 

coefficients on these interaction terms are insignificant, suggesting that during the pre-

event period, emissions between treated plants close to an SRMF and other treated plants 

                                                           
35 Formal statistical tests for the differences in the coefficients between Post ClosePeerEA × CloseSRMF and 
Post ClosePeerEA × SRMF(>200) yield an F-statistic of 3.79 (p-value = 0.056) for Column 3 and an F-statistic of 
4.10 (p-value = 0.047) for Column 4, which are both statistically significant. F-statistics for the differences 
in the coefficients between Post ClosePeerEA × CloseSRMF and Post ClosePeerEA × SRMF(100, 200)  are 0.39 (p-
value = 0.533) for Column 3 and 0.83 (p-value = 0.366) for Column 4.  
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do not differ from each other. The results indicate that signals about compliance slack are 

not precise enough for SRMFs to incur the monitoring costs when the regulatory threat 

is low; however, a nearby enforcement action elevates the regulatory risk and monitoring 

occurs. These insignificant pre-event trends are also consistent with findings documented 

in recent studies that ownership by socially responsible institutions does not, on average, 

affect a firm’s environmental performance (Gibson Brandon, Glossner, Krueger, Matos, 

and Steffen, 2021; Heath, Macciocchi, Michaely, and Ringgenberg, 2021; Liang, Sun, and 

Teo, 2021). However, a nearby enforcement action can alert local SRMFs about 

compliance slack in the area, prompting them to elevate their monitoring of local treated 

plants.  

The “Self-Reaction” Hypothesis 

Another potential concern regarding the role of local SRMFs is that firms held by 

these institutions have good environmental performance and thus, these firms may 

choose to reduce emissions even in the absence of local SRMF influence. This is 

particularly an issue because our method to identify SRMFs is based on fund holdings of 

firms with good environmental performance. We call this the “self-reaction” hypothesis. 

This hypothesis predicts that toxic releases should be lower across all plants of the firm, 

not just at the plant in close proximity to the violating peer plant. As we show in the next 

section, at least for firms with high operational flexibility, toxic releases increase at distant 

plants that are located beyond the 100-mile from the enforcement action, suggesting that 

our results are unlikely to be driven by this alternative explanation.36  

As an alternative approach to rule out the self-reaction hypothesis, we re-examine 

the effects of SRMFs using two samples of firms that are matched based on environmental 

scores (EScore). To construct the first matched sample, for each treated plant that is 

located close to an SRMF (i.e. within 100 miles), we find a matched treated plant that is 

                                                           
36 In untabulated analysis, we repeat this test using the total mutual fund ownership (i.e. aggregating both 
socially responsible and non-socially responsible institutions) and find that the effects are nonsignificant. 
We also confirm that our results are not driven by common owners of both treated firm and the violating 
peer firm. 
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located between 100 miles and 200 miles from its nearest SRMFs and whose parent firm 

has the same EScore. We remove treated plants that cannot be matched. We repeat this 

matching procedure based on parent firms’ EScore to find a match between the matched 

treated plants located within 100-mile radius of an SRMF with treated plants located 

more than 200 miles from the nearest SRMFs. This matching procedure ensures that we 

compare the toxic releases between treated plants owned by firms with the same 

environment performance as judged by an independent rating agency, i.e. MSCI.37 To 

construct the second alternative matched sample, in addition to the matching procedure 

for all the treated plants, we also find matched plants of control firms in the same TNIC2 

network that have the same EScore as the treated firms. This matching procedure further 

ensures that we not only compare the toxic releases among treated plants – whose parents 

have the same environmental performance – but also compare the toxic releases of treated 

plants with those of control plants owned by firms with the same environmental 

performance.  

We re-estimate the regression of Table 3 Panel A using the matched samples and 

report the results in Table 3 Panel C. Consistent with the results shown in Table 3 Panel 

A, we observe that the effects of SRMFs on local treated plants’ toxic emissions decay as 

proximity increases. In particular, the coefficient on Post ClosePeerEA × CloseSRMF 

remains negative and significant, suggesting that our results are unlikely to be explained 

by the self-reaction of firms with good environmental performance.  

Another alternative but related hypothesis is that SRMFs invest in firms that do not 

have bona fide environmental motives, but these firms have the ability to engage in 

window-dressing activities in response to a nearby peer enforcement action. We term this 

                                                           
37 For example, if a treated plant P1 that is located within 100-mile radius of an SRMF and whose parent 
Firm 1’s EScore is equal to 2 can be matched to a treated plant P2 (located within [100miles, 200 miles] from 
its nearest SRMF), whose parent Firm 2’s EScore is also equal to 2, and a treated plant P3 (located more than 
200 miles from its nearest SRMF), whose parent Firm 3’s EScore is also 2, then we keep all the three plants 
P1, P2, and P3 in the treated group. If another treated plant B1 (with a close SRMF), whose parent firm has 
an EScore of 3, can be matched to a treated plant B2 whose parent firm has an EScore equal to 3 (but located 
between [100, 200] miles from the nearest SRMF) as well as a treated plant B3 whose parent firm has an 
EScore equal to 3 (but located more than 200 miles from the nearest SRMF), then we also keep all of these 
treated plants B1, B2, and B3. 
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the window-dressing hypothesis. Several results from our channel tests presented in the 

next sections suggest that the window-dressing hypothesis is unlikely to be the 

explanation. We elaborate on this issue in Section 4.6. 

EPA Inspections and Local SRMFs 

One of the main premises of our arguments is that the nearby peer plants face higher 

risk of inspection following an enforcement action. We now provide evidence in support 

of this premise. We also show that the additional emission reduction that we attribute to 

the local SRMFs is not driven by the possibility that the EPA inspects treated plants 

located close to an SRFM more frequently than other treated plants (recall that the 

emission reductions of treated plants located close to an SRMF are twice as large as those 

treated plants that are not close to an SRMF).  

We obtain data on inspections conducted by the EPA or local authorities from EPA’s 

ICIS database. We then estimate the stacked DiD regression of Table 3 Panel A but replace 

the dependent variable with Ln(Inspections), which is the natural logarithm of one plus 

the number of inspections of a plant in a given year. Appendix Table B8 reports the 

estimation results. We find that the coefficient on Post ClosePeerEA is positive and 

statistically significant. This result indicates that, following a nearby enforcement action 

against a peer plant, treated plants indeed experience an increase in the frequency of 

inspections by either the EPA or local authorities. This result supports our hypothesis 

that the nearby peer plants face higher risk of inspection following an enforcement action.  

However, the coefficient on Post ClosePeerEA × CloseSRMF is small and statistically 

insignificant, suggesting that there is no difference in inspection frequency between 

treated plants close to an SRMF and other treated plants. As such, our findings in Table 

3 Panel A are unlikely to be driven by more frequent inspections for treated plants that 

are located close to an SRMF. 

4.2. The Role of Firm Operational Flexibility 

In the literature, different measures are typically used to capture various dimensions 

of operational flexibility. We use three alternative proxies for operational flexibility. As 
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firms with high inventory levels have higher ability to weather shocks to production, our 

first measure is the firm inventory level. For the second proxy, we follow prior research 

(Fischer, Heinkel, and Zechner, 1989; Gu, Hackbarth, and Johnson, 2018) and measure 

firm operational inflexibility as the historical range (maximum minus minimum) of 

operating costs-to-sales ratio, scaled by the volatility of the firm’s sales growth. Firms 

with less flexible operations will require larger variation in sales relative to operating 

costs to alter it’s the scale of operations, and therefore, will have a larger range. Our last 

proxy for operational flexibility is the number of plants a firm has in its operations. 

Intuitively, firms with more plants operating throughout the U.S. have higher ability to 

adjust production of one plant by, for example, shifting some of the production to other 

plants. 

We split the sample into two groups based on the median of each operational 

flexibility measure calculated in each enforcement event year.38 We then estimate 

regression (1) using each subsample and report the results in Table 4 Panel A. Consistent 

across all measures, we find that the effects of a nearby enforcement action on local non-

target plants are insignificant in the subsample of plants whose parent firms have low 

operational flexibility. In contrast, these effects are negative and significant in the 

subsample of parent firms with high operational flexibility (i.e. those with high inventory, 

low operating inflexibility, and more plants). These results are consistent with the 

prediction that operational flexibility is an important determinant of a firm’s ability to 

reduce toxic releases at a local plant when it faces heightened regulatory risk.  

In Table 4 Panel B, we examine the joint effects of local SRMF and operational 

flexibility on the toxic releases of local non-target treated plants. We find that the 

coefficient on Post ClosePeerEA × CloseSRMF is negative and significant among plants 

whose parent firms have high operational flexibility. For parent firms with low flexibility, 

while the coefficient is negative in all regressions, it is statistically insignificant and 

smaller in magnitude. These results suggest that both local SRMF and operational 

                                                           
38 Our results remain robust when we use a firm’s operational flexibility measured in year t-1 and partition 
plants based on the sample median value. 
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flexibility are important factors that affect a plant’s response to a nearby enforcement 

action.  

[Insert Table 4 About Here] 

 

4.3. How Do Firms Respond to Nearby Enforcement Actions? 

We next look inside the parent firm and examine how it reduces emissions at the local 

treated plant. Reducing toxic releases at the treated plant may require both investment in 

costly abatement measures as well as cutting down on production at the plant. We 

provide evidence of investment in abatement in Section 4.5 below. To reduce production 

at the local plant and still meet current demand, we conjecture that firms with high 

inventory levels would tap into their inventory. As such, we expect that these firms’ 

inventory levels will decrease following an enforcement action against a peer firm. 

Another tactic a firm could use to reduce its exposure to the local regulatory threat is to 

shift emissions to plants located in other regions—an approach that is aided by the firm’s 

operational flexibility. We therefore posit that, for firms with high operational flexibility, 

toxic releases are higher at plants that are remote from violating peer plant. We test these 

predictions below. 

 

4.3.1.  Effect of Peer Enforcement Action on Non-Target Firm Inventory 

To examine firm inventory changes following an enforcement action against a peer 

plant, we construct a stacked DiD sample at the firm level. For each event year, we 

construct a cohort of treated firms and control firms using firm-year observations during 

the [-3, 3] window around an EPA enforcement event action against a nearby peer plant. 

We identify treated firms as those that have at least one plant located within 100 miles 

from a violating TNIC3-peer plant. Control firms are those that operate in the same 

TNIC2 product market as the treated firm and do not have plants located within 100 miles 

from the violating peer plant. We also require that control firms do not have plants 

treated in past cohorts and will not have plants treated in the next 6 years. We then pool 

all cohorts across years and estimate the following firm-level regression: 
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Δ𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖,𝑐,𝑡 = 𝛽0 + 𝛽1 𝑃𝑜𝑠𝑡 𝑇𝑟𝑒𝑎𝑡𝑓𝑖𝑟𝑚𝑖,𝑐,𝑡 + 𝜑 + 𝜏 + 휀𝑖,𝑐,𝑡          (2) 

Where Δ𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑖,𝑐,𝑡 is the change of inventory levels from year t-1 to year t+1 calculated 

as 𝐿𝑛(𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦)𝑖,𝑐,𝑡+1 − 𝐿𝑛(𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦)𝑖,𝑐,𝑡−1, for firm i of cohort c. Post Treatfirm is a 

dummy variable that is equal to 1 for treated firms in the three years after the EPA takes 

an enforcement action against a violating peer firm and 0 otherwise. φ and τ are vectors 

for firm × cohort and year × cohort fixed effects, respectively. We compute standard 

errors clustered at the firm and year level. 

Table 5 presents the estimation results. In Columns 1 and 2, the sample is divided 

into high- and low-inventory groups based on the median value of inventory level 

measured in year t-1. In Columns 3 and 4, the sample is divided into high- and low-

inventory groups based on the median value of inventory level measured in year t-2. 

Regardless of how we split the sample, we observe that the coefficient on Post Treatfirm 

is negative and significant in the subsample of high-inventory firms, whereas it is positive 

but insignificant in the low-inventory group.39 These results are consistent with the 

prediction that high-inventory firms use up their inventory at a faster rate after observing 

an enforcement action against a peer firm than during normal periods 

[Insert Table 5 About Here] 

 

4.3.2.  The Transfer of Toxic Releases, Operational Flexibility, and Local SRMFs 

We next examine whether firms shift toxic releases from treated plants, which are 

located close to an enforcement action, to distant plants (which would involve 

reallocating production from the local to the distant plants). We do so by constructing a 

stacked DiD sample of distant plants only (i.e. we remove treated plants located within 

100 miles of the violating peer plant) as follows. First, we identify a treated firm that owns 

                                                           
39 A potential concern is that our results could be driven by the mean reversion of inventory levels. In 
untabulated analysis, we control for this effect using the lagged value of inventory levels in these 
regressions and find similar results. Moreover, mean reversion should affect both the high- and low-
inventory subsample, whereby inventory in the high subsample becomes lower and that in the low 
subsample becomes higher. We, however, find that the effects are not statistically significant in the low-
inventory subsample, suggesting that mean reversion is unlikely to bias our results. 
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at least one treated plant located within 100 miles of a violating peer plant and also owns 

distant plants located outside the 100-mile radius. Second, for each event year, we 

construct a cohort of treated distant plants and control plants. Treated distant plants are 

those that belong to treated firms. Control plants are those that belong to other TNIC3-

peer firms (which do not own any treated plants) or those that belong to firms operating 

outside TNIC3 but in the same TNIC2 product market as the treated firms. We also 

require that control plants’ parent firms do not have treated plants in a past event and 

will not have treated plants in the next 6 years. We then estimate the following plant-level 

regression: 

𝑇𝑜𝑥𝑖𝑐𝑝,𝑐,𝑡 = 𝛽1 𝑃𝑜𝑠𝑡 𝑇𝑟𝑒𝑎𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑡𝑝,𝑐,𝑡 + 𝜑 + 𝜏 + 𝜇 + 휀𝑝,𝑐,𝑡                      (3)  

where Post TreatDistant is equal to 1 for treated distant plants in the three years after the 

EPA takes an enforcement action against a violating peer plant and zero otherwise. φ, τ, 

and 𝜇 are defined in regression (1). 

We report the estimation results for regression (3) in Table 6 Panel A. The coefficient 

on Post TreatDistant is positive but statistically insignificant, indicating that, on average, 

there is no association between an enforcement action against a peer plant and toxic 

releases at the distant plants of a typical treated firm.  

[Insert Table 6 About Here] 

The picture, however, changes when we focus on firms with high operational 

flexibility. In Table 6 Panel B, we estimate regression (3) using subsamples that are split 

based on the median of each operational flexibility measure calculated at the time of 

enforcement event. We find that the coefficient on Post TreatDistant is positive and 

significant in the subsample of high-flexibility firms (i.e. those with high inventory, low 

inflexibility, and more plants), whereas it is insignificant in the group of low-flexibility 

firms. These results suggest that, for treated firms with high operational flexibility, toxic 

releases at distant plants are significantly higher following an enforcement action against 

a local peer plant. They are also consistent with the notion that operational flexibility 

enables firms to shift emissions from the local plant to plants in other regions, thereby 
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reducing the local plant’s exposure to local regulatory risk. Given that treated firms shift 

emissions to distant plants, one may ask whether the net emissions at the aggregate firm 

level are lower. We will visit this question in Section 4.9 after we discuss the long-run 

emissions at the treated plant level.  

In Table 6 Panel C, we examine whether such transfer of emissions occurs in the 

presence of local SRMF. We find that, while the coefficient on Post TreatDistant remains 

positive, the coefficient on Post TreatDistant × CloseSRMF is negative and statistically 

significant in the subsamples of firms with high operationally flexibility. For example, 

when we measure operational flexibility with the number of plants, the coefficient on Post 

TreatDistant × CloseSRMF is -0.038 (t-statistics = -3.62), which is larger than the coefficient 

on Post TreatDistant of 0.035 (t-statistics = 1.92). These results suggest that parent firms 

do not shift emissions to distant plants when local SRMFs are located close to the treated 

plants. A possible reason for this could be that when there is a local SRMF owning the 

parent firm, the treated firm invests more in abatement measures, making it possible to 

maintain local production without transferring it to distant plants. 

A plant in TRI is also required to report the amounts of chemicals that are transferred 

to an off-site facility for treatment before releasing to the environment. In Appendix Table 

B9 we examine whether treated plants change their off-site toxic releases as reported in 

TRI following a nearby enforcement action against peer plants.40 We do so by replacing 

the dependent variable in regression (1) with standardized off-site releases of harmful 

chemicals. We find that treated plants’ off-site toxic releases do not change after 

observing a nearby enforcement action. This result is expected if investing in an off-site 

waste treatment facility is time-consuming and costly or if treated plants are aware that 

a potential EPA scrutiny is likely to be thorough. Thus, plants cannot simply avoid it by 

changing the way they disclose toxic releases because these off-site releases are still tied 

to the local treated plants. Flexible plants could, however, have the ability to shift 

production to regions where the local EPA region is not specialized in their industries, 

                                                           
40 TRI does not specify the locations of these off-site facilities. 
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thereby helping them to release more harmful chemicals. We show this emissions transfer 

in the next section. 

 

4.4. Where Do Parent Firms Shift Emissions To? 

Given finite resources, one of the enforcement approaches adopted by the EPA is to 

allow each regional office to concentrate resources in industries that pose the greatest risk 

to the environment (Gunningham, 2011). Thus, plants of certain industries in which an 

EPA regional office focuses its resources potentially face higher regulatory risk than other 

industries in the same region. To the extent that a parent firm is aware of an EPA region’s 

concentration, we contend that, when the firm faces enhanced regulatory risk in one 

region, it could transfer emissions to other regions where the EPA regional office does 

not concentrate resources in that industry. To examine this conjecture, we estimate the 

following plant-level regression using a subsample of distant plants that are located 

outside the 100-mile radius of the violating peer plant. 

𝑇𝑜𝑥𝑖𝑐𝑝,𝑐,𝑡 = 𝛽0 + 𝛽1 𝑃𝑜𝑠𝑡 𝑇𝑟𝑒𝑎𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑡𝑝,𝑐,𝑡 × 𝑂𝑢𝑡𝑠𝑖𝑑𝑒𝑇𝑜𝑝3𝑝𝑐,,𝑡 +

𝛽2 𝑃𝑜𝑠𝑡 𝑇𝑟𝑒𝑎𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑡𝑝,𝑐,𝑡 + 𝜑 + 𝜏 + 𝜇 + 휀𝑝,𝑐,𝑡,          (4)  

where OutsideTop3 is a dummy variable that is equal to 1 if the distant plant’s industry is 

not one of the EPA regional office’s Top 3 industries by enforcement actions and zero if it 

is the same. We identify an EPA region’s Top 3 industries by first ranking industries in 

the region based on the number of enforcement actions against firms in each industry 

over the past 3 or the past 5 years. We then select the Top 3 industries with the highest 

number of enforcement actions. Other variables are defined as in regression (3). As an 

alternative definition of EPA regional office’s concentration, we also replace Top 3 

industries with Top 5 industries. 

Table 7 reports the estimation results. We find that the coefficients on Post 

TreatDistant × OutsideTop3 and Post TreatDistant × OutsideTop5 are positive and 

statistically significant, while the coefficient on Post TreatDistant is insignificant. These 
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results suggest that the parent firm shifts emissions to distant plants where the EPA 

regional office in charge does not concentrate in its industry. 

[Insert Table 7 About Here] 

 

4.5. Pollution Abatement, Local SRMFs, and Operational flexibility 

The previous section shows that flexible firms shift emissions to distant plants to 

reduce exposure to heightened regulatory risk in the area. To provide evidence that the 

emission reductions at the local plants are not entirely achieved at the expense of 

transferring emissions to distant plants when SRMFs are located near these plants, we 

conduct a number of tests. First, in this section, we show that treated plants with close 

SRMFs invest in abatement measures following nearby enforcement. In sections 4.6-4.8, 

we further provide results, which together suggest that, while the transfers are 

presumably motivated to reduce the immediate regulatory risk at the local plant, the 

enforcement action triggers enhanced scrutiny and engagement by the local SRMFs. 

Finally, we show in Section 4.9 that aggregate firm-level emissions decrease for the 

treated firms, further suggesting that these transfers do not entirely offset local emission 

reductions in the presence of SRMFs.   

We measure abatement activities at the plant level using data from the EPA’s 

Pollution Prevention (P2) database. As part of the TRI reporting process, plants are 

required to report any activities undertaken to limit the amount of harmful chemicals 

released to the environment. Following Akey and Appel (2021), we classify these 

activities into two categories: improvements on production process and changes in 

operating practices. Process improvements entail activities such as optimizing chemical 

reaction conditions, modifying equipment, and other process modifications. Good 

operating practices involve activities such as improving maintenance scheduling, record 

keeping, and quality control.41 

                                                           
41 According to the EPA, an example of a process modification is when a chemical manufacturing facility 
replaced equipment identified during the Leak Detection and Repair (LDAR) program as contributing to 
leaks and fugitive emissions of methanol. An example of operating practice is when a coating manufacturer 

https://enviro.epa.gov/enviro/P2_EF_Query.p2_report?FacilityId=23434LLDCL2301W&ChemicalId=000067561&ReportingYear=2019&DocCtrlNum=&Opt=0
https://enviro.epa.gov/enviro/P2_EF_Query.p2_report?FacilityId=55369CRMTR325HW&ChemicalId=001330207&ReportingYear=2019&DocCtrlNum=&Opt=0
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In Table 8 Panel A, we examine whether the presence of a local SRMF is associated 

with changes in abatement activities at local treated plants following a nearby peer’s 

enforcement action. In the regression of Column 1, the dependent variable is Process, 

which is a dummy variable indicating abatement related to process improvement, and 

the dependent variable of the regression reported in Column 2 is Practice, which is an 

indicator for abatement related to operating practices. We find that the coefficient on the 

interaction term between Post ClosePeerEA× CloseSRMF is positive and statistically 

significant at the 1% level in Column 1, while this coefficient is insignificant in Column 

2. Consistent with the monitoring role of local SRMFs, these results suggest that treated 

plants with a close SRMF are more likely to engage in abatement activities related to the 

production process, rather than mere changes in operating practices, after observing a 

nearby enforcement action against a peer plant.  

[Insert Table 8 About Here] 

In Table 8 Panel B, we repeat the regression of Column 1 Panel A using subsamples 

that are split based on the median value of each operational flexibility measure. We find 

that the influence of SRMFs on abatement investment is concentrated among firms with 

high operational flexibility. This result may appear counterintuitive since the flexible 

firms would appear to have a way to reduce their exposure to local regulatory threats by 

transferring emissions to distant plants, which might make investment in abatement less 

urgent. However, if local SRMFs do not have the capacity to monitor distant plants, 

which might be vulnerable to future scrutiny by the regulators, then they can insist on 

abatement measures at the local plant.42   

In untabulated analysis, we repeat Table 8 Panel B using Practice as the dependent 

variable and find that none of the coefficients in the subsamples of operating flexibility 

measures is significant. These results are consistent with our conclusions in Table 8 Panel 

                                                           
implemented production scheduling rules to minimize changeovers between products and cleaning of 
equipment, reducing usage of xylenes. See EPA website for more examples. 
42 In the next section, we provide evidence consistent with the idea that the additional monitoring of the 
local plant generates firm-specific information about compliance to the local SRMF. When the local firm is 
non-complaint, the SRMF not only insists on immediate abatement measures at the local plant, but also at 
distant plants with some time lag. 

https://www.epa.gov/toxics-release-inventory-tri-program/pollution-prevention-p2-and-tri#pane-1
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A that SRMFs demand real abatement activities that help limit emissions rather than 

simple adjustments of operating practices. 

  

4.6. Discussion on the Role of Local Socially Responsible Institutions 

How do SRMFs influence their treated investee firms to be more environmentally 

friendly? Our results thus far suggest that SRMFs influence local treated plants to adopt 

abatement measures to mitigate emissions in the three years after a nearby peer 

enforcement action. To the extent that SRMFs are concerned about firm-level non-

compliance and the environmental performance of portfolio firms—be it because they 

have sustainability motives or other reasons—we expect that they should engage with 

the treated investee firms to make abatement investments not only at the local treated 

plant but also at all plants. Yet abatement activities, by their nature, are costly and take 

several years to implement. It is thus plausible that SRMFs allow treated firms to invest 

in abatement measures in a staggered manner across the plants, starting with the local 

treated plant because it faces immediate regulatory threat.  

To examine this conjecture, we repeat the regression of Table 8 Panel A but use a 

sample of distant plants only. Table 9 reports the estimation results. We find that in the 

three years after a nearby peer enforcement action, the presence of local SRMFs has 

insignificant effects on process-related abatement at treated firms’ distant plants 

(Columns 1 and 2). However, when we examine the abatement activities at these distant 

plants during the period [4, 10] years after an enforcement action, we find that the 

presence of a close SRMF is associated with higher likelihood of implementing abatement 

measures related to production process, but not operating practice (Columns 3 and 4).43 

Consistent with our prediction, these results suggest that SRMF’s strategy is to allow 

treated firms to respond to a nearby enforcement action by reducing emissions at local 

                                                           
43 To avoid confounding effects of enforcement actions during the [4, 10] period, we remove from the 
sample distant plants that are close to an enforcement action against their peer plants during the [4, 10] 
period. We also remove the first three years after an EPA enforcement action for distant plants owned by 
treated firms. 
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treated plants in the short term, and then gradually implementing abatement measures 

to reduce emissions at other distant plants in the long term. 

[Insert Table 9 About Here] 

 

Alternative Hypotheses for the Role of SRMFs  

As we have discussed in Section 4.1, there are two potential alternative hypotheses 

that could explain our results, i.e. the self-reaction hypothesis and the window-dressing 

hypothesis. The evidence from matched samples based on firm environmental 

performance reported in Section 4.1 suggests that the self-reaction of environmentally 

friendly firms is unlikely to confound our results. Here, we note several other results in 

our study that also help rule out the alternative hypotheses, particularly the window-

dressing explanation. First, these alternative hypotheses predict that local treated plants 

will respond to a nearby peer enforcement action by reducing toxic emissions and this 

response is irrespective of their proximity to the nearest SRMF. But Section 3.3 shows that 

the reduction of toxic releases is lower as the proximity to the nearest SRMF decreases – 

a result that is inconsistent with both the self-reaction hypothesis and the window-

dressing hypothesis. Second, window-dressing firms will reduce emissions at the local 

treated plants only but will not implement abatement measures at distant plants even in 

the long run. The fact that treated firms gradually invest in abatement across plants, not 

just the local treated plants, suggests that window-dressing is unlikely to be the 

explanation. Last, as we show in Section 4.8, local treated plants increase their emissions 

level again during the period from 4 years to 10 years after a nearby peer enforcement 

action. These long-run reversals are, however, prevented when local treated plants are 

located close to an SRMF. In Section 4.9, we show further that the effects of SRMFs on the 

long-run emissions at the aggregate firm level decay as proximity to the nearest SRMFs 

increases. These results are again inconsistent with the window-dressing hypothesis and 

the self-reaction hypothesis.  

 

4.7. Non-Responding Firms and Changes in Holdings of SRMFs 
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The threat of exit is a potential mechanism through which socially responsible 

institutions incentivize firms to make real changes in their production to reduce toxic 

releases. Thus, our next analysis examines whether SRMFs sell a firm’s shares if its plants 

do not reduce toxic releases following a nearby enforcement action.44 Specifically, we 

estimate the following regression at the firm-fund-year level. 

∆𝑊𝑒𝑖𝑔ℎ𝑡𝑖,𝑓,𝑡+1 = 𝛽1𝑇𝑟𝑒𝑎𝑡𝑓𝑖𝑟𝑚𝑖,𝑡 × 𝐶𝑙𝑜𝑠𝑒𝑆𝑅𝑀𝐹𝑖,𝑓,𝑡 × 𝑁𝑜𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑖,𝑡 + 𝛽2𝑇𝑟𝑒𝑎𝑡𝑓𝑖𝑟𝑚𝑖,𝑡 ×

𝑁𝑜𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑖,𝑡 + 𝛽3𝑇𝑟𝑒𝑎𝑡𝑓𝑖𝑟𝑚𝑖,𝑡 × 𝐶𝑙𝑜𝑠𝑒𝑆𝑅𝑀𝐹𝑖,𝑓,𝑡 + 𝛽4𝑇𝑟𝑒𝑎𝑡𝑓𝑖𝑟𝑚𝑖,𝑡 +

𝛾′𝑌𝑓,𝑡  + 𝜑 + 𝜇 + 𝜏 + 휀𝑖,𝑓,𝑡,                                                                     (5)                

where ∆𝑊𝑒𝑖𝑔ℎ𝑡𝑖,𝑓,𝑡+1 is the difference between stock i’s weight in mutual fund f’s 

portfolio in the first quarter of year t+1 and its weight in the first quarter of year t-1. 

𝑇𝑟𝑒𝑎𝑡𝑓𝑖𝑟𝑚𝑖,𝑡 is a dummy variable that is equal to 1 if firm i has at least one plant located 

in close proximity to an EPA enforcement action against a violating peer plant in year t 

and zero otherwise. 𝐶𝑙𝑜𝑠𝑒𝑆𝑅𝑀𝐹𝑖,𝑓,𝑡 is a dummy variable that is equal to 1 if a socially 

responsible mutual fund f, which holds stock i, is located within 100 miles from the 

violating peer plant and firm i’s treated plant and zero otherwise. 𝑁𝑜𝑛𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑖,𝑡 is a 

dummy variable that is equal to 1 if firm i does not reduce toxic releases at its treated 

plants in the year after the enforcement action against a local peer plant and zero 

otherwise. 𝑌𝑓,𝑡 is a set of fund-level control variables (fund size, fund expense ratio, 

turnover ratio, fund returns, and fund flows). 𝜑, 𝜇, and 𝜏 represent fund fixed effects, 

firm/industry fixed effects, and year fixed effects, respectively.  

We report the estimation results in Table 10. The coefficients 𝛽1 and 𝛽2 are both 

negative and statistically significant, suggesting that SRMFs reduce their holdings in non-

responding firms after an enforcement action against a local plant, and these decreases in 

holdings are more pronounced among funds located in close proximity. The coefficient 

𝛽3 is positive, indicating that, compared to distant SRMFs, local SRMFs have a stronger 

                                                           
44 As we show in the previous section, a plausible reason why these firms do not respond to a peer 
enforcement action is due to their operational inflexibility. Even for firms with high operational flexibility, 
however, compliance costs can outweigh the benefits of investing in abatement measures, as evidenced by 
their engagement in opportunistic tactics such as shifting emissions to distant plants.  
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preference for local firms that respond to a nearby enforcement action. We also observe 

a positive coefficient 𝛽4, suggesting that distant SRMFs also increase their holdings in 

responding firms.45 Taken together, these results support the notion that socially 

responsible institutions are willing to divest from firms that do not take actions to limit 

emissions in response to heightened regulatory risk, thereby acting as an external 

monitor that complements the EPA’s role in a region. 

[Insert Table 10 About Here] 

  

4.8. Long-Run Toxic Releases at Local Non-Target Plants 

We have shown in the previous sections that firms with high operational flexibility 

reduce toxic releases at local plants that face heightened regulatory risk by shifting 

emissions to distant plants. To the extent that local regulatory risk is transitory (e.g. the 

EPA’s focus may shift to a different industry or a different area due to media attention or 

political influence), we conjecture that the parent firm could increase emissions at these 

treated plants again in the long run after the EPA activity becomes less active in the area. 

At the same time, the presence of SRMFs in the area could serve as a continuing 

monitoring role even when regulatory risk arising from a possible EPA spillover 

investigation subsides. Thus, we predict that the reversals of emissions in the long run 

could be prevented when there is a local SRMF in close proximity. To examine these 

predictions, we construct cohorts of treated and control plants using plant-year 

observations for the three years before and the [4, 10] years after each event year. We 

remove from the sample the first three years after each event as well as events where 

there are confounding enforcement actions during the [4, 10] period. We further require 

that control plants have not been treated in a past event and will not become treated in 

the next 10 years. We then estimate the following plant-level regression: 

                                                           
45 In an untabulated analysis that examines the portfolio holdings of non-SRMFs, we do not find similar 
results. That is, non-SRMFs do not change their holdings in treated firms following a nearby enforcement 
action regardless of their proximity to the treated plants or whether the treated firms respond to the 
enforcement actions. 
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𝑇𝑜𝑥𝑖𝑐𝑝,𝑐,𝑡 = 𝛽0 + 𝛽1 𝑃𝑜𝑠𝑡 𝐶𝑙𝑜𝑠𝑒𝑃𝑒𝑒𝑟𝐸𝐴[4, 10]𝑝,𝑐,𝑡 + 𝜑 + 𝜏 + 휀𝑝,𝑐,𝑡,         (6) 

where 𝑃𝑜𝑠𝑡 𝐶𝑙𝑜𝑠𝑒𝑃𝑒𝑒𝑟𝐸𝐴[4, 10]𝑝,𝑐,𝑡 is equal to 1 for treated plant p from years t+4 to t+10 

and zero otherwise. All other variables are defined as in regression (1).  

Table 11 Panel A reports the estimation results. We find that the coefficient on Post 

ClosePeerEA[4, 10] is positive and statistically significant at least at the 1% level, 

suggesting that emissions at treated plants increase again in the long run. The effect is 

also economically significant. For example, in Column 2 the coefficient estimate on Post 

ClosePeerEA[4, 10] is 0.028, which indicates that, in the long run, emissions at treated 

plants recover back 100% of the emissions reduction that occurred in the immediate three 

years after the enforcement action.46 The coefficient on Post ClosePeerEA[4, 10] × 

CloseSRMF  is -0.048, suggesting that treated plants that are located close to an SRMF do 

not revert their emissions, but rather they continue to reduce emissions in the long run. 

[Insert Table 11 About Here] 

The previous section also shows that SRMFs divest from non-responding firms that 

do not reduce toxic releases in light of heightened regulatory risk. Such divestment can 

also serve as a warning sign for other treated plants such that it deters these plants from 

increasing emissions in the long run. In Table 10 Panel B, we examine this prediction. In 

Column 1, we regress plant-level toxic releases on Post ClosePeerEA[4, 10] × 

Local_NonRespond, Post ClosePeerEA[4, 10], and fixed effects, where Local_NonRespond is a 

dummy variable that is equal to 1 if the treated plant is located close to a non-responding 

plant and zero otherwise. We find that the coefficient on Post ClosePeerEA[4, 10] × 

Local_NonRespond is negative and significant, suggesting that long-run toxic releases at 

treated plants continue to be lower when there is a local non-responding plant, which did 

not reduce toxic releases even after observing a nearby enforcement action. In Column 2, 

we repeat this regression but additionally include the interaction term Post ClosePeerEA[4, 

10] × Local_NonRespond × CloseSRMFNR, where CloseSRMFNR equals 1 if a local non-

responding plant is located within 100 miles from an SRMF, which holds the shares of 

                                                           
46 This is a comparison between the coefficient estimate on Post ClosePeerEA[4, 10] and the coefficient 
estimate on Post ClosePeerEA of 0.027 reported in Table 2 Column 1. 
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non-responding plant’s parent firm, and 0 otherwise. Consistently, we find that the 

coefficient on this interaction term is negative and statistically significant at the 1% level, 

suggesting that long-run toxic releases at treated plants are lower when these plants are 

located close to a non-responding plant, which is, in turn, located close to its SRMFs. 

These results are again consistent with the disciplinary role of local socially responsible 

institutions: as SRMFs potentially sell shares of non-responding firms, such threat of exit 

helps keep the emissions level at local treated plants lower in the long run.  

 

4.9. Firm-level Evidence 

The plant-level results show that treated firms reduce toxic emissions at local treated 

plants, while transferring some of the emissions to distant plants. A natural question 

arises as to whether a treated firm’s overall toxic emissions are lower after an enforcement 

action. To explore this question, we employ a firm-level stacked DiD setting similar to the 

one used in Section 4.3.1 in which a firm is considered treated firm if one of its plants is 

located close to a violating peer plant. We compute firm-level total emissions, Firm Toxic, 

by aggregating toxic releases across plants owned by a firm in a given year and use it as 

the dependent variable in the following firm-level regression: 

𝐹𝑖𝑟𝑚 𝑇𝑜𝑥𝑖𝑐 𝑖,𝑐,𝑡

= 𝛽0 + 𝛽1 𝑃𝑜𝑠𝑡 𝑇𝑟𝑒𝑎𝑡𝐹𝑖𝑟𝑚𝑖,𝑐,𝑡 + 𝛽2𝑃𝑜𝑠𝑡 𝑇𝑟𝑒𝑎𝑡𝐹𝑖𝑟𝑚𝑖,𝑐,𝑡 × 𝐶𝑙𝑜𝑠𝑒𝑆𝑅𝑀𝐹𝑖,𝑐,𝑡 + 𝜎𝑖

+ 𝜏𝑡 + 휀𝑖,𝑐,𝑡,                                                                                                               (7) 

where 𝑃𝑜𝑠𝑡 𝑇𝑟𝑒𝑎𝑡𝐹𝑖𝑟𝑚𝑖,𝑐,𝑡 is equal to 1 for treated firm-year observations in the three 

years after the EPA takes an enforcement action against the violating peer plant located 

within 100 miles of the treated firm’s plants, and 0 otherwise. 𝐶𝑙𝑜𝑠𝑒𝑆𝑅𝑀𝐹𝑖,𝑐,𝑡 is equal to 1 

if an SRMF, which holds the treated firm’s stock, is located within 100 miles from one of 

the treated firm’s treated plants and within 100 miles from the violating peer plants. 𝜎𝑖 

and 𝜏𝑡 represent the vectors of firm × cohort and year × cohort fixed effects, respectively. 

We also examine the long-run toxic releases at the firm level over the period from t+4 to 

t+10 after events andreplace Post TreatFirm with Post TreatFirm[4, 10].   



47 
 

Table 12 report the estimation results. Columns 1, 2, and 3 display the results for the 

short-run toxic releases. We find that the coefficients on Post TreatFirm and Post TreatFirm 

× CloseSRMF are negative and significant. These results suggest that the net toxic 

reductions at treated firms are lower and the effects are stronger when treated firms have 

a close SRMF. These reductions, however, revert back during the [4, 10] period after an 

enforcement action as evidenced by the positive coefficient on Post TreatFirm[4, 10] in 

Column 3. Column 4 shows that the coefficient on Post TreatFirm[4, 10] × CloseSRMF is 

−0.086, while the coefficient on Post TreatFirm[4, 10] is 0.048. Consistent with the plant-

level results, the presence of an SRMF in close proximity also helps prevent the emissions 

reversals at the firm level.  

[Insert Table 12 About Here] 

To complete our analysis, we repeat the firm-level regression using subsamples split 

based on the median value of each operational flexibility measure. Consistently, the 

results reported in Appendix Table B10 show that the effects are concentrated among 

firms with high operational flexibility. 

 

5. Conclusion 

In this study, we examine whether and how local SRMFs complement the EPA in 

monitoring local plants’ environmental behavior. We exploit a unique setting in which 

the EPA first takes an enforcement action against a peer firm, which alerts other local 

firms operating in the same product market as well as local SRMFs about heightened 

environmental regulatory risk in the area. This setting allows us to identify the causal 

role of socially responsible institutions in influencing the emissions levels of local plants 

that are not targeted by the EPA. We argue and show that, due to compliance slack, a 

firm reduces its toxic emissions at a local plant (treated plant) after observing an EPA 

enforcement action against its peer firm’s violating plant that is located in close 

proximity. These spillover effects are more pronounced when the plant is located close to 

an SRMF and decay monotonically as the distance to the SRMF increases. 
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We find that, possibly due to high compliance costs, only treated plants that belong 

to firms with high operational flexibility respond to a nearby enforcement action against 

a peer plant. However, the way they respond depends on the presence of local SRMFs. 

Treated plants that are not close to an SRMF respond by engaging in short-term 

opportunistic tactics such as selling from inventory or shifting emissions to other distant 

plants possibly to temporarily reduce their exposure to heightened local regulatory risk. 

In the long run, these plants revert their emissions back by 100% of the short-run 

reduction amount. In contrast, for treated plants located close to an SRMF, we find that 

they do not engage in these tactics. Rather, following nearby enforcement actions against 

peer firms, these plants implement real abatement measures related to production 

process to prevent emissions and thus, their long-run reversals of emissions are 

prevented.  

Further investigation into the role of local SRMFs shows that their threats of exit serve 

as a disciplinary tool to influence investees’ responses. Specifically, we find that SRMFs 

reduce holdings in firms whose treated plants do not respond to a nearby enforcement 

action and increase holdings in responding firms. We further find that SRMFs’ selling of 

non-responders’ shares serves as a threat of exit for other local treated plants such that it 

deters these plants from increasing emissions in the long run. 

These findings highlight the role of U.S.-based SRMFs in complementing EPA 

enforcement to ensure environmental compliance of local plants. In particular, the 

spillover effects of EPA enforcement actions suggest that the EPA’s punishment of one 

firm triggers increased monitoring by local SRMFs and helps raise the environmental 

compliance levels of other peer firms in the region. Yet, it is the local SRMFs who ensure 

that local plants’ emissions remain low in the long run. Our findings based on this unique 

setting suggest socially responsible investors do not “walk the talk”; rather, they do 

change firm behavior if being prompted by an EPA enforcement action.  
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Figure 1: Differences of Toxic Releases Between Treated and Control Plants 

The figure shows the average differences of toxic releases between treated and control plants over 

the [-3, 3] window of a nearby peer enforcement action, together with the 95% confidence 

intervals. We use the stacked difference-in-differences (DiD) framework. Specifically, for each 

event year, we construct a cohort of treated plants and control plants using plant-year 

observations for the three years before and the three years after an EPA enforcement event action 

against the peer plant. We remove the event year from the sample. Treated plants are those that 

are not targeted by the EPA but are located within 100-mile radius of a violating TNIC3-peer 

plant. Control plants are other plants of the same parent firm as a treated plant but located outside 

100 miles radius of the violating peer plant, plants of other TNIC3-peer firms located outside 100-

mile radius of the violating peer plant, and plants of firms that are outside TNIC3 but in the same 

TNIC2 product market as treated plants. We require that control plants have not been treated in 

a past event and will not become treated in the next 6 years. The average differences between 

treated and control plants are the coefficients obtained from the plant-year level regression:  

𝑇𝑜𝑥𝑖𝑐𝑝,𝑐,𝑡 = 𝛽0 + 𝛽1 𝑃𝑟𝑒1 𝐶𝑙𝑜𝑠𝑒𝑃𝑒𝑒𝑟𝐸𝐴𝑝,𝑐,𝑡 + 𝛽2𝑃𝑟𝑒2 𝐶𝑙𝑜𝑠𝑒𝑃𝑒𝑒𝑟𝐸𝐴𝑝,𝑐,𝑡 + 𝛽3𝑃𝑜𝑠𝑡1 𝐶𝑙𝑜𝑠𝑒𝑃𝑒𝑒𝑟𝐸𝐴𝑝,𝑐,𝑡

+ 𝛽4𝑃𝑜𝑠𝑡2 𝐶𝑙𝑜𝑠𝑒𝑃𝑒𝑒𝑟𝐸𝐴𝑝,𝑐,𝑡 + 𝛽5𝑃𝑜𝑠𝑡3 𝐶𝑙𝑜𝑠𝑒𝑃𝑒𝑒𝑟𝐸𝐴𝑝,𝑐,𝑡 + 𝜑 + 𝜏 + 𝜇 + 휀𝑝,𝑐,𝑡 

where 𝑇𝑜𝑥𝑖𝑐𝑝,𝑐,𝑡 is the total on-site harmful chemical releases of plant p of cohort c standardized 

using the industry mean and standard deviation in each year t. 𝑃𝑟𝑒1 𝐶𝑙𝑜𝑠𝑒𝑃𝑒𝑒𝑟𝐸𝐴𝑝,𝑐,𝑡and 

𝑃𝑟𝑒2 𝐶𝑙𝑜𝑠𝑒𝑃𝑒𝑒𝑟𝐸𝐴𝑝,𝑐,𝑡 are dummy variables that are, respectively, equal to 1 for treated plant p of 

cohort c for the first year and the second year before an EPA enforcement action taken against a 

nearby peer plant and zero otherwise. 𝑃𝑜𝑠𝑡1 𝐶𝑙𝑜𝑠𝑒𝑃𝑒𝑒𝑟𝐸𝐴𝑝,𝑐,𝑡,𝑃𝑜𝑠𝑡2 𝐶𝑙𝑜𝑠𝑒𝑃𝑒𝑒𝑟𝐸𝐴𝑝,𝑐,𝑡, and 

𝑃𝑜𝑠𝑡3 𝐶𝑙𝑜𝑠𝑒𝑃𝑒𝑒𝑟𝐸𝐴𝑝,𝑐,𝑡 are dummy variables that are, respectively, equal to 1 for treated plant p 

of cohort c for the first year, the second year, and the third year after an EPA enforcement action 

taken against a nearby peer plant and zero otherwise. φ, τ, and μ are vectors for the plant, county-

year, and industry-year fixed effects, respectively. 
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Table 1: Summary Statistics 

In Panel A, the summary statistics include the sample mean, 5th, 40th, median, 60th, 95th, and 
standard deviation of the key variables used in this study. These variables are defined in 
Appendix Table B1. The sample contains 158,211 plant-year observations between 1990 and 2015. 
Panel B reports the number of treated plants and the number of control plants in each event year 
(cohort). The construction of each cohort is described in Section 3.1. The first cohort is in 1993 
(three years after the beginning of our sample) because the pre-event window uses plant-year 
observations in the three years before each event. Similarly, the last cohort is in 2012 because the 
post-event window uses plant-year observations in the three years after each event. 
 
Panel A: Summary Statistics for the Key Variables 

Variable Mean 5th 40th  Median 60th  95th Std. Dev. 

Toxic  0.000 -0.503 -0.247 -0.210 -0.184 1.334 1.000 

Post ClosePeerEA 0.100 0.000 0.000 0.000 0.000 1.000 0.299 

Size 7.573 4.258 7.056 7.524 8.011 10.888 1.971 

Book-to-Market 0.493 0.058 0.353 0.423 0.497 1.227 0.412 

Return on Asset 0.146 0.044 0.125 0.140 0.158 0.269 0.069 

Ln(Sale) 7.820 4.903 7.490 7.861 8.238 10.374 1.650 

Leverage 0.197 0.003 0.134 0.170 0.211 0.485 0.146 
 
Panel B: The Number of Treated Plants and Control Plants in Each Event Year 

Event Year / Cohort Number of Treated Plants Number of Control Plants 

1993 209 3,003 

1994 129 2,823 

1995 209 2,714 

1996 219 2,534 

1997 243 2,440 

1998 446 2,420 

1999 377 2,341 

2000 443 2,267 

2001 438 2,203 

2002 384 2,025 

2003 350 1,953 

2004 326 1,837 

2005 364 1,727 

2006 274 1,632 

2007 334 1,561 

2008 331 1,505 

2009 324 1,439 

2010 279 1,420 

2011 348 1,369 

2012 243 1,313 

Average 313.5 2,206.3 
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Table 2: Spillover Effects of EPA Enforcement Actions  

This table reports the results from the regressions that examine toxic releases at plants located in 
close proximity to an EPA enforcement action. We use the stacked difference-in-differences (DiD) 
framework. Specifically, for each event year, we construct a cohort of treated plants and control 
plants using plant-year observations for the three years before and the three years after an EPA 
enforcement event action against the peer plant. We remove the event year from the sample. 
Treated plants are those that are not targeted by the EPA but are located within 100-mile radius 
of a violating TNIC3-peer plant. Control plants are other plants of the same parent firm as a 
treated plant but located outside 100 miles radius of the violating peer plant, plants of other 
TNIC3-peer firms located outside 100-mile radius of the violating peer plant, and plants of firms 
that are outside TNIC3 but in the same TNIC2 product market as treated plants. We require that 
control plants have not been treated in a past event and will not become treated in the next 6 
years. We estimate the following plant-level regression: 

𝑇𝑜𝑥𝑖𝑐𝑝,𝑐,𝑡 = 𝛽0 + 𝛽1 𝑃𝑜𝑠𝑡 𝐶𝑙𝑜𝑠𝑒𝑃𝑒𝑒𝑟𝐸𝐴𝑝,𝑐,𝑡 + 𝜑 + 𝜏 + 𝜇 + 휀𝑝,𝑐,𝑡, 

where 𝑇𝑜𝑥𝑖𝑐𝑝,𝑐,𝑡 is the total on-site harmful chemical releases of plant p of cohort c standardized 

using the industry mean and standard deviation in each year t. Post ClosePeerEA is a dummy 
variable that is equal to 1 for treated plants in the three years after the EPA takes an enforcement 
action against the peer plants located in close proximity and 0 otherwise. φ,τ, and μ are vectors 
for the plant × cohort, year × cohort, and county × cohort fixed effects, respectively. In Panel B, 
Pre1 ClosePeerEA (Pre2 ClosePeerEA) is a dummy variable that is equal to 1 for the first year 
(second year) before an EPA enforcement action and zero otherwise. Standard errors are double 
clustered at the plant and year level. t-statistics are presented in parentheses. *, **, and *** indicate 
statistical significance at the 10%, 5%, and 1% level, respectively. The variables are defined in 
Appendix Table B1. 
 
Panel A: Peer’s EPA Enforcement Actions and Toxic Releases  

 Dependent Variable: Toxic 

Variable (1) (2) (3) (4) 
Post ClosePeerEA -0.027*** -0.026*** -0.027*** -0.025*** 
 (-4.248) (-4.003) (-3.906) (-3.614) 
Size   0.006 0.006  

  (0.948) (0.970) 
Book-to-Market   -0.011 -0.011 

   (-1.297) (-1.191) 
Return on Asset   0.166** 0.168** 

   (2.116) (2.061) 
Ln(Sale)   0.026** 0.018** 
   (2.442) (2.104) 
Leverage   0.027 0.031 
   (0.826) (0.997) 
     
Plant × Cohort FEs Yes Yes Yes Yes 
Year × Cohort FEs Yes Yes Yes Yes 
County × Cohort FEs No Yes No Yes 
Number of Obs 158,211 158,211 157,906 157,906 
Adj. R-squared 0.830 0.840 0.833 0.843 
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Table 2: continued 

Panel B: Pre-Trend Tests 

 Dependent Variable: Toxic 

Variable (1) (2) (5) (6) 
Post ClosePeerEA -0.030*** -0.027*** -0.029*** -0.025** 
 (-3.105) (-2.855) (-2.672) (-2.464) 
Pre1 ClosePeerEA 0.004 0.008 0.002 0.005 

 (0.550) (1.041) (0.228) (0.673) 
Pre2 ClosePeerEA 0.003 0.004 0.002 0.003 

 (0.378) (0.627) (0.221) (0.444) 
Size   0.006 0.006  

  (0.941) (0.919) 
Book-to-Market   -0.011 -0.010 

   (-1.307) (-1.203) 
Return on Asset   0.167** 0.166** 

   (2.112) (2.033) 
Ln(Sale)   0.026** 0.018** 
   (2.438) (2.097) 
Leverage   0.029 0.031 
   (0.872) (1.006) 
     
Plant × Cohort FEs Yes Yes Yes Yes 
Year × Cohort FEs Yes Yes Yes Yes 
County × Cohort FEs No Yes No Yes 
Number of Obs 158,211 158,211 157,906 157,906 
Adj. R-squared 0.830 0.840 0.834 0.844 
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Table 3: The Role of Socially Responsible Mutual Funds 

This table reports the results from the regressions that examine the role of socially responsible 

mutual funds in influencing a firm’s response to a nearby EPA enforcement action. The sample 

starts from 2000 due to the availability of fund-level data. We use the same stacked difference-in-

differences (DiD) framework as in Table 2 except that the regressions of this table incorporate 

interaction terms with close socially responsible mutual funds (SRMF). Specifically, Panel A 

presents the results for the following plant-level regression: 

𝑇𝑜𝑥𝑖𝑐𝑝,𝑐,𝑡 = 𝛽1 𝑃𝑜𝑠𝑡 𝐶𝑙𝑜𝑠𝑒𝑃𝑒𝑒𝑟𝐸𝐴𝑝,𝑐,𝑡 × 𝐶𝑙𝑜𝑠𝑒𝑆𝑅𝑀𝐹𝑝,𝑐,𝑡 + 𝛽2 𝑃𝑜𝑠𝑡 𝐶𝑙𝑜𝑠𝑒𝑃𝑒𝑒𝑟𝐸𝐴𝑝,𝑡 + 𝜑 + 𝜏 + 𝜇 +

휀𝑝,𝑐,𝑡  

where CloseSRMF is a dummy variable equal to 1 if a socially responsible mutual fund, which 

holds the treated plant’s parent firm’s stock, is located within 100 miles from the treated plant 

and within 100 miles from the violating peer plant. Other variables are defined as in Table 2. In 

Columns 3 and 4 of Panel A, SRMF(100, 200) (or SRMF(>200)) is a dummy variable equal to 1 if a 

socially responsible mutual fund is located between 100 miles and 200 miles (or greater than 200 

miles) from both the treated plant and the violating plant. F-statistics for the differences in the 

coefficients between Post ClosePeerEA × CloseSRMF and Post ClosePeerEA × SRMF(>200) are 3.79 (p-

value = 0.056) for Column 3 and 4.10 (p-value = 0.047) for Column 4. F-statistics for the differences 

in the coefficients between Post ClosePeerEA × CloseSRMF and Post ClosePeerEA × SRMF(100, 200)  are 

0.39 (p-value = 0.533) for Column 3 and 0.83 (p-value = 0.366) for Column 4. Panel B reports the 

regression in Panel A but add pre-event dummies, Pre1 ClosePeerEA and Pre2 ClosePeerEA, and 

the interactions term between each pre-event dummy and CloseSRMF. Panel C reports the 

regression in Panel A Column 4 but uses matched samples. To construct the matched sample in 

Column 1, we require that the parent firms of treated plants located within 100-mile radius of an 

SRMF can be matched to the parent firms that have the same EScore and whose treated plants are 

located more than 100 miles from the nearest SRMFs. We remove treated plants that cannot be 

matched. We repeat this matching procedure to find a match between the matched treated plants 

within 100-mile radius of an SRMF with treated plants that are located more than 200 miles from 

the nearest SRMFs. In Column 2, in addition to the matching procedure between treated plants 

depending on their proximity to SRMF, we also find matched plants of control firms in the same 

TNIC2 network that have the same EScore as the treated firms. Standard errors are double 

clustered at the plant and year level. t-statistics are presented in parentheses. *, **, and *** indicate 

statistical significance at the 10%, 5%, and 1% level, respectively. The variables are defined in 

Appendix Table B1. 

Panel A: The Role of Nearby Socially Responsible Mutual Funds 

 Dependent Variable: Toxic 

Variable  (1) (2) (3) (4) 

Post ClosePeerEA × CloseSRMF -0.026** -0.027** -0.029*** -0.030*** 
 (-2.341) (-2.446) (-2.612) (-2.775) 
Post ClosePeerEA × SRMF(100, 200)   -0.018 -0.016 
   (-1.031) (-1.040) 
Post ClosePeerEA × SRMF(>200)   -0.002 -0.003 
   (-0.247) (-0.376) 
Post ClosePeerEA -0.022** -0.023** -0.022** -0.022** 
 (-2.348) (-2.352) (-2.341) (-2.352) 
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Plant × Cohort FEs Yes Yes Yes Yes 
Year × Cohort FEs Yes Yes Yes Yes 
County × Cohort FEs No Yes No Yes 
Number of Obs 68,509 68,509 68,509 68,509 
Adj. R-squared 0.875 0.879 0.875 0.879 

 

Panel B: Pre-Trend Tests 

 Dependent Variable: Toxic 

Variable  (1) (2) 

Post ClosePeerEA × CloseSRMF -0.033*** -0.034*** 
 (-3.090) (-3.084) 
Post ClosePeerEA  -0.022** -0.021** 
 (-2.339) (-2.105) 
Pre1 ClosePeerEA × CloseSRMF -0.002 0.001 
 (-0.101) (0.073) 
Pre2 ClosePeerEA × CloseSRMF -0.008 -0.008 
 (-0.295) (-0.333) 
Pre1 ClosePeerEA -0.003 -0.001 
 (-0.583) (-0.162) 
Pre2 ClosePeerEA -0.002 -0.001 
 (-0.517) (-0.198) 
Plant × Cohort FEs Yes Yes 
Year × Cohort FEs Yes Yes 
County × Cohort FEs No Yes 
Number of Obs 68,509 68,509 
Adj. R-squared 0.877 0.880 

 

Panel C: Matched Treated and Control Groups Based on EScore 

 Dependent Variable: Toxic 

Variable  (1) (2) 

Post ClosePeerEA × CloseSRMF -0.052** -0.054** 
 (-1.990) (-2.294) 
Post ClosePeerEA × SRMF(100, 200) -0.015** -0.013 
 (-2.714) (-1.422) 
Post ClosePeerEA × SRMF(>200) 0.006 0.003 
 (0.666) (0.247) 
Post ClosePeerEA -0.015*** -0.032*** 
 (-3.210) (-9.210) 
Plant × Cohort FEs Yes Yes 
Year × Cohort FEs Yes Yes 
County × Cohort FEs Yes Yes 
Number of Obs 61,683 28,195 
Adj. R-squared 0.860 0.893 



60 
 

Table 4: The Role of Operational flexibility 

This table reports the results from the subsample tests based on the sample median of different operational flexibility measures. In 

Columns 1 and 2, the sample is split based on the median value of the firm’s inventory level measured in the event year. In Columns 

3 and 4, the sample is split based on operational inflexibility calculated as the firm’s historical range of operating costs scaled by the 

volatility of changes in sales over assets, measured in the event year. In Columns 5 and 6, the sample is split based on the number of 

plants of a firm measured in the event year. Panel A reports the results from the regression of Table 2 using various subsamples. Panel 

B reports the results from the regression of Table 3 using various subsamples. Standard errors are double clustered at the plant and 

year level. t-statistics are presented in parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, 

respectively. The variables are defined in Appendix Table B1. 

 

Panel A: Operational flexibility 

 Dependent Variable: Toxic 

Variable 

 (1) 
Low 

Inventory 

(2) 
High 

Inventory 

 (3) 
High 

Inflexibility 

(4) 
Low 

Inflexibility 

 (5) 
Less  

Plants 

(6) 
More  
Plants 

Post ClosePeerEA -0.005 -0.030*** -0.011 -0.032*** 0.005 -0.027*** 
 (-0.253) (-6.042) (-0.952) (-5.539) (0.268) (-4.549) 
       
Plant × Cohort FEs Yes Yes Yes Yes Yes Yes 
Year × Cohort FEs Yes Yes Yes Yes Yes Yes 
County × Cohort FEs Yes Yes Yes Yes Yes Yes 
Number of Obs 76,677 77,108 77,988 74,566 69,951 87,881 
Adj. R-squared 0.796 0.857 0.825 0.868 0.816 0.857 

 

Panel B: Socially Responsible Mutual Funds, Operational flexibility, and Toxic Releases 

 Dependent Variable: Toxic 

Variable 

 (1) 
Low 

Inventory 

(2) 
High 

Inventory 

 (3) 
High 

Inflexibility 

(4) 
Low 

Inflexibility 

 (5) 
Less  

Plants 

(6) 
More  
Plants 

Post ClosePeerEA × CloseSRMF -0.010 -0.037** -0.020 -0.045** -0.026 -0.047** 
 (-0.443) (-2.109) (-0.612) (-2.300) (-0.916) (-2.028) 
Post ClosePeerEA 0.012 -0.023*** -0.016 -0.016** 0.026 -0.021** 
 (0.738) (-2.887) (-0.879) (-2.030) (1.334) (-2.405) 
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Plant × Cohort FEs Yes Yes Yes Yes Yes Yes 
Year × Cohort FEs Yes Yes Yes Yes Yes Yes 
County × Cohort FEs Yes Yes Yes Yes Yes Yes 
Number of Obs 32,576 34,099 33,699 32,572 30,835 37,510 
Adj. R-squared 0.861 0.885 0.844 0.897 0.859 0.890 
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Table 5: Change of Inventory Level After A Nearby Enforcement Action 

This table reports the results from the firm-year level regressions examining the inventory 

behavior of high- and low-inventory firms in their responses to a nearby enforcement action. We 

construct a stacked difference-in-differences (DiD) sample at the firm level. Specifically, for each 

event year, we construct a cohort of treated firms and control firms using firm-year observations 

for the three years before and the three years after an EPA enforcement event action against a 

nearby peer plant. Treated firms have at least one plant located within 100 miles from a violating 

TNIC3-peer plant. Control firms are those that operate in the same TNIC2 product market as the 

treated firm and do not have plants located within 100 miles from the violating peer plant. We 

also require that control firms do not have plants treated in a past event and will not have plants 

treated in the next 6 years. ΔInventory is firm i’s change of inventory levels from year t-1 to year 

t+1 calculated as 𝐿𝑛(𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦)𝑖,𝑡+1 − 𝐿𝑛(𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦)𝑖,𝑡−1. Post Treatfirm is a dummy variable that 

is equal to 1 for the treated firm in the three years after the EPA takes an enforcement action 

against a violating peer plant, and 0 otherwise. In Columns 1 and 2, the sample is divided into 

high- and low-inventory groups based on the median value of inventory level measured in year 

t-1. In Columns 3 and 4, the sample is divided into high- and low-inventory groups based on the 

median value of inventory level measured in year t-2. Standard errors are double clustered at the 

firm and year level. t-statistics are presented in parentheses. *, **, and *** indicate statistical 

significance at the 10%, 5%, and 1% level, respectively. The variables are defined in Appendix 

Table B1. 

 Dependent Variable: ΔInventory 

Variable 

 (1) 
High 

Inventoryt-1 

(2) 
Low 

Inventoryt-1 

  (3) 
High 

Inventoryt-2 

(4) 
Low 

Inventoryt-2 

Post Treatfirm -0.079*** 0.006  -0.066*** -0.002 
 (-3.784) (0.203)  (-3.134) (-0.077) 
      
Firm × Cohort FEs Yes Yes  Yes Yes 
Year × Cohort FEs Yes Yes  Yes Yes 
Number of Obs 8,488 8,551  8,314 8,388 
Adj. R-squared 0.249 0.298  0.236 0.299 
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Table 6: Transfer of Toxic Releases to Distant Plants 

This table reports the results from the regressions examining whether firms transfer toxic releases 

to distant plants. The sample includes distant plants only (i.e. non-target plants within 100 miles 

of the violating peer plant are removed). We identify a treated firm that owns at least one plant 

located within 100 miles of the violating peer plant and also owns distant plants located outside 

the 100-mile radius. For each event year, we construct a cohort of distant plants that belong to 

treated firms and control plants using plant-year observations for the three years before and the 

three years after an EPA enforcement event action against the peer plant. We remove the event 

year from the sample. Control plants are plants of other TNIC3-peer firms that do not own any 

treated plants and plants of firms that are outside TNIC3 but in the same TNIC2 product market 

as treated firms. We require that control plants’ parent firms do not have treated plants in a past 

event and will not have treated plants in the next 6 years. Panel A presents the estimation results 

for the following plant-level regression: 

𝑇𝑜𝑥𝑖𝑐𝑝,𝑐,𝑡 = 𝛽1 𝑃𝑜𝑠𝑡 𝑇𝑟𝑒𝑎𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑡𝑝,𝑐,𝑡 + 𝜑 + 𝜏 + 𝜇 + 휀𝑝,𝑐,𝑡 

where Post TreatDistant is equal to 1 if a distant plant belongs to a treated firm and for the three 

years after the EPA takes an enforcement action against the violating peer plant and 0 otherwise. 

In Column 2 of Panel A, the sample starts from 2000 due to the availability of fund-level data. 

CloseSRMF is a dummy variable equal to 1 if a socially responsible mutual fund, which holds the 

treated firm’s stock, is located within 100 miles from the treated firm’s treated plant and within 

100 miles from the violating peer plant and zero otherwise. Panel B repeats the regression of Panel 

A using subsamples that are split based on different operational flexibility measures. In Columns 

1 and 2 of Panel B, the sample is split based on the sample median of firms’ inventory levels. In 

Columns 3 and 4 of Panel B, the sample is partitioned based on the median of Operational 

Inflexibility, which is a firm’s historical range of operating costs scaled by the volatility of changes 

in sales over assets. In Columns 5 and 6 of Panel B, the sample is split based on the median of the 

number of plants per firm. Standard errors are double clustered at the plant and year level. t-

statistics are presented in parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, 

and 1% level, respectively. The variables are defined in Appendix Table B1. 

 

Panel A: Transfer of Toxic Releases 

 Dependent Variable: Toxic 

Variable  (1) (2) 

Post TreatDistant × CloseSRMF  0.002 
  (0.095) 
Post TreatDistant 0.020 0.018 
 (1.081) (0.779) 
   
Plant × Cohort FEs Yes Yes 
Year × Cohort FEs Yes Yes 
County × Cohort FEs Yes Yes 
Number of Obs 86,917 32,072 
Adj. R-squared 0.784 0.821 
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Table 6: continued 

Panel B: The Role of Operational Inflexibility 

 Dependent Variable: Toxic 

Variable 

 (1) 
Low 

Inventory 

(2) 
High 

Inventory 

 (3) 
High 

Inflexibility 

(4) 
Low 

Inflexibility 

 (5) 
Less  

Plants 

(6) 
More  
Plants 

Post TreatDistant 0.004 0.021** -0.002 0.029** -0.013 0.039*** 
 (0.127) (2.432) (-0.150) (2.342) (-0.417) (4.400) 
Plant × Cohort FEs Yes Yes Yes Yes Yes Yes 
Year × Cohort FEs Yes Yes Yes Yes Yes Yes 
County × Cohort FEs Yes Yes Yes Yes Yes Yes 
Number of Obs 41,266 43,081 42,002 39,935 37,181 49,555 
Adj. R-squared 0.734 0.822 0.789 0.798 0.750 0.822 

 

Panel C: Socially Responsible Mutual Funds, Operational flexibility, and Transfer of Toxic Releases 

 Dependent Variable: Toxic 

Variable 

 (1) 
Low 

Inventory 

(2) 
High 

Inventory 

 (3) 
High 

Inflexibility 

(4) 
Low 

Inflexibility 

 (5) 
Less  

Plants 

(6) 
More  
Plants 

Post TreatDistant × CloseSRMF 0.041 -0.037*** 0.022 -0.055** 0.015 -0.038*** 
 (0.911) (-3.596) (1.072) (-2.397) (0.306) (-3.620) 
Post TreatDistant 0.018 0.057*** -0.007 0.048* 0.002 0.035* 
 (0.550) (2.607) (-0.219) (1.862) (0.064) (1.921) 
Plant × Cohort FEs Yes Yes Yes Yes Yes Yes 
Year × Cohort FEs Yes Yes Yes Yes Yes Yes 
County × Cohort FEs Yes Yes Yes Yes Yes Yes 
Number of Obs 15,094 15,903 15,852 14,806 13,475 18,561 
Adj. R-squared 0.789 0.800 0.826 0.832 0.798 0.817 
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Table 7: Transfer of Toxic Releases and the Industry Concentration of EPA Regions 

This table reports the results from the regressions examining whether the transfer of toxic releases 

to distant plants depends on the industry concentration of EPA regions. The sample includes 

distant plants only (i.e. plants within 100 miles of the violating peer plant are removed). In 

Columns 1, we estimate the stacked difference-in-differences regression used in Table 6 but 

additionally include the interaction terms between Post TreatDistant and OutsideTop3. OutsideTop3 

is an indicator that is equal to 1 if a distant plant’s industry is not one of the Top 3 industries that 

have experienced the most EPA enforcement actions over the past 3 years in the EPA region to 

which the distant plant belongs and zero if it is the same. We identify an EPA region’s Top 3 

industries by first ranking industries in the region based on the total number of enforcement 

actions against firms in each industry over the past 3 years. We then select the Top 3 Industries 

with the highest number of enforcement actions. In Columns 2, we replace OutsideTop3 with 

OutsideTop5, which is equal to 1 if a distant plant’s industry is not a Top 5 industry that have 

experienced the most EPA enforcement actions over the past 3 years in the EPA region to which 

the distant plant belongs and zero if it is the same.  In Columns 3 and 4, we repeat the regressions 

in Columns 1 and 2, respectively, except that we use the number of enforcement actions taken 

against an industry over the past 5 years to identify an EPA region’s Top 3 and Top 5 industries. 

Standard errors are double clustered at the plant and year level. t-statistics are presented in 

parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, 

respectively. The variables are defined in Appendix Table B1. 

 

 Dependent Variable: Toxic 

Variable  (1) (2) (3) (4) 

Post TreatDistant × OutsideTop3 0.033***  0.035***  
 (3.095)  (3.393)  
Post TreatDistant × OutsideTop5  0.029***  0.035** 
  (2.950)  (2.395) 
Post TreatDistant -0.000 0.002 0.001 0.008 
 (-0.036) (0.210) (0.081) (0.610) 
outsideTop3 -0.014  -0.028  
 (-0.841)  (-1.493)  
outsideTop5  -0.011  -0.026 
  (-0.861)  (-1.286) 
Plant × Cohort FEs Yes Yes Yes Yes 
Year × Cohort FEs Yes Yes Yes Yes 
County × Cohort FEs Yes Yes Yes Yes 
Number of Obs 86,917 86,917 86,917 86,917 
Adj. R-squared 0.787 0.787 0.787 0.782 
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Table 8: Effects of Socially Responsible Mutual Funds on Pollution Abatement Activities 

Panel A reports the results from the regressions examining the role of nearby socially responsible 

mutual funds in influencing a plant’s pollution abatement activities after a nearby EPA 

enforcement action. We estimate the stacked difference-in-differences regression used in Table 3 

except that the dependent variable is different. In Column 1, the dependent variable is Process, 

which is a dummy variable that is equal to 1 in a given year if a plant implements an abatement 

activity related to its production process including improvements in chemical reaction 

conditions, modification of equipment, or implementation of better process controls, and zero 

otherwise. In Column 2, the dependent variable is Practice, which is a dummy variable that is 

equal to 1 in a given year if a plant implements changes to its operating practice such as 

improvement in maintenance scheduling, record keeping, etc, and zero otherwise. Panel B reports 

the results from the regression of Panel A that is estimated using various subsamples that are 

split based on the sample median of different operational flexibility measures. Standard errors 

are double clustered at the plant and year level. t-statistics are presented in parentheses. *, **, and 

*** indicate statistical significance at the 10%, 5%, and 1% level, respectively. The variables are 

defined in Appendix Table B1. 

 

Panel A: Effects of Nearby Socially Responsible Mutual Funds on Pollution Abatement Activities 

Variable 
Process  

(1) 
Practice 

(2) 

Post ClosePeerEA × CloseSRMF 0.032*** -0.010 
 (3.119) (-0.627) 
Post ClosePeerEA 0.005 -0.004 
 (0.924) (-0.598) 
Plant × Cohort FEs Yes Yes 
Year × Cohort FEs Yes Yes 
County × Cohort FEs Yes Yes 
Number of Obs 68,509 68,509 
Adj. R-squared 0.666 0.477 
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Table 8: continued 

Panel B: Subsample Tests Based on Flexibility 

 Dependent Variable: Process 

Variable 

 (1) 
Low 

Inventory 

(2) 
High 

Inventory 

 (3) 
High 

Inflexibility 

(4) 
Low 

Inflexibility 

 (5) 
Less  

Plants 

(6) 
More  
Plants 

Post ClosePeerEA × CloseSRMF -0.006 0.033*** -0.013 0.038*** -0.015 0.050** 
 (-0.285) (4.457) (-0.904) (3.858) (-0.853) (2.523) 
Post ClosePeerEA 0.009 0.001 0.006 0.004 0.005 0.005 
 (1.063) (0.225) (0.701) (0.916) (0.604) (0.722) 
Plant × Cohort FEs Yes Yes Yes Yes Yes Yes 
Year × Cohort FEs Yes Yes Yes Yes Yes Yes 
County × Cohort FEs Yes Yes Yes Yes Yes Yes 
Number of Obs 32,963 34,003 33,885 32,774 30,974 37,535 
Adj. R-squared 0.676 0.664 0.654 0.691 0.620 0.669 
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Table 9: Effects of Socially Responsible Mutual Funds on Distant Plants’ Abatement Activities 

Panel A reports the results from the regressions examining the role of nearby socially responsible 

mutual funds in influencing treated firms’ distant plants’ pollution abatement activities. The 

sample includes distant plants only (i.e. non-target plants within 100 miles of the violating peer 

plant are removed). We estimate the stacked difference-in-differences regression used in Table 6 

except that the dependent variable is either Process or Practice. Columns 1 and 2, Post TreatDistant 

is equal to 1 if a distant plant belongs to a treated firm and for the three years after the EPA takes 

an enforcement action against the violating peer plant and 0 otherwise. CloseSRMF is a dummy 

variable equal to 1 if a socially responsible mutual fund, which holds the treated firm’s stock, is 

located within 100 miles from the treated firm’s treated plant and within 100 miles from the 

violating peer plant and zero otherwise. In Columns 3 and 4, we use plant-year observations for 

the three years before and the [4, 10] years after an EPA enforcement event action against the peer 

plant. We remove from the sample the first three years after the event as well as events where 

there are treated firms’ distant plants’ confounding enforcement actions during the [4, 10] period. 

We require that control plants’ parent firms do not have treated plants in a past event and will 

not have treated plants in the next 10 years. Post TreatDistant[4, 10] is equal to 1 if a distant plant 

belongs to a treated firm and for the [4, 10] years after the EPA takes an enforcement action against 

the violating peer plant and zero otherwise. In Columns 1 and 3, the dependent is Process, which 

is defined in Table 8. In Columns 2 and 4, the dependent variable is Practice, which is defined in 

Table 8. Standard errors are double clustered at the plant and year level. t-statistics are presented 

in parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, 

respectively. The variables are defined in Appendix Table B1. 

 

 Short Run   Long Run 

Variable 
Process  

(1) 
Practice 

(2) 
 Process  

(3) 
Practice 

(4) 

Post TreatDistant × CloseSRMF 0.006 -0.001    
 (0.618) (-0.041)    
Post TreatDistant -0.002 -0.010    
 (-0.238) (-0.992)    
Post TreatDistant[4, 10] × CloseSRMF    0.030*** -0.021 
    (4.739) (-0.997) 
Post TreatDistant[4, 10]    0.001 -0.004 
    (0.142) (-0.316) 
      
Plant × Cohort FEs Yes Yes  Yes Yes 
Year × Cohort FEs Yes Yes  Yes Yes 
County × Cohort FEs Yes Yes  Yes Yes 
Number of Obs 32,557 32,557  34,158 34,158 
Adj. R-squared 0.678 0.463  0.640 0.422 
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Table 10: Socially Responsible Mutual Funds’ Portfolio Holdings of Non-Responders  

This table reports the results from the regressions estimated at the firm-fund-year level that 

examines changes in an SRMF’s holdings of firms after observing a nearby EPA enforcement 

action. In Columns 1 and 2, the dependent variable, ∆Weightt+1, is calculated as the difference 

between a stock’s weight in a fund’s portfolio in the first quarter of year t+1 and its weight in the 

first quarter of year t-1. In Columns 3 and 4, the dependent variable, ∆Weightt+2, is calculated as 

the difference between a stock’s weight in the first quarter of year t+2 and its weight in the first 

quarter of year t-1. Treatfirm is a dummy variable that is equal to 1 if a firm has at least one plant 

located in close proximity to EPA’s enforcement action against a violating peer plant in year t and 

0 otherwise. CloseSRMF is a dummy variable that is equal to 1 if an SRMF, who holds the parent 

firm’s stock, is located within 100 miles from the treated plant and within 100 miles from the 

violating peer plant. NonRespond is a dummy variable that is equal to 1 if a firm increases toxic 

releases at its treated plants in the year after EPA enforcement action and zero otherwise. Ln(Fund 

Size) is the natural logarithm of total net assets (TNA) of all share classes of a fund. Exp Ratio is a 

fund’s expense ratio. Turn Ratio is a fund’s turnover ratio. Fund Return is the fund’s average 

monthly returns over a quarter. Fund Flow over the period t-1 to t is computed as [𝑇𝑁𝐴𝑡 −

(1 + 𝐹𝑢𝑛𝑑 𝑅𝑒𝑡𝑢𝑟𝑛𝑡)𝑇𝑁𝐴𝑡−1]/𝑇𝑁𝐴𝑡−1. Standard errors are double clustered at the fund and year 

level. t-statistics are presented in parentheses. *, **, and *** indicate statistical significance at the 

10%, 5%, and 1% level, respectively. The variables are defined in Appendix Table B1. 

 ∆Weightt+1 ∆Weightt+2 

Variable  (1)  (2)  (3)  (4) 

Treatfirm × CloseSRMF × NonRespond -0.225** -0.230** -0.193** -0.198** 
 (-2.525) (-2.453) (-2.080) (-1.996) 
Treatfirm × NonRespond -0.032*** -0.033*** -0.043*** -0.044*** 
 (-3.521) (-4.130) (-4.705) (-5.455) 
Treatfirm × CloseSRMF 0.202*** 0.181** 0.147 0.177 
 (2.824) (2.419) (0.638) (0.783) 
Treatfirm 0.011 0.038*** 0.035*** 0.046*** 
 (1.229) (5.336) (4.155) (6.572) 
Ln(Fund Size) 0.027*** 0.026*** 0.007 0.005 
 (6.440) (6.017) (1.621) (1.272) 
Exp Ratio 0.516 0.671 -5.114** -5.092** 
 (0.253) (0.326) (-2.471) (-2.565) 
Turn Ratio -0.024*** -0.026*** 0.005 0.003 
 (-3.762) (-4.041) (0.882) (0.556) 
Fund Return -0.092 -0.138 0.198* 0.153 
 (-0.866) (-1.322) (1.925) (1.492) 
Fund Flow 0.254*** 0.247*** 0.191*** 0.187*** 
 (4.655) (4.553) (3.579) (3.581) 
Fund fixed effects Yes Yes Yes Yes 
Firm fixed effects Yes No Yes No 
Industry fixed effects No Yes No Yes 
Year fixed effects Yes Yes Yes Yes 
Number of Obs 215,932 215,932 215,932 215,932 
Adj. R-squared 0.190 0.179 0.302 0.292 
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Table 11: Long-Run Responses and the Role of Socially Responsible Mutual Funds 

This table reports the results from the stacked difference-in-differences regressions that examine 

the long-run toxic releases at treated plants over the period from t+4 to t+10 after an EPA 

enforcement action against local peer plants in year t. For each cohort, we use plant-year 

observations for the three years before and the [4, 10] years after an EPA enforcement event action 

against the peer plant. We remove from the sample the first three years after an EPA enforcement 

action as well as events where there are confounding enforcement actions during the [4, 10] 

period. We further require that control plants have not been treated in a past event and will not 

become treated in the next 10 years. Panel A examine the long-run toxic releases at treated plants 

and the role of the nearby socially responsible mutual fund. Post ClosePeerEA[4, 10] is a dummy 

variable that is equal to 1 for treated plants during the [4, 10] years after the EPA takes an 

enforcement action against a violating peer plant located in close proximity and zero otherwise. 

CloseSRMF is a dummy variable that is equal to 1 if an SRMF, which holds the parent firm’s stock, 

is located within 100 miles from the treated plant and within 100 miles from the violating peer 

plant. Panel B examines the role of local non-responders. Local_NonRespond is a dummy variable 

that is equal to 1 if a treated plant is located close to (within 100 miles) a non-responding plant, 

which does not reduce toxic releases after observing a nearby enforcement action against its peer 

plant, and zero otherwise. CloseSRMFNR is a dummy variable that is equal to 1 if a local non-

responding plant is located within 100 miles from an SRMF that holds the shares of non-

responding plant’s parent firm, and 0 otherwise. Standard errors are double clustered at the plant 

and year level. t-statistics are presented in parentheses. *, **, and *** indicate statistical 

significance at the 10%, 5%, and 1% level, respectively. The variables are defined in Appendix 

Table B1. 

Panel A: Long-Run Responses and the Role of Socially Responsible Mutual Funds 

 Dependent Variable: Toxic 

Variable  (1)  (2) 

Post ClosePeerEA[4, 10] × CloseSRMF  -0.048*** 
  (-2.716) 
Post ClosePeerEA[4, 10] 0.032** 0.028** 
 (2.512) (2.201) 
Plant × Cohort FEs Yes Yes 
Year × Cohort FEs Yes Yes 
County × Cohort FEs Yes Yes 
Number of Obs 67,067 67,067 
Adj. R-squared 0.860 0.860 
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Table 11: continued 

Panel B: Long-Run Responses and the Role of Local Non-Responders 

 Dependent Variable: Toxic 

Variable  (1)  (2) 

Post ClosePeerEA[4, 10] × Local_NonRespond × CloseSRMFNR  -0.025** 
  (-2.276) 
Post ClosePeerEA[4, 10] × Local_NonRespond -0.017** -0.028*** 
 (-2.194) (-2.760) 
Post ClosePeerEA[4, 10] 0.026** 0.027** 
 (2.443) (2.310) 
   
Plant × Cohort FEs Yes Yes 
Year × Cohort FEs Yes Yes 
County × Cohort FEs Yes Yes 
Number of Obs 67,067 67,067 
Adj. R-squared 0.862 0.859 
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Table 12: Firm-Level Evidence 

This table reports the results from the regressions that examine the firm-level total toxic releases. 

We construct a stacked difference-in-differences (DiD) sample at the firm level. In Columns 1 to 

3, for each event year, we construct a cohort of treated firms and control firms using firm-year 

observations for the three years before and the three years after an EPA enforcement event action 

against a nearby peer plant. Treated firms have at least one plant located within 100 miles from a 

violating TNIC3-peer plant. Control firms are those that operate in the same TNIC2 product 

market as the treated firm and do not have plants located within 100 miles from the violating peer 

plant. We also require that control firms do not have plants treated in a past event and will not 

have plants treated in the next 6 years. The dependent variable, Firm Toxic, is the total 

standardized on-site harmful chemical releases of all plants owned by a firm. In Columns 1 and 

2, Post Treatfirm is a dummy variable that is equal to 1 for the treated firm in the three years after 

the EPA takes an enforcement action against a violating peer plant, and 0 otherwise. CloseSRMF 

is a dummy variable that is equal to 1 if an SRMF, which holds the treated firm’s stock, is located 

within 100 miles from one of the treated firm’s treated plants and within 100 miles from the 

violating peer plants. Columns 4 and 5 examine the long-run toxic releases at treated firm over 

the period from t+4 to t+10 after an EPA enforcement action against local peer plants in year t. 

We remove from the sample the first three years of the treated firms after an EPA enforcement 

action as well as events where there are confounding enforcement actions during the [4, 10] 

period. Post Treatfirm[4, 10] is a dummy variable that is equal to 1 for treated firms during the [4, 

10] years after the EPA takes an enforcement action against a violating peer plant located in close 

proximity of the treated firm’s plants and zero otherwise. Standard errors are double clustered at 

the firm and year level. t-statistics are presented in parentheses. *, **, and *** indicate statistical 

significance at the 10%, 5%, and 1% level, respectively. The variables are defined in Appendix 

Table B1. 

 Dependent Variable: Firm Toxic 

 Short Run  Long Run 

Variable 

 (1) 
1990- 
2015 

 (2) 
2001-
2015 

(3) 
2001-
2015 

  (4) 
2001-
2015 

(5) 
2001-
2015 

Post Treatfirm × CloseSRMF   -0.031**    
   (-2.069)    
Post Treatfirm  -0.026*** -0.026*** -0.025***    
 (-4.116) (-4.906) (-4.691)    
Post Treatfirm[4, 10] × CloseSRMF      -0.086*** 
      (-3.320) 
Post Treatfirm[4, 10]     0.047** 0.048* 
     (2.143) (1.908) 
       
Firm × Cohort FEs Yes Yes Yes  Yes Yes 
Year × Cohort FEs Yes Yes Yes  Yes Yes 
Number of Obs 30,564 12,136 12,136  12,623 12,623 
Adj. R-squared 0.844 0.857 0.856  0.746 0.747 
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Appendix A 
 

We set up a model to analyze the effects of an EPA enforcement action on nearby peer plants. 

The analysis will show how (i) the enforcement action affects emission transfers to other “distant” 

plants of peers, (ii) transfers are affected by production flexibility, (iii) investment in abatement 

and emissions by peers are influenced by the presence and actions of local SRMFs, (iv) how 

distant SRMFs learn from the actions of local SRMFs. 

 

Model Outline 

Assume a firm has two plants, denoted 1 and 2. Plant 1 will be "treated" by an enforcement 

action by the EPA on a nearby plant of a firm in the same industry.  

Prior to the enforcement action, the firm produces output levels 𝑞1 and 𝑞2 in the two plants. 

Assume that production of these output levels creates toxic emissions 𝑒1 = 𝑞1 and 𝑒2 = 𝑞2, 

respectively. 

 

Allocation of Production and Emission 

The optimal production level in the absence of environmental considerations in plant 𝑖 is 𝑞𝑖
∗, 𝑖 =

1, 2. Assume that resource-constraints limit total production to �̅� = 𝑞1
∗ + 𝑞2

∗. The firm's decision 

problem is to allocate production across the two plants to minimize expected penalty from 

environmental violation. 

Let 𝑒1
0 and 𝑒2

0 denote the emission levels in the two plants if the firm followed the 

environmental guidelines. These are assumed to be firm-specific and verifiable only if the 

regulator inspects the plants. Thus, even though the emission levels are observable, violation can 

be determined and penalties imposed only if inspection occurs.  

 𝜋𝑅
1  and 𝜋𝑅

2 denote the probabilities of being investigated by the EPA in the two regions (plants). 

Assume 𝑞𝑖
∗ > 𝑒𝑖

0, so that if each firm is producing the optimal amount in each plant, it is in 

violation in each plant. Note that even though it may be common knowledge that a plant is in 

violation, because the regulator cannot inspect all plants, there is only a probability  𝜋𝑅
𝑖  that a 

penalty will be imposed. 

𝑀𝑎𝑥(𝑝(𝑒𝑖 − 𝑒𝑖
0), 0) denotes the expected penalty conditional on being inspected, where 𝑝 is a 

per unit excess emission penalty in dollars. Also assume that it is costly to deviate from producing 

the optimal quantities 𝑞𝑖
∗ in the two plants, with the cost being given by 𝑐(𝑞𝑖 − 𝑞𝑖

∗)2. The 

parameter 𝑐 captures how costly it is to reallocate production across the plants, i.e., lower c 

corresponds to more production flexibility. 

The firm's problem in the absence of an SRMF is to minimize, with respect to 𝑞1 and 𝑞2: 

𝑚𝑎𝑥(𝑝(𝑞1 − 𝑒1
0), 0) 𝜋𝑅

1 + 𝑚𝑎𝑥(𝑝(𝑞2 − 𝑒2
0), 0) 𝜋𝑅

2 + 𝑐(𝑞1 − 𝑞1
∗)2 + 𝑐(𝑞2 − 𝑞2

∗)2 

Subject to 

𝑒1 = 𝑞1;  𝑒2 = 𝑞2;  𝑞1 + 𝑞2 = 𝑞1
∗ + 𝑞2

∗ = �̅�. 

    which can be written as 

𝑚𝑎𝑥(𝑝(𝑞1 − 𝑒1
0), 0) 𝜋𝑅

1 + 𝑚𝑎𝑥(𝑝(�̅� − 𝑞1 − 𝑒2
0), 0) 𝜋𝑅

2 + 𝑐(𝑞1 − 𝑞1
∗)2 + 𝑐(�̅� − 𝑞1 − 𝑞2

∗)2. 

    It will be clear that at the optimal solution, 𝑞𝑖 > 𝑒𝑖
0 as long as 𝜋𝑅

1  and 𝜋𝑅
2 are sufficiently close.  

    The first-order condition is 

𝑝𝜋𝑅
1 − 𝑝𝜋𝑅

2 + 2𝑐(𝑞1 − 𝑞1
∗ − (�̅� − 𝑞1 − 𝑞2

∗)) = 0 
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    or 

𝑝(𝜋𝑅
1 − 𝜋𝑅

2) + 4𝑐(𝑞1 − 𝑞1
∗) = 0. 

 

    Hence, 

𝑞1 = 𝑞1
∗ −

𝑝(𝜋𝑅
1 − 𝜋𝑅

2)

4𝑐
. (1.) 

    Thus, 

 

    The firm produces higher (lower) than the efficient output in the region where the regulatory 

threat is lower (higher). 

     

Investment in Abatement 

Next, assume that at cost 𝑓, a plant can invest in emission abatement. If it does so, emission is 

reduced by 𝛥𝑒𝑖 > 0. 

𝑓 can take two values, 𝑓1 or 𝑓2 , with 𝑓2 > 𝑓1 . Let the probability that 𝑓 = 𝑓1  be 
1

2
. 

Assume that 

(i) the value of 𝑓 is private information for the firm.  

(ii) it is an independent draw for each plant for the same firm (this assumption will be 

relaxed below). 

(iii) for initial values (i.e., pre-EPA enforcement values) of 𝜋𝑅
𝑖 , the firm invests in abatement 

if and only if 𝑓 = 𝑓1. This latter assumption requires a condition that will be provided 

below. 

 

Enforcement 

If EPA enforcement occurs, the probability that plant 1 (which is defined as the local plant) 

faces inspection by the EPA increases from 𝜋𝑅
1  to 𝜋𝐸

1 > max(𝜋𝑅
1 , 𝜋𝑅

2). If, after inspection, the plant 

is found not to have invested in abatement, a lumpsum penalty of t is imposed. Even though this 

penalty is similar to an enforcement action, to avoid confusion, we call this a "penalty", while 

referring to the original enforcement action on the target firm as "enforcement". 

We will assume that (i) prior to the EPA enforcement, plant 1 will invest in abatement if and 

only if 𝑓 = 𝑓1 (ii) the increase in regulatory threat is insufficient to make it invest in abatement if 

𝑓 = 𝑓2. 

It is easy to check that this requires 

𝑓1 < 𝜋𝑅
1(𝑝𝛥𝑒 + 𝑡) < 𝜋𝐸

1(𝑝𝛥𝑒 + 𝑡) < 𝑓2 

which we assume. Thus, while transfers to plant 2 will increase following enforcement (as can 

be seen from equation (1), if 𝑓 = 𝑓₂, there won't be investment in abatement without SRMF action. 

An analogous condition ensures that plant 2, which is not treated, invests in abatement if and 

only if 𝑓 = 𝑓₁. 

     

The Role of SRMFs 

An SRMF receives a noisy binary signal 𝑠𝑖 from each plant, which takes a value of 1 with 

probability 𝜙 if 𝑓 = 𝑓₁ (i.e., the plant 𝑖 has invested in abatement), and a value of 0 with 
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probability 𝜙 if 𝑓 = 𝑓₂, where 1 > 𝜙 > 1/2. In other words, the signal is informative about 

abatement, with a higher value of 𝜙 corresponding to a more informative signal. We will associate 

a higher (lower) value of 𝜙 with a plant that is closer (farther) from the SRMF. 

The SRMF, upon receiving a signal, at cost 𝜅 can monitor whether the plant has invested in 

abatement. Monitoring reveals the truth with certainty, and we assume that the SRMF has enough 

influence to impose investment in abatement if the plant has not done so. 

The SRMF is motivated to incur the monitoring cost 𝜅 because EPA actions against a portfolio 

firm imposes costs on the SRMF. This cost is higher if the plant inspected by the EPA has not 

invested in abatement (in which case, as noted above, we assume that the penalty to the plant is 

also higher). Let 𝑃 denote this additional cost. 

Denoting the inspection probability by the EPA as 𝜋𝑅, the SRMF's expected gain, net of the 

monitoring cost, if it observes signal 𝑠𝑖 = 1 and monitors, is: 

Γ(𝑠𝑖 = 1) = 𝜋𝑅𝑃 ∗ 𝑃𝑟𝑜𝑏. [𝑓 = 𝑓2|𝑠𝑖 = 1] − 𝜅 

= 𝜋𝑅𝑃
(1 − 𝜙)(1/2)

𝜙(1/2) + (1 − 𝜙)(1/2)
− 𝜅 

= (1 − 𝜙)𝜋𝑅𝑃 − 𝜅 

while that on observing signal 𝑠𝑖 = 0 is: 

Γ(𝑠𝑖 = 0) = 𝜋𝑅𝑃
𝜙(1/2)

𝜙(1/2) + (1 − 𝜙)(1/2)
− 𝜅 

= 𝜙𝜋𝑅𝑃 − 𝜅 

 

Clearly, 𝛤(𝑠𝑖 = 0) − 𝛤(𝑠𝑖 = 1) > (2𝜙 − 1)𝜋𝑅𝑃 > 0 𝑠𝑖𝑛𝑐𝑒 𝜙 > 1/2. 

    Let us denote the informativeness of a nearby SRMF's signal by 𝜙𝑁, while that of a distant 

SRMF by 𝜙𝐷. By assumption, 𝜙𝑁> 𝜙𝐷. 

    We assume that prior to the EPA enforcement action, for a nearly SRMF, 𝜙𝑁𝜋𝑅
𝑖 𝑃 − 𝜅 < 0. 

Therefore, monitoring does not occur, irrespective of the signal the SRMF receives. It follows that 

the distant SRMF also does not monitor plant 𝑖. 

    Now suppose a nearby EPA enforcement occurs. As noted, we regard this as an increase in 𝜋𝑅
1  

for plant 1, with the new value 𝜋𝐸
𝑖  > 𝜋𝑅

𝑖 . 

(i) It is immediate from equation (1) that this change will immediately cause the local plant 

to "transfer" emissions (i.e., production) to the distant plant. Specifically, 
𝑑𝑒1

𝑑𝜋𝑅
1 =

𝑑𝑞1

𝑑𝜋𝑅
1 =

−
𝑝

4𝑐
. (2) Moreover, the more "flexible" the firm is (lower 𝑐), the more the transfer. 

(ii) We will assume that 𝜙𝑁 is sufficiently high that the increase in regulatory risk will 

induce the local SRMF to incur the monitoring cost 𝜅 if and only if 𝑠𝑖 = 0 is observed. 

For this, we need 𝜙𝑁𝜋𝑅
1𝑃 − 𝜅 > 0 > (1 − 𝜙𝑁)𝜋𝐸

1𝑃 − 𝜅. The average emission level for 

plant 1 is reduced further. The expected emission reduction by plant 1 is (1/2)𝜙𝛥𝑒. 

(iii) For 𝜙𝐷 sufficiently low, there will be no investment in abatement for plants that do not 

have a local SRMF but have only a distant SRMF. This requires 𝜙𝐷𝜋𝐸
1𝑃 − 𝜅 < 0 (in fact, 

since 𝜙𝐷 and 𝜙𝑁 both exceed 1/2, 𝜙𝐷𝜋𝐸
1𝑃 − 𝜅 < 0 implies 0 > (1 − 𝜙𝑁)𝜋𝐸

1𝑃 − 𝜅 which 

has been previously assumed to ensure that monitoring only occurs if 𝑠𝑖 = 0). 

(iv) Finally, we can get additional implications regarding the behavior of distant SRMFs if 

we relax the assumption that the draws of 𝑓 for the two plants owned by the same firm 
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are iid. For example, assume that the 𝑓 for the two plants are correlated, and 𝜙𝐷 = 1/2. 

It can be shown that in this case, the signal from plant 2 has no information value for 

the abatement decision in either plant, so the previous analysis for plant 1 based on i.i.d 

draws of 𝑓 which only considered signals from plant 1 still goes through. However, 

suppose 𝑃𝑟𝑜𝑏. [𝑓²̃ = 𝑓₂|𝑓¹̃ = 𝑓₂] = 𝜌 𝑎𝑛𝑑 [𝑓²̃ = 𝑓₁|𝑓¹̃ = 𝑓₁] = 𝜌, where 𝑓 �̃� denotes the 

cost realization draw in plant 𝑖, and 1 ≥ 𝜌 ≥ 1/2. Then we have 𝑃𝑟𝑜𝑏. [𝑓²̃ = 𝑓₂|𝑠₁ = 0] =

𝜌𝜙 + (1 − 𝜌)(1 − 𝜙) and 𝑃𝑟𝑜𝑏. [𝑓²̃ = 𝑓₂|𝑠₁ = 1] = (1 − 𝜌)𝜙 + 𝜌(1 − 𝜙). Note that even 

for 𝜌 close to the value of 1, the likelihood that the distant plant has not invested in 

abatement conditional on the signal from the local plant being 𝑠₁ = 0 is less than 𝜙. 

Thus, no monitoring of the distant plant occurs based on the signal generated by the 

local plant. However, once monitoring of the local plant occurs, conditional on the local 

plant not having invested in abatement, the probability that the distant plant has also 

not done so is 𝜌. If 𝜌 is high, this can lead to subsequent monitoring, and delayed 

investment in abatement by the distant plant. 
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Appendix B 

Table B1: Variable Definitions 

Variable Definition Source 

Toxic A plant’s total on-site harmful chemical releases, which 
are standardized using the industry mean and standard 
deviation in each year. 

NETS, EPA 
Toxics Release 
Inventory (TRI) 

Program  
Post ClosePeerEA A plant is defined as a treated plant if the EPA takes an 

enforcement action against any of its nearby (i.e., within 
100 miles) peer plants during the year. Post ClosePeerEA is 
a dummy variable that is equal to 1 for treated plant-year 
observations in the three years after the EPA takes an 
enforcement action against a peer plant located in close 
proximity, and 0 for other plants located outside 100 miles 
radius, for plants of firms that are not direct rivals of the 
violating peer (outside TNIC3 but in the same TNIC2 
product market), and for the pre-enforcement years of the 
treated plant. 

NETS, TRI, 
Hoberg-

Phillips Data 
Library 

Size Natural logarithm of market capitalization. Market 
capitalization is calculated as stock price (PRCC_F) 
multiplied by the number of shares outstanding (CSHO). 

Compustat 

Book-to-Market Book value of equity (CEQ) divided by market 
capitalization. 

Compustat 

Return on Asset Operating income before depreciation (OIBDP) divided 
by book value of total assets (AT). 

Compustat 

Ln(Sale) Natural logarithm of aggregate firm-level sales (SALE). Compustat 

Leverage The sum of long-term debt (DLTT) and debt in current 
liabilities (DLC) divided by market value of assets, where 
market value of assets is computed as total assets (AT) 
minus book value of equity (CEQ) and plus market 
capitalization. 

Compustat 

Corr_Toxic The correlation of harmful chemical releases in a given 
year between plant p1 and plant p2 is measured as 

𝐶𝑜𝑟𝑟_𝑇𝑜𝑥𝑖𝑐𝑝1,𝑝2 =
𝑄𝑝1𝑄𝑝2

′

(𝑄𝑝1𝑄𝑝1
′ )

1/2
×(𝑄𝑝2𝑄𝑝2

′ )
1/2 , where 𝑄𝑘 =

(𝑃𝑘1, … , 𝑃𝑘14); 𝑘 ∊ (𝑝1, 𝑝2) is a vector of health hazards 
associated with harmful chemicals used by plant p1 (or 
plant p2), with each element of the vector being the total 
quantity (in pounds) of harmful chemicals. We match the 
harmful chemicals into 14 types of health hazards as 
defined by EPA's Integrated Risk Information System 
(IRIS) ranging from hazards to human nervous system or 
the respiratory system. The toxic release quantity is 
standardized by industry in each year. 

NETS, TRI 
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Appendix B 

Table B2: Pairwise Correlations of Chemical Releases among Plants of Peer Firms 

This table reports the results from the following plant-pair level regressions that examine the 

similarity of harmful chemical releases between two plants: 

𝐶𝑜𝑟𝑟 𝑇𝑜𝑥𝑖𝑐𝑝1,𝑝2,𝑡 = 𝛽0 +  𝛽2 𝑇𝑁𝐼𝐶31,2,𝑡 +  𝛿 + 𝜏 + 𝑒𝑖,𝑡   (1) 

where 𝐶𝑜𝑟𝑟 𝑇𝑜𝑥𝑖𝑐𝑝1,𝑝2,𝑡 is the similarity of harmful chemical releases measured in year t between 

plant p1 and plant p2 that belong to firm 1 and firm 2, respectively. The calculation of 

𝐶𝑜𝑟𝑟 𝑇𝑜𝑥𝑖𝑐𝑝1,𝑝2,𝑡 is detailed in Appendix B1. Briefly, 𝐶𝑜𝑟𝑟 𝑇𝑜𝑥𝑖𝑐𝑝1,𝑝2,𝑡 is the correlation between 

two vectors of harmful chemicals of the two plants, where each element of the vector is the 

amount (in pounds) of a chemical. 𝑇𝑁𝐼𝐶31,2,𝑡 is a dummy variable that is equal to 1 if firm 1 and 

firm 2 are in the same TNIC3 product market and zero otherwise. The control group contains 

plant pairs whose parent firms are in the same TNIC2, but not the same TNIC3, product market 

(i.e. firm pairs that are not in the same TNIC2 product market are removed). 𝛿 represents firm 1’s 

industry × firm 2’s industry fixed effects and 𝜏 indicates year fixed effects. As toxic releases could 

be cross-sectionally and serially correlated, we compute standard errors double-clustered at the 

pair and year levels. Firms in the same product market could also have similar production 

technology, which uses similar inputs and releases similar harmful chemicals. To examine the 

similarity of peer firms’ technologies, we follow Jaffe (1986) and calculate a measure of 

technological proximity, 𝑇𝑒𝑐ℎ 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦1,2, between two peer firms using the classes of their 

patent applications. In Column 2, we replace the dependent variable with Tech_Proximity. 

Standard errors are double clustered at the pair and year level. t-statistics are presented in 

parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, 

respectively. The variables are defined in Appendix Table B1. 

 

Interpretation: In Column 1, the coefficient on 𝑇𝑁𝐼𝐶31,2,𝑡 is positive and statistically significant 
at the 1% level, suggesting that plants of TNIC3-peer firms have a higher Corr Toxic than other 
non-TNIC3 plants. The coefficient estimate on TNIC3 in Column 1 indicates that the difference in 
the correlations of harmful chemical releases between TNIC3-pairs and TNIC2-pairs is 0.016, 
representing 16% of the sample average of Corr_Toxic. Consistently, the positive and significant 
coefficient in Column 2 indicates that peer firms’ technologies are more similar to each other than 
non-peer firms. Together, these results assure that Hoberg and Phillips TNIC3 classification 
reasonably reflects the similarity of toxic releases among plants of peer firms. 
 

Variable 
Corr_Toxic  

(1) 
Tech_Proximity 

(2) 
TNIC3 0.016*** 0.137*** 
 (22.728) (29.880) 
   
Firm 1 Industry × Firm 2 Industry 
fixed effects Yes Yes 
Year fixed effects Yes Yes 
   
Number of Obs 1,931,457 58,862 
Adj. R-squared 0.033 0.220 
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Appendix B 

Table B3: Enforcement Actions and Air Quality Index around Peer Plants 

This table reports the results from the stacked difference-in-differences (DiD) regressions 
examining the effect of EPA enforcement actions on the air quality index measured around a 
plant. The EPA calculates daily air quality indexes based on five major air pollutants measured 
at thousands of monitoring stations: ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, 
and fine particulate matter smaller than 2.5 micrometers (PM2.5). The daily aggregate air quality 
index is the average of these five daily individual indexes. To derive the air quality index at a 
plant’s location, we average the aggregate air quality index across all monitoring stations located 
within one (1) mile radius from the plant. The annual AQI measure for a given plant is then the 
average of its daily AQI over a year. Standard errors are double clustered at the plant and year 
level. t-statistics are presented in parentheses. *, **, and *** indicate statistical significance at the 
10%, 5%, and 1% level, respectively. The variables are defined in Appendix Table B1. 
 
Interpretation: In Columns 1 and 2, the coefficient on Post ClosePeerEA is negative and statistically 
significant at the 1% level, suggesting that air quality index around a plant improves in the three 
years after the EPA takes an enforcement action against a nearby peer plant. Given that AQI is 
objectively measured, these results suggest that our findings are unlikely to be driven by any self-
reported bias arising from the TRI database.  
 

 
Dependent Variable:  

AQI 

Variable  (1) (2) 
Post ClosePeerEA -0.028** -0.029** 
 (-2.249) (-2.314) 
   
Plant × Cohort FEs Yes Yes 
Year × Cohort FEs Yes Yes 
County × Cohort FEs No Yes 
Number of Obs 1,338,490 1,338,490 
Adj. R-squared 0.880 0.882 
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Appendix B 

Table B4: Decaying Effects of Plant Responses and Proximity to Enforcement Actions 

This table reports the results from the regressions examining whether there are decaying effects 

of the peer plant’s response as the distance between a plant and its violating peer plant becomes 

larger. The regression specification is similar to that reported in Table 2. For a given plant, Post 

PeerEA(100, 200) (or Post PeerEA (>200)) is a dummy variable equal to 1 for the three years after the EPA 

takes an enforcement action against its violating peer plant that is located between 100 miles and 

200 miles (or greater than 200 miles) from the plant. Standard errors are double clustered at the 

plant and year level. F-statistics for the differences in the coefficients between Post ClosePeerEA 

and Post PeerEA(>200) are 15.10 (p-value<0.001) for Column 1 and 14.68 (p-value<0.001) for Column 

2. F-statistics for the differences in the coefficients between Post ClosePeerEA and Post PeerEA(100, 

200) are 0.45 (p-value = 0.509) for Column 1 and 0.31 (p-value = 0.581) for Column 2. t-statistics are 

presented in parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% 

level, respectively. The variables are defined in Appendix Table B1. 

Interpretation: We observe a decaying effect of peer enforcement action on a plant’s toxic releases 

as its proximity to the violating peer plant is larger. Specifically, the coefficient on our main 

variable, Post ClosePeerEA, remains negative and statistically significant at the 1% level, whereas 

the coefficient on Post PeerEA(100, 200) is smaller and it becomes insignificant for Post PeerEA(>200). 

These results are consistent with the notion that enforcement threat is local and its effect on plant 

emissions decreases with proximity. 

 Dependent Variable: Toxic 

Variable  (1) (2) 
Post ClosePeerEA -0.027*** -0.026*** 
 (-4.258) (-4.017) 
Post PeerEA(100, 200) -0.019* -0.019* 

 (-1.877) (-1.748) 
Post PeerEA(>200) 0.004 0.004 

 (0.966) (0.866) 
   
Plant × Cohort FEs Yes Yes 
Year × Cohort FEs Yes Yes 
County × Cohort FEs No Yes 
Number of Obs 158,211 158,211 
Adj. R-squared 0.820 0.830 
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Appendix B 

Table B5: Plants’ Responses, the Magnitude of Enforcement Penalties, and Violation Types 

Panel A reports the results from the regressions examining whether plant-level responses depend 

on the magnitude of the EPA enforcement penalties. For each enforcement action against a 

violating peer plant, total penalty is computed as the sum of state and local penalty, the total 

compliance costs (e.g., the dollar values of injunctive relief and the physical or nonphysical costs 

of returning the facility to compliance), and the cost that a defendant agrees to undertake in 

settlement of an enforcement action clean up the environment (if any). HighCost is a dummy 

variable that is equal to 1 if the total penalty is above the sample median and zero otherwise. 

Panel B reports the results from the regressions examining whether plant-level responses depend 

on the violation types of EPA enforcement actions. We classify the types of violations into two 

categories, where Category 1 strictly includes three types of major violations (i.e. violation of a 

law/Act or environmental requirement, illegal disposal of chemicals/discharge without a permit, 

and illegal use of a chemical) and Category 2 contains all other violations such as failure to submit 

waste disposal reports. MajorViolation is a dummy variable that is equal to 1 if the EPA 

enforcement action involves a Category 1 violation and zero otherwise. Standard errors are 

double clustered at the plant and year level. t-statistics are presented in parentheses. *, **, and *** 

indicate statistical significance at the 10%, 5%, and 1% level, respectively. The variables are 

defined in Appendix Table B1. 

 

Interpretation: In Panel A, the coefficient on Post ClosePeerEA × HighCost is negative and 

statistically significant, suggesting that the effects of an enforcement action against a nearby peer 

plant on local plants’ toxic releases are stronger when the total penalty imposed on the peer is 

high. In Panel B, the coefficient on Post ClosePeerEA × MajorViolation is negative and statistically 

significant, indicating that the effects are more pronounced when a peer plant violated a major 

environmental law. These results are consistent with salience hypothesis, which posits a positive 

association between plant response and the severity of nearby enforcement actions. 

 

Panel A: The Magnitude of Enforcement Penalties and Plants’ Responses 

 Dependent Variable: Toxic 

Variable  (1) (2) 

Post ClosePeerEA × HighCost -0.017*** -0.018*** 
 (-2.934) (-3.424) 
Post ClosePeerEA -0.023*** -0.021*** 

 (-3.783) (-3.634) 
   
Plant × Cohort FEs Yes Yes 
Year × Cohort FEs Yes Yes 
County × Cohort FEs No Yes 
Number of Obs 158,211 158,211 
Adj. R-squared 0.829 0.840 
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Table B5: continued 

Panel B: Violation Types and Plant Response  

 Dependent Variable: Toxic 

Variable  (1) (2) 

Post ClosePeerEA × MajorViolation -0.019** -0.020** 
 (-2.009) (-2.044) 
Post ClosePeerEA -0.021*** -0.020*** 

 (-3.697) (-3.609) 
   
Plant × Cohort FEs Yes Yes 
Year × Cohort FEs Yes Yes 
County × Cohort FEs No Yes 
Number of Obs 158,211 158,211 
Adj. R-squared 0.838 0.848 
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Appendix B 

Table B6: Historical Exposure to EPA Enforcement Actions 

This table reports the results from the regression specification of Table 2 estimated using 

subsamples of plants’ historical exposure to EPA enforcement actions. Each year, treated plants 

are divided into two groups where Group 1 contains treated plants that did not witness any 

enforcement action taken against the local peer plants over the past 5 years and Group 2 contains 

treated plants that witnessed at least one enforcement action taken against the local peer plants 

over the past 5 years. Control plants are the same for two groups and are defined as in Table 2. 

Standard errors are double clustered at the plant and year level. t-statistics are presented in 

parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, 

respectively. The variables are defined in Appendix Table B1. 

 

Interpretation: The coefficient on Post ClosePeerEA in Column 1 is negative and three times larger 

than that in Column 2. Z-statistic for the difference between the two coefficients is −1.720 (not 

tabulated), which is statistically significant at the 1% level. This result is consistent with the notion 

that a treated plant’s response to a nearby peer enforcement action is stronger when its local peer 

plants did not experience any enforcement actions over the past 5 years (i.e. when the EPA was 

not active in the area over the past 5 years). 

 

 Dependent Variable: Toxic 

Variable 
 (1) 

Group 1 
(2) 

Group 2 
Post ClosePeerEA -0.034*** -0.012* 

 (-3.128) (-1.825) 
   
Plant × Cohort FEs Yes Yes 
Year × Cohort FEs Yes Yes 
County × Cohort FEs Yes Yes 
Number of Obs 147,625 151,196 
Adj. R-squared 0.836 0.857 
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Appendix B 

Table B7: Local SRMFs Portfolio Holdings and Firms’ Environmental Performance 

This table reports the results from the regressions estimated at the firm-fund-year level that 

examine mutual funds’ holdings of firms. The dependent variable, Weight, is a stock’s weight in 

a fund’s portfolio in the last quarter of a given year. SRMF is a dummy variable that is equal to 1 

if a mutual fund is classified as socially responsible and 0 otherwise. Close is a dummy variable 

that is equal to 1 if a mutual fund, who holds a firm’s stock, is located within 100 miles from one 

of the firm’s plant and 0 otherwise. Ln(ClosePlants) is the natural logarithm of one plus the number 

of plants that are located within 100 miles from a mutual fund, who holds the parent firm’s stock. 

All regressions control for fund, firm, and year fixed effects. Fund-level control variables are 

defined in Table 10. Standard errors are double clustered at the fund and year level. t-statistics 

are presented in parentheses. The variables are defined in Appendix Table B1. 

 

Interpretation: Both the coefficients on SRMF and Close × SRMF are positive (negative) among 

High- (Low-) EScore firms. While the coefficient on SRMF is not surprising, the coefficient on Close 

× SRMF suggest that, even after accounting for the sustainability preferences of SRMFs, local 

SRMFs hold more (less) shares of High- (Low-) EScore firms located in close proximity. These 

strong local preferences are consistent with the notion that SRMFs have superior knowledge 

about local firms and can possibly monitor these local firms more easily than distant SRMFs. 

 Dependent Variable: Weight 

Variable 
 (1) 

High EScore 
 (2) 

Low EScore 
 (3) 

High EScore 
 (4) 

Low EScore 

Close × SRMF 0.012*** -0.017***   
 (3.605) (-4.255)   
Close 0.001 0.015***   
 (0.325) (4.338)   
Ln(ClosePlants) × SRMF   0.008*** -0.007*** 
   (5.719) (-4.381) 
Ln(ClosePlants)   0.003* 0.003 
   (1.671) (1.545) 
SRMF 0.016*** -0.025*** 0.014*** -0.028*** 
 (5.387) (-6.825) (5.128) (-8.587) 
Ln(Fund Size) -0.020*** -0.025*** -0.020*** -0.026*** 
 (-12.874) (-11.594) (-12.843) (-11.609) 
Exp Ratio 1.453* 2.751*** 1.475* 2.744*** 
 (1.866) (2.801) (1.894) (2.795) 
Turn Ratio -0.032*** -0.011*** -0.033*** -0.011*** 
 (-13.141) (-4.147) (-13.211) (-4.138) 
Fund Return 0.265*** -0.086* 0.265*** -0.086* 
 (6.001) (-1.684) (5.986) (-1.675) 
Fund Flow -0.070*** -0.067*** -0.070*** -0.067*** 
 (-3.337) (-2.643) (-3.333) (-2.642) 
Fund, Firm, Year FEs Yes Yes Yes Yes 
Number of Obs 923,815 820,093 923,815 820,093 
Adj. R-squared 0.542 0.546 0.542 0.546 
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Appendix B 

Table B8: EPA Inspections and Local Socially Responsible Mutual Funds 

This table reports the results from the regression specifications of Table 2 and Table 3 estimated 

using the number of inspections conducted by the EPA as the dependent variable. Ln(Inspections) 

is the natural logarithm of one plus the number of inspections of a plant in a given year. Standard 

errors are double clustered at the plant and year level. t-statistics are presented in parentheses. *, 

**, and *** indicate statistical significance at the 10%, 5%, and 1% level, respectively. The variables 

are defined in Appendix Table B1. 

 

Interpretation: the coefficient on Post ClosePeerEA is positive and statistically significant. This 

result indicates that, following a nearby enforcement action against a peer plant, treated plants 

indeed experience an increase in the frequency of inspections by either the EPA or local 

authorities. However, the coefficient on Post ClosePeerEA × CloseSRMF is small and statistically 

insignificant, suggesting that there is no difference in inspection frequency between treated plants 

close to an SRMF and other treated plants. As such, the role of local SRMFs in monitoring local 

treated plants is unlikely to be driven by more frequent inspections of these plants. 

 

 Dependent Variable: Ln(Inspections) 

Variable (1) (2) (3) (4) 

Post ClosePeerEA× CloseSRMF   0.004 0.009 
   (0.258) (0.570) 
Post ClosePeerEA 0.013** 0.015*** 0.013** 0.014*** 
 (2.460) (2.697) (2.322) (2.621) 
     
Plant × Cohort FEs Yes Yes Yes Yes 
Year × Cohort FEs Yes Yes Yes Yes 
County × Cohort FEs No Yes No Yes 
Number of Obs 68,509 68,509 68,509 68,509 
Adj. R-squared 0.720 0.723 0.719 0.723 
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Appendix B 

Table B9: Off-site Toxic Releases 

This table reports the results from the regressions that examine off-site toxic releases at plants 
located in close proximity to an EPA enforcement action. Specifically, we re-estimate the plant-
level regression in Table 2 by replacing the dependent variable with Offsite_Toxic. Offsite_Toxic is 
the total off-site harmful chemical releases of the plant standardized using the industry mean and 
standard deviation in each year. Post ClosePeerEA is a dummy variable that is equal to 1 for the 
three years after the EPA takes an enforcement action against one of the peer plants located in 
close proximity, and 0 otherwise. Standard errors are double clustered at the plant and year level. 
t-statistics are presented in parentheses. *, **, and *** indicate statistical significance at the 10%, 
5%, and 1% level, respectively. The variables are defined in Appendix Table B1. 
 
Interpretation: The coefficient on Post ClosePeerEA is statistically insignificant, suggesting that 
treated plants do not change their offsite toxic releases after observing an enforcement action 
against a nearby peer plant. This result is expected if treated plants are aware that a potential EPA 
scrutiny is likely to be comprehensive and plants cannot simply avoid it by changing the way 
they disclose toxic releases. 
 

 Dependent Variable: Offsite_Toxic 

Variable  (1) (2) 

Post ClosePeerEA -0.011 -0.014 
 (-1.455) (-1.156) 
   
Plant × Cohort FEs Yes Yes 
Year × Cohort FEs Yes Yes 
County × Cohort FEs No Yes 
Number of Obs 158,211 158,211 
Adj. R-squared 0.689 0.672 
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Appendix B 

Table B10: Firm-level Toxic Releases and the Role of Operational Inflexibility 

This table repeats the regression of Table 12 Column 1 using subsamples that are split based on 

different operational flexibility measures. Firm Toxic, is the total standardized on-site harmful 

chemical releases of all plant owned by a firm. We identify a treated firm that owns at least one 

plant located within 100 miles of the violating peer plant. Post Treatfirm is a dummy variable that 

is equal to 1 for the three years after the EPA takes an enforcement action against the violating 

peer plant located within 100 miles of the treated firm’s plants, and 0 otherwise. In Columns 1 

and 2, the sample is split based on the sample median of firms’ inventory levels. In Columns 3 

and 4, the sample is split based on the sample median of operational inflexibility, which is a firm’s 

historical range of operating costs scaled by the volatility of changes in sales over assets. In 

Columns 5 and 6, the sample is split based on the sample median of the number of plants per 

firm. Standard errors are double clustered at the plant and year level. t-statistics are presented in 

parentheses. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% level, 

respectively. The variables are defined in Appendix Table B1. 

 

Interpretation: The coefficient on Post Treatfirm is negative and significant in the sample of firms 

with high operational flexibility (Columns 2, 4, and 6), whereas it is insignificant in the sample of 

low-flexibility firms (Columns 1, 3, and 5). Consistent with the plant-level evidence, these results 

suggest that only firms with high operational flexibility can respond to a nearby peer enforcement 

action.  

 Dependent Variable: Firm Toxic 

Variable 

 (1) 
Low 

Inventory 

(2) 
High 

Inventory 

 (3) 
High 

Inflexibility 

(4) 
Low 

Inflexibility 

 (5) 
Less  

Plants 

(6) 
More  
Plants 

Post Treatfirm -0.017 -0.058*** -0.014 -0.045*** -0.012 -0.066*** 
 (-0.871) (-5.376) (-0.514) (-2.670) (-0.385) (-6.746) 
       
Firm × Cohort FEs Yes Yes Yes Yes Yes Yes 
Year × Cohort FEs Yes Yes Yes Yes Yes Yes 
Number of Obs 14,539 14,769 14,746 14,242 13,624 16,790 
Adj. R-squared 0.817 0.841 0.854 0.807 0.745 0.831 

 


