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Abstract

What can we learn from the volatility of the equity index? We revisit Shiller’s clas-
sic equity volatility bounds by considering restrictions on the risk-neutral distribution
of equity returns under the null of efficient markets. We show theoretically that one
can map between the variation in these risk-neutral probabilities and the minimum
curvature of utility — or, more generally, the slope of the stochastic discount factor —
required to rationalize the marginal investor’s beliefs. Second, we implement these
bounds empirically using S&P 500 index options. We find that very high utility cur-
vature is required to rationalize the behavior of risk-neutral beliefs, and in some cases,
no stochastic discount factor in the class we consider is capable of rationalizing these
beliefs. This admits an interpretation of overreaction to new information relative to the
rational benchmark. We show further that our findings cannot be explained by factors
specific to the option market.
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1. Introduction

Asset prices are volatile. Whether they are too volatile to reflect rational variation in expected
future cash flows, though, is by itself an unresolvable question: the true distribution of future cash-
flow streams is unobservable, as are aggregate risk and time preferences. The relevant question
is instead what joint set of assumptions on (1) beliefs and (2) risk and time preferences — the two
elements at the heart of almost all modern theories of asset prices — can be rejected in the data.

The seminal work of Shiller (1981) serves as a useful benchmark: Shiller documents excess
volatility in equity-index prices relative to a proxy for fundamental value, but this proxy is con-
structed under the assumption that discount rates over future cash flows are constant over time.
This assumption is controversial in light of empirical evidence from recent asset-pricing litera-
ture,1 which calls into question the conclusion that expectations are in fact overly volatile relative
to RE. It would seem that changes in unobserved discount rates are capable of rationalizing any
observed variation in asset prices, so can anything be said about the rationality of expectations?

In this paper, we show in a general theoretical framework that there are in fact certain bounds
on asset-price movements that must hold in a broad class of rational-expectations (efficient-markets)
equilibria, even when relaxing the identification assumptions used in much of the past literature.
These bounds yield direct information on the restrictiveness of the rational-expectations assump-
tion in the data: for any level of observed volatility in the asset prices we consider, our results give
a precise lower bound for the curvature of utility required to rationalize the data. We show further
that there are values of observed volatility that cannot possibly be rationalized by any amount of
utility curvature, providing unambiguous evidence of excess volatility of beliefs in these cases.

As in Shiller’s case, we focus our analysis on expectations over the future value of an equity
index. But the key feature distinguishing our analysis from previous literature is that we consider
the behavior of so-called risk-neutral beliefs over the underlying index’s future price, rather than
the behavior of the underlying index itself. The risk-neutral belief distribution can be calculated
directly using option prices — options allow for bets over the future asset price, and thus the
prices of these bets allow us to back out a probability distribution over this future price — so as
is standard, we treat risk-neutral beliefs as observable. These risk-neutral beliefs represent the
probability distribution that would be equal to a hypothetical risk-neutral agent’s true (or physi-
cal) belief distribution about the future asset price, but risk-neutral beliefs are in general distorted
relative to the marginal investor’s physical beliefs in the case that the investor is risk-averse. Intu-
itively, the probability distribution we observe using asset prices will overweight states in which
the marginal investor has low wealth (e.g., when the underlying asset has a low return), since the
investor will be willing to pay to insure against these high-marginal-utility states.

We show that statements about the “correct” amount of variation in risk-neutral beliefs under
RE require less-restrictive assumptions than statements about variation of the index price itself.

1See, for example, Campbell (2003) and Cochrane (2011) for surveys discussing evidence on time variation in dis-
count rates (or rationally expected returns), and the end of this section contains a full literature review.
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Previous analyses focusing on index-price variation require keeping track of some measure of the
index’s fundamental value; in contrast, we show that one can place restrictions on the intertem-
poral behavior of risk-neutral beliefs without any knowledge of the asset’s fundamental value,
or knowledge of the marginal investor’s underlying physical beliefs. Aside from the maintained
assumptions of RE and no arbitrage, our main results require only one general restriction on the
stochastic discount factor (SDF), the random variable that determines an asset’s ex-ante price by
discounting the asset’s random future cash flows: we assume that the SDF realization does not
depend on the path of unobservable state variables realized between a given trading date and the
option expiration date. We refer to this assumption as conditional transition independence (CTI), and
this assumption is met in many common macro-finance models. Further, we provide sufficient
conditions under which our bounds are robust to mild violations of the CTI assumption.

While our results are sometimes stated in terms of a particular agent’s beliefs for purposes
of interpretability, the beliefs in question can more accurately be thought of as the beliefs of “the
market” as a whole (or the marginal investor) rather than any particular individual. Our results
accordingly bear on the efficiency of market valuations: our null is that the market’s physical
beliefs are a martingale (the minimal requirement of any definition of efficiency), and we show
that this null can be jointly tested alongside a much less restrictive assumption on the evolution
of the stochastic discount factor than the restrictions used in past literature.

To understand the economic intuition underlying our results, it is useful to consider the simple
case in which we can directly observe the marginal investor’s beliefs (or equivalently in our con-
text, the case in which the marginal trader is risk-neutral). Augenblick and Rabin (2021) show in
this case that under RE, when this agent’s beliefs about a given future outcome change, she must
on average be getting closer to certainty about the ultimate realization of the event. If not, then
she is, loosely, overreacting to new information relative to the rational (Bayesian) benchmark, or
underweighting her prior relative to this new information.

For example, consider this agent’s beliefs over whether a single binary outcome will occur at
some future date T. She believes ex ante, as of date 0, that the outcome has a 10 percent chance of
occurring. Then we observe her beliefs moving to 90% as of date 1, to 10% on date 2, to 90%, to
10%, and so on until date T, at which point her beliefs resolve to either 0% (if the outcome does
not occur) or 100% (if it does). Observing one such stream of beliefs, we might simply conclude
that she received extreme and alternating signals, forcing her to reverse her beliefs dramatically
on a daily basis. But if we were to observe such a pattern repeatedly, we would instead conclude
that she is systematically overreacting to new information; her beliefs are mean-reverting (or anti-
persistent) in a predictable manner, which violates the martingale property of beliefs under Bayes’
rule. Further, this matches the intuition from the previous paragraph: the fact that her beliefs
are mean-reverting is equivalent to the fact that her beliefs are never moving closer to certainty,
measured as distance from 0% or 100%, despite their large day-to-day changes.

Our main contribution is to show how the above logic — that movement in beliefs must cor-
respond on average to reduction in uncertainty — can be applied to the general case in which the
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assumption of risk neutrality is dropped. Our task becomes considerably more difficult in this
case, as observable risk-neutral beliefs need not follow a martingale given their distortion relative
to physical beliefs. But given that the distortion between risk-neutral and physical beliefs is in-
dexed by the risk aversion of the marginal trader, we show in this case that the admissible gap
between risk-neutral belief movement and uncertainty reduction under RE can be bounded as a
simple function of this risk-aversion value (or, more generally, the slope of the SDF across states).
Further, this bound is tight, as there exists a data-generating process for the signals received by
the marginal agent that yields risk-neutral belief variation arbitrarily close to the bound.

We then take our bounds to the data using S&P 500 index option prices obtained from Op-
tionMetrics. We find that very high risk aversion is needed to rationalize the observed variation
in risk-neutral beliefs over the future index value, and in our baseline estimation there is in fact
no amount of risk aversion capable of rationalizing the data. Thus the marginal investor’s beliefs
are overly volatile relative to the RE benchmark, suggesting that many leading frameworks capa-
ble of explaining medium-to-low-frequency variation in asset prices have difficulty rationalizing
medium-to-high-frequency variation in beliefs.

Given that we conduct our estimation using index options data, we must also consider whether
idiosyncracies specific to this market could be responsible for some of our empirical findings.2 In
this case, our findings would still be indicative of some apparent inefficiency, but specific to the
options market rather than with respect to macroeconomic beliefs more generally. For example, if
bid-ask bounce induces spurious variation in measured risk-neutral beliefs, this could upwardly
bias estimated excess movement in those beliefs. We construct our benchmark empirical tests with
such issues in mind — for example, we use end-of-day prices to avoid intraday bid-ask bounce —
but we also consider whether related market-specific issues could nonetheless affect our results
and attempt to account for them explicitly in robustness tests. Our estimates are weakened only
slightly in these tests, and we still find that very high risk aversion is needed to rationalize the
data. Thus factors specific to the option market are not capable of accounting for our main results.

We further consider the features of the data that yield our empirical conclusions, leading to
three main additional findings. First, we find that excess volatility is concentrated in trading peri-
ods relatively far from a given option maturity date: for the last two weeks of trading before ex-
piration, the data can be rationalized with reasonable risk-aversion values, while this is no longer
true at longer horizons from expiration. Thus our findings arise largely because beliefs about
events in the somewhat-distant future appear to react too strongly to new information. Second,
reconducting our estimation at different sampling frequencies, we find that the risk-aversion value
required to rationalize the data is decreasing as one decreases the sampling frequency from daily

2There is indeed evidence of idiosyncracies in this market; for example, put-selling and related strategies have high
measured returns (Coval and Shumway, 2001), and Jackwerth (2000) argues that a pricing kernel backed out from op-
tions data is nonmonotonic in the index return. However, Broadie, Chernov, and Johannes (2009) and Santa-Clara and
Yan (2010) suggest that the apparent mispricings are insignificant once peso-problem-type sampling uncertainty and
disaster- or jump-risk premia are accounted for: “Option and stock returns may remain puzzling relative to consump-
tion and dividends, but there is little evidence for mispricing relative to the underlying stock index” (Broadie, Chernov,
and Johannes, 2009, p. 4496). We return to this issue in Section 5.
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to weekly to monthly. The month-to-month variation in risk-neutral beliefs is moderate enough
to be explained by finite (but somewhat large) risk aversion, but this masks substantial volatility
(and required risk aversion) at higher sampling frequencies. Third, conducting regressions of our
belief-volatility measure on a range of macroeconomic statistics, we find that belief volatility has
a strong positive relationship with measures of macroeconomic uncertainty and no relationship
with measures of liquidity or limits to arbitrage in asset markets. This may be considered addi-
tional evidence against the possibility that factors specific to the option market are the main driver
of our results, but this regression evidence is only suggestive and reduced-form.

Finally, we consider the robustness of our results to violations of our assumption of condi-
tional transition independence for the SDF. The habit-formation model of Campbell and Cochrane
(1999) violates this assumption and is also capable of matching important asset-pricing moments
in the data, so we consider a calibrated version of the model as an instructive example for how
CTI violations might affect our conclusions. We solve and simulate the model numerically,3 yield-
ing two findings: (a) even given the violation of CTI, the simulated risk-neutral beliefs still exhibit
substantially less variation than observed in empirical data; (b) when we naïvely apply our theo-
retical bounds to estimate the risk aversion required to rationalize the simulated beliefs data, the
bounds still yield conservative estimates of the model’s implied risk-aversion values. We con-
clude that reasonably calibrated CTI violations have difficulty accounting for the excess volatility
in beliefs in the data, and further that our bounds still apply approximately under mild violations
of CTI, as formalized in an additional theoretical result.

Relation to previous literature and interpretation of results. In addition to Shiller (1979,
1981), we follow, among others, LeRoy and Porter (1981), De Bondt and Thaler (1985), and Camp-
bell and Shiller (1987) in conducting empirical tests for excess volatility in asset prices relative
to RE. LeRoy and LaCivita (1981) note that these tests are in general joint tests of (a) stationarity
of the relevant data-generating process (e.g., for prices in the case of Shiller, 1981); (b) constant
discount rates; and (c) rational expectations. Kleidon (1986) and Marsh and Merton (1986) em-
phasize the importance of possible non-stationarity in accounting for apparent excess volatility;
meanwhile, much of the modern asset-pricing literature rationalizes observed price volatility by
appealing to time variation in discount rates (again see Campbell, 2003, and Cochrane, 2011, for
surveys). We build on the excess-volatility literature by showing that even without imposing any
restrictions on the structure of the data-generating process, and imposing only mild restrictions on
the variation in discount rates, RE nonetheless restricts the admissible variation in option prices
in an empirically testable way.

There are two costs associated with our additional generality. First, we consider derivative
prices rather than directly considering the behavior of the underlying index. In this way, our
work is complementary to that of Giglio and Kelly (2018), who document excess volatility for

3For our purposes, solving the model numerically requires solving for the joint distribution of t-period-ahead (t ∈
{1, 2, . . . , T}) realizations of the equity return and the SDF. Given that this is a high-dimensional object, we apply
projection methods to solve for this distribution, and these numerical methods may be of interest in their own right.
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claims on equity and currency volatility, inflation swaps, commodity futures, and credit default
swaps. Cash flows for these asset classes are well approximated by low-dimensional linear factor
models (as in Chamberlain and Rothschild, 1983) in which the unobserved factors follow vector
autoregressions under the risk-neutral measure. This autoregressive structure generates restric-
tions on the relative revisions to risk-neutral expectations, and therefore prices, at the short versus
long end of the term structure for each given asset class. These restrictions are then found to be
violated in the data, as long-maturity claims exhibit excess volatility relative to the values im-
plied by the factor models estimated using short-end prices. Their framework differs from ours
in that they achieve identification by parameterizing the data-generating process for cash flows,
whereas we restrict the evolution of the SDF. Their autoregressive parameterization applies well
to the term-structure-like claims they consider, but not to claims on the level of the equity index, to
which our framework does apply. These differences in setting and estimation strategy thus allow
the two frameworks to provide independent and complementary evidence for excess volatility in
expectations, and both do so in a manner that accounts in principle for discount-rate variation.

Second, rather than allowing for fully binary (rejection vs. non-rejection) empirical tests of RE
models, our general framework instead allows for a mapping between the observed asset-price
variation and the risk aversion required to rationalize the data. Our results may thus appear sim-
ilar in spirit to those of Mehra and Prescott (1985), and more generally Hansen and Jagannathan
(1991), who find that the SDF must be highly volatile to rationalize the observed excess returns
for risky assets. Our results differ from theirs in two respects. First, we obtain our mapping us-
ing the second moment (i.e., the variation) of observed returns, while they use the first moment
(or average) of returns.4 More importantly, the Hansen–Jagannathan results may in principle be
explained by features of the data-generating process for consumption or returns rather than high
risk aversion per se; for example, models of rare disasters (e.g., Rietz, 1988; Barro, 2006; Gabaix,
2012; Wachter, 2013) can generate sufficient SDF volatility to rationalize the observed equity pre-
mium without requiring high risk aversion. But this is not the case for our results, as we obtain a
relationship between local changes in the risk-neutral belief distribution and local risk aversion (or
the slope of the SDF) at those points of the distribution. If we observe highly variable risk-neutral
beliefs over the event that the S&P’s 90-day return will be between 8% and 10%, we know that
this cannot be attributable to disasters that affect the left tail of the return distribution; instead, we
conclude either that risk aversion is very high or that there is a departure from RE.

Our approach is, however, related to that of Hansen and Jagannathan (1991) at a somewhat
higher level: we maintain the spirit of their general semi-parametric setting, as we use a sufficient-
statistic-type approach to recover structural parameters from observable data. In this way one
may also relate our work to the sufficient-statistics literature in other fields; for example, Chetty
(2006) derives an upper bound on utility curvature using labor-supply behavior, and Chetty (2009)
provides a longer survey of the literature in settings different from ours. Within the asset-pricing

4One could instead map between variation in returns and the volatility of SDF volatility (or the heteroskedasticity
of the SDF), but we consider the results from our mapping to be somewhat more intuitive than this alternative.
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literature, see, for example, Alvarez and Jermann (2005) and Martin (2017), among many others.

Briefly summarizing our relation to literature more closely related to the specifics of our em-
pirical setting and findings, our results complement evidence on beliefs obtained from survey
data, as, for example, in Greenwood and Shleifer (2014), Gennaioli, Ma, and Shleifer (2016), and
Manski (2017), as well as the results of Augenblick and Rabin (2021) for settings in which beliefs
are directly observable. Another set of related literature endeavors to measure physical beliefs
(rather than risk-neutral beliefs) indirectly using options data, for the purpose of examining either
expectations or preferences; see Bates (2003) and Garcia, Ghysels, and Renault (2010) for surveys.
As a recent example, Ross (2015) assumes a Markov process for transitions between return states
and a transition-independence assumption on the SDF similar to but more restrictive than the
one we use (see Borovička, Hansen, and Scheinkman, 2016, for a discussion), from which Perron-
Frobenius theory allows him to back out a distribution of physical beliefs. Our approach differs
from this set of literature in that we need not measure physical beliefs at all or know the true
data-generating process for returns to conduct our tests, so we accordingly require less structure.5

Organization. Section 2 introduces our theoretical framework and the intuition for our re-
sults by considering a simple two-state example, first stated with respect to directly observed
beliefs and then extended to consider the effects of risk aversion. Section 3 then presents a general
asset-pricing framework, and our theoretical bounds in this general case are collected in Section 4.
Section 5 describes the data we use to conduct our empirical test and presents our estimation
strategy and main empirical results, while Section 6 conducts additional empirical tests to con-
sider the statistical and macroeconomic correlates of these results and their robustness. Section 7
concludes. Proofs are contained in Appendix A, and Appendix B contains additional technical
detail from Sections 3–6.

2. Theoretical Framework: A Simple Example

We first consider a simple two-state example to introduce our framework and to clarify three is-
sues: (a) the economics underlying the restriction on belief movement under RE in the risk-neutral
case; (b) how risk aversion complicates this analysis; and (c) how we can nonetheless bound be-
lief movement with risk aversion given certain identifying assumptions.6 The three subsections
below deal with each of these three issues in turn. Readers interested in the more general formal
framework may wish to skip ahead to Section 3.

5Similar parametric concerns apply to the option-anomalies literature discussed in Footnote 2. If, for example, one
measures the physical distribution of returns using historical data (e.g., Jackwerth, 2000), then an absence of crashes in
the sample will lead one to overestimate the returns to a put-selling strategy and to incorrectly infer the shape of the
pricing kernel over return states. Linn, Shive, and Shumway (2018) argue that this is an empirically relevant concern.

6The example we use for (a) works through a basic version of the results in Augenblick and Rabin (2021), who
provide the equivalent of Lemma 1 in a general context in which beliefs are directly observed. We differ in specializing
to a financial-market context, and the bulk of the work of our paper is related to complications arising from (b) and (c).
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2.1 Example with Directly Observed Beliefs

Consider a discrete-time economy with time indexed by t ∈ {0, 1, 2, . . . , T}. A representative
agent consumes CT as of terminal date T, and this consumption value is exogenously determined
by the terminal value of her wealth portfolio, which is stochastic. Assume for now that there are
only two possible terminal consumption (or wealth) states: CT ∈ {Clow, Chigh}. We also assume
for now that the agent’s only consumption is in period T.

Each period, the agent receives information and forms beliefs about her terminal consumption
value, and these beliefs will be our object of interest. Denote by πt the agent’s date-t subjective
belief that the bad state Clow will be realized, and the good-state probability is accordingly 1 − πt.
We need not keep track of the information structure for now; the agent simply receives some
arbitrary signal each period with new information about the relative likelihood of the two terminal
consumption states, and she updates her belief over time accordingly.

We assume that expectations are rational; that is, the agent’s beliefs coincide period by period
with the true conditional probability of realizing the bad state: πt = Prob(CT = Clow | Ft), where
Ft denotes time-t conditioning information. This requires that the agent have a correctly specified
prior π0 and that beliefs are updated according to Bayes’ rule in response to new information.
(We postpone a full formal discussion of the requirements of RE to Section 3.) The belief πt is a
martingale (with respect to Ft) under rationality, or πt = Et[πt+1], where Et[·] = E[·|Ft] is the
conditional expectation.7

Assume for now that the agent is risk-neutral and does not discount future consumption, so
ex-ante utility is E0[CT]. An outside observer can observe Arrow-Debreu state prices for the two
terminal consumption states (that is, the date-t price of a zero-net-supply security that pays off 1
unit of consumption if CT = Clow and 0 otherwise, and similarly for the high-consumption state).8

With risk neutrality and no discounting, in equilibrium these state prices qt(Clow) and qt(Chigh)

are equal to the agent’s actual subjective beliefs πt and 1−πt, respectively, following the principle
that beliefs are directly observable from asset prices under risk neutrality.

We keep track of two objects related to the agent’s beliefs {πt} and discuss shortly how these
objects are related under rationality. First, belief movement is defined to be the sum of squared
changes in beliefs from arbitrary period t1 to t2 > t1:

mt1,t2 ≡
t2

∑
t=t1+1

(πt − πt−1)
2. (1)

Movement is accordingly a formalized notion of belief volatility, equivalent to the discrete-time
quadratic variation in the belief process. For the full path, we denote m ≡ m0,T.

7To review why, we have that πt = Prob(CT = Clow | Ft) = Et[1{CT = Clow}] = Et[Et+1[1{CT = Clow}]] =
Et[Prob(CT = Clow | Ft+1)] = Et[πt+1], where the third equality follows from the law of iterated expectations.

8These prices can be inferred from the prices of options on the terminal value of the wealth portfolio; see Section 3.
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Second, we define the uncertainty of belief πt as

ut ≡ (1 − πt)πt, (2)

and uncertainty resolution as
rt1,t2 ≡ ut1 − ut2 . (3)

Uncertainty intuitively measures the belief’s distance from certainty, and it is maximized at πt =

0.5. It is equivalent to the time-t conditional variance of the Bernoulli random variable with real-
ization 1{CT = Clow}. Uncertainty resolution simply measures the decrease in uncertainty over
time. For the full path, r ≡ r0,T = u0 − uT = u0, where the last equality holds because uT = 0 for
a fully resolving belief πT = 0 or 1 as of the terminal period. Resolution over the entire path is
accordingly equal to the ex-ante Bernoulli variance.

Movement and uncertainty resolution are restricted under rational expectations according to
the following lemma, which applies a known fact about martingales to formalize a notion of the
“correct” amount of belief volatility over any horizon under rationality.9

LEMMA 1 (Augenblick and Rabin, 2021). Under rational expectations, for any data-generating process,
belief movement must equal uncertainty resolution in expectation for arbitrary periods t1 to t2 > t1:

E[mt1,t2 ] = E[rt1,t2 ]. (4)

Proof. This follows from an application of the fact that for any square-integrable (e.g., bounded)
martingale {Yt}, we have Et1 [∑

t2
t=t1+1(Yt − Yt−1)

2] = Et1 [Y
2
t2
] − Y2

t1
. Rearranging and setting

Yt = πt yields the stated equality; see Appendix A for details.

The restriction in this lemma reflects the intuition that if the agent’s beliefs are moving (m > 0),
it must be the case on average that she is learning something about the true terminal state (r > 0).
If instead E[m] > E[r], this corresponds to a case in which the agent is systematically overreacting
to new information relative to the rational benchmark, as this requires beliefs to be predictably
mean-reverting and therefore excessively volatile.10 To see this intuitively, returning to the exam-
ple in the Introduction in which the agent’s belief oscillates back and forth between 0.1 and 0.9
until resolution, every change in beliefs 0.1 → 0.9 → 0.1 yields positive movement (two-period
movement in this case is 2 × 0.82 = 1.28) but no resolution of uncertainty. (The same is even true
for one-day belief changes in this example, as there is no uncertainty resolved from 0.1 to 0.9 or
vice versa.) If we were to observe this pattern over repeated samples, we would conclude from
Lemma 1 that the agent is exhibiting excess belief movement.

9Other applications of this fact can be found in the continuous-time volatility-estimation literature (e.g., Barndorff-
Nielsen and Shephard, 2001; Andersen, Bollerslev, and Diebold, 2010).

10The converse holds for E[m] < E[r], but we focus on the case of excess volatility given our empirical findings.
Further, our “overreaction” terminology is shorthand and should be taken to encompass the possibility that the agent
is in fact underweighting her prior relative to information from newly observed signals.
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To gain further intuition, Lemma 1 can be rewritten as E[∑T
t=1(1 − 2πt−1)(πt − πt−1)] = 0 for

the full path. Thus positive revisions to beliefs (πt − πt−1 > 0) coinciding with low initial beliefs
(1 − 2πt−1 > 0, or πt−1 < 0.5) lead the statistic E[m − r] to be positive, and similarly for negative
revisions with high initial beliefs. So it could be the case that E[πt −πt−1] = 0 unconditionally, but
a test based on the lemma would still reject rationality if such unconditional martingale behavior
arose due to revisions in the opposite direction of the initial belief.

2.2 Incorporating Risk Aversion

Our main contribution is to develop a nonparametric test of RE that allows for investor risk aver-
sion, unlike the test implied by the restriction in Lemma 1. An econometrician with access to many
observations of beliefs for the agent in the previous subsection could test for excess belief move-
ment using that lemma, as long as the econometrician knew with certainty that the agent was
risk-neutral and thus that measured beliefs coincided with the agent’s true beliefs. But this sub-
section shows why such a test is invalid in the presence of risk aversion, and the next subsection
then discusses how we can nonetheless bound belief movement in this more general case.

We now make two additional assumptions for the agent in the above example. First, to make
clear the numeraire in which assets are priced each period, it will be useful to assume that the agent
consumes the exogenous stream Ct = C = 1 deterministically for all t < T, and we again focus
on the realization of uncertainty over terminal consumption CT. Second, and more importantly,
assume now that the agent has time-separable log utility with no discounting, E0 ∑T

t=0 log(CT),
and therefore relative risk aversion γ ≡ −CtU′′(Ct)

U′(Ct)
= 1 (where U(Ct) is period utility), but that

this is unknown to the econometrician. For exposition, we set the possible terminal consumption
values to Clow = 1/2, Chigh = 2, and assume that these are known.

The econometrician can once again observe Arrow-Debreu state prices over time for the two
terminal consumption states, but now these prices will not be equal to the agent’s actual subjective
beliefs. Assume the agent’s unobservable rational prior beliefs are π0 = 0.3 for the bad state and
1 − π0 = 0.7 for the good state. Optimality (with no discounting) implies that the state prices
are

qt(Ci) =
U′(Ci)

U′(Ct)
πt for i ∈ {low, high}, (5)

so using the parameters assumed above, the time-0 state prices are q0(Clow) = 2
1

3
10 = 0.6 and

q0(Chigh) =
1/2

1
7

10 = 0.35.

We can now define the bad-state risk-neutral belief π∗
t by dividing the relevant state price by

the sum of state prices:

π∗
t ≡ qt(Clow)

qt(Clow) + qt(Chigh)
=

U′(Clow)

Et[U′(CT)]
πt. (6)

The high-state risk-neutral beliefs is similarly qt(Chigh)

qt(Clow)+qt(Chigh)
= 1 − π∗

t . So the two states’ risk-
neutral beliefs are both positive and sum to 1 by construction, implying they define a valid prob-
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ability distribution. As is standard, we refer to them as risk-neutral beliefs because they coincide
with actual subjective beliefs for a risk-neutral agent, as can be seen in the last expression in (6)
(and as in the previous subsection). So the risk-neutral beliefs can be interpreted as the beliefs for
an as-if risk-neutral agent.

In period 0, the state prices found above yield risk-neutral beliefs π∗
0 = 0.63, 1 − π∗

0 = 0.37. So
the pseudo-belief distribution backed out from asset prices reflects a combination of both beliefs
and risk preferences; following the usual logic, the agent is willing to pay more than the actuarially
fair value for bad-state consumption given her high marginal utility in that state (and vice versa),
upwardly biasing the bad-state risk-neutral belief relative to the agent’s subjective belief.

To see how this distortion in observed beliefs could affect inference regarding belief movement,
consider the paths of beliefs plotted in Figure 1. The series in red circles corresponds to an example
realization of the agent’s actual subjective beliefs. π0 in this example is equal to 0.3, the value
assumed above. Given this prior for the bad state, a typical realization under rationality will
involve beliefs eventually converging to 0 for this state; in this example path, the agent receives
signals such that her subjective beliefs slowly and monotonically converge to 0 at date T.

Meanwhile, the observable risk-neutral prior in the figure is π∗
0 = 0.63 as above, and risk-

neutral beliefs must follow the agent’s true beliefs to 0, as plotted in blue asterisks. Given that
π∗

0 > 0.5, the risk-neutral belief moving to 0 implies that eventually this belief must cross 1 − π∗
0 ,

and in this example it does so exactly at t = 3. Thus risk-neutral uncertainty resolution from t1 = 0 to
t2 = 3, r∗t1,t2

≡ (1 − π∗
t1
)π∗

t1
− (1 − π∗

t2
)π∗

t2
, is equal to 0; moving from a belief of 0.63 to 0.37 means

the belief has moved no closer to certainty in either direction. But risk-neutral belief movement,
m∗

t1,t2
≡ ∑t2

τ=t1+1(π
∗
τ − π∗

τ−1)
2, has of course been positive in the transition from t1 = 0 to t2 = 3.

Thus even under full rationality, the distortion in risk-neutral relative to actual beliefs induced
by risk aversion can cause movement to exceed uncertainty resolution on average in the observed
data. So if we naïvely test for rationality using Lemma 1 on observed risk-neutral (rather than
actual) beliefs, we may spuriously conclude that beliefs are excessively volatile.

2.3 Identification: Preview of the Main Result

We now show, in the context of the above example, how we can nonetheless bound belief move-
ment for risk-neutral beliefs even in the presence of risk aversion. For simplicity, we focus on
beliefs only for periods 0 and 1 (with T > 1), and we assume the econometrician observes many
draws (π∗

0 , π∗
1) generated by subjective beliefs (π0, π1) with π0 = 0.3 as above.

We make one additional assumption for exposition (which we relax fully in Sections 3–4):
rather than maintaining the information structure that (implicitly) generated the series in Figure 1,
we instead assume that as of t = 1, the agent learns with equal probability either that the bad state
will certainly not be realized (in which case π1 = 0) or that the probability that the bad state will
be realized is π1 = 0.6. (It can be seen that the prior π0 = 0.3 is ex-ante rational under this signal
structure, since E0[π1] = 0.3.) The remainder of the structure of the example above is unchanged.

This assumption implies that for the subjective belief, expected movement is E[m0,1] = 0.5 ×
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(0 − 0.3)2 + 0.5 × (0.6 − 0.3)2 = 0.09, and expected uncertainty resolution is also E[r0,1] = 0.3 ×
(1 − 0.3)− [0.5 × 0 + 0.5 × 0.6 × (1 − 0.6)] = 0.09, illustrating Lemma 1. For risk-neutral beliefs,
we still have π∗

0 = 0.63, and using the calculations (5)–(6) along with the period-1 subjective beliefs
above, π∗

1 = 0 or π∗
1 = 0.86 with equal probability. We thus have expected risk-neutral movement

E[m∗
0,1] = 0.5 × (0 − 0.63)2 + 0.5 × (0.86 − 0.63)2 = 0.22, while expected risk-neutral uncertainty

resolution is E[r∗0,1] = 0.63 × (1 − 0.63) − [0.5 × 0 + 0.5 × 0.86 × (1 − 0.86)] = 0.17, illustrating
again that it can be the case that E[m∗ − r∗] > 0.

We can, however, achieve identification of the risk-aversion value required for the observed
data to be consistent with rationality, by exploiting the fact that the underlying subjective beliefs
must still meet Lemma 1. Denote

ϕ ≡ U′(Clow)

U′(Chigh)
. (7)

This slope of marginal utilities or marginal rate of substitution across states will be our structural
object of interest for now. Abusing notation slightly, denote by πt(ϕ, π∗

t ) the function mapping
from ϕ and the risk-neutral probability to the associated subjective probability. Equation (6) can
be inverted to yield that

πt(ϕ, π∗
t ) =

π∗
t

ϕ + (1 − ϕ)π∗
t

. (8)

Note that the mapping between πt and ϕ is one-to-one for any given observed value π∗
t , and it

is decreasing in ϕ: as risk aversion increases, the underlying bad-state subjective belief decreases
with respect to the observed risk-neutral belief.

Lemma 1 yields that, for the subjective beliefs, E[m0,1 − r0,1] = E[(1 − 2π0)(π1 − π0)] = 0.
Since π0 only takes on one value in this example (even over repeated draws), the restriction
E[m0,1 − r0,1] = 0 is equivalent to a simple martingale restriction, E[π1] = π0.11 The econo-
metrician can observe in the data that π∗

1 takes on two values with equal probability: π∗
h = 0.86 or

π∗
ℓ = 0. Using this along with (8), the restriction E[π1(ϕ, π∗

1)] = π0(ϕ, π∗
0) becomes

E[π1(ϕ, π∗
1)] =

1
2

π∗
h

ϕ + (1 − ϕ)π∗
h
=

π∗
0

ϕ + (1 − ϕ)π∗
0
= π0(ϕ, π∗

0), (9)

which can be solved to yield

ϕ =
π∗

0 π∗
h

π∗
h(1 + π∗

0)− 2π∗
0
= 4. (10)

This is in fact equal to the true ratio U′(Clow)
U′(Chigh)

= 2
1/2 in the current example, so we have achieved

identification. Further, U′(Chigh) = U′(Clow) + U′′(Clow)(Chigh − Clow) + O
(
(Chigh − Clow)

2) as
Chigh → Clow by a Taylor expansion, which can be rearranged to yield

γ(Clow) ≡ −ClowU′′(Clow)

U′(Clow)
=

ϕ − 1
(Chigh − Clow)/Clow

(11)

11The example here simply works through identification in a stripped-down case, but we will in general use the
more powerful restriction E[m − r] = 0 to obtain a closed-form bound for ϕ given the observed values m∗ and r∗.
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to a first order, which tells us that risk aversion depends on the ratio of marginal utilities across
states relative to the percent consumption gap across states. Thus in the current example, we
recover γ = 1, which is in fact exact given that relative risk aversion is constant by assumption.

Solving for ϕ above, we assumed that the econometrician had access to the data-generating
process governing risk-neutral beliefs: in (9), we used that π∗

1 = π∗
h or π∗

ℓ with equal probability.
While this is consistent with the structure of the repeated-experiment thought exercise considered
here, in reality the true data-generating process is difficult to estimate and potentially infinite-
dimensional; for example, the signal structure at t + 1 could depend on the value πt.

When generalizing the intuition from this example in the remainder of the paper, we accord-
ingly take a conservative approach and prove a general bound on the minimum value of ϕ re-
quired to rationalize excess belief movement E[m∗ − r∗], which holds under all possible data-
generating processes. This bound, stated without proof for now, can be written in the context of
this example as

E[m∗ − r∗] ⩽ π∗2
0

(
1 − 1

π∗
0 + ϕ(1 − π∗

0)

)
. (12)

Intuitively, following Figure 1, the degree of admissible excess movement depends on the devia-
tion of π∗

0 from π0, as encoded in ϕ = U′(Clow)/U′(Chigh); we postpone a detailed discussion to
Section 4.1. In our numerical example, one-period excess belief movement is 0.05, as calculated
above (7). Using this on the left side of (12) along with π∗

0 = 0.63, we obtain a lower bound for ϕ of
1.4. This illustrates the conservatism of the bound, as the true value of ϕ is 4. Similarly, applying
(11) to the bound for ϕ of 1.4, we obtain a bound for γ of 0.14, as compared to its true value γ = 1.

This example further clarifies an important identification restriction: we have implicitly as-
sumed that the value ϕ = U′(Clow)/U′(Chigh) is constant over time, and this assumption will
be maintained (and made explicit) in deriving the bound (12) below. Section 3.2 discusses the
assumption in general contexts in greater detail, but it follows naturally in the current exam-
ple from the assumption of time-separable utility and fixed state-contingent consumption values.
This illustrates the manner in which restrictions on risk-neutral belief variation require weaker
assumptions than restrictions on the underlying asset price: an Arrow-Debreu state price (and
associated risk-neutral belief) depends on marginal utility in a single state, whereas the price of a
consumption claim depends on the probability-weighted sum of marginal utilities over all states.
Assuming constant discount rates allows for identification in the latter context (e.g., Shiller, 1981),
but we need not make this assumption when working with risk-neutral beliefs.

To see directly how our framework allows for more generality than the constant-discount-rates
framework, we can change our numerical example above slightly. Assume now that the determin-
istic consumption stream for t < T is given by (C0, C1, C2, C3, . . . , CT−1) = (1, 1/2, 1, 1/2, . . .) but
that πt is constant at πt = π0 = 0.5 for t < T, and all other aspects of the example are unchanged.
This induces time variation in the price of a consumption claim, which (again assuming no dis-
counting) is given in equilibrium by Pt(CT) = Et

[
U′(CT)
U′(Ct)

CT

]
: we obtain Pt(CT) = 1 for t even and

Pt(CT) = 1/2 for t odd. So we have extreme price variation despite no variation in expected ter-
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minal cash flows, as prices are changing entirely due to changes in discount rates. A Shiller-type
variance-ratio test under the assumption of constant discount rates would thus spuriously reject
the null of RE. Meanwhile, because the mapping between πt and π∗

t is one-to-one for a given ϕ

in (8), measured risk-neutral beliefs would be constant for t < T in this case, allowing our bound
to rationalize the data with ϕ = 1, its minimal possible value, in (12).

Appendix B.1 discusses the relationship between risk-neutral beliefs and discount rates in
greater detail and formalism. In particular, we make clear what forms of discount-rate variation
are admissible under the assumption that ϕ is constant; in the example in the previous paragraph,
all discount-rate variation arises from changes in the risk-free rate, but the appendix discusses
cases in which the risk premium on the consumption claim may be time-varying as well.

3. General Theoretical Framework

We now consider a general many-state framework and show how our analysis applies in this case.
Section 3.1 sets up and defines notation for a standard asset-pricing framework, and Section 3.2
presents and discusses the restriction on the SDF we use to derive our volatility bounds.

3.1 Preliminaries: Pricing and Beliefs

Probability space, market index, and options. We work in discrete time, and consider a discrete
probability space (Ω,F , P) endowed with the filtration F = {Ft}t∈N, so that time is indexed by
t ∈ {0, 1, 2, . . .}. A realization of the elementary state is denoted by ω ∈ Ω.

We will be concerned with the ex-dividend value of the market index, Vm
t : Ω → R+, on some

option expiration date T. (The superscript m will generally refer to objects tied to the market
index, and the subscript t to Ft-adapted processes. When later considering empirical implemen-
tation, we will extend the notation to allow for a panel-data environment with multiple option
expiration dates.) A European call option on the market index with strike price K has payoff
Xm

T,K = max{Vm
T − K, 0}, and we denote its time-t price as qm

t,K. Assume without loss of generality
that these option prices are observable for some set of strike prices K ⊆ R+ beginning at date 0.

These option prices will be of interest for inferring a distribution over the change in value of
the market index from 0 to T. For notation, we say that return state s ∈ S ⊂ R+ is realized for the
market index as of date T if

Rm
T ≡ Vm

T
Vm

0
= s, (13)

and the set of return states is accordingly a set of discrete values that the market return can take
under Ω; for example, S could be {0, 0.01, . . . , 0.99, 1, 1.01, . . . , smax}, where s = 1 corresponds to
a gross return of 1 (or a net return of 0).12 The measure P : F → [0, 1] governs the objective or
physical probabilities of these return states.

12We could extend the analysis to continuous state spaces with additional technicalities, but do not do so given that
empirical implementation requires discretization (and similarly for our discrete-time treatment) and that our theoretical
results are more easily understood for probabilities than for densities. We can of course define S as finely as desired.
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Stochastic discount factor. Considering now the pricing of arbitrary assets, the absence of ar-
bitrage implies the existence of a strictly positive stochastic discount factor (SDF) or pricing kernel
process {Mt} (i.e., Mt : Ω → R++) such that the price St of a claim to an arbitrary state-contingent
payoff XT is given by

St(XT) = Et

[
MT

Mt
XT

]
, (14)

where again Et[·] ≡ E[·|Ft], and we can initialize M0 = 1.13

In a Lucas (1978)–type economy, with a representative agent with consumption process {Ct}
and time-separable consumption utility with time discount factor β, the SDF evolves according to

Mt+1

Mt
= β

U′(Ct+1)

U′(Ct)
(15)

by the agent’s Euler equation, so the SDF can accordingly be interpreted as aggregate marginal
utility. But the representation (14) is valid regardless of the existence of such a representative
agent.

Risk-neutral measure. We define the risk-neutral measure P∗ with respect to the objective mea-
sure P according to the Radon-Nikodym derivative

dP∗

dP

∣∣∣∣
Ft

=
MT/Mt

Et[MT/Mt]
. (16)

Equation (14) yields that the (T − t)-period gross risk-free rate is given by R f
t,T ≡ 1/St(1T) =

1/Et[MT/Mt], where 1T refers to one unit of the numeraire delivered at T. Using this along with
the change of measure in (16), we can rewrite the basic pricing equation (14) as

St(XT) =
1

R f
t,T

E∗
t [XT], (17)

as is standard, and where E∗
t [·] is the conditional expectation under P∗. Thus the price of the ran-

dom payoff XT is equal to the expectation of the payoff under P∗, discounted at the (T − t)-period
risk-free rate, so the change of measure to P∗ incorporates the risk adjustment required to value
payoffs at the relevant horizon.14

13Following Campbell (2018), we say that there is absence of arbitrage if (i) St(XT) ⩾ 0 for all tradable payoffs XT
such that XT ⩾ 0 almost surely, and (ii) St(XT) > 0 for all tradable payoffs such that XT > 0 with positive probability.
See Campbell (2018) for a proof that absence of arbitrage implies a strictly positive SDF process (and vice versa).

14This risk-neutral measure is defined for some particular option expiration date T; given that T is arbitrary, one
can in fact interpret (16) as defining a set of risk-neutral measures {P∗T}T∈N, as will be implicitly used in our empirical
implementation given that we have multiple option expiration dates. Further, P∗ as defined in (16) is sometimes
referred to as the T-forward measure rather than the risk-neutral measure; references include Jamshidian (1989), Geman,
El Karoui, and Rochet (1995), and Hansen and Scheinkman (2017). Payoffs are discounted under P∗ using a zero-
coupon bond maturing at T (rather than an account accumulating short-term risk-free returns), and T-maturity forward
prices ft,T (or expectations of prices at T) are martingales under P∗, e.g., f m

t,T = E∗
t [V

m
T ]. It is thus a natural equivalent

martingale measure for use in considering options over the future market-index value, as in our case.
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Return-state probabilities. We turn now to the implications of risk-neutral pricing for the mar-
ket index. The time-t objective probability that the index realizes return state s at date T is

Pt(Rm
T = s) = ∑

ω : Rm
T (ω)=s

Pt(ω), (18)

where Pt(·) ≡ P(·|Ft) is the conditional probability. Using this and (16), the associated risk-
neutral probability is

P∗
t (Rm

T = s) =
Et[MT/Mt | Rm

T = s]
Et[MT/Mt]

Pt(Rm
T = s). (19)

The risk-neutral pricing equation (17) can then be used to show that the date-t schedule of
option prices {qm

t,K}K reveals the set of risk-neutral probabilities {P∗
t (Rm

T = s)}s. Assume that the
set of return states S = {s1, s2, . . . , sJ} = {sj}j=1,...,J is ordered such that s1 < s2 < · · · < sJ , and
assume for notational simplicity that the set of traded option strike prices K coincides with the set
of possible date-T index values; that is, K = {K1, K2, . . . , KJ}, where Kj = Vm

0 sj. (We will see that
this can be relaxed.) We can then back out the risk-neutral probabilities of interest from option
prices as follows:

P∗
t (Rm

T = sj) = R f
t,T

[
qm

t,Kj+1
− qm

t,Kj

Kj+1 − Kj
−

qm
t,Kj

− qm
t,Kj−1

Kj − Kj−1

]
. (20)

Appendix A contains a brief derivation of this result, which follows directly from a discrete-state
application of the classic result of Breeden and Litzenberger (1978). We see from this expression
that we need not have the set of strikes K coincide with the full set of possible date-T index values
to back out the risk-neutral probability P∗

t (Rm
T = sj): we must simply have strikes at Vm

0 sj−1, Vm
0 sj,

and Vm
0 sj+1 to back it out exactly, and strikes near those values to obtain an approximation.

The fact that date-t option prices reveal the risk-neutral probabilities for the date-T return
states without requiring us to account for the value of processes between t and T (e.g., one-period
risk-free rates) motivates our use of the particular risk-neutral measure defined in (16).

Beliefs. To this point we have not taken a stance on the underlying structure of the economy
responsible for generating prices and risk-neutral probabilities; the analysis above follows fully
from the representation (14), which requires only the absence of arbitrage. We now specialize
our exposition by viewing prices as being generated by some marginal trader observing public
signals. None of what follows requires this to be the case, but it is useful for simple interpretation
of our results.15 One might intuitively think of this agent as corresponding to “the market.”

The agent observes a finite vector of signals θt ∈ Θ each period, with Ft = σ(θτ, 0 ⩽ τ ⩽ t).
The information provided by the date-t signals about date-T return states is described by the like-
lihood function or signal-generating process P(θt | Ft−1, Rm

T ), where P is the same physical measure

15This expositional assumption may seem restrictive, but note that even with multiple possible marginal traders
with access to some private information, the logic of the no-trade theorem of Milgrom and Stokey (1982) implies that
prices reveal this information, and we treat all signals as public and priced by a single agent for purposes of exposition.
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as defined above. This general formulation implies that the conditional signal distribution can de-
pend arbitrarily on the history θt−1 ≡ (θ0, θ1, . . . , θt−1), and the signals are informative about the
relative likelihood of return states sj ̸= sk as long as P(θt | Ft−1, Rm

T = sj) ̸= P(θt | Ft−1, Rm
T = sk).

The agent’s time-t subjective belief distribution over the return states for the market at T is de-
noted by Πt,T = {πt(Rm

T = s)}s∈S . The agent brings beliefs Πt,T into period t + 1, observes
signals θt+1, and forms new beliefs Πt+1,T. In order to derive testable restrictions on rational-
expectations price processes that can be taken to the data, we maintain the assumption that the
agent has RE over the return states at T, defined as follows in a standard manner (e.g., Muth, 1961,
and more specifically as first described in Lucas and Prescott, 1971, Lucas, 1972, and Green, 1975).

DEFINITION 1 (RE). An agent has rational expectations over return states at T if and only if both:

(i) The agent’s date-0 priors coincide with the objective probabilities:

π0(Rm
T = s) = P0(Rm

T = s) ∀ s ∈ S .

(ii) The agent updates beliefs in response to new information according to Bayes’ rule using the
objective likelihood function:

πt(Rm
T = s) =

πt−1(Rm
T = s)P(θt| Ft−1, Rm

T = s)
P(θt| Ft−1)

,

with P(θt | Ft−1) = ∑s′∈S πt−1(Rm
T = s′)P(θt | Ft−1, Rm

T = s′). ∥

These two conditions together are equivalent to the agent’s beliefs coinciding with the objective
probabilities period by period, but we find it useful to be able to consider belief updating sepa-
rately from the prior in the analysis that follows, which yields the natural definition given above.16

Given the maintained assumption of RE, we can define the risk-neutral belief distribution with-
out explicitly restricting the agent’s utility function or constraint set by applying the same change
of measure as defined in (16), using the general SDF MT/Mt, to her subjective beliefs. This yields
a risk-neutral belief distribution Π∗

t,T = {π∗
t (Rm

T = s)}s∈S such that

π∗
t (Rm

T = s) =
Et[MT/Mt | Rm

T = s]
Et[MT/Mt]

πt(Rm
T = s), (21)

as in (19). Thus (20) tells us that option prices reveal the agent’s risk-neutral beliefs as given here.

As in the example in Section 2, we will state our general results in terms of admissible variation
in conditional risk-neutral beliefs over pairs of return states. That is, rather than directly restricting
the intertemporal behavior of the full distribution Π∗

t,T, we instead consider restrictions on the

16We note further, however, that the fact that agents update using the objective likelihood function means that the
conditions given in Definition 1 can be thought of as jointly specifying that a suitably enlarged product prior over S ×Θ
is correctly specified. In other words, while updating behavior may be separable from the prior in an economic sense,
one might not think the two are completely distinguishable in a mathematical sense.
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behavior of the individual entries in the set {π̃∗
t,j}j=1,...,J−1 defined by

π̃∗
t,j ≡ π∗

t (Rm
T = sj | Rm

T ∈ {sj, sj+1}) =
π∗

t (Rm
T = sj)

π∗
t (Rm

T = sj) + π∗
t (Rm

T = sj+1)
, (22)

for π∗
t (Rm

T = sj) + π∗
t (Rm

T = sj+1) > 0. In words, π̃∗
t,j describes the time-t risk-neutral belief that

return state sj will be realized for the market index at date T, conditional on either return state
sj or sj+1 being realized. As in the example in the previous section, we have that the conditional
probability of interest as defined in (22) is the “bad-state” (or low-return-state) probability. And
by analogy to the notation in (22), we define the expectation under the conditional measure as

Ẽt[ · ] ≡ Et[ · | Rm
T ∈ {sj, sj+1}]. (23)

We consider conditional probabilities as in (22) for purposes of theoretical traction. It will
turn out that the space of signal-generating processes over the realization of uncertainty over
two states, as is considered when transforming to conditional probabilities, is sufficiently “small”
and well-behaved to enable a simple analytic characterization of the admissible variation in risk-
neutral beliefs under RE. This characterization of course implies conditions for admissibility for
the full distribution of risk-neutral beliefs, but this untransformed distribution proves unwieldy
enough that obtaining sharp results is difficult.17 Further, as will be seen in Section 3.2 below,
considering conditional probabilities allows for a weaker restriction on the SDF to allow for iden-
tification than would be the case without such a transformation.

Belief variation. To formalize notions of risk-neutral belief volatility and uncertainty, we define
the following objects, which are analogous to those defined in Section 2.

DEFINITION 2 (Movement). Define risk-neutral belief movement for the conditional risk-neutral be-
lief process {π̃∗

t,j}0⩽t⩽T from time t1 to time t2 > t1 as

m∗
t1,t2,j ≡

t2

∑
t=t1+1

(π̃∗
t,j − π̃∗

t−1,j)
2,

and denote movement for the full path by m∗
j ≡ m∗

0,T,j. ∥

DEFINITION 3 (Uncertainty).

(i) Define risk-neutral uncertainty for the conditional risk-neutral belief π̃∗
t,j as

u∗
t,j ≡ (1 − π̃∗

t,j)π̃
∗
t,j.

(ii) Define risk-neutral uncertainty resolution for the conditional risk-neutral belief process from

17We do have additional results for the full distribution available upon request, but have not yet conducted empirical
estimation for these results.
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time t1 to time t2 as
r∗t1,t2,j ≡ u∗

t1,j − u∗
t2,j.

For the full path, r∗j ≡ r∗0,T,j. ∥

See Section 2.1 for discussions of these definitions. We can then measure empirical counterparts
for these objects given result (20).18

3.2 Restriction on the SDF

We must now confront the joint hypothesis problem, and we attempt to do so in a manner that is
sufficiently general and semi-parametric so as to achieve identification in a broad class of models.
As above, the absence of arbitrage implies that there is some SDF process that relates the observed
risk-neutral beliefs to the objective probabilities describing the true data-generating process as
in (16). Thus without any additional restrictions, there is always some sequence {Mt} that can in
theory be used to transform the observed data to the correct objective probabilities,19 even under
the alternative that the subjective probabilities being used by agents to price assets are incorrect (in
which case the actual SDF would include these belief distortions). We must accordingly restrict
the form that {Mt} can take under the maintained null of RE in some way.

We begin by transforming the conditional risk-neutral belief π̃∗
t,j into an odds ratio for state-sj

versus state-sj+1 beliefs as follows:

π̃∗
t,j

1 − π̃∗
t,j

=
Et[MT/Mt | Rm

T = sj]

Et[MT/Mt | Rm
T = sj+1]

π̃t,j

1 − π̃t,j
, (24)

since the risk-neutral belief for state sj+1 conditional on either sj or sj+1 being realized is 1 − π̃∗
t,j,

and where π̃t,j ≡ πt(Rm
T = sj | Rm

T ∈ {sj, sj+1}) is the conditional subjective belief. We define the
first term on the right side of this equation as ϕt,j:

ϕt,j ≡
Et[MT/Mt | Rm

T = sj]

Et[MT/Mt | Rm
T = sj+1]

. (25)

This value encodes the slope of the stochastic discount factor across the two adjacent return states
sj and sj+1, and it is a generalization of the structural object of interest in the example in Section 2
as defined in equation (7). In the case of the representative-agent economy specified in (15), this
value becomes ϕt,j = Et[U′(CT) | Rm

T = sj]/Et[U′(CT) | Rm
T = sj+1]. It can accordingly be thought

of as the marginal rate of substitution across the two return states, or more generally the riskiness

18We aim to do so without excessive market-microstructure contamination, and the end-of-day sampling we use to
do so motivates our discrete-time framework. We note also that these objects are invariant to the addition of nearest-
neighbor-interpolated or -extrapolated data points π̃∗

t,j, and therefore even if the panel {π̃∗
t,j}t,j is unbalanced, it can be

made balanced in this way without affecting m∗
j or r∗j . This is an advantage of this approach relative to, e.g., variance-

ratio tests, for which adding additional observations with no change in beliefs reduces the power of the tests.
19This is no longer the case in an economy that admits arbitrage opportunities, but we are interested the RE assump-

tion rather than the possibility of arbitrage, so we maintain the no-arbitrage assumption throughout.
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of the bad state sj relative to the good state sj+1, as encoded in asset prices. We accordingly assume
that ϕt,j ⩾ 1. This is without loss of generality in theory, as we can relabel the states such that this
is true. For empirical implementation, we again use the ordering s1 < s2 < · · · < sJ .

Our substantive restriction on the SDF is then as follows. We first state the assumption for-
mally, and then discuss its economic content by way of several remarks and examples.

DEFINITION 4 (CTI). The SDF satisfies conditional transition independence (CTI) for the return-state
pair (sj, sj+1) and option expiration date T if ϕt,j defined in (25) is constant for all 0 ⩽ t < T almost
surely, and we denote this constant by ϕj. ∥

REMARKS:

1. Stated intuitively, CTI requires that when we observe a change in the risk-neutral odds ra-
tio (24), this is due to a change in the subjective conditional probability π̃t,j rather than the
expected relative severity of the adjacent return states sj and sj+1. This definition is thus anal-
ogous to the assumption discussed in Section 2.3 (page 12). If, as in that case, a representative
agent’s utility depends only on the maturity value of the market index, then there is a perfect
mapping between the terminal state and MT (with MT proportional to marginal utility of termi-
nal wealth), which guarantees that ϕt,j is constant.20 The remainder of this subsection discusses
conditions under which this logic can be extended to more general asset-pricing frameworks.

2. Note that we have assumed only that the ratio of the conditional expectations for the SDF is
constant over time locally across adjacent states sj and sj+1. Of course j and j + 1 are arbitrary,
but we can importantly assume that CTI holds only for some desired subset of observed return
states. This accordingly does not require that all changes in the underlying risk-neutral belief
distribution in (21) arise from changes in the subjective beliefs term πt(Rm

T = sj): there may
be simultaneous time variation in the values in the numerator and denominator in (25), as in
multiple cases discussed below, and the values Et[MT/Mt] and Et[MT] need not be constant.

3. Definition 4 corresponds to a notion of transition or path independence because it implies that
the realization of MT/Mt in return state sj depend in expectation only on sj and not on the path
of any variables realized between t and T (though the return state itself can depend on such a
path). This intuition is formalized in Lemma A.1 in Appendix A. We refer to the assumption
as conditional transition independence to underscore that it requires only constancy of the ratio
of conditional expectations of the state-contingent SDF realizations, rather than deterministic
state-contingent SDF realizations. The CTI assumption is accordingly less restrictive than the
transition-independence assumption used by Martin and Ross (2013) and Ross (2015).21

We now turn to a set of examples to illustrate the CTI restriction concretely, all of which work

20This holds more generally as long as there is some agent whose indirect utility can be written as a function only of
the terminal index value (e.g., an investor retiring at date T with savings fully invested in the market).

21Specifically, Ross (2015) writes MT/Mt as a deterministic function of the current and terminal price states (denoted
as Vm

j , Vm
k , respectively) as follows: MT/Mt = δ g(Vm

k )/g(Vm
j ) for some function g and constant δ, for all states. See

also Heston (2004), Jensen, Lando, and Pedersen (2018), and Walden (2017) for uses of this assumption.
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under the maintained hypothesis of rational expectations.

EXAMPLE 1. Assume an economy with a one-dimensional state variable At : Ω → R (e.g., pro-
ductivity, consumption, volatility), with dVm

t /dAt > 0. This process may be non-stationary but
is assumed to satisfy the Markov property, P(At+τ = a | At, At−1, . . .) = P(At+τ = a | At) for all
τ ⩾ 0 and a ∈ R. Assume further that there exists a representative agent with time-separable util-
ity over the consumption process {Ct(At)} and that the market index pays dividends according
to {Dt(At)}, where these processes are arbitrary but yield a stationary price-dividend ratio. Then
CTI holds for any two adjacent return states.

If, in addition, consumption or consumption growth is i.i.d. over t, then CTI holds as well if
the agent instead has Epstein–Zin (1989) recursive utility. ∥

While the assumption of a scalar Markov forcing process in this example is restrictive, it nonethe-
less encompasses some leading cases. For example, with the equilibrium value of log consumption
as the state variable, At = ct ≡ log(Ct), we could have its evolution governed by

ct = g + ρct−1 + h(ct−1)εt, (26)

where εt is i.i.d. with arbitrary distribution (so it could incorporate the possibility of disasters)
and h(·) is a state-dependent volatility function. In any such case, the result in the above example
gives that CTI is met.

We can also consider a similar example without assuming the existence of a representative
agent, but placing more stringent conditions on utility and stochastic processes, as follows.

EXAMPLE 2. Assume the existence of some agent with constant-relative-risk-aversion (CRRA)
period utility U(Ct) = (C1−γ

t − 1)/(1 − γ) who is almost surely unconstrained in every period.
(We need not assume that all of the agent’s wealth is invested in the market index nor restrict the
source of the agent’s income.) Assume further that either of the following conditions holds:

(i) The joint process for the agent’s consumption and the market-index dividend is i.i.d. over t,
with arbitrary joint distribution over the draws (Ct, Dt).

(ii) The joint process for the agent’s consumption growth and the market-index dividend growth
is i.i.d. over t, with jointly log-normal draws (Ct/Ct−1, Dt/Dt−1) with arbitrary covariance.

Then CTI holds for any two adjacent return states. ∥

The two preceding examples clarify that the CTI restriction allows for time variation in discount
rates and risk premia; see Appendix B.1 for a discussion. Relatedly, both temporary and perma-
nent shocks to consumption and marginal utility (and thus the SDF Mt) are in principle admissible
under CTI. For example, with CRRA utility and i.i.d. consumption-growth shocks there are only
permanent shocks to Mt ∝ C−γ

t , which does not change Et[MT/Mt] since Mt+1/Mt is i.i.d.; mean-
while, an economy with i.i.d. consumption has only transitory shocks to Mt and a fixed value
Et[MT | Rm

T = sj] for all sj.

20



This flexibility is desirable on both empirical and theoretical grounds. Empirically, Alvarez and
Jermann (2005) argue that permanent shocks to the SDF are important for quantitatively matching
the observed moments of returns. Theoretically, Borovička, Hansen, and Scheinkman (2016) show
that the assumptions used in the empirical application of Ross (2015) to estimate the physical
distribution of return states — namely, a finite Markov state space for prices and a transition-
independence assumption stronger than ours (see Remark 3) — do not allow for any permanent
shocks to the SDF, while many asset-pricing models do feature such shocks prominently.22

The next example considers a more fully specified structural macro-finance model that also
features time-varying risk premia and permanent SDF shocks (see Bakshi and Chabi-Yo, 2012),
and which has been advanced as a rationalization of the excess-volatility puzzle.

EXAMPLE 3. Consider the variable-rare-disasters model of Gabaix (2012), described fully in Ap-
pendix B.2. Under the assumptions stated there, given any market-index option horizon T and
any (small) positive value δ, there exists a return state s such that for all sj ⩾ s, the conditional
probability of having realized at least one disaster over the life of the option is negligible:

P0

(
T

∑
t=1

1{disastert} > 0

∣∣∣∣∣ Rm
T ⩾ s

)
< δ.

For all sj ⩾ s, CTI holds for any two such adjacent states up to a negligible error, as ϕt,j = ϕj + ηt

with ηt = op(1) for any sequence δ → 0. ∥

This result implies that for an economy described by this model, we need only focus attention on
conditional probabilities across adjacent return states for which there is little to no probability of
having realized a disaster conditional on reaching that state.

Finally, we consider a model that is instructive for the types of environments in which CTI
does not hold.

EXAMPLE 4. Consider the external-habit-formation model of Campbell and Cochrane (1999), de-
scribed fully in Appendix B.3. Under the assumptions stated there, CTI in general fails to hold. ∥

Given this model’s specification of habit formation, the path of consumption always matters in
a manner not fully accounted for by conditioning on the return state. We note, however, that
nothing about our theoretical framework requires considering beliefs over return states: all the
results below would apply if we were to consider beliefs over the elementary states in Ω, or, in
the Campbell–Cochrane case, over the joint realization of the terminal consumption and surplus
consumption values (see Appendix B.3). But while this allows us to sidestep the issue of CTI in
theory, empirical implementation is infeasible: we observe options and risk-neutral beliefs over

22As can be seen more generally outside the context of our specific examples, models with only permanent shocks to
the SDF are compatible with the CTI assumption; the assumption might accordingly be considered reasonable to the
extent that such models provide accurate approximations to the data.
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traded prices rather than over, e.g., surplus-consumption values.23 This motivates the theoreti-
cal exposition we use for beliefs over return states specifically: the exposition in this case is less
general than it could be, but it allows us to map directly between our theory and empirics.

We later consider the effects of the violation of CTI implied by the Campbell–Cochrane model
in the context of a calibrated simulation study.

4. Theoretical Results

We move now to our main theoretical results. Our bounds consider the relationship between
risk-neutral belief movement and risk-neutral uncertainty resolution in Definitions 2–3, and they
are accordingly the analogues of the results in Section 2 for the general framework introduced in
the previous section. The first subsection below presents and discusses our main belief-volatility
bounds; the second subsection discusses how they can be implemented empirically; and the third
provides extensions and additional results useful for interpretation of the main results.

4.1 Main Bounds

PROPOSITION 1. For any return-state pair (sj, sj+1) meeting CTI, the following bound must hold under
rational expectations for arbitrary option expiration date T:

Ẽ0[m∗
j − r∗j ] ⩽ π̃∗2

0,j

(
1 − 1

π̃∗
0,j + ϕj(1 − π̃∗

0,j)

)
. (27)

This result relates the unobserved structural parameter ϕj, which corresponds to the slope of the
SDF across the two adjacent return states, to a set of observable values. (We discuss the observabil-
ity of these values in the next subsection, but for now we take as given that they are observable.)
Under risk neutrality (ϕj = 1), this upper bound becomes zero: belief movement for π̃∗

t,j must not
exceed uncertainty resolution on average conditional on state sj or sj+1 being realized, following
Lemma 1.24 But this bound is otherwise positive, and the admissible excess movement in risk-neutral
beliefs given by the right side of the inequality increases monotonically in ϕj. Movement in risk-
neutral beliefs must still correspond on average to the agent learning something about the true
terminal state, but in this more general case, the bias in risk-neutral beliefs relative to subjective
beliefs induced by risk aversion allows for positive excess movement in those observed beliefs
under RE. This result thus formalizes a more general notion of the “correct” amount of belief
volatility under rationality, this time as an increasing function of the market’s effective risk aver-
sion between the low- and high-return states.

23The same applies, for example, to economies with recursive preferences and independent volatility shocks (e.g.,
“Case II” of the long-run-risks model of Bansal and Yaron, 2004), since then marginal utility at T can depend on expected
future volatility in addition to terminal consumption (or returns). See Walden (2017) for related discussion.

24An associated lower bound of zero can also be shown to hold in this case. We note also that the expectation in the
bound is conditional on Rm

T ∈ {sj, sj+1} in this more general case because conditional physical beliefs are martingales
only under the conditional measure; see Lemma A.1 in Appendix A.
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The bound in Proposition 1 is conservative in that it holds over all possible signal-generating
processes. The question we ask is effectively, for given values of π̃∗

0,j and ϕj, what is the upper
bound on Ẽ0[m∗

j − r∗j ] that a “malevolent” outside agent could attain given a choice over signal-
generating processes? While the proof of the proposition above does not require fully character-
izing the maximizing signal-generating process, directly considering the set of possible processes
leads to the following additional result.

PROPOSITION 2. The bound in Proposition 1 is approximately tight: the stated bound holds with strict
inequality for any fixed T < ∞ as long as ϕj > 1, but there exists a signal-generating process under which

lim
T→∞

Ẽ0[m∗
j − r∗j ] = π̃∗2

0,j

(
1 − 1

π̃∗
0,j + ϕj(1 − π̃∗

0,j)

)
.

We characterize the maximizing process fully in the proof of the proposition in Appendix A, but
it can be intuitively thought of as a “rare-bonanzas” process: with probability 1 − ϵ the agent’s
belief that the bad-state return will be realized increases slightly, and with probability ϵ the agent
receives news that the good state will be realized with certainty. The bad-state risk-neutral prob-
ability is upwardly biased relative to the agent’s bad-state subjective belief, so maximizing risk-
neutral belief movement requires maximizing the size of possible downward revisions to the bad-
state belief (see Figure 1). This process achieves this maximization, and in the limit as T → ∞, all
of the expected belief movement comes from these downward revisions: the upward revisions are
infinitesimally small, so the squared change in beliefs given an upward revision disappears given
that it is second-order. The conservatism of the bound then depends on the extent to which such
a process is unrealistic relative to whatever true process governs agents’ beliefs.

While the bound in Proposition 1 in general maps between observed values and the slope of
the SDF required to rationalize those values, the fact that risk-neutral beliefs are bounded be-
tween 0 and 1 by construction implies that the bound is well-defined even for infinitely large risk
aversion: there is only so far that risk-neutral beliefs can be distorted relative to subjective beliefs.
Thus taking ϕj → ∞ in that bound yields the following full-identification corollary.

COROLLARY 1. If Ẽ0[m∗
j − r∗j ] > π̃∗2

0,j , then no SDF process meeting CTI can rationalize the variation in
risk-neutral beliefs for the given return-state pair.

In the case that Ẽ0[m∗
j − r∗j ] > π̃∗2

0,j , the conclusion to draw would not necessarily be that there
are violations of the no-arbitrage condition; instead, there would be no rational-expectations SDF
process capable of generating the observed excess movement in risk-neutral beliefs. Thus the
actual SDF process translating between objective probabilities and risk-neutral beliefs would in
this case include a belief distortion that induces excess volatility. Such a finding would be close in
spirit to a violation of the “good-deal bounds” of Cochrane and Saá-Requejo (2000): even if the no-
arbitrage condition holds, there would be an investment strategy with a large Sharpe ratio under
the objective measure that is nonetheless not traded away by investors, because their subjective
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measure is distorted and thus does not perceive this large Sharpe ratio.25

Taken together, Proposition 1 and Corollary 1 characterize the admissible excess movement
in risk-neutral beliefs as a function of ϕj for any risk-neutral prior. We illustrate these bounds
graphically in Figure 2. Starting from the bottom of the chart, the thick purple line corresponds
to the bound for the risk-neutral case of ϕj = 1: in this case, excess movement must be zero in
expectation regardless of the prior or signal-generating process, from Lemma 1. The thin dashed
gray lines correspond to arbitrarily selected signal-generating processes in the case of some risk
aversion, ϕj = 3. While there can be positive excess belief movement, this is not necessarily the
case for all possible signal-generating processes. Taking the envelope over all of these processes
for ϕj = 3 yields the bound shown in the thick blue line. While the admissible excess movement
is non-monotonic in the risk-neutral prior in this case, values greater than 0.5 tend to yield greater
admissible movement, following the logic of Figure 1. Finally, the thick red line shows the bound
for the limiting case ϕj → ∞, which is equal to the squared risk-neutral prior from Corollary 1.

The non-monotonicity of the bound in the ϕj = 3 case is a general feature of the bounds for
1 < ϕj < ∞,26 and it arises due to the interplay of two competing forces. A greater risk-neutral
prior yields more “room” for downward movement of the belief, which under the maximizing
signal-generating process increases the expected excess movement. On the other hand, a greater
risk-neutral prior corresponds to a greater subjective prior for any given value of ϕj, which de-
creases the likelihood that such a downward movement will be realized. In the limit as ϕj → ∞,
the first force dominates the second, as the underlying subjective prior is pushed arbitrarily close
to zero for any given risk-neutral prior given very large values of risk aversion.

One can also characterize the form of departure from rationality required for this limiting
bound to be violated, as in the following result.

PROPOSITION 3. Assuming CTI holds for the return-state pair (sj, sj+1), the effects of an incorrect phys-
ical prior, π̃0,j ̸= P0(Rm

T = sj | Rm
T ∈ {sj, sj+1}), are limited as follows:

(i) If π̃∗
0,j < P0(Rm

T = sj | Rm
T ∈ {sj, sj+1}), then under Bayesian updating, it must be the case that

Ẽ0[m∗
j − r∗j ] ⩽ max{π̃∗2

0,j , (1 − π̃∗
0,j)

2}.

(ii) Otherwise, an incorrect prior cannot by itself lead to Ẽ0[m∗
j − r∗j ] > π̃∗2

0,j .

This result tells us that updating behavior must in general play some role in any outright rejection
of RE as in Corollary 1. Part (i) of the proposition shows that there is technically one case in which
an incorrect physical prior can lead to Ẽ0[m∗

j − r∗j ] > π̃∗2
0,j , but this case is unlikely empirically:

it requires that the prior be so downwardly distorted that the risk-neutral belief is below the true
conditional physical probability, which is a strong requirement given that π̃∗

0,j ⩾ π̃0,j under our

25This strategy would take the form of betting on mean reversion in risk-neutral beliefs. See also Hansen and
Jagannathan (1997) and Hansen (2014) on the possibility of apparent mispricing under no arbitrage.

26In particular, one can show that the formula on the right side of Proposition 1 yields an interior maximum for
admissible excess movement at π̃∗

0,j = (4ϕj −
√

8ϕj + 1 − 1)/(4(ϕj − 1)) ∈ (0, 1).
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labeling of sj as the “bad” state.27

An incorrect physical prior has limited effects because it acts as a one-time distortion in beliefs;
while moving back to the “correct” belief in this case does require some excess movement in
beliefs, this excess movement is generally not sufficient to produce a full violation of the bound in
Proposition 1. Incorrect updating behavior must accordingly be present in such a violation, and
the restriction imposed by our bound implies that this incorrect updating behavior necessarily
entails excessive volatility in beliefs relative to the degree of uncertainty resolution over time.

4.2 Observability and Empirical Implementation

The discussion to this point has taken as given that all the values in the bound in Proposition 1
are observable aside from ϕj, but this has elided one issue: this bound is stated over the date-0
expectation of excess belief movement in terms of the risk-neutral prior π̃∗

0,j, but we observe only
one draw m∗

j − r∗j per expiration date rather than the ex-ante expectation of this random variable.
(The expectation is also conditional on Rm

T ∈ {sj, sj+1}, but this outcome is observable and can be
conditioned on empirically.) We show now how the use of risk-neutral beliefs series over many
expiration dates allows for empirical implementation of our bounds.

We must first generalize the environment and notation slightly. We now assume that we can
observe prices of options over the value of the market index on some set of N option-expiration
dates T ≡ {t : t ∈ (T1, T2, . . . , TN)}, or {Ti}i=1,...,N . For arbitrary expiration date Ti, denote
by 0i the first date on which the price of any such option contract (with arbitrary strike K) is
observable.28 All other objects maintain their previous definitions, but the subscript i is now used
to denote a value corresponding to maturity date Ti; for example, risk-neutral belief movement is
m∗

i,j = ∑Ti
t=0i+1(π̃

∗
t,i,j − π̃∗

t−1,i,j)
2.

The CTI assumption does not specify that the value ϕi,j must be constant across all observed
expiration dates {Ti}i; we thus need some way of aggregating the observed values {m∗

i,j − r∗i,j}i

across i to identify an average SDF slope for that return-state pair. Due to Jensen’s inequality,
we cannot simply insert Ẽ[ϕi,j] in place of ϕi,j and Ẽ[π̃∗

0i ,i,j
] in place of π̃∗

0i ,i,j
when taking the ex-

pectation of both sides of the bound in Proposition 1: viewing the expression on the right side
of that bound as a function of ϕi,j and π̃∗

0i ,i,j
, this function’s Hessian is not in general negative

semidefinite given the non-monotonicity in the bound, so naïvely conducting such replacements
will not in general uphold the validity of the bound. However, for any given prior π̃∗

0i ,i,j
, the

bound is concave in ϕi,j, as the second partial derivative of that expression with respect to ϕi,j is
−2π̃∗2

0i ,i,j
(1 − π̃∗

0i ,i,j
)2/(π̃∗

0i ,i,j
+ ϕi,j(1 − π̃∗

0i ,i,j
))3 ⩽ 0. This implies the following result, which effec-

tively applies Jensen’s inequality for one of several variables.

27It is also the case in our empirical setting that E[π̃∗
0,j] ≈ E[1 − π̃∗

0,j] given the use of conditional beliefs; thus the
bound in part (i) is approximately equally tight as the bound in part (ii) in practice. And to see why the finding in
case (i) arises, consider a prior distorted so low that π̃∗

0,j ≈ 0 despite P0(Rm
T = sj | Rm

T ∈ {sj, sj+1}) ≫ 0; given correct

updating, there will be positive excess movement in excess of π̃∗2

0,j ≈ 0 but still less than (1 − π̃∗
0,j)

2.
28Formally, 0i is the minimal t for which there exists a K ∈ K such that the call-option price qm

t,i,K is Ft-measurable.
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PROPOSITION 4. For any return-state pair (sj, sj+1) meeting CTI, the following bound must hold under
rational expectations over all option expiration dates:

Ẽ[m∗
i,j − r∗i,j] ⩽ Ẽ

[
π̃∗2

0i ,i,j

(
1 − 1

π̃∗
0i ,i,j

+ ϕj(1 − π̃∗
0i ,i,j

)

)]
, (28)

where ϕj ≡ maxπ̃0i ,i,j Ẽ[ϕi,j | π̃0i ,i,j].

This bound is now implementable empirically: we can measure a sample counterpart of the mean
excess-movement statistic on the left side, and the minimum ϕj that solves the bound given the
observed excess movement and risk-neutral priors is then a conservative estimate of the maxi-
mum conditional-mean SDF slope for the return-state pair in question over all dates Ti. Further,
if Ẽ[ϕi,j | π̃0i ,i,j] = Ẽ[ϕi,j] — as might be expected to hold approximately, given that the prior over
the return may not be especially informative for the expected relative SDF realizations — then
ϕj = Ẽ[ϕi,j], and the proposition allows us to identify a lower bound for this value.

While the values {ϕj} will in general differ across return states sj, we can apply the same result
as used in Proposition 4 to obtain a single estimate ϕ of the required mean SDF slope both across
dates and return states (for all states meeting CTI) if desired. We discuss our empirical estimation
further in Section 5.

4.3 Economic Interpretation and Robustness Results

We now turn to a set of additional results that yield a clearer economic interpretation for ϕj, allow
us to account for the possibility of mismeasurement or market microstructure noise, and finally
extend the results to cases in which conditional transition independence is violated mildly. (For
notational simplicity, in this subsection we temporarily return to the environment considered be-
fore Section 4.2, with a single expiration date T.)

First, while the results above are convenient to express in terms of the SDF slope ϕj given
that this allows for closed-form solutions that can be applied across a wide range of structural
models regardless of the origin of the SDF, the results also admit an interpretation in terms of the
approximate required risk-aversion value for a fictitious representative agent with utility over the
terminal value of the market index, as in Section 2.

PROPOSITION 5. Assume additionally that there is a representative agent with (indirect) utility over
time-T wealth, with wealth equal to the market index value, and denote Vm

j ≡ Vm
0 sj. Then relative risk

aversion γj ≡ −Vm
j U′′(Vm

j )/U′(Vm
j ) is given to a first order around return state sj by

γj =
ϕj − 1

∆j
,

where ∆j ≡ (sj+1 − sj)/sj is the percent return deviation between adjacent return states sj and sj+1.
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As in the case in Section 2, relative risk aversion is proportional to ϕj − 1, since this gives the
percent decrease in marginal utility in moving from low-return state sj to high-return state sj+1.
This change in marginal utility must be normalized by the consumption increase in moving from sj

to sj+1 in order to calculate relative risk aversion, which thus requires dividing through by ∆j. If,
for example, sj = 1, sj+1 = 1.01, then a value ϕj = 1.1 implies γj = 10.

Given that the expression for γj in this proposition is affine in ϕj, the aggregation result in
Proposition 4 can be applied to conduct valid estimation of γj ≡ maxπ̃0i ,i,j Ẽ[γi,j | π̃0i ,i,j] across
different expiration dates Ti, or additionally across different return states sj in the case that one
would like a single estimate of the average local relative risk aversion value across all such states.

We now provide a result that can be applied to the bounds above to correct for possible mis-
measurement of risk-neutral beliefs. Our bounds provide a minimum value of the slope of the
SDF required to rationalize the observed variation in risk-neutral beliefs; if some of this variation
is in fact arising due to, e.g., transient demand pressures, then we may overestimate this required
SDF slope. However, a simple correction can be applied to account for this issue, as follows.

PROPOSITION 6. Assume that the observed conditional risk-neutral belief π̂∗
t,j is measured with error with

respect to the true value π̃∗
t,j:

π̂∗
t,j = π̃∗

t,j + ϵt,j,

where Ẽ[ϵt,j] = 0, Ẽ[ϵt,j ϵt+1,j] = 0, and Ẽ[ϵt+k,j π̃∗
t+k′,j] = 0 for k, k′ ∈ {0, 1}. Denoting the ob-

served one-period expected excess movement statistic by Ẽ[m̂∗
t,t+1,j − r̂ ∗

t,t+1,j], its relation to the true value
Ẽ[m∗

t,t+1,j − r∗t,t+1,j] is then given by

Ẽ[m̂∗
t,t+1,j − r̂ ∗

t,t+1,j] = Ẽ[m∗
t,t+1,j − r∗t,t+1,j] + 2Var(ϵt,j).

We can thus subtract 2Var(ϵt,j) from each period’s observed excess-movement statistic to identify
true excess movement, which can then be used in Proposition 4 after summing over the full path.
If measurement error is positively correlated over time rather than uncorrelated, this will reduce
the upward bias in measured volatility of beliefs. One might instead worry about negatively
correlated measurement errors in the case of bid-ask bounce, but our empirical measurement uses
only end-of-day mid-price data, and as shown by Jacod, Li, and Zheng (2017) with high-frequency
data, the autocorrelation values for such noise have long died out at one-day lags. We discuss
estimation of the value Var(ϵt,j) in the next section.

Proposition 6 allows for a correction with respect to empirical misspecification; we turn now
to a result that speaks to the possibility of theoretical misspecification. While our identifying as-
sumption, conditional transition independence, is met in some commonly used theoretical frame-
works, it is a knife-edge restriction that is unlikely to be met exactly in the data. Further, one may
wish to consider the implications of our results for theoretical frameworks in which CTI is not
met. We accordingly ask under what conditions the bound holds approximately even when CTI
is violated mildly, and we obtain a sufficient condition as follows.
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PROPOSITION 7. Recall the definition ϕt,j ≡ Et[MT/Mt | Rm
T = sj]/Et[MT/Mt | Rm

T = sj+1] in equa-
tion (25), and that conditional transition independence assumes that this value is constant for all 0 ⩽ t < T.
Relaxing this assumption, we obtain the following two results:

(i) If the sequence {ϕt,j}t is a martingale with respect to filtration F conditional on Rm
T ∈ {sj, sj+1}, or

ϕt,j = Ẽt[ϕt+1,j], then the bound in Proposition 1 applies, with the ex-ante value ϕ0,j replacing ϕj.

(ii) The bound in Proposition 1 applies to an arbitrarily close approximation within a neighborhood of
{ϕt,j}t being a martingale: ∀ ϵ > 0, ∃ δ > 0 such that if |Ẽt[ϕt+1,j] − ϕt,j| < δ almost surely
for t = 0, . . . , T − 1, then∣∣∣∣∣Ẽ0[m∗

j − r∗j ]− π̃∗2
0,j

(
1 − 1

π̃∗
0,j + ϕ0,j(1 − π̃∗

0,j)

)∣∣∣∣∣ < ϵ.

Part (i) of the result tells us that a martingale process for {ϕt,j}t yields no more excess move-
ment in beliefs for any given ex-ante value ϕ0,j than is expected under the movement-maximizing
signal-generating process used in Proposition 1 itself.29 The sequence {ϕt,j}t is unlikely to fol-
low a martingale exactly. This martingale condition is, however, a convenient benchmark around
which to obtain an approximate bound as in part (ii) of the proposition, which shows that the
original bound is continuous in the limit as Ẽt[ϕt+1,j] → ϕt,j. As we will see in Section 6, ϕt,j

is closely approximated by a martingale in a calibrated version of the Campbell and Cochrane
(1999) habit-formation model, as we show in numerical simulations that our bound still holds in
this framework despite the violation of CTI. We expect that most models do not generate enough
variation in relative expected marginal utility across adjacent market-return states to yield large
departures from the ϕt,j-martingale benchmark; intuitively, variation in ϕt,j will also be restricted
under RE as ϕt,j is itself a function of conditional expectations, and it would require dramatic
variation in ϕt,j at a daily frequency to generate the empirical results below.

5. Empirical Estimation and Main Results

Our theory leads to bounds on the variation in risk-neutral beliefs over the value of the market
index, which we proceed now to measure in the data. We begin by describing the mapping from
theory to data (Section 5.1) and how we account for measurement noise (Section 5.2), and then we
summarize the data (Section 5.3) before turning to our empirical results (Section 5.4).

5.1 Data and Risk-Neutral Distribution

Data. Our main source for S&P 500 index options data is the OptionMetrics database, which
provides end-of-day prices for European call and put options for all strike prices and option ex-

29One might wonder how this can be the case given the measurement-error result in Proposition 6. The key dis-
tinction arises from the assumption of i.i.d. noise in this previous result, which induces mean reversion in measured
risk-neutral beliefs, while a martingale in ϕt,j does not.
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piration dates traded on the Chicago Board Options Exchange (CBOE). The sample runs from
January 1996 through December 2018. We augment this data with intraday price quotes obtained
directly from the CBOE for a subset of trading days in our sample, in order to account for market
microstructure noise; this additional data is described further in Section 5.2.

We apply standard filters to remove outliers and options with poor trading liquidity from the
OptionMetrics data, with details provided in Appendix B.4.30 Two aspects of this data cleaning
bear mention here. First, while our bounds apply for belief streams of arbitrary length, we follow
past literature (e.g., Christoffersen, Heston, and Jacobs, 2013; Martin, 2017) and consider options
with maturity of at most one year. Second, after transforming the filtered option prices to risk-
neutral beliefs (described below), we keep only conditional risk-neutral belief observations π̃∗

t,i,j

for which the non-conditional beliefs satisfy π∗
t (Rm

Ti
= sj) + π∗

t (Rm
Ti

= sj+1) ⩾ 5%. We do so
because conditional beliefs π̃∗

t,i,j are likely to be particularly susceptible to mismeasurement when
the underlying beliefs are close to zero.

Empirical return space. For our baseline estimation, we define the return state space S in terms
of log excess return intervals:

S = R f
0i ,Ti

exp
{
(−∞,−0.2], (−0.2,−0.15], (−0.15,−0.1], . . . , (0.1, 0.15], (0.15, 0.2], (0.2, ∞)

}
, (29)

where R f
0i ,Ti

is the gross risk-free rate from 0i to Ti.31 In words, return state 1 is realized if the log
excess S&P return is less than -0.2 ≈ -20%; state 2 is realized if the excess return is in the five-
percentage-point bin between -0.2 and -0.15; and so on. Abusing notation slightly, we typically
refer to states by the right end of their associated log excess-return bin: s1 = −0.2, s2 = −0.15,
. . ., s9 = 0.2, s10 = ∞. Following the labeling convention used for our theory, we define the
binary conditional probabilities to be used in our tests as π̃∗

t,i,j ≡ π∗
t (Rm

Ti
= sj | Rm

Ti
∈ {sj, sj+1});

that is, π̃∗
t,i,j corresponds to the probability that the low state j (e.g., s2 = −15%) will be realized,

conditional on j or j + 1 being realized (in this case, conditional on an excess return between -20%
and -10%). We again use of the right end of the return bin for j as shorthand in referencing the
conditional belief and excess movement for state pair (sj, sj+1), which corresponds to the midpoint
of the two return bins in question.

Our use of five-percentage-point ranges for return states reflects a desire to balance (i) mea-
surement accuracy for the risk-neutral beliefs and (ii) plausibility of our assumption of constant ϕj

(conditional transition independence). Wider bins lead to greater accuracy of measurement, but
conversely make it less likely that there are no changes in the expected realization of the SDF
conditional on reaching a given return state (relative to the realization conditional on the relevant
adjacent return state). We report empirical estimates below for all adjacent return-state pairs for

30The raw dataset contains 12.4 million option prices; the filtered data, which are then used to the measure risk-
neutral distribution, contain 4.3 million option prices corresponding to 5,537 trading dates and 991 option expiration
dates. The majority of the difference is attributable to our use of only out-of-the-money call and put strikes.

31We use excess returns for convenience of interpretation. Following van Binsbergen, Diamond, and Grotteria (2021),
we measure R f

0i ,Ti
directly from the options prices by inverting the put-call parity equation.

29



completeness, but it is unlikely that CTI is met for the extreme state pairs (s1 relative to s2, and
s9 = sJ−1 relative to s10 = sJ ) given the issues discussed in Section 3.2. Our focus is thus on the
interior state pairs with low-return states s2, . . . , s8; in particular, when we aggregate our state-by-
state estimates of ϕj required to rationalize the data into a single average value ϕ across states, we
use only these interior states.32

Risk-neutral beliefs. To extract a risk-neutral distribution over the return states in S from the
observed option cross-sections, we use standard tools from the option-pricing literature. Our
starting point is equation (20), which tells us how to map from option prices to risk-neutral prob-
abilities. We use this to construct a smooth risk-neutral distribution for returns, largely following
the technique proposed by Malz (2014); Appendix B.4 provides a detailed description. With the
risk-neutral beliefs π∗

t,i,j in hand, we can then calculate conditional beliefs straightforwardly as
π̃∗

t,i,j = π∗
t,i,j/(π

∗
t,i,j + π∗

t,i,j+1). We then use the resulting conditional risk-neutral belief streams to
calculate the excess movement statistics m∗

i,j − r∗i,j needed to implement our bounds. Our theoreti-
cal results restrict the expectation of m∗

i,j − r∗i,j conditional on return state sj or sj+1 being realized,
and we accordingly keep only observations for which π̃∗

Ti ,i,j
= 0 or 1 ex post; for example, if the to-

tal excess return on the market over the life of option contract i is -14%, then we keep only m∗
i,2 − r∗i,2

(the second state ranges from -20% to -15% return, so π̃∗
Ti ,i,2

= 0) and m∗
i,3 − r∗i,3 (π̃∗

Ti ,i,3
= 1).

Simplifying notation. To this point, we have taken care to denote conditional risk-neutral beliefs
π̃∗

t,i,j and excess movement m∗
i,j − r∗i,j so as to clarify that these statistics depend on the contract i

and state pair j. As we only use these conditional beliefs and excess movement statistics for the
remainder of the paper, however, in what follows we generally suppress the cumbersome depen-
dence on i and j and simply write π̃∗

t ≡ π̃∗
t,i,j and m∗ − r∗ ≡ m∗

i,j − r∗i,j. Similarly, we often drop the
“conditional” qualifier when referring in the text to conditional risk-neutral beliefs, and simply
call π̃∗

t (and m∗ − r∗) the belief (and excess movement) for contract i and state j (relative to j + 1).
Finally, it is useful to express our main statistic of interest, excess movement, as a single variable
rather than the difference between m∗ and r∗, and we accordingly define

X∗ ≡ m∗ − r∗.

5.2 Noise Estimation

As discussed in Proposition 6, we also wish to account for measurement error stemming from
possible market microstructure noise in our estimation.33 That result shows that unlike in the
classical errors-in-variables regression model (which leads to attenuation bias), measurement error

32This yields an additional de facto data filter, as we are effectively considering only option strikes with moneyness
between 0.8 and 1.2 (following, e.g., Constantinides, Jackwerth, and Savov, 2013). We have also experimented with
different definitions of the return space, such as (i) defining states in terms of option delta or (ii) using annualized
returns to define states ((29) uses non-annualized returns, as this admits comparisons between return states in terms of
percent wealth deviations). In all cases, such changes make very little difference for the results reported below.

33For example, transient demand pressure in the option market (Bollen and Whaley, 2004; Gârleanu, Pedersen, and
Poteshman, 2009) may cause variation in observed risk-neutral beliefs unrelated to the underlying index dynamics.
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in our case can increase the observed variation X∗ and thereby lead to an upward bias in the
estimated SDF slope required to rationalize the data. With noise described by π̂∗

t = π̃∗
t + ϵt,

Proposition 6 tells us that we must estimate the noise variance Var(ϵt) in order to eliminate this
bias in our estimation. We turn to a sample of high-frequency option prices to estimate the noise
variance in our risk-neutral beliefs data.

Specifically, we obtain minute-by-minute price quotes on S&P index options for a subset of
trading days directly from the CBOE. For each available option expiration date on each such
trading day, we recalculate the risk-neutral belief distribution at the end of each minute using
exactly the same procedure as described in Section 5.1. As this requires calculating 390 sets of risk-
neutral beliefs for each trading day (9:30 AM–4:00 PM), this procedure would be computationally
infeasible if applied to our entire sample of 5,537 trading days (each of which has an average of 11
available option expiration dates, generating 60,543 pairs of (t, T) combinations). We accordingly
select 30 trading days at random from within our available sample period, and use the minute-
by-minute quotes to calculate intraday risk-neutral distributions for these days. This yields an
intraday data set roughly twice as large as the original end-of-day data set.34

We then use tools from the literature on microstructure noise to estimate Var(ϵt) using these in-
traday data. The basic intuition for this estimation strategy — as described, for example, by Zhang,
Mykland, and Aït-Sahalia (2005) — is best understood by assuming temporarily that noise ϵt is
i.i.d., while the true π̃∗

t changes smoothly over time (i.e., ηt+h ≡ π̃∗
t+h − π̃∗

t → 0 and Var(ηt+h) → 0
as h → 0, as would be the case for an Itô process). Imagine calculating movement using the
observed beliefs, (π̂∗

t+h − π̂∗
t )

2, with less and less time h between consecutive observations. As
one decreases h to 0, the noise swamps the true variation: since (π̃∗

t+h − π̃∗
t )

2 → 0, we have
E[(π̂∗

t+h − π̂∗
t )

2] → 2Var(ϵt). Thus in this simple example, Var(ϵt) can be estimated by calculating
the quadratic variation in risk-neutral beliefs sampled at a high frequency.

In practice, one would expect the data to contain both non-i.i.d. noise ϵt and jumps in the true
process π̃∗

t , and it is desirable to use a noise estimation method that is robust to these features.
One such estimator for Var(ϵt) is the ReMeDI (“Realized moMents of Disjoint Increments”) esti-
mator proposed by Li and Linton (2021). This estimator effectively takes the average product of
disjoint increments of the observed process, (π̂∗

t − π̂∗
t−h)(π̂

∗
t − π̂∗

t+h).
35 The idea is that even if the

true process features jumps such that E[(π̃∗
t+h − π̃∗

t )
2] > 0, its increments over non-overlapping

windows are still approximately uncorrelated: for small h, E[(π̃∗
t − π̃∗

t−h)(π̃
∗
t − π̃∗

t+h)] ≈ 0. Li
and Linton (2021) show that this estimator is consistent for Var(ϵt) under general semimartingale
processes for π̃∗

t (that is, π̃∗
t can feature jumps but must be of bounded variation), and for quite

general dependent noise processes as long as the autocovariances for ϵt decay to 0 sufficiently

3430 × 390 × 11 ≈ 130,000 pairs of (t, T) combinations.
35More formally and specifically, our ReMeDI estimator (following the replication code provided kindly by Li and

Linton) is V̂ar(ϵt) = 1
Nϵ,n

∑
Nϵ,n−kn
i=2kn

(π̂∗
ti
− π̂∗

ti−2kn
)(π̂∗

ti
− π̂∗

ti+kn
), where Nϵ,n is the number of observations over a fixed

time span (in our case, one trading day) and kn is a tuning parameter, with kn, Nϵ,n → ∞ and kn/Nϵ,n → 0 as n → ∞.
We select kn for each return state using the algorithm in Section F.1 of the Online Appendix of Li and Linton (2021).
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quickly relative to the increment width (see their Theorem 4.1 for precise conditions).36 It also
performs well in simulations and empirical applications.

Using this ReMeDI estimator on our minute-by-minute data, we estimate Var(ϵt) = Var(ϵt,i,j)

separately for each combination of trading day t, expiration date Ti, and return state pair j in
our intraday sample.37 We must then match the noise estimates (which are obtained for only a
subsample of days) to the observed excess movement observations in our original data. The best
predictors of V̂ar(ϵt,i,j) are (i) state pair j (we see more noise for tail states) and (ii) the observed
risk-neutral probability of either sj or sj+1 being realized, Σ∗

t,i,j ≡ π∗
t,i,j + π∗

t,i,j+1 (conditional beliefs
are noisier when the underlying sum Σ∗

t,i,j is lower, as Σ∗
t,i,j enters into the denominator of π̃∗

t,i,j).
We accordingly partition Σ∗

t,i,j into 5-percentage-point bins ([0, 0.05), [0.05, 0.1], . . .), and then we

calculate the average noise σ̂ϵ,j,Σ ≡ V̂ar(ϵt,i,j) for each combination of state pair j and bin for Σ∗
t,i,j.

We can then match σ̂ϵ,j,Σ to each observed one-day excess movement observation X̂∗
t,t+1,i,j in our

original end-of-day data, based on that observation’s state j and total probability Σ∗
t,i,j. Finally,

we subtract 2σ̂ϵ,j,Σ from X̂∗
t,t+1,i,j to obtain a noise-adjusted estimate of one-day excess movement

following Proposition 6, and we sum these noise-adjusted one-day values over the entire contract
to obtain noise-adjusted estimates of X∗

i,j.

We discuss the magnitude of the noise estimates in the next subsection alongside descriptive
statistics for the excess movement values. The ReMeDI procedure also allows for estimation of
the intraday autocovariances of the noise ϵt. These autocovariances are estimated to be positive
for small lag values, but they die out quickly and are precisely estimated near zero for noise
observations more than an hour apart. This justifies the assumption in Proposition 6 that end-of-
day noise observations are uncorrelated, E[ϵtϵt+1] = 0, as ultimately we care about noise only to
the extent that it affects our excess movement statistics at a daily frequency.

Our main results in Section 5.4 use the noise-adjusted excess movement data. All standard
errors and confidence intervals are accordingly based on a block bootstrap procedure that accounts
explicitly for the sampling uncertainty in the above noise estimation and averaging procedure. See
Section 5.4 for details.

5.3 Risk-Neutral Beliefs: Descriptive Statistics

Before turning to our bounds, we first provide some summary statistics and plots describing the
risk-neutral beliefs and excess movement values observed in our data. Table 1 summarizes the
average excess movement values X∗ overall (across all interior state pairs and expiration dates)
and within particular subsamples. Excess movement is difficult to interpret without some nor-
malization; we should, for example, expect more movement as one increases the level of initial

36While jumps in the true process induce upward bias in a naïve noise estimator based on (π̂∗
t+h − π̂∗

t )
2, a positively

autocorrelated noise process can push in the other direction. The ReMeDI estimator addresses this issue by choosing
the increment window width (kn in Footnote 35) to be sufficiently wide even as one decreases the time h between
successive observations. The negative bias issue in the naïve estimator in fact seems quantitatively predominant in our
data, as the ReMeDI noise estimates are typically about 50% higher than when we implement the naïve estimator.

37For this exercise, to increase our available observations, we do not condition on the ex post state being sj or sj+1.
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uncertainty under Bayesian updating. The first two columns accordingly divide average excess
movement by average uncertainty resolution r∗. As discussed in Augenblick and Rabin (2021,
Section II.D), the resulting normalized statistic can be interpreted as the percent by which average
movement exceeds initial uncertainty and thus uncertainty resolution. (For example, a value of 1
corresponds to 100% more movement than uncertainty resolution.) These values are quite high in
our data: even for the noise-adjusted statistics, there is on average 123% more movement than ini-
tial uncertainty. The splits by bin show that these values decrease for return states in the middle of
the distribution. The beginning of the sample is characterized by high but noisy excess movement
statistics, but these averages remain high until the most recent subsample. Finally, higher priors
π̃∗

0 correspond with higher excess movement, which accords with our theoretical bounds.

The next two columns of Table 1 instead normalize X∗ by the average contract length T, so
that the resulting statistics can be interpreted as daily excess movement. To gain a rough under-
standing for the actual variation in risk-neutral beliefs corresponding to these values, consider a
pair of dates (t, t + 1) for which π̃∗

t+1 = 1 − π̃∗
t , so that there is no uncertainty resolution from t to

t + 1. One-day excess movement and movement therefore coincide, so that excess movement is
equal to squared change in beliefs; for example, the noise-adjusted sample average of 0.0038 cor-
responds to a raw change of

√
0.0038 ≈ 0.06 (continuing the example above, π̃∗

t = 0.47, and then
π̃∗

t+1 = 0.53). Under this normalization, there is now no clear pattern for average excess move-
ment across bins, as the more-extreme return states also tend to have longer contract lengths.38

This pattern is in fact quite consistent in our data: longer contract lengths tend to coincide with
more excess movement, as risk-neutral beliefs bounce up and down over the length of a contract.
This general pattern is inconsistent with the null of Bayesian updating, which tells us that excess
movement in subjective beliefs should not depend at all on the horizon at which uncertainty is
resolved. That said, for the splits by date and by prior, the basic patterns discussed above are still
present under the normalization by T in the third and fourth columns of average values.

Comparing the raw and noise-adjusted values makes clear that even though there is substan-
tial excess movement in the noise-adjusted statistics, noise does represent a meaningful portion
(about 1/3) of the raw excess movement data. The difference between the raw and noise-adjusted
overall average for X∗/T is 0.0059 − 0.0038 ≈ 0.002, so V̂ar(ϵt) ≈ 0.002/2 = 0.001. The standard
deviation of noise is thus roughly 0.03 per day.

We next summarize the excess movement data visually in Figure 3. The blue lines show local
averages of raw (dashed) and noise-adjusted (solid) excess movement in the data as one varies the
prior π̃∗

0 . The gray lines are the theoretical bounds (analogous to those plotted in Figure 2) for dif-
ferent values of ϕ. The figure thus allows for a direct comparison of the theory and the data, taking
us one step closer to our main results. Consistent with the theoretical bounds, excess movement
is highest for intermediate risk-neutral prior values, and priors above 0.5 tend to generate greater
excess movement than priors below 0.5. But the noise-adjusted statistics are quite high relative

38Recall that an observation for a given return-state pair is only included conditional on the realized return being
in one of those two states. Longer contracts are likelier to generate greater absolute returns, explaining the positive
covariance between absolute return bin and average contract length.
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to the theoretical bounds across all priors, and in fact above the ϕ → ∞ bound for priors below
about 0.7. This provides a qualitative visual preview of our main results, which we turn to now.

5.4 Main Results

We turn now to the empirical implementation of our theoretical bounds. Given our sample of
noise-adjusted excess movement statistics and corresponding risk-neutral priors, each possible
value of ϕ leads to a residual excess movement value ei(ϕ) = X∗

i − bound(π̃∗
0,i, ϕ) for a given

contract i, where bound(π̃∗
0,i, ϕ) = π̃∗2

0,i (1 − 1/(π̃∗
0,i + ϕ(1 − π̃∗

0,i))).

We first present sample averages and standard errors for these residual statistics for a range
of values of ϕ, both for each individual return state pair j and aggregated across all interior state
pairs. We calculate standard errors using a block bootstrap with a block length of one calen-
dar quarter, with each block containing (i) raw excess movement statistics and priors for all con-
tracts expiring in a given quarter, and (ii) noise variance estimates for any trading days in our
intraday sample that fall in the same quarter. For each resampled data set, we use the set of
(X∗

i , π̃∗
0,i, {V̂ar(ϵt)}) values to recalculate noise-adjusted excess movement and residual values

ei(ϕ). The bootstrap accordingly accounts for sampling uncertainty in all statistics used to cal-
culate noise-adjusted excess movement and ei(ϕ). We conduct 10,000 such draws, from which we
calculate standard errors as the standard deviation of ei(ϕ) across bootstrap draws.

These residual statistics are presented in Table 2. Since E[ei(ϕ)] = 0 under Bayesian updating
given a correctly specified value ϕ, these statistics tell us how far the residuals are from being con-
sistent with any hypothesized null value of ϕ. Positive numbers correspond to the data exhibiting
too much excess movement to be consistent with a given value of ϕ, and vice versa for negative
numbers. The overall estimates are positive through ϕ = 50 (corresponding to relative risk aver-
sion of approximately γ ≈ (50 − 1) × 20 = 980, from Proposition 5). For the individual return
state pairs, the average residuals are positive even for ϕ = ∞ for all state pairs aside from j = 5
and j = 6 (the middle of the return distribution). Statistical significance remains an open question,
though, and we return to this just below.

We turn now to our main results for the lower bound of the SDF slopes
{

ϕj
}

j (for individual
return-state pairs) and ϕ (overall across all state pairs, excluding the extreme state pairs). These
are attained by finding the ϕ such that the average residual value is zero, so that we are effec-
tively finding the root of the function traced out in Table 2. Table 3 presents these results. We
calculate one-sided confidence intervals using a studentized bootstrap procedure (with the same
block bootstrap as for Table 2); see Appendix B.5 for details. The table presents the lower bounds
of these one-sided intervals, which can be interpreted as the minimal value of ϕ (or γ) that is not
rejected at the 0.05 level.

For brevity and ease of interpretation, we move straight to the risk-aversion estimates. The
overall minimal γ̂ is greater than 1,000, indicating that only extremely high values of risk aversion
are capable of rationalizing the large amount of observed excess movement in risk-neutral beliefs.
We can reject an overall risk-aversion value below γ = 242 at the 5% level. Most of the point
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estimates for the individual states are ∞ (i.e., no amount of risk aversion is capable of rationalizing
the large degree of excess movement observed in the data); the exception are the two state pairs
with midpoint 0% and 5%, respectively, as expected given the results in Table 2. These two states
still have very high confidence-interval lower bounds for γ of 48 and 44, respectively. A few other
states have finite lower bounds for their confidence intervals, but the numbers are nonetheless
unreasonably high in these cases.

In light of Proposition 3, we conclude that belief revisions are excessively volatile in all cases
for which the data cannot be rationalized with finite risk aversion, as these findings cannot in
general be produced solely by miscalibrated priors. Further, the large local risk-aversion bounds
at every point of the return distribution and the extremely large overall estimates (which use only
beliefs over the excess-return states between -20% and +20%) imply that no feature of the true
underlying data-generating process (e.g., volatility in the left tail of the return distribution) can by
itself be responsible for these findings of excess belief volatility.

6. Interpretation and Robustness of Results

We now consider a reduced-form analysis to examine the features of the observed data driving
the main results presented in the previous section, as well as the robustness of these results to
possible misspecification.

6.1 What Macro Statistics Are Correlated with Excess Belief Movement?

We now consider reduced-form evidence on the macroeconomic correlates of excess risk-neutral
belief movement. Table 4 presents a set of time-series regressions to this end. The dependent
variable in each case is the average one-day value of excess belief movement m∗

t−1,1,i,j − r∗t−1,t,i,j by
quarter (where the average is calculated across all available expiration dates and state pairs, aside
from the extreme state pairs, using all trading dates within a quarter). We aggregate to the quar-
terly level given the frequency of data available for the regressors we consider, and we use quar-
terly averages of these independent variables when data is available at a higher frequency. Aside
from the constant and time trend, all variables (both dependent and independent) are normalized
to have unit standard deviation for purposes of interpretation, and we present heteroskedasticity-
and autocorrelation-robust t-statistics and p-values using the equal-weighted periodogram esti-
mator of the long-run variance; see Lazarus, Lewis, and Stock (2021) for results on the optimality
properties of this estimator.

Moving from left to right across the set of regressions considered, the first column considers the
comovement of excess belief movement with commonly used measures of liquidity and limits to
arbitrage in asset markets. As a simple proxy for option-market liquidity, we use the quarterly av-
erage bid-ask spread across all S&P 500 options in our available OptionMetrics sample, where the
average is weighted by the trading volume of each option.39 For our measure of limits to arbitrage,

39This follows, among others, Amihud and Mendelson (1986) and Chordia, Roll, and Subrahmanyam (2008), but
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we follow recent literature in using seasonally adjusted quarterly changes in broker-dealer lever-
age — measured using the flow of funds accounts published by the Federal Reserve — to proxy
for financial constraints faced by arbitrageurs.40 The coefficients on both regressors are both eco-
nomically and statistically small. This holds true as well in the other regressions with additional
regressors. While these results are reduced-form, this nonetheless provides additional suggestive
evidence that option-market-specific factors (or related mismeasurement of risk-neutral beliefs)
are not the main drivers of our results.

The next column adds measures related to volatility and uncertainty to the regressions. As a
proxy for implied volatility, we use the quarterly average of the CBOE volatility index, or VIX.41

We also consider the Baker, Bloom, and Davis (2016) measure of economic policy uncertainty. The
VIX generally has a strong positive relationship with quarterly excess belief movement, while the
uncertainty index has an insignificant relationship aside from column (4). The contemporaneous
positive relationship of VIX with belief movement is unsurprising, as this would be expected both
under the null of RE and under a non-RE alternative. Under RE, Proposition 1 and Figure 2 show
that excess belief movement is maximized in expectation for interior values of the conditional
prior π̃∗

0i ,i,j
, and higher risk-neutral volatility leads to a more-dispersed distribution and therefore

conditional risk-neutral beliefs closer to this maximand across the entire belief distribution. Under
a non-RE alternative, it is intuitive that greater implied volatility would correspond with greater
excess variation in beliefs. Thus these results provide further evidence that our measure of belief
movement is in fact reflective of “true” excess volatility.

The third column then considers statistics related to index returns and valuation. We consider
both the rolling 12-month S&P 500 return and the index’s price to 10-year earnings ratio, also re-
ferred to as the cyclically adjusted price-earnings ratio (Campbell and Shiller, 1988; Shiller, 2000);
data for the latter is obtained via Robert Shiller’s website. We consider 12-month returns to ac-
count for possible extrapolation-related excess volatility,42 and cyclically adjusted price-earnings
for valuation-related return predictability.43 Both measures are significantly positively related to
excess movement. But one anomaly is that these positive relationships are with respect to the
signed (rather than absolute) values of the regressors, whereas extrapolation-based explanations
of excess volatility should in theory be symmetric with respect to over- versus undervaluation.
One possibility is that the inclusion of the VIX accounts for such extrapolation on the downside
(i.e., when VIX is high and past returns are low), and indeed excluding the VIX renders the coef-
ficients on the absolute valuation measures positive (also unreported).

we might also wish to consider more direct proxies for the return impact of a transaction, as used, e.g., by Pástor and
Stambaugh (2003). Pástor and Stambaugh also discuss why trading volume is inappropriate to use as a measure of
liquidity, though in unreported results we find that it is also uncorrelated with excess belief movement.

40This measure is proposed and examined by Adrian, Etula, and Muir (2014), Adrian and Shin (2014), and Cho
(2018), following theory developed by Shleifer and Vishny (1997) and Gromb and Vayanos (2002).

41While widely used, the VIX in fact measures the risk-neutral entropy rather than variance of the distribution of
returns; see Martin (2017). Martin shows that a measure of risk-neutral variance, which he terms SVIX, generally
tracks the VIX closely, so we use the VIX for simplicity.

42This measure is used, for example, by Greenwood and Shleifer (2014) in related analysis.
43Again see, e.g., Campbell and Shiller (1988).
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Finally, column four includes a time trend, which is small but negative, as suggested by Table 1.
The R2 value for this regression is 0.73, indicating that the statistics we consider account for much
of the variation in excess belief movement at the quarterly frequency.

6.2 Simulation Evidence: Are Results Robust to Violations of CTI?

Finally, we conduct a set of numerical simulations to consider the robustness of our empirical
results to violations of the assumption of conditional transition independence. As noted in Sec-
tion 3.2, the habit-formation model of Campbell and Cochrane (1999) violates CTI, and we ac-
cordingly consider this model for a first pass at understanding the possible implications of such
a violation. The theoretical model is as presented in Appendix B.3, and we adopt the calibra-
tion used by Campbell and Cochrane (1999) in the version of their benchmark model with im-
perfect correlation between consumption and market-dividend growth (where we convert their
monthly-frequency parameters to their equivalent daily values). Appendix B.6 contains details of
this calibration and our solution procedure and simulations.

Our simulations address two questions. First, does the violation of CTI in the Campbell–
Cochrane model generate enough variation in the model-implied risk-neutral beliefs over market
returns to yield excess movement of the magnitude observed in the data? If so, then this would
indicate that our empirical results may plausibly be driven by changes in expectations of marginal
utility across return states rather than excess variation in the subjective beliefs themselves. Second,
when we apply our theoretical bounds to the simulated data, do they provide a valid lower bound
on the slope of the SDF across return states despite the model’s violation of CTI? This provides
evidence on the robustness of the bounds themselves to such a violation.

Conducting these simulations requires calculating subjective beliefs for returns over many fu-
ture horizons as a function of the surplus-consumption state, as well as the set of expected SDF
slopes {ϕt,i,j}t,i,j in order to translate the subjective beliefs to risk-neutral beliefs. The SDF slope
is again given by ϕt,i,j = Et[MTi /Mt | Rm

Ti
= sj]/Et[MTi /Mt | Rm

Ti
= sj+1], so calculating this value

in turn requires solving for the joint distribution over date-Ti realizations of the SDF and the
market return. This is an infinite-dimensional object, so for dimension reduction we iterate back-
wards using a projection-based approach.44 We consider 90-day option-expiration horizons (i.e.,
Ti − 0i = 90), and after solving the model for the price-dividend ratio, we then solve for the joint
distribution for returns (from t to Ti) and the SDF at every point in a gridded state space as of
t = Ti − 1, then t = Ti − 2, and so on; see Appendix B.6 for further details. As an example of the
output of this solution procedure, ?? in that appendix shows the joint CDF for the market return
from 0i to Ti and the date-Ti SDF, evaluated as of t = 0i and with surplus consumption at its
steady-state value, Sc

0i
= Sc.

We then conduct 25,000 simulations of the model, where each simulation runs from 0i to Ti, and
for which the initial surplus-consumption state is drawn from its unconditional distribution. For

44See Judd (1992), or see Algan, Allais, Den Haan, and Rendahl (2014) for a recent survey, though neither considers
solutions for belief distributions.
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each period in each simulation, we evaluate risk-neutral beliefs over return states at every point
in the space Sbaseline as used above and use these to calculate the set of conditional risk-neutral
beliefs {π̃∗

t,i,j}j. Further, we store the associated set of expected SDF slopes {ϕt,i,j}j. We can thus
calculate the true average values of these objects of interest, ϕ0i ,j ≡ Ê[ϕ0i ,i,j], where Ê[·] denotes
the expectation over all simulations i and we have fixed the state pair j. And using the risk-
neutral beliefs series, we can naïvely apply our theoretical bound in Proposition 4 to obtain lower-
bound estimates for those SDF slopes and compare those estimates to the true simulated values.
Relative risk aversion for this model’s representative agent does not match the definition used in
Proposition 5, as this agent’s utility does not depend only on terminal wealth (see Campbell and
Cochrane, 1999, Section IV.B), so we accordingly present estimates for the SDF slope rather than
for relative risk aversion.

Figure 4 presents these simulation results. The blue circles show the true simulated average
values of the SDF slopes ϕ0i ,j, while the red triangles show the naïve lower-bound estimates of
these values using our theoretical bound on the simulated risk-neutral beliefs data. Considering
the first question posed at the outset of this subsection, it is clear in both cases that these SDF-
slope values are far below those obtained from our empirical estimates above, so the model does
not replicate the observed variation in risk-neutral beliefs even with the violation of CTI.45

Also evident in the figure is that, aside from the estimates for the extreme state pairs (s1, s2)

and (sJ−1, sJ ), the theoretical bounds yield estimates below the true averages in all cases despite
the violation of CTI, and these lower bounds are generally fairly tight. (Following the discussion
in Section 5.1, it is unsurprising that the violation of CTI is severe enough for the extreme states
that the bounds are no longer valid in these two cases.)

We can understand the validity of the theoretical bound for the interior states by way of Propo-
sition 7, which shows that the bounds hold approximately for violations of CTI for which the ϕt,i,j

process is close to a martingale. In our simulations, the values |Ê[ϕt+1,i,j − ϕt,i,j]| for different state
pairs j range from a minimum of 0.00002 to a maximum of 0.00011, which is not large enough to
invalidate the theoretical bounds. (These are figures for the interior state pairs; the figures for the
extreme state pairs are more than twice as large.)

Thus the analysis above is robust to the violation of the assumption of CTI considered in these
simulations. This is of course only a single illustrative example of a possible violation of CTI, so
further work is needed to address other possible violations.46

45It is also the case that these SDF slopes imply lower risk-aversion values than might be expected for the Campbell–
Cochrane model, but this arises due to the fact that these are slopes over the index value (and not, e.g., the price-
dividend ratio), and that this index does not correspond to the wealth portfolio over the agent’s consumption stream.

46For example, we are currently considering violations arising from certain forms of stochastic volatility shocks (see
Footnote 23), which some literature argues are important for matching features of the option-price data; see, e.g., Chabi-
Yo (2012) and Christoffersen, Heston, and Jacobs (2013), though see also Jones (2006) for an alternative perspective.

38



7. Conclusion

We consider a general theoretical framework in which we show that the assumption of rational ex-
pectations imposes testable restrictions on the time variation in risk-neutral beliefs as expressed in
asset prices. Unlike in much of the previous literature, these results do not require any restrictive
assumptions on the data-generating process for prices or returns, and they allow for time varia-
tion in discount rates. Further, by using asset prices, we do not require direct measures of beliefs
over future outcomes, and our bounds exploit intertemporal consistency requirements of beliefs
under Bayes’ rule without the need for the econometrician to know what agents’ beliefs “should”
be under RE.47

When taken to the data, these bounds give direct evidence on the minimum value of risk aver-
sion required to rationalize the observed behavior of risk-neutral beliefs. Using risk-neutral beliefs
over the future value of the S&P 500 index measured from index-option data, we find that very
high risk aversion is needed to rationalize the variation in these beliefs, indicating that the RE as-
sumption is quite restrictive; in some cases, no amount of risk aversion is capable of rationalizing
this belief movement. These results appear to be driven largely by excessive volatility of beliefs
over the index value at distant horizons.

Finally, an additional direction for future work is to consider the application of our theoreti-
cal and empirical framework to different asset classes. Long-term interest rates have experienced
spells of significant volatility in recent years, as noted by Hanson and Stein (2015) and Farhi and
Werning (2017), and the forward premium puzzle in foreign-exchange markets (Hansen and Ho-
drick, 1980; Fama, 1984) suggests that beliefs in these markets may also be worth examining fur-
ther. More speculatively, the possibility of excess belief volatility in markets in which risk-neutral
beliefs cannot be directly measured has additional implications for real quantities. The unemploy-
ment volatility puzzle documented by Shimer (2005) can be recast as a puzzle of excess volatility in
the value to an employer of a filled vacancy, an idea pursued by Hall (2017) and Kilic and Wachter
(2018); meanwhile, a literature including Iacoviello (2005), He and Krishnamurthy (2013), and
Jones, Midrigan, and Philippon (2017) aims to match business-cycle dynamics using models with
collateral constraints tied to volatile housing values. The extent to which these swings arise in the
data due to excess belief movement, as documented for equity-index prices in this paper, would
thus inform our understanding of the causes underlying important macroeconomic dynamics,
and we aim to continue to pursue these questions in future work.

47The fact that econometricians testing expectations have no agreed-upon correct model of the world might itself be
taken as a priori evidence against the RE hypothesis, but it is of course still possible that agents have correct beliefs on
average; we accordingly seek to explicitly measure how restrictive the RE assumption is in the data.

39



Appendix

A. Proofs

Proofs for Sections 2 and 3

Proof of Lemma 1. Note that E[rt1,t2 ] = E[ut1 − ut2 ] is finite under any process since ut ∈ [0, 0.25],
so the expectation E[mt1,t2 ] must exist as well under the statement given in the lemma, which we
prove now. Consider the conditional expectation of the first term in the movement sum:

Et1 [mt1,t1+1] = Et1 [(πt1+1 − πt1)
2] = Et1 [π

2
t1+1]− 2Et1 [πt1+1]πt1 + π2

t1
(A.1)

= Et1 [π
2
t1+1]− 2πt1 πt1 + π2

t1
(A.2)

= Et1 [π
2
t1+1]− π2

t1
+ πt1 − Et1 [πt1+1] (A.3)

= Et1 [(1 − πt1)πt1 − (1 − πt1+1)πt1+1] = Et1 [rt1,t1+1], (A.4)

where the second and third lines follow from the martingale property of beliefs under Bayes’
rule (see Footnote 7) and the last line rearranges. Repeating and summing across all periods
from t1 to t2 and applying the law of iterated expectations yields Et1 [mt1,t2 ] = Et1 [rt1,t2 ], implying
E[mt1,t2 ] = E[rt1,t2 ].

Proof of Equation (20). This follows from a discrete-state application of Breeden and Litzenberger
(1978), or see Brown and Ross (1991) for a general version. To review why the stated equation
holds, the risk-neutral pricing equation (17) can be written for options as

qm
t,K =

1

R f
t,T

E∗
t [max{Vm

T − K, 0}] = 1

R f
t,T

[
∑

j : Kj⩾K

(Kj − K)P∗
t (V

m
T = Kj)︸ ︷︷ ︸

P∗
t (Rm

T =sj)

]
. (A.5)

This implies that for two adjacent return states sj−1 and sj,

qm
t,Kj

− qm
t,Kj−1

=
1

R f
t,T

[
∑
j′⩾j

(Kj′ − Kj)P∗
t (V

m
T = Kj′)− ∑

j′⩾j−1
(Kj′ − Kj−1)P∗

t (V
m
T = Kj′)

]
(A.6)

=
1

R f
t,T

[
∑
j′⩾j

(Kj−1 − Kj)P∗
t (V

m
T = Kj′)

]
=

1

R f
t,T

(Kj−1 − Kj)
[
1 − P∗

t (V
m
T < Kj)

]
.

(A.7)

Rearranging,

R f
t,T

qm
t,Kj

− qm
t,Kj−1

Kj − Kj−1
= P∗

t (V
m
T < Kj)− 1. (A.8)
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Repeating this analysis for the pair sj and sj+1, we obtain R f
t,T

qm
t,Kj+1

−qm
t,Kj

Kj+1−Kj
= P∗

t (V
m
T < Kj+1) − 1.

Subtracting the preceding equation from this equation and using P∗
t (Rm

T = sj) = P∗
t (V

m
T = Kj)

yields equation (20).

For Lemma A.1 and its proof, see below.

Proof of Example 1. We prove the statement separately for the two assumptions on the form of
the utility function:

(i) Time-separable utility: Denote Vm
j ≡ Vm

0 sj and Vm
j+1 ≡ Vm

0 sj+1, so the event Rm
T = sj is equiv-

alent to Vm
T = Vm

j given F0, and similarly for sj+1 and Vm
j+1. Since dVm

T /dAT > 0 (and with
P(Vm

T = Vm
j ) > 0, P(Vm

T = Vm
j+1) > 0), there exist unique values aj and aj+1 such that

Vm
T = Vm

j if and only if AT = aj, and Vm
T = Vm

j+1 if and only if AT = aj+1. Then with
MT/Mt = βT−tU′(CT)/U′(Ct) as in (15) given the assumptions for this example, we have

ϕt,j ≡
Et[MT/Mt | Rm

T = sj]

Et[MT/Mt | Rm
T = sj+1]

=
Et[MT/Mt | AT = aj]

Et[MT/Mt | AT = aj+1]
(A.9)

=
U′(CT(aj))

U′(CT(aj+1))
, (A.10)

which is almost surely constant, as required for CTI to hold.

(ii) Epstein–Zin (1989) utility: The Epstein–Zin preference recursion is

Ut =

(1 − β)C
1− 1

ψ

t + β
(

Et

[
U1−γ

t+1

]) 1− 1
ψ

1−γ


1

1− 1
ψ

. (A.11)

It can be shown (e.g., Campbell, 2018, p. 178) that given such preferences the SDF evolves
according to

Mt+1

Mt
= β

(
Ct+1

Ct

)− 1
ψ

 Ut+1

Et

[
U1−γ

t+1

] 1
1−γ


−
(

γ− 1
ψ

)
, (A.12)

which gives that

MT

Mt
= βT−t

(
CT

Ct

)− 1
ψ

T−1

∏
τ=t

 Uτ+1

Eτ

[
U1−γ

τ+1

] 1
1−γ


−
(

γ− 1
ψ

)
(A.13)
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= βT−t
(

CT

Ct

)−γ T−1

∏
τ=t

(
Uτ+1

Cτ+1

)−
(

γ− 1
ψ

)
Eτ

[(
Cτ+1

Cτ

)1−γ (Uτ+1

Cτ+1

)1−γ
] γ− 1

ψ
1−γ

. (A.13′)

Denote aj and aj+1 as in part (i). From the first representation of MT/Mt, equation (A.13),
it follows immediately that with i.i.d. consumption (or i.i.d. innovations to an otherwise
predetermined consumption path),

ϕt,j =
Et[MT/Mt | AT = aj]

Et[MT/Mt | AT = aj+1]
(A.14)

=

(
CT(aj)

CT(aj+1)

)− 1
ψ
(

UT(aj)

UT(aj+1)

)−
(

γ− 1
ψ

)
, (A.15)

which is almost surely constant given the definition (A.11) and that ET[U
1−γ
T+1] is constant

given the i.i.d. assumption.

When consumption growth Ct/Ct−1 is i.i.d., note that the scale independence of Epstein–Zin
utility in (A.11) allows us to guess and verify that Ut/Ct is constant almost surely. Then from
the second representation of MT/Mt, equation (A.13′), we have in this case that

ϕt,j =

(
CT(aj)

CT(aj+1)

)−γ

, (A.16)

completing the proof.

Proof of Example 2.

(i) Given that the postulated agent is unconstrained, her intertemporal marginal rate of substi-
tution β(Ct+1/Ct)−γ serves as a valid measure of Mt+1/Mt by her Euler equation, so

ϕt,j =
Et[C

−γ
T | Vm

T = Vm
j ]

Et[C
−γ
T | Vm

T = Vm
j+1]

, (A.17)

with Vm
j and Vm

j+1 as defined in the proof of Example 1. With (Ct, Dt) i.i.d. (and therefore
also Vm

t i.i.d.), this value must be constant for 0 ⩽ t < T.

(ii) Given i.i.d. consumption growth and dividend growth, the market price-to-dividend ratio
Vm

t /Dt = Et[∑∞
τ=1 βτ(Cτ/Ct)−γ(Dτ/Dt)] must be constant, so the event Vm

T = Vm
j is equiv-

alent to DT = Dj for some value Dj (and similarly for j + 1). We thus have

ϕt,j =
Et[(CT/Ct)−γ | DT/Dt = Dj/Dt]

Et[(CT/Ct)−γ | DT/Dt = Dj+1/Dt]
(A.18)
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=
Et[(CT/Ct)−γ | dT − dt = dj − dt]

Et[(CT/Ct)−γ | dT − dt = dj+1/dt]
, (A.19)

where dt ≡ log(Dt) (and similarly for dj and dj+1). For the numerator,

Et[(CT/Ct)
−γ | dT − dt = dj − dt] = exp

{
log
(
Et[(CT/Ct)

−γ | dT − dt = dj − dt]
)}

(A.20)

= exp
{

Et[−γ(cT − ct) | dT − dt = dj − dt] (A.21)

+
1
2

γ2 Vart(cT − ct | dT − dt = dj − dt)
}

, (A.22)

where ct ≡ log(Ct), and similarly for the denominator with respect to dj+1. By assumption,(
∆ct+1

∆dt+1

)
i.i.d.∼ N

((
µc

µd

)
,

(
σ2

c ρσcσd

ρσcσd σ2
d

))
, (A.23)

and thus for cT − ct = ∑T
τ=t+1 ∆cτ, we have(

T

∑
τ=t+1

∆cτ

∣∣∣∣∣ T

∑
τ=t+1

∆dτ = dj − dt

)
(A.24)

∼ N
(
(T − t)µc + ρ

σc

σd

(
(dj − dt)− (T − t)µd

)
, (T − t)σ2

c (1 − ρ2)

)
. (A.25)

Thus Vart(cT − ct | dT − dt = dj − dt) = Vart(cT − ct | dT − dt = dj+1 − dt). Further, for
j′ = j, j + 1, we have Et[cT − ct | dT − dt = dj′ − dt] = (T − t)µc + ρ σc

σd
((dj′ − dt)− (T − t)µd),

and therefore

ϕt,j = exp
{
−γρ

σc

σd
(dj − dj+1)

}
, (A.26)

which is a constant.48

Proof of Example 3. Gabaix (2012, Theorem 1) shows that

Vm
t =

Dt

1 − e−βm

(
1 +

e−βm−h∗ Ĥt

1 − e−βm−ϕH

)
, (A.27)

where h∗ ≡ log(1 + H∗) and βm ≡ β − gd − h∗ (where β is the agent’s time discount factor).
Thus for any value s and given F0, there exists some value ds and function f (ds, ĤT), which is
strictly increasing in the first argument and strictly decreasing in the second argument, such that,

48One may note that given that each cumulant of a sum of i.i.d. variables scales with the number of variates being
summed, the above arguments would apply as well to more general (non-log-normal) distributions, but we consider
the log-normal case for simplicity.

43



by Bayes’ rule,

P0

(
T

∑
t=1

1{disastert} > 0

∣∣∣∣∣ Rm
T ⩾ s

)
(A.28)

=
P0

(
Rm

T ⩾ s | ∑T
t=1 1{disastert} > 0

)
P0

(
∑T

t=1 1{disastert} > 0
)

P0(Rm
T ⩾ s)

(A.29)

=
P0

(
DT ⩾ f (ds, ĤT)

∣∣∣ ∑T
t=1 1{disastert} > 0

)
P0

(
∑T

t=1 1{disastert} > 0
)

P0

(
DT ⩾ f (ds, ĤT)

) . (A.30)

Note now that (i) the innovation to Ĥt+1 is independent of the disaster realization; (ii) Ft+1 (the
exponential of the disaster shock to Dt) has support [0, 1]; and (iii) Pt(εd

t+1 ⩾ ϵ) = o(e−ϵ2
) as

ϵ → ∞.49 Thus P0(DT ⩾ f (ds, ĤT) | ∑T
t=1 1{disastert} > 0) = o(P0(DT ⩾ f (ds, ĤT))) as ds → ∞,

from which the first statement given in the example follows. Denote the value δ in that statement
by δ = δ0. Then it follows immediately that for any t > 0 (with t < T), for any δt > 0, there exists
an s such that Pt(∑T

τ=1 1{disastert} > 0 | Rm
T ⩾ s) < δt asymptotically P0-a.s. as δ0 → 0.

Thus moving to the second statement in the example, given a value δt > 0, consider sj, sj+1

large enough that Pt(∑T
τ=1 1{disastert} > 0 | Rm

T ∈ {sj, sj+1}) < δt. We then have from (25) that

ϕt,j =
Et[MT | Rm

T = sj]

Et[MT | Rm
T = sj+1]

(A.31)

=

Et[MT | Rm
T = sj, ∑T

τ=1 1{disasterτ} = 0]Pt(∑T
τ=1 1{disasterτ} = 0 | Rm

T = sj)

+ Et[MT | Rm
T = sj, ∑T

τ=1 1{disasterτ} > 0]Pt(∑T
τ=1 1{disasterτ} > 0 | Rm

T = sj)

Et[MT | Rm
T = sj+1, ∑T

τ=1 1{disasterτ} = 0]Pt(∑T
τ=1 1{disasterτ} = 0 | Rm

T = sj+1)

+ Et[MT | Rm
T = sj+1, ∑T

τ=1 1{disasterτ} > 0]Pt(∑T
τ=1 1{disasterτ} > 0 | Rm

T = sj+1)

(A.32)

=
Et[MT | Rm

T = sj, ∑T
τ=1 1{disasterτ} = 0](1 −O(δt)) +O(δt)

Et[MT | Rm
T = sj+1, ∑T

τ=1 1{disasterτ} = 0](1 −O(δt)) +O(δt)
(A.33)

=
Et[MT | Rm

T = sj, ∑T
τ=1 1{disasterτ} = 0]

Et[MT | Rm
T = sj+1, ∑T

τ=1 1{disasterτ} = 0]
+O(δt). (A.34)

Note that the fraction in the last expression is constant almost surely given that conditional on

49To see why point (iii) holds, denote σd ≡ Var(εd
t ) and then note that

∫ ∞
ϵ exp(−x2/(2σ2

d ))/
√

2πσ2
d dx <∫ ∞

ϵ (x/ϵ) exp(−x2/(2σ2
d ))/

√
2πσ2

d dx = σd exp(−ϵ2/(2σ2
d ))/(

√
2πϵ). A similar calculation can be used to derive

a lower bound for the upper tail of the normal CDF. Then applying the previous upper-bound calculation to
P0(DT ⩾ f (ds, ĤT) | ∑T

t=1 1{disastert} > 0) and the lower-bound calculation to P0(DT ⩾ f (ds, ĤT)), it follows that
P0(DT ⩾ f (ds, ĤT) | ∑T

t=1 1{disastert} > 0)/P0(DT ⩾ f (ds, ĤT)) = o(1), as stated, since the distribution of the value
in the denominator is shifted to the right relative to the distribution of the value in the numerator given points (i)–(ii).
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∑T
t=1 1{disastert} = 0, the conditions from Example 1 hold. Thus denoting

ϕj ≡
E0[MT | Rm

T = sj, ∑T
t=1 1{disasterτ} = 0]

E0[MT | Rm
T = sj+1, ∑T

t=1 1{disasterτ} = 0]
, (A.35)

we have ϕt,j = ϕj +O(δt). Since we can take δt → 0 asymptotically P0-a.s. as δ0 → 0, we have
ϕt,j = ϕj + op(1) for any sequence of values δ = δ0 → 0.

Proof of Example 4. As in Campbell and Cochrane (1999), the SDF evolves according to

Mt+1

Mt
= β

(
Ct+1

Ct

)−γ (Sc
t+1

Sc
t

)−γ

, (A.36)

with terms defined as in Appendix B.3, and thus
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=
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1 + λ(sc

t+τ)
)

εt+τ+1

) ∣∣∣ Rm
T = sj+1

] (A.37)

=
E
[

exp
(

∑T−t−1
τ=0 −γ

(
1 + λ(sc

t+τ)
)

εt+τ+1

) ∣∣∣ Rm
T = sj, θt

]
E
[

exp
(

∑T−t−1
τ=0 −γ

(
1 + λ(sc

t+τ)
)

εt+τ+1

) ∣∣∣ Rm
T = sj+1, θt

] .

Additional Lemmas Used in Proofs for Section 4

Before proceeding to the proofs of our main results, we provide three additional lemmas that are
useful in proving those results. As usual, we assume throughout that rational expectations holds.

LEMMA A.1. For some return-state pair (sj, sj+1), with P̃ ≡ P(· | Rm
T ∈ {sj, sj+1}) as per (23), define a

new pseudo-risk-neutral measure P̃⋄ by

dP̃⋄

dP̃

∣∣∣∣∣
Ft

=
π̃∗

t,j

π̃t,j
1{Rm

T = sj}+
1 − π̃∗

t,j

1 − π̃t,j
1{Rm

T = sj+1}. (A.38)

Denote the conditional expectation under P̃⋄ by Ẽ⋄
t [ · ]. If conditional transition independence holds for the

return-state pair (sj, sj+1), and Pt(Rm
T ∈ {sj, sj+1}) > 0, we have that P̃⋄ serves as a martingale measure

for the risk-neutral belief in the sense that

π̃∗
t,j = Ẽ⋄

t [π
∗
t+1,j]. (A.39)

We conclude from Lemma 1 that for t1, t2 > t1,

Ẽ⋄
t1
[m∗

t1,t2,j] = Ẽ⋄
t1
[r∗t1,t2,j], (A.40)
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where m∗
t1,t2,j and r∗t1,t2,j are as defined in Definitions 2–3.

Proof of Lemma A.1. From (24), we have after some algebra that

π̃∗
t,j

π̃t,j
=

ϕj

1 + π̃t,j(ϕj − 1)
, (A.41)

1 − π̃∗
t,j

1 − π̃t,j
=

1
1 + π̃t,j(ϕj − 1)

. (A.42)

Note therefore that P̃⋄ is absolutely continuous with respect to P̃.

Recall that Ft = σ(θτ, 0 ⩽ τ ⩽ t), where σ(θτ, 0 ⩽ τ ⩽ t) is the σ-algebra generated by
the stochastic process {θt} and θt ∈ Θ is the date-t signal vector. Denote NΘ ≡ |Θ|, so that
θt ∈ {θ1, θ2, . . . , θNΘ} = {θk}k=1,...,NΘ , and further denote

pt,k ≡ P̃t(θt+1 = θk), (A.43)

ϱt,k ≡ P̃t(Rm
T = sj | θt+1 = θk), (A.44)

ϱ∗t,k ≡ P∗
t (Rm

T = sj | θt+1 = θk, Rm
T ∈ {sj, sj+1}), (A.45)

so that π̃t+1,j = ϱt,k if θt+1 = θk, and similarly π̃∗
t+1,j = ϱ∗t,k if θt+1 = θk.

Combining (A.38), (A.41), (A.42), and these definitions, we have

Ẽ⋄
t [π̃

∗
t+1,j] =

π̃∗
t,j

π̃t,j

NΘ

∑
k=1

pt,k ϱ∗t,k Ẽt
[
1{Rm

T = sj} | θt+1 = θk
]

(A.46)

+
1 − π̃∗

t,j

1 − π̃t,j

NΘ

∑
k=1

pt,k ϱ∗t,k Ẽt
[
1{Rm

T = sj+1} | θt+1 = θk
]

(A.47)

=
ϕj

1 + π̃t,j(ϕj − 1)

NΘ

∑
k=1

pt,k
ϕjϱt,k

1 + ϱt,k(ϕj − 1)
ϱt,k (A.48)

+
1

1 + π̃t,j(ϕj − 1)

NΘ

∑
k=1

pt,k
ϕjϱt,k

1 + ϱt,k(ϕj − 1)
(1 − ϱt,k) (A.49)

=
ϕj

1 + π̃t,j(ϕj − 1)

NΘ

∑
k=1

pt,k
ϱt,k
(
1 + ϱt,k(ϕj − 1)

)
1 + ϱt,k(ϕj − 1)

(A.50)

=
ϕj

1 + π̃t,j(ϕj − 1)

NΘ

∑
k=1

pt,k ϱt,k (A.51)

=
ϕjπ̃t,j

1 + π̃t,j(ϕj − 1)
(A.52)

= π̃∗
t,j, (A.53)
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where the second-to-last equality uses that π̃t,j = Ẽt[π̃t+1,j], as can be seen from the law of it-
erated expectations given that π̃t,j = Et[1{Rm

T = sj} | Rm
T ∈ {sj, sj+1}] = Ẽt[1{Rm

T = sj}] =

Ẽt[Ẽt+1[1{Rm
T = sj}]] = Ẽt[π̃t+1,j], and the last equality above again uses (A.41).

The fact that Ẽ⋄
t1
[m∗

t1,t2,j] = Ẽ⋄
t1
[r∗t1,t2,j] for arbitrary t1 and t2 > t1 then follows immediately from

the proof of Lemma 1.

LEMMA A.2. For any return-state pair (sj, sj+1) meeting CTI, risk-neutral belief movement must satisfy
the following for j′ = j, j + 1:

Ẽ⋄
0 [m

∗
j | Rm

T = sj′ ] = Ẽ0[m∗
j | Rm

T = sj′ ].

Proof of Lemma A.2. Define the path of risk-neutral beliefs by Bj ≡ (π̃∗
0,j, π̃∗

1,j, . . . , π̃∗
T,j), and some

arbitrary realization for that path by bj. The realization of m∗
j depends on the path of risk-neutral

beliefs, so denote m∗
j = m∗

j (Bj) = ∑T
t=1(π̃

∗
t,j − π̃∗

t−1,j)
2.

For any bj such that π̃∗
T,j = 1 (i.e., Rm

T = sj), the definition of P̃⋄ in (A.38) gives that

P̃⋄
0(Bj = bj) =

π̃∗
0,j

π̃0,j
P̃(Bj = bj), (A.54)

and further P̃⋄
0(Rm

T = sj) = (π̃∗
0,j/π̃0,j) P̃0(Rm

T = sj) trivially. Combining these two equations
yields P̃⋄

0(Bj = bj | Rm
T = sj) = P̃0(Bj = bj | Rm

T = sj). (Intuitively, all paths ending in π̃∗
T,j = 1

receive the same change of measure under P̃⋄ relative to P̃, so probabilities conditional on Rm
T = sj

are preserved, and similarly for Rm
T = sj+1.) Thus

Ẽ⋄
0 [m

∗
j | Rm

T = sj] = ∑
bj : π̃∗

T,j=1
m∗

j (bj) P̃⋄
0
(
Bj = bj

∣∣ Rm
T = sj

)
(A.55)

= ∑
bj : π̃∗

T,j=1
m∗

j (bj) P̃0
(
Bj = bj

∣∣ Rm
T = sj

)
(A.56)

= Ẽ0[m∗
j | Rm

T = sj]. (A.57)

The same steps apply for Rm
T = sj+1: in this case, for any bj such that π̃∗

T,j = 0, (A.54) be-
comes P̃⋄

0(Bj = bj) = (1 − π̃∗
0,j)/(1 − π̃0,j) P̃(Bj = bj), and P̃⋄

0(Rm
T = sj+1) = (1 − π̃∗

0,j)/(1 −
π̃0,j) P̃0(Rm

T = sj+1), so that again P̃⋄
0(Bj = bj | Rm

T = sj+1) = P̃0(Bj = bj | Rm
T = sj+1), and thus

Ẽ⋄
0 [m

∗
j | Rm

T = sj+1] = Ẽ0[m∗
j | Rm

T = sj+1].

LEMMA A.3. Consider a return-state pair (sj, sj+1) meeting CTI, and an arbitrary date τ such that
0 ⩽ τ < T. Denote ε̃ ≡ (1 − π̃∗

τ,j)/(T − τ). Postulate a signal-generating process for τ < t ⩽ T
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such that if π̃∗
t−1,j = 0 then π̃∗

t,j = 0 with probability 1, and otherwise

π̃∗
t,j =

0, with probability xt−1

π̃∗
t−1,j + ε̃, with probability 1 − xt−1,

(A.58)

with xt−1 = 1 −
[

π̃∗
t−1,j

ϕj + (1 − ϕj)(π̃∗
t−1,j)

]/[
π̃∗

t−1,j + ε̃

ϕj + (1 − ϕj)(π̃∗
t−1,j + ε̃)

]
. (A.59)

This “rare-bonanzas” process is consistent with rational expectations. Further, under this process,

Ẽτ[m∗
τ,T,j − r∗τ,T,j] =

π̃∗
τ,j(1 − π̃∗

τ,j)(ϕj − 1)(π̃∗
τ,j − ε̃)

π̃∗
τ,j + ϕj(1 − π̃∗

τ,j)
. (A.60)

Proof. The first bracketed term on the right side of the definition of xt−1 is equal to π̃t−1,j from
equation (24), and the second term is equal to π̃t,j in the case that π̃∗

t,j = π̃∗
t−1,j + ε̃; denote this

latter value as π̃H
t,j ≡ (π̃∗

t−1,j + ε̃)/(ϕj + (1 − ϕj)(π̃
∗
t−1,j + ε̃)). Thus by construction π̃t−1,j = xt−1 ×

0 + (1 − xt−1)π̃
H
t,j, so the physical belief process is consistent with RE, as stated. (It is trivial from

Definition 1 to construct a signal-generating process {P(θt| Ft−1, Rm
T = s)} that, conditional on

the prior Πτ,T, delivers the postulated belief process.) Note also that given the definition of ε̃, this
belief process generates π̃∗

T,j ∈ {0, 1} almost surely so that Rm
T ∈ {sj, sj+1}.

For the second statement in the lemma, note that for this constructed process, we have

Eτ[m∗
τ,τ+1,j] = xτπ̃∗2

τ,j + (1 − xτ)ε̃
2 (A.61)

=
ϕj + (1 − ϕj)ε̃

ϕj + (1 − ϕj)π̃∗
τ,j

π̃∗
τ,j ε̃. (A.62)

Conducting this calculation for each subsequent period and summing over periods through T,
we therefore obtain

Eτ[m∗
τ,T,j] =

T−τ−1

∑
k=0

[ Eτ [m∗
τ+k,τ+k+1,j | π̃∗

τ+k,j > 0]︷ ︸︸ ︷
ϕj + (1 − ϕj)ε̃

ϕj + (1 − ϕj)(π̃∗
τ,j + kε̃)

(π̃∗
τ,j + kε̃)ε̃ (A.63)

×
k−1

∏
ℓ=0

π̃∗
τ,j + ℓ ε̃

ϕj + (1 − ϕj)(π̃∗
τ,j + ℓ ε̃)

ϕj + (1 − ϕj)(π̃
∗
τ,j + (ℓ+ 1)ε̃)

π̃∗
τ,j + (ℓ+ 1)ε̃︸ ︷︷ ︸

Pτ(π̃∗
τ+k,j > 0)

]
(A.64)

=
T−τ−1

∑
k=0

[
ϕj + (1 − ϕj)ε̃

ϕj + (1 − ϕj)(π̃∗
τ,j + kε̃)

(π̃∗
τ,j + kε̃)ε̃ (A.65)
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×
π̃∗

τ,j

ϕj + (1 − ϕj)π̃∗
τ,j

ϕj + (1 − ϕj)(π̃
∗
τ,j + kε̃)

π̃∗
τ,j + kε̃

]
(A.66)

=
π̃∗

τ,j(1 − π̃∗
τ,j)

ϕj + (1 − ϕj)π̃∗
τ,j
[ϕj + (1 − ϕj)ε̃], (A.67)

so

Eτ[m∗
τ,T,j − r∗τ,T,j] =

π̃∗
τ,j(1 − π̃∗

τ,j)

ϕj + (1 − ϕj)π̃∗
τ,j
[ϕj + (1 − ϕj)ε̃]− π̃∗

τ,j(1 − π̃∗
τ,j)

=
π̃∗

τ,j(1 − π̃∗
τ,j)(ϕj − 1)(π̃∗

τ,j − ε̃)

π̃∗
τ,j + ϕj(1 − π̃∗

τ,j)
. (A.68)

Then using that Ẽτ[·] = Eτ[·] under the stated process, as Rm
T ∈ {sj, sj+1} almost surely as above,

yields the stated result.

Proofs for Section 4

Proof of Proposition 1. Denote ∆t,j ≡ π̃∗
t,j − π̃t,j. Then

E0[m∗
j | Rm

T ∈ {sj, sj+1}] = π̃0,j E0[m∗
j | Rm

T = sj] + (1 − π̃0,j)E0[m∗
j | Rm

T = sj+1] (A.69)

= π̃∗
0,j E0[m∗

j | Rm
T = sj] + (1 − π̃∗

0,j)E0[m∗
j | Rm

T = sj+1] (A.70)

+ ∆0,j

{
E0[m∗

j | Rm
T = sj+1]− E0[m∗

j | Rm
T = sj]

}
(A.71)

= π̃∗
0,j E⋄

0 [m
∗
j | Rm

T = sj] + (1 − π̃∗
0,j)E⋄

0 [m
∗
j | Rm

T = sj+1] (A.72)

+ ∆0,j

{
E⋄

0 [m
∗
j | Rm

T = sj+1]− E⋄
0 [m

∗
j | Rm

T = sj]
}

(A.73)

= E⋄
0 [r

∗
j | Rm

T ∈ {sj, sj+1}] + ∆0,j

{
E⋄

0 [m
∗
j | Rm

T = sj+1]− E⋄
0 [m

∗
j | Rm

T = sj]
}

, (A.74)

where the third equality uses Lemma A.2 and the fourth uses Lemma A.1.

Lemma A.1 also implies that

E⋄
0 [m

∗
j | Rm

T = sj+1] = π̃∗
0,j −

π̃∗
0,j

1 − π̃∗
0,j

E⋄
0 [m

∗
j | Rm

T = sj], (A.75)

so using this in the term in braces in (A.74), we obtain

E0[m∗
j − r∗j | Rm

T ∈ {sj, sj+1}] = ∆0,jπ̃
∗
0,j − ∆0,j

(
1 +

π̃∗
0,j

1 − π̃∗
0,j

)
E⋄

0 [m
∗
j | Rm

T = sj] (A.76)

⩽ ∆0,jπ̃
∗
0,j, (A.77)
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since ∆0,j

(
1 +

π̃∗
0,j

1−π̃∗
0,j

)
E⋄

0 [m
∗
j | Rm

T = sj] ⩾ 0.

Now

∆0,j = π̃∗
0,j − π̃0,j (A.78)

= π̃∗
0,j −

π̃∗
0,j

π̃∗
0,j + ϕj(1 − π̃∗

0,j)
(A.79)

= π̃∗
0,j

(
1 − 1

π̃∗
0,j + ϕj(1 − π̃∗

0,j)

)
, (A.80)

where the second line uses (24). Substituting the above into the preceding inequality,

Ẽ0[m∗
j − r∗j ] = E0[m∗

j − r∗j | Rm
T ∈ {sj, sj+1}] ⩽ π̃∗2

0,j

(
1 − 1

π̃∗
0,j + ϕj(1 − π̃∗

0,j)

)
.

Proof of Proposition 2. First consider the statement for fixed T < ∞. If ϕj > 1, then ∆0,j > 0
from (A.80). (This requires π̃∗

0,j ∈ (0, 1), but ϕj is undefined if this is not the case given its definition
in (25), so assuming ϕj > 1 implies this holds as well.) The only inequality applied in the proof
of Proposition 1 is that ∆0,j(1 + π̃∗

0,j/(1 − π̃∗
0,j))E

⋄
0 [m

∗
j | Rm

T = sj] ⩾ 0, as used in (A.77). In the
current case with ϕj > 1, we have ∆0,j(1 + π̃∗

0,j/(1 − π̃∗
0,j)) > 0, so it remains to be shown that

E⋄
0 [m

∗
j | Rm

T = sj] > 0. Assume toward a contradiction that E⋄
0 [m

∗
j | Rm

T = sj] = 0, which requires
that π̃∗

t,j = π̃∗
t−1,j almost surely (conditional on Rm

T = sj) since m∗
j = ∑T

t=1(π̃
∗
t,j − π̃∗

t−1,j)
2 ⩾ 0. But

this implies that π̃∗
T,j = π̃∗

0,j almost surely, while it must be the case that π̃∗
T,j = 1 for any path

conditional on Rm
T = sj. Thus we have a contradiction, and E⋄

0 [m
∗
j | Rm

T = sj] > 0. We conclude
that for finite T, the bound in Proposition 1 must hold with strict inequality as long as ϕj > 1.

For the second part of the statement, we proceed constructively using the signal-generating
process postulated in Lemma A.3. Setting τ = 0 and T → ∞ yields ε̃ → 0 and therefore, under
this process, the second result in that lemma yields

Ẽ0[m∗
j − r∗j ]

T→∞−−−→
π̃∗

0,j(1 − π̃∗
0,j)(ϕj − 1)π̃∗

0,j

π̃∗
0,j + ϕj(1 − π̃∗

0,j)
(A.81)

= π̃∗2
0,j

(
1 − 1

π̃∗
0,j + ϕj(1 − π̃∗

0,j)

)
, (A.82)

as in Proposition 1.

Proof of Proposition 3. We show first that the effect of an incorrect prior on π̃∗
0,j is isomorphic to
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a change in ϕj under RE. Note from (24) that

π̃∗
0,j

1 − π̃∗
0,j

= ϕj
π̃0,j

1 − π̃0,j
. (A.83)

Under RE, π̃0,j = P0(Rm
T = sj | Rm

T ∈ {sj, sj+1}), and Proposition 1 follows for {π̃∗
t,j} given any

value ϕj. But if the prior is incorrect, define

ξ ≡
P0(Rm

T = sj+1 | Rm
T ∈ {sj, sj+1})

P0(Rm
T = sj | Rm

T ∈ {sj, sj+1})
π̃0,j

1 − π̃0,j
∈ (0, ∞). (A.84)

Then defining ϕ̌j ≡ ξϕj, (A.83) yields that by construction,

π̃∗
0,j

1 − π̃∗
0,j

= ϕ̌j
P0(Rm

T = sj | Rm
T ∈ {sj, sj+1})

P0(Rm
T = sj+1 | Rm

T ∈ {sj, sj+1})
, (A.85)

so that under Bayesian updating for t = 1, . . . , T, the risk-neutral probabilities {π̃∗
0,j} follow a

stream that would be consistent with RE but with the transformation ϕ̌j with respect to the phys-
ical probabilities (rather than ϕj, as would be the case with a correct prior).

We now have two cases we must consider. We begin with case (ii), in which ϕ̌j ⩾ 1 so that
π̃∗

0,j ⩾ P0(Rm
T = sj | Rm

T ∈ {sj, sj+1}). In this case, the proof of Proposition 1 applies for {π̃∗
t,j} with

respect to ϕ̌j, so that

Ẽ0[m∗
j − r∗j ] ⩽ π̃∗2

0,j

(
1 − 1

π̃∗
0,j + ϕ̌j(1 − π̃∗

0,j)

)
(A.86)

⩽ π̃∗2
0,j , (A.87)

so the stated claim holds in this case.

Now, for case (i), if the prior distortion is such that ϕ̌j ∈ (0, 1), then the proof of Proposition 1
no longer applies, since it used that ∆0,j ≡ π̃∗

0,j − P0(Rm
T = sj | Rm

T ∈ {sj, sj+1}) ⩾ 0 from ϕj ⩾ 1
whereas now we have this ∆0,j < 0. But we note that we can use the following rearrangement of
(A.75) to substitute into (A.74) rather than using (A.75) as in that proof:

E⋄
0 [m

∗
j | Rm

T = sj] = (1 − π̃∗
0,j)−

1 − π̃∗
0,j

π̃∗
0,j

E⋄
0 [m

∗
j | Rm

T = sj+1], (A.88)

which, used in (A.74), yields

E0[m∗
j − r∗j | Rm

T ∈ {sj, sj+1}] = −∆0,j(1 − π̃∗
0,j) + ∆0,j

(
1 +

1 − π̃∗
0,j

π̃∗
0,j

)
E⋄

0 [m
∗
j | Rm

T = sj+1] (A.89)

⩽ −∆0,j(1 − π̃∗
0,j), (A.90)
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since ∆0,j

(
1 +

1−π̃∗
0,j

π̃∗
0,j

)
E⋄

0 [m
∗
j | Rm

T = sj+1] ⩽ 0. Then using (A.80), we obtain

Ẽ0[m∗
j − r∗j ] ⩽ π̃∗

0,j

(
1

π̃∗
0,j + ϕ̌j(1 − π̃∗

0,j)
− 1

)
(1 − π̃∗

0,j). (A.91)

We now have two subcases to consider. If π̃∗
0,j < 1/2, then

π̃∗
0,j

(
1

π̃∗
0,j + ϕ̌j(1 − π̃∗

0,j)
− 1

)
= (1 − π̃∗

0,j)
π̃∗

0,j + ϕ̌jπ̃
∗
0,j

π̃∗
0,j + ϕ̌j(1 − π̃∗

0,j)
(A.92)

< (1 − π̃∗
0,j), (A.93)

and therefore, substituting into (A.91),

Ẽ0[m∗
j − r∗j ] ⩽ (1 − π̃∗

0,j)
2. (A.94)

Meanwhile, if π̃∗
0,j ⩾ 1/2, then

π̃∗
0,j

(
1

π̃∗
0,j + ϕ̌j(1 − π̃∗

0,j)
− 1

)
= π̃∗

0,j

(1 − π̃∗
0,j) + ϕ̌j(1 − π̃∗

0,j)

π̃∗
0,j + ϕ̌j(1 − π̃∗

0,j)
(A.95)

⩽ π̃∗
0,j, (A.96)

and therefore in this case

Ẽ0[m∗
j − r∗j ] ⩽ π̃∗

0,j(1 − π̃∗
0,j) ⩽ π̃∗2

0,j . (A.97)

Combining these two subcases yields that for case (i),

Ẽ0[m∗
j − r∗j ] ⩽ max{π̃∗2

0,j , (1 − π̃∗
0,j)

2}, (A.98)

as stated, completing the proof.

Proof of Proposition 4. Denote the upper bound for admissible excess movement in Proposition 1
(using the notation from Section 4.2) by M : [1, ∞)× [0, 1] → [0, 1], with

M(ϕi,j, π̃∗
0i ,i,j) ≡ π̃∗2

0i ,i,j

(
1 − 1

π̃∗
0i ,i,j

+ ϕi,j(1 − π̃∗
0i ,i,j

)

)
. (A.99)
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As in the text,

∂2M
∂ϕ2

i,j
= −

2π̃∗2
0i ,i,j

(1 − π̃∗
0i ,i,j

)2(
π̃∗

0i ,i,j
+ ϕi,j(1 − π̃∗

0i ,i,j
)
)3 ⩽ 0. (A.100)

For any arbitrary realization of the prior, π̃∗
0i ,i,j

= ϱ, Jensen’s inequality accordingly yields that

Ẽ
[
M(ϕi,j, π̃∗

0i ,i,j)
∣∣∣ π̃∗

0i ,i,j = ϱ
]
⩽ M

(
Ẽ[ ϕi,j | π̃∗

0i ,i,j = ϱ ], ϱ
)

. (A.101)

Thus with Ẽ[M(ϕi,j, π̃∗
0i ,i,j

) | π̃∗
0i ,i,j

] ⩽ M(Ẽ[ϕi,j | π̃∗
0i ,i,j

], π̃∗
0i ,i,j

), we have that

Ẽ[m∗
i,j − r∗i,j] ⩽ Ẽ

[
M(ϕi,j, π̃∗

0i ,i,j)
]
⩽ Ẽ

[
M
(

Ẽ[ϕi,j | π̃∗
0i ,i,j], π̃∗

0i ,i,j

)]
(A.102)

⩽ Ẽ
[
M
(

ϕj, π̃∗
0i ,i,j

)]
, (A.103)

where ϕj ≡ maxπ̃0i ,i,j Ẽ[ϕi,j | π̃0i ,i,j], and where the first line uses Proposition 1 and applies the law
of iterated expectations and the second uses ∂M/∂ϕi,j ⩾ 0. Substituting the definition of M(· , ·)
into this inequality yields Proposition 4.

Proof of Proposition 5. Using (Vm
j+1 −Vm

j )/Vm
j = (Vm

0 sj+1 −Vm
0 sj)/(Vm

0 sj) = (sj+1 − sj)/sj ≡ ∆j,
the result then follows immediately from equation (11), with Vm

j and Vm
j+1 replacing Clow and Chigh,

respectively.

Proof of Proposition 6. Starting with belief movement,

Ẽ[m̂∗
t,t+1,j] = Ẽ[(π̂∗

t+1,j − π̂∗
t,j)

2] (A.104)

= Ẽ

[(
(π̃∗

t+1,j − π̃∗
t,j)

2 + (ϵt+1,j − ϵt+1,j)
)2
]

(A.105)

= Ẽ[m∗
t,t+1,j] + 2Ẽ[π̃∗

t+1,jϵt+1,j − π̃∗
t,jϵt+1,j − π̃∗

t+1,jϵt,j + π̃∗
t,jϵt,j] + Ẽ[(ϵt+1,j − ϵt,j)

2]

(A.106)

= Ẽ[m∗
t,t+1,j] + Ẽ[ϵ2

t,j + ϵ2
t+1,j]. (A.107)

For uncertainty resolution,

Ẽ[r̂∗t,t+1,j] = Ẽ[(π̃∗
t,j + ϵt,j)(1 − π̃∗

t,j − ϵt,j)− (π̃∗
t+1,j + ϵt+1,j)(1 − π̃∗

t+1,j − ϵt+1,j)] (A.108)

= Ẽ[r̃∗t,t+1,j] + Ẽ[ϵ2
t+1,j − ϵ2

t,j]. (A.109)
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Combining these two, with Var(ϵt,j) ≡ Ẽ[(ϵt,j − Ẽ[ϵt,j])
2] = Ẽ[ϵ2

t,j],

Ẽ[m̂∗
t,t+1,j − r̂∗t,t+1,j] = Ẽ[m∗

t,t+1,j − r∗t,t+1,j] + 2Var(ϵt,j).

B. Additional Material

B.1 Risk-Neutral Beliefs and Discount Rates

We again work in the context of the example in Section 2 for simplicity of exposition. The price
of the terminal consumption claim is given in equilibrium in by Pt(CT) = Et

[
βT−t

t
U′(CT)
U′(Ct)

CT

]
,

where we have relaxed the assumption of no discounting and βt is now the agent’s (possibly time-
varying) time discount factor. Defining the gross return RC

t,T ≡ CT
Pt(CT)

, rearranging this equation
for Pt(CT) yields

Et[RC
t,T] =

1 − Covt

(
βT−t

t
U′(CT)
U′(CT)

, CT

)
Et

[
βT−t

t
U′(CT)
U′(Ct)

]

=

U′(Ct)

βT−t
t

− Covt(U′(CT), CT)

Et[U′(CT)]
, (B.1)

as usual. For full concreteness, we can write Et[U′(CT)] = πtU′(Clow) + (1 − πt)U′(Chigh) in our
two-state example, and Covt(U′(CT), CT) can be similarly rewritten as a function of πt, CT, and
U′(CT). This decomposition makes clear that intertemporal discount-rate variation can arise from
four sources:

1. Changes in the time discount factor βt.

2. Changes in contemporaneous marginal utility U′(Ct).

3. Changes in the relative probability πt.

4. Changes in state-contingent terminal consumption Ci and/or state-contingent marginal util-
ity U′(Ci).

Our framework thus allows for discount-rate variation arising from the first three sources, but
not the last one. One might not consider this to be particularly restrictive in the context of this
example; in theory, we can define the states such that the realization of the state fully determines
consumption and marginal utility. But when taken to the data, we define states by the return
on the market index, in which case this does become more restrictive. (We in fact slightly relax
these assumptions and allow for independent consumption-growth or marginal-utility shocks for
a given return state; Section 3.2 more fully discusses the models covered by our assumptions.)
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Now consider the specification of the example in which the deterministic consumption stream
for t < T is given by (C0, C1, C2, C3, . . . , CT−1) = (1, 1/2, 1, 1/2, . . .) but that πt is constant at
πt = π0 = 0.5 for t < T, as on page 13. Again assume for simplicity that β = 1. As noted there,
because the mapping between πt and π∗

t is one-to-one for a given ϕ in (8), measured risk-neutral
beliefs would be constant for t < T in this case: risk-neutral beliefs are invariant to changes in
the risk-free rate arising from proportional changes to Arrow-Debreu state prices across the two
states, as can be seen in equations (5)–(6), and all discount-rate changes for the consumption claim
are in fact driven by the risk-free rate in this case. The gross (T − t)-period risk-free rate with
β = 1 is R f

t,T = U′(Ct)
Et[U′(Ci)]

in equilibrium; we can thus rewrite (B.1) as

Et[RC
t,T] = R f

t,T − Covt(U′(CT), CT)

Et[U′(CT)]
, (B.2)

and the second term is constant for t < T under the current assumptions. But we need not restrict
ourselves to settings in which all discount-rate variation arises due to changes in the risk-free rate.
The previous specification of the example (on page 10), in which π0 = 0.3, Ct = C = 1 for t < T
and π1 = 0 or 0.6 with equal probability, has no equity premium at t = 1 if π1 = 0 since pricing is
risk-neutral in this case (given that there is no risk); meanwhile, if π1 = 0.6, then E1[RC

1,T] > R f
1,T

since the second term in (B.2) is positive. So the framework is capable of achieving identification
in cases in which both the risk-free rate and risk premia are time-varying.

More generally, this example shows that the framework can handle cases in which an object
that can be intuitively thought of as the quantity of aggregate risk is time-varying. As in Hansen
and Jagannathan (1991), the conditional risk premium on any asset depends on the conditional
volatility of the stochastic discount factor, which in this case is given for the horizon T − t by
Vart(βT−tU′(CT)/U′(Ct)); we could rewrite (B.2) in terms of this value if desired. In the current
example, this value is again equal to 0 at t = 1 if π1 = 0, while it is positive if π1 = 0.6. Fur-
ther, while relative risk aversion (and thus the aggregate “price” of risk) is constant in the current
example, nothing about the example restricts utility to take this form; we could, e.g., specify expo-
nential utility and thus obtain time-varying relative risk aversion, and the analysis in Section 2.3
and here would nonetheless apply as well with slight modification.

B.2 Description of Gabaix (2012) Rare-Disasters Model for Example 3

Assume a representative agent with CRRA consumption utility, and assume that log consumption
ct ≡ log(Ct) and log dividends dt ≡ log(Dt) evolve respectively according to

ct+1 = ct + gc + εc
t+1 + log(Bt+1)1{disastert+1}, (B.3)

dt+1 = dt + gd + εd
t+1 + log(Ft+1)1{disastert+1}, (B.4)

55



where (εc
t+1, εd

t+1)
′ is i.i.d. bivariate normal with mean zero and arbitrary covariance and is in-

dependent of all disaster-related variables,50 and Bt+1 and Ft+1 are arbitrarily correlated random
variables with support [0, 1] (or some discretization thereof) that affect consumption and divi-
dends respectively in the case of a disaster in period t + 1, which occurs with probability pt. De-
fine resilience Ht according to Ht = ptEt[B

−γ
t+1Ft+1 − 1 | 1{disastert+1}], write Ht = H∗ + Ĥt, and

assume that the variable part follows

Ĥt+1 =
1 + H∗
1 + Ht

e−ϕH Ĥt + εH
t+1,

where Et[εH
t+1] = 0 and this shock is independent from all other shocks. Then the statements in

Example 3 follow.

B.3 Description of Campbell–Cochrane (1999) Habit-Formation Model for Example 4

Assume a representative agent with utility E0{∑∞
t=0 βt[(Ct − Ht)1−γ − 1]/(1 − γ)}, where Ct is

consumption and Ht is the level of habit, taken as exogenous by the agent. Defining the surplus-
consumption ratio Sc

t ≡ (Ct − Ht)/Ht, assume that sc
t ≡ log(Sc

t ), ct ≡ log(Ct), and log dividends
dt ≡ log(Dt) evolve respectively according to

sc
t+1 = (1 − ϕ)sc + ϕsc

t + λ(sc
t)εt+1, (B.5)

ct+1 = g + ct + εt+1, (B.6)

dt+1 = g + dt + ηt+1, (B.7)

where εt+1
i.i.d.∼ N (0, σ2

ε ) (see Footnote 50), ηt+1
i.i.d.∼ N (0, σ2

η), Corr(εt+1, ηt+1) = ρ, and the sensi-
tivity function λ(sc

t) is specified as

λ(sc
t) =

[
1
Sc

√
1 − 2(sc

t − sc)− 1
]
1{sc

t ⩽ sc
max},

where Sc
= exp(sc) = σε

√
γ/(1 − ϕ) is the assumed steady-state surplus-consumption ratio and

sc
max = sc + (1 − Sc

)2/2. Then the statement in Example 4 follows.

B.4 Measurement of Risk-Neutral Distribution

Before detailing measurement of the risk-neutral distribution, we note that we must collect addi-
tional data in order to follow the procedure below. In particular, OptionMetrics reports a risk-free
zero-coupon yield curve across multiple maturities, as well as the underlying end-of-day S&P 500
index price. We use the risk-free rate at the relevant horizon as an input in our measurement of
risk-neutral beliefs, and we use the index price to observe the ex-post return state for each option

50To be complete with respect to our discrete-state setting, we can assume (εc
t+1, εd

t+1)
′ is in fact an appropriately

discretized normal distribution (e.g., a shifted binomial distribution).
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expiration date Ti and assign probability 1 to that state on date Ti. But the settlement value for
many S&P 500 options in fact reflects the opening (rather than closing) price on the expiration
date; for example, the payoff for the traditional monthly S&P 500 option contract expiring on the
third Friday of each month depends on the opening S&P index value on that third Friday morn-
ing, while the payoff for the more recently introduced end-of-month option contract depends on
the closing S&P index value on the last business day of the month.51 To obtain the ex-post return
state for A.M.-settled options, we hand-collect the option settlement values for these expiration
dates from the Chicago Board Options Exchange (CBOE) website, which posts these values.

Then, as introduced in Section 5.1, we measure the risk-neutral distribution for returns by
applying the following steps to the observed option-price cross-sections, following Malz (2014):

1. Transform the collections of call- and put-price cross-sections (for example, for call options on
date t for expiration date Ti, this set is {qm

t,i,K}K∈K) into Black–Scholes implied volatilities.

2. Fit a cubic spline to interpolate a smooth function between the points in the resulting implied-
volatility schedule for each trading date–expiration date pair (separately for the call- and put-
option values). The spline is clamped: its boundary conditions are that the slope of the spline
at the minimum and maximum values of the knot points {qm

t,i,K}K∈K is equal to 0; further, to
extrapolate outside of the range of observed knot points, set the implied volatilities for those
unobserved strikes equal to the implied volatility for the closest observed strike (i.e., maintain
a slope of 0 for the implied-volatility schedule outside the observed range).

3. Evaluate this spline (separately for calls and puts) at 1,901 strike prices, for S&P index values
ranging from 200 to 4,000 (so that the evaluation strike prices are K = 200, 202, . . . , 4000), to
obtain a set of implied-volatility values across this fine grid of possible strike prices.52

4. Average the separate call- and put-option implied-volatility values from the previous step at
each strike for each (t, Ti) pair, to obtain a single implied-volatility schedule across strikes for
each such (t, Ti) pair. (Given put-call parity, the implied-volatility values for calls and puts
should in theory be equal at a given strike; in practice, they tend to differ slightly given market
microstructure issues, so using the mean of the two values is a simple way of averaging out
the effects of such idiosyncratic noise. This step is the only point of distinction between our
procedure and that of Malz, who assumes access to a single implied-volatility schedule and
thus does not consider call and put prices separately.)

5. Invert the single resulting smoothed 1,901-point implied-volatility schedule for each (t, Ti) pair
to transform these values back into call prices, and denote this fitted call-price schedule as
{q̂m

t,i,K}K∈{200,202,...,4000}.

51See http://www.cboe.com/SPX for further detail. For our dataset, 441 of the 685 option expiration dates corre-
spond to A.M.-settled options.

52This set of ∼1,900 strike prices is on average about 20 times larger than the set of strikes for which there are prices
in the data, as there is a mean of roughly 94 observed values in a typical set {qm

t,i,K}K∈K (and similarly for put options),
using the numbers given in Section 5.1.
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6. Calculate the risk-neutral CDF for the date-Ti index value at strike price K using P∗
t (V

m
Ti

<

K) = 1+ R f
t,Ti

(q̂m
t,i,K − q̂m

t,i,K−2)/2. (See the proof of equation (20) in Appendix A for a derivation
of this result; the index-value distance between the two adjacent strikes is equal to 2 given that
we evaluate the spline at intervals of two index points.)

7. Defining Vm
i,j,max and Vm

i,j,min to be the date-Ti index values corresponding to the upper and lower
bounds, respectively, of the bin defining return-state sj,53 we then calculate the risk-neutral
probability that return state sj will be realized at date Ti, referred to with slight notational abuse
as P∗

t (sj), as
P∗

t (sj) = P∗
t (V

m
Ti

< Vm
i,j,max)− P∗

t (V
m
Ti

< Vm
i,j,min), (B.8)

where the CDF values are taken from the previous step using linear interpolation between
whichever two strike values K ∈ {200, 202, . . . , 4000} are nearest to Vm

i,j,max and Vm
i,j,min, respec-

tively.

Note that we transform the option prices into Black–Scholes implied volatilities simply for pur-
poses of fitting the cubic spline and then transform these implied volatilities back into call prices
before calculating risk-neutral beliefs, so this procedure does not require the Black–Scholes model
to be correct.54 The clamped cubic spline proposed by Malz (2014), and used in step 2 above,
is chosen to ensure that the call-price schedule obtained in step 5 is decreasing and convex with
respect to the strike price outside the range of observable strike prices, as required under the re-
striction of no arbitrage. Violations of these restrictions inside the range of observable strikes, as
observed infrequently in the data, generate negative implied risk-neutral probabilities; in any case
that this occurs, we set the associated risk-neutral probability to 0.

As noted in step 2, the clamped spline is an interpolating spline, as it is restricted to pass through
all the observed data points so that the fitted-value set {q̂m

t,i,K} contains the original values {qm
t,i,K}.

Some alternative methods for measuring risk-neutral beliefs use smoothing splines that are not
constrained to exhibit such interpolating behavior. To check the robustness of our results to the
choice of measurement technique, we have accordingly used one such alternative method pro-
posed by Bliss and Panigirtzoglou (2004). Empirical results obtained using risk-neutral beliefs
calculated in this alternative manner are essentially unchanged as compared to the benchmark
results in Section 5.4, and are available upon request.

We have also conducted robustness tests with respect to the fineness of the grid on which we
evaluate the spline in step 4 and calculate the risk-neutral CDF in step 6, with results from these
exercises indistinguishable from the benchmark results; these additional results are also available
upon request.

53That is, formally, Vm
i,j,min = R f

0i ,Ti
Vm

T0
exp(sj − 0.01) and Vm

i,j,max = R f
0i ,Ti

Vm
0i

exp(sj + 0.01). For example, for excess
return state s2, we have Vm

i,j,min = R f
0i ,Ti

Vm
0i

exp(−0.10) and Vm
i,j,max = R f

0i ,Ti
Vm

T0
exp(−0.08).

54We conduct this transformation following Malz (2014), as well as much of the related literature, which argues that
these smoothing procedures tend to perform slightly better in implied-volatility space than in the option-price space
given the convexity of option-price schedules; see Malz (1997) for a discussion.
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B.5 Block Bootstrap Procedure and Asymptotic Validity

Our block-bootstrap method for inference proceeds as follows:

1. Recalling that we observe data for TN + 1 trading dates, we first define B blocks of (TN + 1)/B
trading dates each: the first block (b1) contains values for t of T1 = {0, 1, . . . , (TN + 1)/B − 1},
the second (b2) contains values T2 = {(TN + 1)/B, . . . , 2(TN + 1)/B − 1}, and so on.55 In
the case that (TN + 1)/B is non-integer-valued, we set the lengths of the first B − 1 blocks to
⌈(TN + 1)/B⌉, where ⌈·⌉ denotes the ceiling or least-greater-integer function, and the last block
is correspondingly smaller and contains the remaining points.

2. We then divide the observations in our sample, which we now write as {(m∗
Ti ,j

, r∗Ti ,j
, π̃∗

0i ,i,j
)j}i,

into these constructed blocks according to the block in which expiration date Ti appears for
each set (m∗

Ti ,j
, r∗Ti ,j

, π̃∗
0i ,i,j

)j; that is, bℓ = {(m∗
Ti ,j

, r∗Ti ,j
, π̃∗

0i ,i,j
)j : Ti ∈ Tℓ} for ℓ = 1, 2, . . . , B.

3. We construct S resampled datasets; we typically set S = 10000. For each resampled dataset,
we randomly draw B complete blocks of data with replacement from the set of blocks con-
structed in the previous steps and paste them together to form our new sample. That is, denot-
ing the first resampled block for a given round b†

1 , the second b†
2 , and so on, this resampled set

of observations is (b†
1 , b†

2 , . . . , b†
B).

4. For each resampled dataset, re-estimate the average residuals for each value of ϕ, and calculate
t-statistics using standard errors clustered by quarter.

5. Construct a lower bound for a 100(1− α)% confidence interval for each value in
{

ϕj
}

j and for ϕ

as the α quantile of the bootstrap distribution of estimates for the parameter of interest from the
resampled datasets above. This yields a confidence interval for, e.g., ϕj given by CIj = [Q†

j,α, ∞),
where Q†

j,α is the α quantile of the bootstrap distribution of the estimates of the lower bound
for ϕj. We refer to Q†

j,α as CILB,D, where D = ⌈(TN + 1)/B⌉ is the block length and “LB” refers
to the lower bound of the associated confidence interval. We typically set α = 0.05 to obtain 95
percent confidence intervals.

Note that the groupings of return-state pairs (indexed by j = 1, . . . , J − 1) are fully preserved in
this resampling procedure for each set of observations indexed by i (corresponding to the option
expiration date) within each block, as we split the observations into blocks only by time and not
by return states. (This motivates the slight change of notation introduced in part 2 above.) We do
so in order to obtain valid inference for the aggregate value ϕ, which uses observations for state
pairs (s2, s3), . . . , (sJ−2, sJ−1), in the face of arbitrary dependence for the observations across those
state pairs and a fixed number of return states J (whereas we assume N → ∞, and further B → ∞
according to a sequence such that (TN + 1)/B → ∞). In this way our procedure is in fact a panel
(or cluster) block bootstrap; see, for example, Palm, Smeekes, and Urbain (2011).

55We construct blocks using trading dates rather than expiration-date indices i since the expiration dates are un-
evenly spaced, and we accordingly expect that the dependence structure in the data is more closely related to the date
than the index value for the expiration date.
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Lahiri (2003, Theorem 3.2) then provides a weak condition on the strong mixing coefficient of
the relevant stochastic process — in our case, {(m∗

Ti ,j
, r∗Ti ,j

, π̃∗
0i ,i,j

)j}i — under which the blocks are
asymptotically independent and the bootstrap distribution estimator is consistent for the true dis-
tribution under the asymptotics above, so that our confidence intervals from step 5 have asymp-
totic coverage probability of at least 95% for the population parameters of interest in the presence
of nearly arbitrary (stationary) autocorrelation and heteroskedasticity.56 This coverage rate may
in fact be greater than 95% given that we are estimating lower bounds for the parameters of in-
terest rather than the parameters themselves, and this motivates our use of one-sided rather than
two-sided confidence intervals.

B.6 Details of Solution Method and Simulations for Model in Section 6.2

See Appendix B.3 for a description of the model, and the calibrated parameters are identical to
those used by Campbell and Cochrane (1999, Table 1), converted to daily values, for the ver-
sion of their model with imperfectly correlated consumption and dividends. The initial mar-
ket index value is normalized to Vm

0i
= 1, and the joint CDF for the SDF realization and the

return as a function of the current surplus-consumption state is then solved by iterating back-
wards from Ti: after solving the model for the price-dividend ratio as a function of the surplus-
consumption value, we then calculate the Ti − 1 CDF for any possible surplus-consumption value
by integrating over the distributions of shocks to consumption (and thus surplus consumption)
and dividends at Ti; we then project this CDF onto an interpolating cubic spline over the three
dimensions (Sc

Ti−1, MTi , log(Rm,e
Ti

)); we then calculate the Ti − 2 CDF by integrating over the dis-
tribution of shocks at Ti − 1 and the projection solutions for the conditional distribution functions
for (Ti − 1) → Ti obtained in the previous step; and so on. These CDFs are then used for the
model simulation results presented in Section 6.2.
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Table 1: Descriptive Statistics for Excess Movement

X∗/r∗ X∗/T

Raw Noise-Adj. Raw Noise-Adj. r∗ T N (Obs.)

Overall mean: 1.89 1.23 0.0059 0.0038 0.18 56 1,809
[Bootstrapped SE] [0.32] [0.27] [0.0015] [0.0013] [0.02] [2]

By return state:
1 (-20%) 5.83 4.83 0.0049 0.0041 0.17 200 26

[1.18] [1.10] [0.0027] [0.0024] [0.06] [17]

2 (-15%) 11.61 5.70 0.0180 0.0088 0.22 141 19
[2.98] [2.99] [0.0096] [0.0083] [0.07] [17]

3 (-10%) 5.76 2.37 0.0151 0.0062 0.21 81 49
[0.92] [1.07] [0.0059] [0.0051] [0.06] [10]

4 (-5%) 2.67 1.39 0.0088 0.0046 0.14 42 272
[0.66] [0.52] [0.0038] [0.0029] [0.03] [5]

5 (0%) 0.70 0.47 0.0045 0.0030 0.23 37 700
[0.21] [0.18] [0.0019] [0.0017] [0.03] [2]

6 (+5%) 1.71 1.14 0.0039 0.0026 0.11 49 567
[0.42] [0.38] [0.0015] [0.0014] [0.02] [2]

7 (+10%) 3.87 2.92 0.0053 0.0040 0.18 129 144
[1.01] [1.02] [0.0023] [0.0023] [0.03] [6]

8 (+15%) 5.65 5.26 0.0060 0.0056 0.21 200 58
[1.49] [1.49] [0.0027] [0.0027] [0.04] [8]

9 (+20%) 3.44 2.09 0.0032 0.0020 0.22 232 36
[0.91] [1.31] [0.0015] [0.0020] [0.05] [7]

By date:
1996–2000 10.89 9.67 0.0211 0.0187 0.21 107 109

[1.99] [2.00] [0.0074] [0.0072] [0.05] [6]

2001–2005 1.75 0.55 0.0042 0.0013 0.22 90 112
[0.53] [0.40] [0.0021] [0.0015] [0.05] [9]

2006–2010 1.25 0.68 0.0065 0.0035 0.17 32 502
[0.24] [0.22] [0.0026] [0.0021] [0.04] [2]

2011–2015 1.75 1.09 0.0050 0.0031 0.19 67 530
[0.45] [0.37] [0.0024] [0.0019] [0.04] [4]

2016–2018 0.36 -0.11 0.0011 -0.0003 0.16 50 556
[0.34] [0.17] [0.0017] [0.0009] [0.06] [3]

By π̃∗
0 :

0–0.25 1.01 0.30 0.0055 0.0017 0.09 16 185
[0.64] [0.57] [0.0048] [0.0047] [0.02] [2]

0.25–0.5 1.58 0.91 0.0067 0.0039 0.23 55 883
[0.27] [0.21] [0.0017] [0.0014] [0.03] [3]

0.5–0.75 2.84 2.19 0.0053 0.0041 0.23 123 284
[0.67] [0.63] [0.0020] [0.0019] [0.03] [5]

0.75–1 2.54 1.88 0.0048 0.0036 0.06 31 457
[1.04] [0.97] [0.0031] [0.0029] [0.01] [2]

Notes: Empirical averages of risk-neutral excess movement X∗≡ Ê[X∗] are calculated over all interior state
pairs j = 2, . . . , 8, aside from averages by bin, which are calculated for each state pair separately. Standard
errors are calculated using a block bootstrap for the normalized statistic X∗/r∗ or X∗/T, with a block size
of one quarter (where contracts are classified by the quarter in which they expire) and 10,000 draws.

66



Table 2: Average Residual Excess Movement for Different ϕ

SDF Slope ϕ

1 2 5 10 50 ∞

Overall mean: 0.27 0.21 0.14 0.09 0.00 -0.08
[Bootstrapped SE] [0.10] [0.10] [0.10] [0.10] [0.10] [0.11]

By return state:
1 (-20%) 0.83 0.73 0.58 0.47 0.32 0.27

[0.45] [0.45] [0.46] [0.46] [0.47] [0.47]

2 (-15%) 1.32 1.26 1.20 1.17 1.13 1.12
[1.07] [1.07] [1.07] [1.07] [1.07] [1.06]

3 (-10%) 0.59 0.54 0.49 0.47 0.45 0.45
[0.46] [0.46] [0.46] [0.46] [0.46] [0.46]

4 (-5%) 0.29 0.26 0.23 0.22 0.21 0.21
[0.19] [0.18] [0.18] [0.18] [0.18] [0.18]

5 (0%) 0.14 0.08 0.03 0.01 -0.01 -0.01
[0.09] [0.09] [0.09] [0.09] [0.09] [0.09]

6 (+5%) 0.16 0.09 -0.01 -0.08 -0.26 -0.49
[0.09] [0.08] [0.08] [0.08] [0.09] [0.10]

7 (+10%) 0.54 0.45 0.33 0.24 0.10 0.01
[0.31] [0.31] [0.31] [0.31] [0.31] [0.32]

8 (+15%) 1.12 1.02 0.89 0.82 0.72 0.69
[0.54] [0.54] [0.54] [0.54] [0.55] [0.55]

9 (+20%) 0.45 0.38 0.30 0.25 0.21 0.20
[0.46] [0.47] [0.47] [0.47] [0.47] [0.47]

Notes: Overall average of residual excess movement is calculated over
all interior state pairs j = 2, . . . , 8, using noise-adjusted excess move-
ment. Standard errors are calculated using a block bootstrap with block
size of one quarter — where contracts are classified by the quarter in
which they expire, and noise variance estimates are classified by the
quarter of the intraday trading date — and 10,000 draws.
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Table 3: Main Estimation Results: Lower Bound for ϕ and γ

Individual State Pairs

Overall -20% -15% -10% -5% 0 5% 10% 15% 20%

ϕ: 54.5 ∞ ∞ ∞ ∞ 19.4 4.3 ∞ ∞ ∞
(Lower bound of 95% CI) (13.1) (89.4) (∞) (∞) (∞) (3.4) (3.2) (19.4) (∞) (16.0)

γ: 1,070 ∞ ∞ ∞ ∞ 367 75 ∞ ∞ ∞
(Lower bound of 95% CI) (242) (1,768) (∞) (∞) (∞) (48) (44) (368) (∞) (300)

Notes: Overall point estimate for ϕ is the minimal ϕ such that the average residual over all interior state pairs
j = 2, . . . , 8, is equal to zero. SDF slopes ϕ are converted to relative risk aversion γ using Proposition 5. One-
sided 95% confidence interval lower bound is calculated by test inversion: lower bound ϕLB is the minimal ϕ such
that the percentile-t bootstrap confidence interval contains ϕ̂ with p ⩾ 0.05. The bootstrap is a block bootstrap as
described in Table 2.
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Table 4: Regressions for Quarterly Average of Excess Belief Movement
(1) (2) (3) (4)

Liquidity and Limits to Arbitrage

Bid-Ask Spread 0.2 -0.2 -0.3* -0.1
(1.3) (-0.7) (-0.4) (-1.0)

Broker-Dealer Leverage -0.1 0.1 -0.0 -0.1
(-0.4) (0.8) (-0.7) (-1.7)

Volatility and Uncertainty

VIX 0.8** 0.9*** 0.6*

(2.3) (3.4) (2.1)

Baker–Bloom–Davis Uncertainty -0.3 0.1 0.2*

(-1.2) (1.5) (2.2)

Returns and Valuation

12-Month S&P Return 0.3** 0.3**

(2.8) (2.6)

Price to 10-Year Earnings Ratio 0.6*** 0.5***

(4.1) (4.1)

Time Trend -0.0*

(-2.2)

R2 0.07 0.34 0.72 0.73
N 79 79 79 79

Notes: ∗∗∗ p<0.01; ∗∗ p<0.05; ∗ p<0.1. Dependent variable in all regressions is the empirical aver-
age Ê[m∗

t−1,t,i,j − r∗t−1,t,i,j] calculated across all available expiration dates Ti and state pairs (sj, sj+1)

in (29), aside from the extreme state pairs (s1, s2) and (sJ−1, sJ ), using all trading dates t within
each given quarter. Regressors are correspondingly quarterly averages of each relevant series. All
variables (dependent and independent, aside from time trend) are normalized to have unit standard
deviation. Constant is included in each regression. Heteroskedasticity- and autocorrelation-robust
t-statistics are in parentheses, calculated using the equal-weighted periodogram estimator for the
long-run variance with 8 degrees of freedom, as in Lazarus, Lewis, and Stock (2021), and critical
values for the p-values are accordingly from the t distribution with 8 degrees of freedom.
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Figure 1: Example Subjective and Risk-Neutral Beliefs Under RE
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Notes: π0 = 0.3, π∗
0 = 0.63, following example in text. In this example of a single realization of uncertainty over time,

the agent’s subjective bad-state belief (red circles) converges to 0 monotonically, and the observed risk-neutral belief
(blue asterisks) must follow and eventually reach 0 as well, while being distorted upwards relative to the true belief
for all t < T. Since π∗

0 > 0.5, the risk-neutral belief crosses 1 − π∗
0 on its way to 0; in this case, this happens exactly at

t = 3. As of this date, risk-neutral uncertainty resolution r∗0,3 = (1 − π∗
0 )π

∗
0 − (1 − π∗

3 )π
∗
3 = 0, while risk-neutral belief

movement m∗
0,3 = ∑3

t=1(π
∗
t − π∗

t−1)
2 > 0, illustrating that it can be the case that E[m∗] > E[r∗] for risk-neutral beliefs.
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Figure 2: Excess Belief Movement vs. Prior by ϕj Under RE
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Note: Bounds are obtained from the formulas in Proposition 1 and Corollary 1.
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Figure 3: Excess Movement vs. Prior: Data and Theoretical Bounds
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Note: Empirical excess movement curves are kernel-weighted local averages (Epanechnikov kernel, bandwidth for π̃∗
0

of 0.07), calculated over all interior state pairs j = 2, . . . , 8.

72



Figure 4: Estimates of SDF Slope in Habit-Formation Model Simulations
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Notes: Estimates are from 25,000 simulations of 90-day periods (Ti − 0i = 90), with initial surplus-consumption ratio Sc
0i

drawn from its unconditional distribution. True simulated average value ϕ0i ,j is equal to average of date-0i values
ϕ0i ,i,j = E0i [MTi /M0i | Rm

Ti
= sj]/E0i [MTi /M0i | Rm

Ti
= sj+1] for state pair (sj, sj+1) across all simulations (i = 1, 2, . . . ,

25,000), where these expectations are evaluated using the solution for the joint CDF of the SDF and the return dis-
tribution; see Appendix B.6 for details. The estimate of the lower bound for ϕ0i ,j is constructed naïvely using the
theoretical bound in Proposition 4, using risk-neutral belief movement m∗

i,j and uncertainty resolution r∗i,j values across
simulations constructed via simulated risk-neutral beliefs π̃∗

t,i,j. Each point shows estimate for state pair (sj, sj+1) plot-
ted at the excess return at the midpoint of those two states, (sj + sj+1)/2, where sj and sj+1 are in the state space
Sbaseline = exp({(−∞,−0.11),−0.09,−0.07, . . . , 0.07, 0.09, (0.11, ∞)}). Aside from the extreme state pairs (s1, s2) and
(sJ−1, sJ ), for which the violation of CTI is particularly severe, the naïve estimates from our theoretical bounds are still
conservative for the true parameters of interest despite the violation of CTI in this model. Further, the true simulated
averages are far below our empirical lower-bound estimates in Section 5.4.
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