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Abstract

We develop a factor model that is tightly linked to intertemporal asset pricing theory.

Specifically, we show that a long-term Bayesian investor prices shocks to the market

dividend yield and realized variance as they reflect news to long-term expected returns

and volatility. Accordingly, we construct intertemporal risk factors as long-short port-

folios based on stock exposures to dividend yield and realized variance, and estimate

their risk prices, which are consistent with the ICAPM under moderate risk aversion.

Our intertemporal factor model performs well relative to previous models in terms of

its tangency Sharpe ratio and its pricing of key test assets.
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Introduction

Factor models are ubiquitous in the asset pricing literature. However, the implementation of

these models is based on factors that rely on signals that are not directly related to risk. This

disconnect is present regardless of whether the factors are motivated empirically (Fama and

French (1993) and Carhart (1997)), from a valuation identity (Fama and French (2015)),

from firms’ optimality conditions (Hou, Xue, and Zhang (2015) and Hou et al. (2020)),

or from behavioral arguments (Stambaugh and Yuan (2017) and Daniel, Hirshleifer, and

Sun (2020)). Consequently, we do not know whether the tradable factors in these models

compensate investors for relevant risks and, if so, through what economic mechanisms.

The issue is that, under the law of one price, a factor model that mimics the tangency

portfolio and prices all assets exists regardless of the economic environment (Roll (1977)).

As Cochrane (2008) puts it, “The only content to empirical work in asset pricing is what

constraints the author puts on his fishing expedition to avoid rediscovering Roll’s theorem.”

In this paper, we address this issue by developing a tradable factor model that is tightly

linked to the Intertemporal CAPM (ICAPM). We then show that this intertemporal risk

factor model implies risk prices that are consistent with its underlying structural ICAPM

and also that it performs well relative to prominent factor models in several empirical tests.

To start, we build on Binsbergen and Koijen (2010) and Campbell et al. (2018) to show

that a long-term Bayesian investor who infers market expected returns and volatility from

past observations of prices and dividends dislikes negative dividend yield shocks (positive

realized variance shocks) as these imply declines in long-term expected returns (increases in

long-term volatility), and thus worse prospects for long-term investing. We then construct

tradable intertemporal risk factors (rE and rV) by sorting stocks based on their exposures to

changes in the market dividend yield and realized variance, and show that these factors mim-

ick news to long-term expected returns and volatility estimated ex-post from our Bayesian

framework. Finally, as implied by the ICAPM, we combine rE and rV with the market factor

(rm) to form our intertemporal risk factor model, which we explore empirically.
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Figure 1
Main Results from our Intertemporal Risk Factor Model

Panel (a) shows average returns on strategies that expose investors to each ICAPM risk
factor in isolation (i.e., normalized to be orthogonal to the other ICAPM factors and to
match the market volatility). Panel (b) displays tangency Sharpe ratios (out-of-sample and
net of trading costs) constructed using the ICAPM factors or using factors from the factor
models described at the beginning of Section 3. Panel (c) displays averages of relative pricing
errors, Σα2/Σα2

ICAPM , across the different groups of testing assets recommended in Lewellen,
Nagel, and Shanken (2010). Further details are provided in Section 3.

In our first empirical exercise, we study our tradable factors and estimate their risk prices.

Our risk factors are strongly correlated, which is in line with the ICAPM logic as current

market prices move together with investment opportunities. Moreover, we find that strategies

that expose investors to marker risk (rm), reinvestment risk (rE), or volatility risk (rV) in

isolation deliver strong and significant risk premia (see Figure 1(a)). While also consistent

with the ICAPM, this result is in stark contrast to Herskovic, Moreira, and Muir (2019) as

they find that tradable factors that hedge business cycle risk have no risk premia.

To further explore our intertemporal factor model risk prices, we estimate a projection

of the Stochastic Discount Factor (SDF) onto rm, rE, and rV, which is equivalent to a Gen-

eralized Method of Moments (GMM) estimation that treats the factors as testing assets.

This estimation implies a risk aversion coefficient of 4.8 in our Long Sample (1928-2019) and
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5.6 in our Modern Sample (1973-2019), very close to the 5.1 (7.2) estimate from the early

period (modern period) structural ICAPM estimation in Campbell et al. (2018). Moreover,

consistent with the ICAPM, rm and rE have positive risk prices while rV has a negative risk

price. This result holds even after controlling for each of the factor models cited in our first

paragraph. The risk price magnitudes are also in line with the structural ICAPM as they

remain similar when we reestimate the model imposing the structural restrictions that pin

down all risk prices as functions of the risk aversion parameter, which we reestimate to be

6.3 in our Long Sample and 6.9 in our Modern Sample.

In our second empirical exercise, we compare the pricing ability of our intertemporal

factor model with that of the prominent factor models cited in our first paragraph. We start

by following the argument in Barillas and Shanken (2017) that contrasting the tangency

portfolio Sharpe ratios of different factor models is sufficient for comparing them. We find

that the ICAPM’s in-sample tangency Sharpe ratio is higher than those of the CAPM and the

FF3 model (Fama and French (1993)), but lower than those of all other models we explore.

However, as Figure 1(b) shows, after partially adjusting for overfitting (through an out-of-

sample analysis as in Kan, Wang, and Zheng (2019)) and for trading costs (as in Detzel,

Novy-Marx, and Velikov (2020)), the ICAPM’s tangency Sharpe ratio is also higher than

those of the FFC4, FF5, and q4 models (respectively by Carhart (1997), Fama and French

(2015) and Hou, Xue, and Zhang (2015)), remaining lower than only those of the SY4, DHS3,

and q5 models (respectively by Stambaugh and Yuan (2017), Daniel, Hirshleifer, and Sun

(2020), and Hou et al. (2020)). As such, the ICAPM has a strong tangency Sharpe ratio

despite its factors being constrained to reflect risks related to long-term investing, with the

use of out-of-sample Sharpe ratios being the key driver of this result.

While focusing on tangency Sharpe ratios is sufficient for comparing factor models in a

world without publication biases, directly studying test assets can be important when the

publication prospects of proposed factor models correlate with the Sharpe ratios on the

proposed factors, which is likely to be the case in the asset pricing literature. As such,

we also study the performance of the different factor models in pricing the test assets
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recommended by Lewellen, Nagel, and Shanken (2010): single stocks, industry portfolios,

correlation-clustered portfolios (Ahn, Conrad, and Dittmar (2009)), and bond portfolios.

Tests based on these assets are less subject to publication biases (than tests based on Sharpe

ratios or anomaly portfolios) as previous factor models were not tested against such assets

when originally proposed. As Figure 1(c) shows, we find that the ICAPM pricing errors are

lower than those for all alternative factor models we consider.1

In summary, we show that a long-term Bayesian investor perceives shocks to the market

dividend yield and realized variance as additional risk factors beyond the market portfolio,

and use this insight to construct an intertemporal factor model in which the tradable factors

capture market risk (rm), reinvestment risk (rE), and volatility risk (rV). We then explore

the model empirically, finding that (i) its risk price signs are consistent with theory and their

magnitudes imply a reasonable risk aversion and (ii) it performs well relative to prominent

factor models in terms of its tangency Sharpe ratio and its pricing of relevant testing assets.

Our main contribution is to connect the structural ICAPM literature to the reduced-

form factor model literature.2 While structural ICAPM tests provide a direct map from

the risk considerations affecting long-term investing to risk prices, they require assumptions

outside of the economic environment (e.g., a pre-specified state vector to estimate news) and

result in non-tradable factors, with both of these limitations leading to potential specification

issues (see Chen and Zhao (2009) and Lewellen, Nagel, and Shanken (2010)). In contrast,

reduced-form factor models are fairly robust to mispecification, but do not have a risk-

based interpretation, and thus are silent on whether their factors compensate investors for

1We also explore anomaly portfolios as test assets and find that the ICAPM pricing errors are only lower
than those from the CAPM, FF3, and FF5 models while larger than those from the other five models we
consider. Flipping the coin, we show that the ICAPM is able to price decile portfolios sorted on exposures to
our rE and rV factors better than all alternative factor models we consider, which highlights the importance of
using test assets that are not based on signals that are connected to the factors when comparing factor models
(see Lo and MacKinlay (1990) and Ferson, Sarkissian, and Simin (1999)). In this vein, we also show that a
strategy that adds anomaly portfolios to the ICAPM factors in real time has a large chance of ultimately
deteriorating the investor’s Sharpe ratio.

2Some examples of papers in the structural ICAPM literature are Campbell (1993, 1996), Brennan,
Wang, and Xia (2004), Campbell and Vuolteenaho (2004), Maio (2013), Campbell et al. (2018), Cederburg
(2019), and Gonçalves (2021a,b), with Cederburg (2019) exploring a Bayesian estimation framework.
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relevant risks (Kozak, Nagel, and Santosh (2018)). We provide a factor model linked to the

risk considerations affecting long-term investing through our Bayesian learning framework

while building on important implementation insights from the reduced-form factor model

literature. The result is an intertemporal factor model that can be robustly implemented

in real time, performs well empirically, and reflects the SDF of a long-term investor with

moderate risk aversion, which translate into the positive pricing of market risk (rm) and

reinvestment risk (rE), and the negative pricing of volatility risk (rV).

Some papers explore the pricing of shocks to expected returns or volatility in the context

of Merton (1973)’s ICAPM (e.g., Kozak and Santosh (2020) and Ang et al. (2006)). Our

contribution to this side of the literature is threefold. First, we develop a fully-specified

ICAPM with a Bayesian learning framework, which maps long-term expected returns and

volatility to changes in the market dividend yield and realized variance, thereby providing

a way to construct tradable ICAPM factors in real time. Second, our framework links each

ICAPM risk price to risk aversion in a structural way, allowing us to quantitatively validate

our intertemporal factor model. And third, our ICAPM framework implies that the risk price

on each ICAPM factor can only be evaluated when controlling for the other two factors. As

we detail later, this aspect is important as risk prices are severely distorted if we do not

control for all ICAPM factors simultaneously (e.g., the rV risk price is close to zero).

Several papers have attempted to provide an ex-post ICAPM interpretation for promi-

nent tradable factors by linking them to variation in state variables related to investment

opportunities (e.g., Vassalou (2003), Petkova (2006), Maio and Santa-Clara (2012), Boons

(2016), Cooper and Maio (2019), and Barroso, Boons, and Karehnke (2020)). Our work is

different from (and complementary to) this literature as we construct tradable factors that

are consistent with the ICAPM ex-ante as oppose to providing an ex-post analysis of whether

tradable factors are consistent with the ICAPM. Moreover, we focus on a structural ICAPM

with state variables determined by a Bayesian learning framework, which imposes stronger

restrictions than the consistency tests in this literature as they only rely on the overall logic

of Merton (1973) that tradable factors should be related variation in investment opportuni-
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ties. The result is that our analysis allows us to overcome the ICAPM“fishing license” (Fama

(1991)), map each of our tradable factors to a specific source of risk, and infer that the risk

price magnitudes are internally consistent with the ICAPM under reasonable risk aversion,

tasks that are difficult to accomplish without a fully specified ICAPM framework.

Finally, our work provides a natural response to several papers that reveal important issues

in asset pricing tests that raise skepticism about the ability of current models to explain the

cross-section of returns. First, we address criticisms related to the measurement of non-

tradable risk factors and estimation of their risk prices by relying on tradable factors and

requiring the model to price them, which makes our analysis immune to typical issues in the

estimation of risk prices and relatively robust to mispecification in the factors’ construction.3

Second, we deal with problems arising from the testing assets used to evaluate models by

relying on the testing assets recommended in Lewellen, Nagel, and Shanken (2010), which

are reasonably immune to the core issues raised in the literature.4 And third, we deal with

the lack of economic interpretability of factor models (e.g., Ferson, Sarkissian, and Simin

(1999) and Kozak, Nagel, and Santosh (2018)) by constructing our risk factors so that they

closely reflect the underlying ICAPM risks affecting long-term investing.5

The rest of this paper is organized as follows. Section 1 details the structural ICAPM

and its factor model implementation, Section 2 explores our intertemporal factor model and

its risk prices, Section 3 compares different factor models, Section 4 studies the pricing of

anomalies, and Section 5 concludes by summarizing our results and implications. The Internet

Appendix contains technical derivations, empirical details, and supplementary results.

3Parker and Julliard (2005), Jagannathan and Wang (2007), Savov (2011), and Kroencke (2017) outline
important challenges in measuring consumption growth (needed to test consumption CAPMs) and Chen and
Zhao (2009) focus on sensitivity issues in measuring news to long-term expected returns (necessary in ICAPM
structural tests). Relatedly, Lewellen, Nagel, and Shanken (2010), Kan, Robotti, and Shanken (2013), and
Laurinaityte et al. (2020) detail several limitations in the estimation of risk prices of non-tradable factors.

4See Lo and MacKinlay (1990), Berk (2000), Grauer and Janmaat (2004), Ahn, Conrad, and Dittmar
(2009), Lewellen, Nagel, and Shanken (2010), Cederburg and O’Doherty (2015), Ang, Liu, and Schwarz
(2020), and Tian (2021) for the limitations of asset pricing tests based on typical anomaly portfolios.

5Models with arbitrary macroeconomic variables face a similar economic interpretability issue in that
average returns can be “explained” by macroeconomic variables even when they do not identify risks relevant
to investors (Shanken (1992), Reisman (1992), and Nawalkha (1997)).
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1 The ICAPM and its Factor Model Implementation

This section introduces the ICAPM framework and details how we implement our intertem-

poral risk factor model while avoiding the ICAPM “fishing license” (Fama (1991)). The

ICAPM structure follows prior work (Campbell et al. (2018) and Gonçalves (2021a)), but

our intertemporal risk factor model implementation is new. Subsection 1.1 outlines the struc-

tural ICAPM, Subsection 1.2 builds the map from the structural ICAPM to an intertemporal

risk factor model, and Subsection 1.3 details how we build our intertemporal risk factor model

empirically. Internet Appendix A provides all derivations.

To simplify notation, we use tilde to represent shocks (e.g., x̃t ≡ xt − Et−1[xt]), and sup-

press time subscripts inside conditional moments when convenient (e.g., Et[x] ≡ Et[xt+1]).

1.1 The ICAPM SDF

A long-term (i.e., infinitely lived) investor has Epstein-Zin recursive preferences (Epstein

and Zin (1989)) with time discount factor δ, intertemporal elasticity of substitution ψ = 1,

and relative risk aversion γ.6 The investor chooses consumption and portfolio allocation to

maximize lifetime utility subject to the usual budget constraint. The log Stochastic Discount

Factor (sdft = log(SDFt)) derived from the investor’s optimality conditions with respect to

consumption and portfolio allocation is given by7

sdft = κ − γ · rw,t − (γ − 1) · ṽwt, (1)

where rw captures log returns on the investor’s wealth portfolio and vwt = log(Vt/Wt) reflects

the investor’s log value-wealth ratio.8

6ψ plays no role in our empirical analysis. We fix ψ = 1 in the exposition because in this case the
ICAPM implications do not require a log-linear approximation. All ICAPM implications exposed follow (as
approximations) if ψ 6= 1 as demonstrated in Internet Appendix A.2.

7To simplify the exposition, we assume Et[vw] ≈ vwt/δ. Otherwise, the intercept has a small time varying
component, κt−1 = κ+(γ− 1) · (vwt−1/δ−Et−1[vw]). Such time varying component has no implications for
risk premia (only for interest rate variation), and thus does not play a role in our analysis.

8Note that intertemporal risk (ṽw) is only relevant if long-term prospects are important. Specifically, if
the investor had a one period horizon, then the value function would be zero at the end of the period so that
ṽw would not enter the SDF. Similarly, if investment opportunities did not vary over time, then ṽw would
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For our factor model implementation, we further decompose ṽw into the two components

of intertemporal risk: news to long-term expected returns and volatility (i.e., reinvestment

risk and volatility risk). Specifically, Internet Appendix A.2 shows that9

vwt = constant + Et

[
∞∑

h=1

δh · rw,t+h
]
− (γ − 1)

2
· Et

[
∞∑

h=1

δh · Vart+h−1 [vt+h]

]

⇓
ṽwt = NE,t − (γ − 1)

2
·NV,t (2)

where

NE,t = (Et − Et−1)
[∑∞

h=1 δ
h · rw,t+h

]
is expected return news

NV,t = (Et − Et−1)
[∑∞

h=1 δ
h · Vart+h−1[vt+h]

]
is volatility news

Increases in expected returns increase the value function relative to current wealth as

wealth is expected to grow at a higher rate, delivering a more valuable future consumption

stream. In contrast, higher future volatility decreases the value function relative to current

wealth since achieving the given wealth growth requires facing more risk going forward.

Substituting Equation 2 into the log SDF in Equation 1 yields:

sdft = κ − γ · rw,t − (γ − 1) ·NE,t +
(γ − 1)2

2
·NV,t (3)

which shows that, with γ > 1, declines in expected returns and increases in expected volatility

(holding current wealth fixed) represent bad news to the long-term investor.10

In summary, the ICAPM SDF reflects market risk (rw), reinvestment risk (NE), and

volatility risk (NV). Moreover, the last two terms are responsible for the intertemporal risk

component in the ICAPM SDF, with the ICAPM reducing to the CAPM in the absence

of these intertemporal risk terms, which occurs if long-term investing prospects are not

always be zero. Finally, if γ = 1, then the investor acts myopically and effectively ignores ṽw.
9The first line in Equation 2 relies on a second order Taylor approximation for Et[SDFt+1 ·Rw,t+1] = 1

that holds exactly if ṽt = r̃w,t + ṽwt is conditionally normal. Otherwise, there are other news terms related
to vt higher order moments. We leave an exploration of such higher order risk factors to future work.

10The γ > 1 condition for the positive NE risk price is a consequence of two offsetting effects. An asset
that comoves positively with expected returns is desirable since it provides more capital to investors at a
time when the marginal product of capital is high. However, the asset also exposes investors to reinvestment
risk. When γ > 1, the latter effect dominates so that the NE risk price is positive.
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important (see Footnote 8).

1.2 The Intertemporal Risk Factor Model

We apply a first order Taylor expansion to Equation 3 to obtain

SDFt ≈ ao − E[SDF ] ·
(
γ · rw,t + (γ − 1) ·NE − (γ − 1)2

2
·NV

)
(4)

and let Rt reflect a vector of all asset returns so that projecting the risk factors onto Rt (with

the constraint that mimicking factors are long-short portfolios) yields




rw,t = ζ0,m + ζm · rm,t + ǫm,t

NE,t = ζ0,E + ζE · rE,t + ǫE,t

NV,t = ζ0,V + ζV · rV,t + ǫV,t

(5)

where (for k = m, E, V) rk,t = π
′

kRt represent tradable mimicking factors, Σjπk,j = 0 capture

zero-cost portfolio weights, and ζk ≥ 0 reflect positive normalizing constants.

The projection orthogonality conditions imply E[ǫm · rj] = E[ǫE · rj] = E[ǫV · rj] = 0 for

any excess return, rj,t = Rj,t − Ri,t. As such, substituting Equation 5 into E[SDF · rj] = 0

yields the Euler condition E[M · rj] = 0 for our tradable SDF,

Mt = a − bm · rm,t − bE · rE,t − bV · rV,t, (6)

implying the intertemporal factor model risk premia equation,

E[rj] =
bm

E[M ]
· Cov[rj, rm] +

bE
E[M ]

· Cov[rj, rE] +
bV

E[M ]
· Cov[rj, rV], (7)

with restrictions bm ≥ 0, bV ≤ 0, and sign(bE) = sign(γ − 1) (so bE ≥ 0 as long as γ ≥ 1),

which we explore in our empirical analysis.11

Finally, letting b = [bm bE bV]
′

and f = [rm rE rV]
′

, the Euler condition E[M · f ] = 0

implies (with Σf as the f covariance matrix):

11Specifically, the risk prices are given by bm = ζm · E[M ] · γ, bE = ζE · E[M ] · (γ − 1), and

bV = −ζV · E[M ] · (γ−1)2

2 . The ICAPM restrictions then follow from γ ≥ 0 and ζk ≥ 0 for k = m, E, V.
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b = E[M ] · Σ−1
f E[f ] (8)

Since our risk factors are excess returns, the Euler condition E[M ·f ] = 0 does not identify

a. As such, we normalize a by imposing E[M ] = 1. This normalization does not affect the

model-implied risk premium on any asset, E[rj], as can be seeing by substituting Equation 8

into Equation 7 (see Chapter 13.2 in Cochrane (2005) for more details on this normalization).

1.3 The Market and Intertemporal Risk Factors

The key to a valid factor model implementation of the ICAPM is to build rm, rE, and rV

that represent tradable mimicking factors for market risk (rw), reinvestment risk (NE), and

volatility risk (NV). This subsection details how we approach this crucial task.

1.3.1 The Market Risk Factor

Since rw,t are real log returns on the representative investor’s wealth portfolio, if the equity

market reflects the wealth portfolio, then we have

rw,t ≈ Rm,t −Rinf,t = rm,t + ǫm,t (9)

where rm,t = Rm,t − Rf,t are equity market returns in excess of the risk-free rate and

ǫm,t = Rf,t −Rinf,t (roughly) reflects unexpected inflation, which we assume does not price

excess returns since inflation affects both legs of any long-short strategy.

The argument above motivates us to use rm as our market risk factor and implies ζm = 1.12

As such, we have γ = bm/E[M ] = 1
′

mΣ
−1
f E[f ], which allows us to infer the relative risk

aversion coefficient from our Σf and E[f ] estimates. Using rm as the ICAPM market factor

is also empirically convenient given that effectively all factor models proposed in the literature

(including the CAPM) rely on this same rm as their market factor.

12We measure rm using the market risk factor available in Kenneth French’s data library (http://mba.
tuck.dartmouth.edu/pages/faculty/ken.french/index.html).
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1.3.2 The NE and NV Proxies

Constructing the intertemporal risk factors (rE and rV) is challenging as it requires real

time proxies for news to long-term expected returns (NE) and volatility (NV). To avoid the

ICAPM “fishing license” (Fama (1991)) when constructing NE and NV, we do not specify

an arbitrary set of state variables for expected returns and volatility, but instead build a

simple Bayesian learning framework in which the long-term investor observes only market

prices and dividends (similar to Binsbergen and Koijen (2010)). In this framework, the log

dividend yield ultimately provides a signal for the (unobservable) mean log return process

so that NE is linked to log dividend yield shocks. Similarly, log realized variance provides a

signal for the conditional log variance so that NV is linked to log realized variance shocks.

As a consequence, our Bayesian framework motivates the use of changes in the log dividend

yield (∆dp) and log realized variance (∆σ2) as real time proxies for NE and NV, respectively.

Letting rw,t and ∆dt reflect the monthly log wealth return and growth in annual dividends,

we assume that rw,t, µt = Et[rw,t+1|µt], and gt = Et[∆dt+1|gt] have monthly dynamics with

rw,t+1 = µt + r̃∗w,t+1 (10)

µt+1 = µ + φµ · (µt − µ) + µ̃∗
t+1 (11)

gt+1 = g + φg · (gt − g) + g̃∗t+1 (12)

Σt = Σ · Vrt (13)

where [r̃∗w,t+1, µ̃
∗
t+1, g̃

∗
t+1] ∼ N(0,Σt) are unobservable shocks and Vrt = Vart[r̃

∗
w,t+1] captures

the wealth portfolio return variance with dynamics detailed later in this subsection.13

13While the assumption that r̃∗w,t, µ̃
∗
t , and g̃

∗
t have a single volatility factor (i.e., Equation 13) is stylized,

it keeps the ICAPM tractable and is analogous to related models that include stochastic volatility in the
ICAPM and long-run risks literatures (e.g., Campbell et al. (2018) and Bansal et al. (2014)).
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Then, from the log-linear valuation identity in Campbell and Shiller (1989), we have14

dpt − dp = Φµ · (µt − µ) − Φg · (gt − g) (14)

where Φµ = (1 − φ12
µ )/[(1 − φµ)(1 − ρ · φ12

µ )], Φg = (1 − φ12
g )/[(1 − φg)(1 − ρ · φ12

g )], and

ρ = e−dp/(1 + e−dp), with dpt = log(Dt/Pt) reflecting the annual dividend yield and dp

capturing the average dpt.

The long-term investor observes rw,t, dpt, and all model parameters, but not µt and gt.
15

As such, the Bayesian investor forms the expected return process, Ert = Et[rw,t+1] = Et[µt],

endogenously from observations of rw,t and dpt. Specifically, as demonstrated in Internet

Appendix A.3, rw,t and dpt provide signals for µt so that

Ert+1 = Er + φE · (Ert − Er) + Ẽrt+1 (15)

where parameters are given by Er = µ, φE = φµ, νo = 1/[Φµ · (φµ − φg)], and shocks by

Ẽrt+1 = ξdp,t · d̃p
o

t+1 + ξr,t · r̃w,t+1, (16)

d̃p
o

t+1 = µ + νo · [(dpt+1 − dp)− φg · (dpt − dp)] − Ert (17)

r̃w,t+1 = rw,t+1 − Ert (18)

with ξdp,t and ξr,t capturing functions of the underlying model parameters and the Vrt history.

Intuitively, at time t+1, the investor forms the Bayesian expectation for µt+1 (i.e., Ert+1 =

Et+1[µt+1]) by updating the time t expectation (Ert = Et[µt]) using the observed wealth

14The Φµ and Φg parameters in Equation 14 are derived in Internet Appendix A.3 and account for the
fact that dpt is the annual dividend yield while µt and gt have monthly dynamics. The use of the annual
dividend yield in a monthly model allows stock exposures to monthly changes in the annual dividend yield
to be used in the empirical construction of our reinvestment risk factor (detailed later) while being fully
consistent with the model. The focus on monthly betas makes it feasible to rely on a rolling window beta
estimation while capturing the possibility that firm-level betas vary over time. At the same time, the use of
annual (as opposed to monthly) dividend yield avoids dividend seasonality issues.

15The assumption that the investor knows all model parameters is justified by the fact that all parameters
can be consistently estimated, for example, by conditional maximum likelihood as we explain in Subsection
1.3.4. In contrast, the investor can never fully recover µt. The best that the investor can do is to obtain the
expectation of µt given the information observed up to time t, which is precisely how we model the belief
process of the investor in this subsection.
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portfolio return and dividend yield processes from t to t+1 as well as the knowledge that µt

evolves as in Equation 11. As a consequence, the shock to the investor’s endogenous expected

return process, Ẽrt+1, is a linear combination of r̃w,t+1 and d̃p
o

t+1.

In terms of the volatility dynamics, we model Vrt as a Realized log-GARCH process (see

Hansen, Huang, and Shek (2012)) so that16

log(Vrt+1) = ωVr + φVr · log(Vrt) + φσ · σ2
t+1 (19)

σ2
t+1 = ωσ + log(Vrt) + σ̃2

t+1 (20)

where σ̃2
t ∼ N(0, σ2

σ) with σ
2
t reflecting the log of the realized variance of rw over month t.

Internet Appendix A.3 shows that our Ert and Vrt dynamics (in conjunction with the vwt

recursion implied by the ICAPM) result in17

NE,t+1 = θE · Ẽrt+1 = θdp,t · d̃p
o

t+1 + θr,t · r̃w,t+1 (21)

and

NV,t+1 ≈ θσ · σ̃2
t+1 (22)

where θE = δ/(1− δ · φE), θdp,t = θE · ξdp,t, θr,t = θE · ξr,t, and θσ > 0 reflects a function of δ,

γ, and the expected return and volatility parameters.

We rely on Equations 21 and 22 to motivate our simple real time proxies forNE andNV (up

to a constant of proportionality). Specifically, when constructing rE, we use ∆dpt = dpt−dpt−1

16Our use of a Realized log-GARCH process effectively treats the conditional variance as observable
even though µt is not. This approach simplifies exposition and is consistent with prior literature (e.g.,
Anderson, Ghysels, and Juergens (2009)), with the justification relating back to the work of Merton (1980)
and Foster and Nelson (1996). However, our log(Vrt) process can be derived as the Bayesian posterior of
the log conditional variance in a latent stochastic volatility model in which σ2

t provides a noisy signal for
the log conditional variance (see Internet Appendix A.3 for the proof). This Bayesian interpretation of our
Vrt process relies on the normality of σ̃2

t , which holds approximately in our log-GARCH (but not in a level-
GARCH) specification, justifying our modeling approach. Internet Appendix D.4 provides more details on
this normality issue and also demonstrates that our log-GARCH model better forecasts long-run variance
than an analogous level-GARCH process.

17The NE,t = θE · Ẽrt result holds exactly. In contrast, NV,t is generally a non-linear function of σ̃2
t so that

the NV,t ≈ θV · σ̃2
t result relies on some linear approximations. In the main text, we use this NV,t ≈ θV · σ̃2

t

approximation for simplicity, but Internet Appendix D.7 shows that our results are similar (but slightly
stronger) if we solve for the nonlinear NV,t numerically.
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as proxy for NE,t. Equation 21 shows that NE,t is a linear combination of d̃p
o

t and r̃w,t and it

is well-known that realized returns provide a very noisy signal for µt so that we expect θdp,t

to be much larger than θr,t, justifying our use of ∆dpt.
18 Similarly, when constructing rV, we

use ∆σ2
t = σ2

t − σ2
t−1 as a proxy for NV,t, which is directly motivated by Equation 22. The

next subsection explains our rE and rV construction.

1.3.3 The Tradable Mimicking Factors for NE and NV

The typical approach in the literature to construct the zero-cost mimicking factor for a

generic nontradable factor x is to19

1. Sort stocks based on their βx = Cov[x,R]/Var[x] to form base portfolios

2. Project x onto the base portfolios with a constraint that coefficients add to zero

In our application, real time estimation of the nontradable factors (to estimate βNE and βNV

in step 1) would lead to large estimation errors and parameter instability. As such, we replace

step 1 with sorts on βdp and βσ2 , so that we are effectively using ∆dp and ∆σ2 to proxy for

NE and NV (up to a constant of proportionality), as discussed in the previous subsection.20

Specifically, at each month t (with t from 12/1927 to 11/2019) and for each stock in the

CRSP dataset (incorporated in the US and traded on NYSE, AMEX, or NASDAQ), we

measure stock-level βdp and βσ2 based on univariate betas of monthly returns on ∆dp and

∆σ2, respectively. We use a 5-year rolling window to estimate betas and require stocks to

18Our empirical results confirm our expectation. Specifically, in our estimation described in Subsection
1.3.4, the average θdp,t is 31 (39) times lager than the average θr,t over our Long (Modern) Sample.

19The motivation in the literature is as follows. If we project x onto the vector of all asset returns, Rt,
we find that the x mimicking factor weights are generally proportional to Σ−1

R βx, where ΣR = Var[R] (see
Breeden, Gibbons, and Litzenberger (1989)). Since ΣR estimates are very noisy when the number of assets in
Rt is large, the literature typically uses βx as a sorting signal to construct a small set of base portfolios (step
1) and then project x directly onto these base portfolios (step 2). We also explore the alternative approach
proposed by Giglio and Xiu (2020) to construct the base portfolios in step 1 (see Footnote 25).

20Our annual log dividend yield measure, dpt, follows the construction in Gonçalves (2021a) and our log
realized variance is σ2

t = log( 21
Nt

· ΣNt

i=1r
2
w,t,i), with rw,t,i reflecting the log return on the CRSP value-weighted

index on day i of month t. Internet Appendix C.1 provides further measurement details for dpt and σ
2
t .
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have the full five years of data available to be included in the construction of rE and rV.
21

Similarly, the projections in step 2 would likely be unstable if performed in real time (and

could lead to large weights on relatively small stocks). As such, we replace step 2 with the

construction of value-weighted high minus low returns (following Herskovic, Moreira, and

Muir (2019)). Specifically, we form four value-weighted portfolios (RLE, RHE, RLV, RHV) by

sorting stocks based on their βdp and βσ2 each month. The RLE (RLV) portfolio contains stocks

that are below the 30% NYSE breakpoint for βdp (βσ2) while theRHE (RHV) portfolio contains

stocks that are above the 70% NYSE breakpoint for βdp (βσ2). Finally, our intertemporal

risk factors are constructed as rE = RHE −RLE and rV = RHV −RLV.
22 Since our betas are

measured from 12/1927 to 11/2019, our rE and rV are available from 01/1928 to 12/2019.

1.3.4 The ex-post Mimicking Factors for NE and NV

Beyond constructing our tradable mimicking factors (rE and rV) using ∆dp and ∆σ2 as

proxies for NE and NV, we also construct ex-post mimicking factors for NE and NV (which

we call rNE and rNV) based on ex-post estimated NE and NV following the model structure

in Subsection 1.3.2. While rNE and rNV are not tradable (and thus cannot be used for asset

pricing tests), they are used in parts of our empirical analysis to validate rE and rV.

We start by estimating the Realized log-GARCH process in Equations 19 and 20 by non-

linear least squares targeting the 10-year subsequent realized variance (Internet Appendix

D.6 provides a maximum likelihood estimation). This estimation approach is consistent with

our objective of focusing on long-run variance (to measure NV) and is in line with the work

of Ederington and Guan (2010), who find that targeting multiperiod realized variance in

GARCH estimation tends to result in better long-run variance forecasts. Then, given Vrt,

we estimate the Ert process parameters (in Equations 15 to 17) by conditional maximum

21In the beginning of our sample period, we start with a shorter window (12 months for βdp and 23
months for βσ2) due to data availability and expand the window for each factor until we have five years of
data to estimate the respective beta. Internet Appendix C.2 provides further details and Internet Appendix
D.3 shows that our main results are very similar with betas estimated on a 3-year rolling window.

22Our approach is analogous to Fama and French (1993), except that we do not control for size or
orthogonalize our factors since the ICAPM does not imply factors are orthogonal to size or to each other.
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likelihood as in Binsbergen and Koijen (2010). Further estimation details (and parameter

estimates) are provided in Internet Appendix B.1.

The above procedure provides us with ex-post estimates for NE and NV from Equations

21 and 22.23 Using these estimates, we obtain ex-post mimicking portfolios for NE and NV

following the formal steps 1 and 2 in the prior subsection. Specifically, we form value-weighted

decile portfolios by sorting stocks based on βNE and βNV estimated over the same 5-year

rolling window that we use to estimate stock-level βdp and βσ2 . We then project our estimated

NE and NV onto their respective deciles (while requiring weights to add to zero) to obtain

the ex-post mimicking factors, rNE and rNV, as linear combinations of the returns on the

βNE and βNV decile portfolios.

2 The Intertemporal Risk Factor Model: Main Results

This section presents our main empirical results. Subsection 2.1 demonstrates that our in-

tertemporal risk factors reflect tradable mimicking factors for NE and NV, Subsection 2.2

explores decile portfolios from sorts on βdp and βσ2 , Subsection 2.3 shows that investors can

extract large risk premia in real time from exposures to the ICAPM risk factors, Subsec-

tion 2.4 presents the estimated ICAPM risk prices, and Subsection 2.5 outlines the core

implications and limitations of our main results.

Our empirical analysis considers two sample periods. The Long Sample (from 1928 to

2019) covers the full period over which we can produce our factors while the Modern Sample

(from 1973 to 2019) focuses on (roughly) the second half of our Long Sample, which is the

longest period over which we can construct all factors from the other factor models we study.

23Strictly speaking, we use Ẽrt and σ̃2
t instead of NE = θE · Ẽrt and NV = θσ · σ̃2

t so that we avoid
estimating θE and θσ (which depend on δ and γ) when constructing rNE and rNV. This approach only affects
rNE and rNV up to a constant of proportionality, and thus does not impact any of the results we report.
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2.1 Validating the Intertemporal Risk Factors

This subsection shows that our tradable intertemporal risk factors, rE and rV, which are

constructed from sorts on βdp and βσ2 , are good real time mimicking factors for NE and NV.

Table 1 reports correlations between different tradable and nontradable risk factors over

our Modern and Long samples. Panel A focuses on the correlation matrix for ∆dp, NE, rE,

and rNE, which reflect reinvestment risk, while Panel B focuses on the correlation matrix for

∆σ2, NV, rV, and rNV, which reflect volatility risk.

The key result from Table 1 is that rE and rV strongly correlate with our ex-post in-

tertemporal risk factors, rNE and rNV. Specifically, the correlations between the ex-post

estimated news, NE and NV, and their respective real time proxies, ∆dp and ∆σ2, are

relatively high with Cor(∆dp,NE) = 0.91 and Cor(∆σ2, NV) = 0.75 over the Long Sample

and Cor(∆dp,NE) = 0.88 and Cor(∆σ2, NV) = 0.92 over the Modern Sample. As a conse-

quence, we have Cor(rE, rNE) = 0.93 and Cor(rV, rNV) = 0.81 over the Long Sample and

Cor(rE, rNE) = 0.89 and Cor(rV, rNV) = 0.84 over the Modern Sample. Figure 2 provides a

visual representation of this result by plotting rE, rNE, rV, and rNV after a filtering process

so that their correlations can be easily visualized.24

Table 1 also shows that rE and rV are almost as good as rNE and rNV in mim-

icking NE and NV despite the fact that rE and rV are constructed in real time

whereas rNE and rNV are designed to reflect ex-post mimicking factors for NE and NV.

For instance, over our Long Sample, we have Cor(rE, NE) = Cor(rNE, NE) = 0.51 and

Cor(rV, NV) = 0.24 < 0.30 = Cor(rNV, NV). Similarly, over our Modern Sample, we have

Cor(rE, NE) = 0.36 < 0.39 = Cor(rNE, NE) and Cor(rV, NV) = 0.28 < 0.36 = Cor(rNV, NV).

The correlations in the previous paragraph are suggestive of market incompleteness (or

measurement noise in NE and NV), which leads the correlations between tradable and non-

tradable factors to be much lower than one. However, the overall correlation values we find

24Following Campbell et al. (2018) and Gonçalves (2021a), the filtering process for a generic
risk factor x is based on an exponentially weighted moving average of normalized shocks,
fxt = (1− π) · (xt − x)/σx + π · fxt−1, with a half-life of two years (π = 0.51/24 ≈ 0.97).
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are also in line with the correlations between nontradable factors and their mimicking factors

reported in the literature (see, e.g., Alekseev et al. (2021)).25 As such, the level of market

incompleteness (or measurement noise) in our setting is comparable to the prior literature.

Finally, note that Table 1 focuses on the ability of rE and rV to act as mimicking factors

for NE and NV when the Bayesian framework we introduce in Subsection 1.3.2 is valid. This

approach allows us to overcome the ICAPM fishing license (Fama (1991)) as the model

dictates how NE and NV must be constructed (from Equations 21 and 22). However, much of

the prior ICAPM literature estimates NE and NV from vector autoregressions with multiple

pre-specified state variables. Internet Appendix D.5 shows that our simple rE and rV tradable

factors are also highly correlated with the ex-post mimicking factors we estimate using vector

autoregressions in which the state variables are the ones in Gonçalves (2021a) augmented

by realized variance as in Campbell et al. (2018). As such, while our Bayesian framework is

useful in disciplining our construction of rE and rV, these tradable factors mimick NE and

NV even if these news are estimated from vector autoregressions.

2.2 Decile Portfolios from Sorts on βdp and βσ2

This subsection studies decile portfolios from sorts on βdp and βσ2 , which are intrinsically

connected to our construction of rE and rV.

Tables 2 and 3 provide betas normalized to market beta units as well as average returns

and αs with respect to the CAPM and ICAPM.26 Table 2 focuses on βdp sorted portfolios

25In Internet Appendix D.2, we explore an alternative approach that estimates factor mimicking weights
based on the method in Giglio and Xiu (2020) and uses them (instead of betas) to create the base portfolios
underlying rE, rV, rNE, and rNV. The mimicking factors obtained from this alternative approach do not yield
higher correlations with NE and NV than our simple method. The crux of the matter is that applying this
alternative approach requires out-of-sample estimation of factor mimicking weights, with the benefit of this
alternative approach being outweighed by the limitations of out-of-sample estimation in our setting.

26For each statistic, we report the values for each decile, the spread between deciles 10 and 1, and
the slopes. βs are based on normalized factors (e.g., xt = rE,t ·

√
Var[rm]/

√
Var[rE]) so that they are in

market beta units. The slopes are obtained from panel regressions. In the case of the βs, the regression is
specified as rp,t = ap + (a+ b ·Decilep) · xt + ǫp,t. In the case of average returns, the regression is specified as
rp,t = a+b·Decilep+ǫp,t. Finally, in the case of αs, the regression is specified as α̂p+εp,t = a+b·Decilep+ǫp,t,
with εp,t reflecting time-series residuals from the respective factor model. In all cases, we report 9 · b so that
the slopes are in the same units as the spread between deciles 10 and 1. The t-statistics are obtained from
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while Table 3 focuses on βσ2 sorted portfolios. Panels A and B provide results over our Long

and Modern sample periods, respectively.

The first half of Table 2 reports betas of βdp decile-sorted portfolios relative to ∆dp, NE,

rE, and rNE (labeled βdp, βNE, βE, and βrNE) while the first half of Table 3 reports betas

of βσ2 decile-sorted portfolios relative to ∆σ2, NV, rV, and rNV (labeled βσ2 , βNV, βV, and

βrNV). As it is clear from the tables, higher deciles generally have higher (less negative)

betas. Moreover, the beta spreads between deciles 10 and 1 are all strongly significant as are

the beta slopes. All these β results (which are visually displayed in Figure 3) hold over both

the Long and Modern Samples, and further support the idea that sorting on βdp and βσ2

provides a good way to obtain ex-ante sorts on exposures to NE and NV.

Interestingly, the second halves of Tables 2 and 3 show that portfolios sorted on βdp provide

no statistically detectable spread in average returns and portfolios sorted on βσ2 provide a

negative spread in average returns that is statistically insignificant over the Modern Sample.

These results differ from what has been reported previously in the factor model literature as

previous factors are created from signals that strongly predict returns going forward.

While unusual in the factor model literature, the results in the previous paragraph are

not puzzling because the ICAPM does not imply that sorting on βdp or βσ2 should provide

a spread in average returns. It implies that each β sort should provide a spread in alphas

that control for all ICAPM risk factors except the one related to the β used in the given

sort (we label such alphas αm,V and αm,E where the subscript identifies the included factors).

Moreover, sorting on βdp or βσ2 should not induce a sort on alphas constructed using the full

intertemporal factor model (which we label αm,E,V). The results in Tables 2 and 3 confirm

these predictions. Sorting on βdp yields a positive αm,V while sorting on βσ2 yields a negative

αm,E, as predicted by the ICAPM. Furthermore, sorting on either βdp or βσ2 induces no

spread in αm,E,V (also as predicted by the ICAPM). For completeness, we also report CAPM

alphas (labeled αm), but the ICAPM does not have a clear prediction about them.

the method in Driscoll and Kraay (1998), which is a generalization of Newey and West (1987, 1994) to panel
data and accounts for autocorrelation as well as correlations across portfolios.
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2.3 The ICAPM Factor Risk Premia

This subsection shows that strategies that expose investors to each ICAPM risk factor yield

substantial risk premia after controlling for other ICAPM factors.

The first part of each panel in Table 4 provides correlations across the ICAPM factors

as well as their (annualized) average returns, volatilities, and Sharpe ratios. We find that

the ICAPM factors are highly correlated, which is expected since market prices and invest-

ment opportunities vary jointly under the ICAPM logic. For instance, Cor(rm, rE) = −0.77,

Cor(rm, rV) = −0.64, and Cor(rE, rV) = 0.82 over our Long Sample.27 In the factor model

literature, it is common to design factors to be close to orthogonal. However, as we show in

Internet Appendix D.1, this approach distorts risk prices and can even lead to changes their

signs. In the context of our analysis, this distortion would be a problem because it would

break the structural interpretation of the risk prices we estimate. For instance, we would

no longer be able to show that the estimated risk prices are quantitatively reasonable under

moderate risk aversion within the structural ICAPM (as we do in the next subsection).

So, instead of forcing our factors to be orthogonal, we study the risk factors jointly as

dictated by our underlying ICAPM. For instance, we do not directly interpret the (relatively

weak) rE and rV risk premia presented in the first part of each panel in Table 4. Instead, we

recognize that the ICAPM implication is that rE has a positive risk price (rV has negative risk

price), which must only translate into a positive (negative) risk premium after controlling for

rm and rV (rE). Consequently, we compute the risk premia for strategies that are only exposed

to their respective ICAPM factor, with no exposure to the other two factors. Specifically, we

first construct f ot = Σ−1
f ft and then apply the normalization f⊥

k,t =
√
Var[rm]/Var[f ok ] · f ok,t

so that each f⊥
k,t has the same volatility as the market portfolio, is correlated with fk,t, and

27The correlations that include nontradable factors are also strong. For instance, we find
Cor(rm, NE) = −0.65, Cor(rm, NV) = −0.38, and Cor(NE, NV) = 0.28 over our Long Sample. Simi-
larly, if we use our real time proxies, we have Cor(rm,∆dp) = −0.87, Cor(rm,∆σ

2) = −0.34, and
Cor(∆dp,∆σ2) = 0.31. Note that the correlations between tradable factors tend to be stronger than the
correlations that include nontradable factors. This result is expected given the level of market incomplete-
ness and/or measurement noise in news estimation discussed in Subsection 2.1.
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is uncorrelated with the other factors in ft.
28 Note that these strategies are still correlated

with each other (e.g., Cor(f⊥
E,t, f

⊥
V,t) 6= 0 even though Cor(f⊥

E,t, fV,t) = 0). In Internet Ap-

pendix D.1, we show that E[f⊥
k,t] ∝ bk, which would not be the case if these strategies were

constructed to be uncorrelated with each other as in the factor model literature.

The results for f⊥ = (r⊥m, r
⊥
E
, r⊥

V
) are provided in the second part of each panel in Table

4. Each strategy is strongly correlated with its respective risk factor, uncorrelated with the

other two factors, and has the same volatility as rm. Importantly, all three strategies deliver

substantial (and statistically significant) risk premia, with E[r⊥m] = 10.5%, E[r⊥
E
] = 9.9%,

and E[r⊥
V
] = −6.6% over the Long Sample.

While the analysis above shows that each factor in ft has a strong risk premium controling

for exposure to other factors in ft, the weights used to construct r⊥m, r
⊥
E
, and r⊥

V
are obtained

ex-post using the full sample estimate for Σf . As such, one could be worried that the results

are spurious, reflecting sampling noise in the ex-post Σf estimate. In the third part of each

panel in Table 4, we address this issue by recreating f⊥ = (r⊥m, r
⊥
E
, r⊥

V
) based on weights that

use a rolling window of 10 years (other rolling windows deliver similar results). Such real time

strategies still result in strong (and statistically significant) risk premia (e.g., E[r⊥m] = 10.2%,

E[r⊥
E
] = 10.8%, and E[r⊥

V
] = −7.9% over the Long Sample), implying that Σf is stable

and the results are not spurious as an investor can extract the ICAPM risk premia using

implementable trading strategies.

The results in this subsection get to the core of how our intertemporal factor model differs

from prior factor models in the literature. Factors in typical factor models have large risk

premia because they inherent this properties from the anomalies they are built to explain.

For example, the HML factor has large risk premium because it is created to explain the value

premium, which was discovered precisely because of the large average return spread between

high and low book-to-market firms. In contrast, our intertemporal risk factors (rE and rV)

are built to mimick NE and NV, and thus have no direct connection to anomaly-based risk

28To see this result, note that Cov[fo, f ] = Cov[Σ−1
f f, f ] = I with Var[fo] = Var[Σ−1

f f ] = Σ−1
f so that

f⊥i,t =
√
Var[rm]/Var[fok ] · fok,t implies Var[f⊥k ] = Var[rm] for k = m,E,V.
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premia that have been previously-established in the literature. The only implication from

the ICAPM is that these intertemporal risk factors should have a positive and a negative

risk price, respectively, which translate into positive and negative risk premia only on the

strategies r⊥
E
and r⊥

V
.

2.4 The ICAPM Risk Prices

The previous subsection shows strategies that expose investors to the ICAPM risk factors

yield substantial risk premia. By inspecting how these strategies are constructed, one can

see that E[f⊥
k ] ∝ bk, where bk is the respective factor risk price in the ICAPM SDF Equation

6. This subsection explores the bs directly to yield further insights about the ICAPM. In

particular, beyond showing that the risk price signs are in line with the ICAPM predictions,

we demonstrate that the ICAPM-implied risk aversion, γ = 1
′

mΣ
−1
f E[f ], is reasonable (e.g.,

it is 4.8 over our Long Sample) and that removing either rE or rV from the model strongly

distorts the risk price estimates for the remaining factors.

Table 5 estimates b by using the sample analogues of Σf and E[f ] in Equation 8.29 Panel

A reports the estimated CAPM and ICAPM risk prices, b, and their t-stats. Since the bs

are not easily comparable, we report σk · bk for each factor fk so that the reported values

can be interpreted as the change in Mt induced by a one standard deviation change in the

respective fk (holding other factors fixed). Panel B reports pricing errors for the strategies

that expose investors to each risk factor (r⊥m, r
⊥
E
, and r⊥

V
) to quantify the improvement as we

move from the CAPM to the ICAPM (which must price these strategies correctly). Footnote

11 provides the ICAPM structural restrictions that allow us to pin down all risk prices based

on γ as long as we have estimates for ζm, ζE, and ζV (the projection coefficients associated

29In Internet Appendix B.2, we show that such a procedure is equivalent to a just-identified GMM es-
timation in which the risk prices are obtained by requiring the model to price the factors themselves (and
show how to obtain standard errors for them). Moreover, we show that such estimator can be motivated
from efficiency and/or robustness arguments. In terms of efficiency, adding other testing assets to the GMM
estimation leaves the estimator unaffected as long as we rely on the efficient GMM weighting matrix. In
terms of robustness, we show that our b estimate converges in probability to the projection of the SDF onto
f even if the M = a+ b

′

f model is mispecified, a result that does not hold for other b estimators.
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with the ICAPM mimicking portfolios). Column“ICAPMγ” in Table 5 provides results based

on a GMM estimation of this structural (and single parameter) version of the model.30

The ICAPM column in Panel A of Table 5 indicates that market and reinvestment risk

(rm and rE) are always positively priced while volatility risk (rV) is always negatively priced,

with these results holding whether we impose the ICAPM structural restrictions or not.

That is, holding current wealth fixed, declines in expected returns and increases in expected

volatility are associated with high marginal utility because they imply worse prospects for

long-term investing. Moreover, the magnitudes are economically large. For instance, over our

Long Sample, a one standard deviation movement in rE induces a 0.32 change in Mt, which

is substantial if we consider that E[M ] = 1.

Interestingly, the ICAPME column shows that bE is much smaller when we do not control

for rV and the ICAPMV column demonstrates that bV is very close to zero (and statistically

insignificant) when we do not control for rE. These results highlight the importance of the

structural ICAPMwe rely on when constructing our intertemporal risk factor model. Without

a theoretical framework dictating that both rE and rV are necessary risk factors to implement

the ICAPM, one can mistakenly conclude that the empirical evidence on the rV risk price

is “specification dependent”. Internet Appendix D.10 discusses the relation between our risk

price results and the prior ICAPM literature estimating the risk prices of shocks to expected

returns or volatility separately (e.g., Kozak and Santosh (2020) and Ang et al. (2006)).

Beyond risk prices, the model allows us to infer the implied risk aversion, γ = 1
′

mΣ
−1
f E[f ].

The risk aversion estimates vary from 4.8 to 6.9 depending on the sample period and whether

we impose the ICAPM structure restrictions. These estimates are reasonably close to the

γ = 5 benchmark used in the structural ICAPM of Gonçalves (2021a) and the 5.1 (7.2)

30We estimate γ using GMM to match the E[M · r] = 0 Euler condition, with r⊥m, r⊥
E
, and r⊥

V
as testing

assets and an identity weighting matrix (which is equivalent to using rm, rE, and rV as test assets and
specifying the weighting matrix to focus on the orthogonal component of each asset). To pin down the
projection coefficients, we first note that ζm = 1 based on the assumption that the equity market reflects the
wealth portfolio (see Subsection 1.3.1). Then, we estimate ζE (ζV) as the slope coefficient from a projection
of NE (NV) onto rE (rV). To obtain NE and NV, we follow Croce, Lettau, and Ludvigson (2014) and set
δ = 0.999 at monthly horizon (δ ≈ 0.988 at annual horizon).
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estimate from the early period (modern period) ICAPM structural estimation in Campbell et

al. (2018). It is also interesting to note that the CAPM implies even lower risk aversion, with

estimates ranging from 2.3 to 2.8. The reason is that accounting for variation in investment

opportunities tends to lower the risk of the market portfolio (i.e., equities are safer in the

long-run), and thus a higher risk aversion is required in the ICAPM (relative to the CAPM)

to justify the equity premium we observe in the data.

The results in Panel B of Table 5 indicate that the CAPM yields high pricing errors for the

ICAPM risk factors. Specifically, the CAPM can explain about half of the r⊥m risk premium

and none of the r⊥
E
and r⊥

V
risk premia (since r⊥

E
and r⊥

V
are uncorrelated with rm). Adding

either rE or rV provides little improvement to the pricing errors while adding both reduces

all pricing errors to zero (by construction). We also find that the ICAPM prices r⊥m, r
⊥
E
, and

r⊥
V
reasonably well even when the model is restricted so that γ pins down all three risk prices

(i.e., when the model only has one degree of freedom as in the CAPM). While some αs are

statistically significant, they are still much lower in magnitude than under the CAPM. This

result indicates that the unconstrained risk prices we focus on are reasonably in line with

the implications of a fully structural ICAPM.31

2.5 Implications and Limitations of our Main Results

We find that the tradable factors in our intertemporal risk factor model are priced and

reflect relevant risks for long-term investing. In our view, these results represent an important

step forward to the factor model literature given the lack of risk-related interpretability of

31This result may seem surprising given that prior literature (e.g., Chacko and Viceira (2005)) finds that
news to long-run variance induces a quantitatively small hedging demand when conditional variance is mod-
eled as a univariate autoregressive process. The crux of the matter is that, as explained in Subsection 1.3.4,
we estimate our log-GARCH process by targeting long-run (10-year) realized variance (Internet Appendix
D.6 shows that estimating the log-GARCH by maximum likelihood, which effectively targets short-term vari-
ance, yields results that are in line with the prior literature). The underlying idea is that targeting long-run
expectations provides a robust estimation method if we recognize that any autoregressive model is likely
mispecified (see Ederington and Guan (2010) and Jordà and Kozicki (2011)). In Internet Appendix D.5,
we further show that our baseline log-GARCH estimation provides better long-run variance forecasts than
vector autoregressions that rely on multiple state variables, a result that does not hold if we estimate the
log-GARCH by maximum likelihood.
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standard factor models (Kozak, Nagel, and Santosh (2018)). Moreover, such a step is crucial

to help us move beyond the CAPM when performing risk adjustments in practice.

However, one must be careful when interpreting our results since we model the decision

of a single investor (or class of investors) without taking a stand on aggregation or the rep-

resentative agent in the economy. In a general equilibrium model with heterogeneous agents,

the first order conditions of all investors must hold, and thus we construct our intertemporal

factor model based on the SDF of a buy-and-hold long-term rational investor. We take this

approach because it is sufficient for the purpose of creating a model with tradable factors

that reflect the risks associated with long-term investing (i.e., market and intertemporal

risk), which are key determinants of risk premia in consumption-based asset pricing models

(see Section IV in Gonçalves (2021a)) or even if investors focus on long-run mean-variance

analysis (see Cochrane (2014)). A limitation of our approach, however, is that it is partial

equilibrium in nature, and thus cannot fully determine the causes of variation in asset prices.

Relatedly, Kozak, Nagel, and Santosh (2018) argue that their result that factor models

lack economic interpretability also applies (albeit to a lesser degree) to the ICAPM when

investment opportunities vary exogenously because they may be driven by sentiment. This is

another limitation of our work as we do not take a stand on what drives variation in expected

returns and volatility. While Internet Appendix D.8 shows that our main results are basically

identical after controlling for the sentiment index of Baker and Wurgler (2006), it remains

possible that other sources of sentiment drive variation in investment opportunities. However,

even if sentiment fully drives investment opportunities, our results still shed light on the risks

affecting asset prices as we uncover risk factors that dissuade rational long-term investors

from fully exploiting the opportunities created by sentiment-driven investors.

3 Comparing the ICAPM with Other Factor Models

The previous section shows that the ICAPM risk factors properly capture market and rein-

vestment risk and are priced consistently with the ICAPM predictions. In this section, we
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compare the ICAPM with eight prominent factor models proposed in the literature. Specif-

ically, we consider (ordered by publication year): the Sharpe (1964) CAPM, the Fama and

French (1993) 3-Factor model (FF3), the Carhart (1997) 4-Factor model (FFC4), the Fama

and French (2015) 5-Factor model (FF5), the Hou, Xue, and Zhang (2015) 4-Factor model

(q4), the Stambaugh and Yuan (2017) 4-Factor model (SY4), the Daniel, Hirshleifer, and

Sun (2020) 3-Factor Model (DHS3), and the Hou et al. (2020) 5-Factor model (q5).

The rest of this section is organized as follows. Subsection 3.1 estimates the ICAPM risk

prices after controlling for other factors, Subsection 3.2 compares the ICAPM with other

factor models based on their implied tangency portfolio Sharpe ratios, and Subsection 3.3

extends the comparison to pricing errors on the testing assets recommended by Lewellen,

Nagel, and Shanken (2010): single stocks, industry portfolios, correlation-clustered portfolios

(Ahn, Conrad, and Dittmar (2009)), and bond portfolios. Internet Appendices B and C

provide detailed descriptions of the econometric procedures we rely on and the data sources

we use, respectively.

3.1 ICAPM Risk Prices Controlling for Other Factors

This subsection estimates the ICAPM risk prices controlling for other factors. Specifically, we

estimate the SDF projection Mt = a− b
′

ft− b
′

xxt with xt reflecting the factors in each of the

factor models mentioned above, with the exception that we do not add the market factor to

xt since it is already included in ft. These SDF projections are analogous to the typical factor

spanning tests in the literature, with the added advantage that SDF projections control not

only for xt but also for other ft factors when testing each ft factor, which is important in

the context of the ICAPM (see Internet Appendix B.3).

For the Modern Sample (1973-2019), we can construct all factors, and thus our estimation

is analogous to the one used in Table 5. For the Long Sample (1928-2019), we can only

construct the ICAPM risk factors and the factors in FFC4, which are known as SMB, HML,

and MOM. However, since the risk price estimates depend only on estimates for Σf and E[f ],

we are still able to estimate risk prices using the method in Stambaugh (1997), which allows
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for factors with different time-series lengths in the estimation process.32

The ICAPM risk prices, annualized risk premia, and t-statistics after controlling for other

factors are reported in Table 6. The ICAPM risk prices remain strong and statistically

significant regardless of which factors we control for. The only exception is that, over the

Modern Sample, the economically large bE = 0.16 risk price becomes statistically insignificant

when controlling for the q5 factors. However, this result seems to be mostly driven by sample

size since bE remains statistically significant in the Long Sample even after controlling for

the q5 factors.

In Internet Appendices D.8 and D.9, we estimate SDF projections similar to the ones

in Table 6 to control for liquidity (Pástor and Stambaugh (2003)), sentiment (Baker and

Wurgler (2006)), and betting against beta (Frazzini and Pedersen (2014)). The risk prices

on the ICAPM factors remain strong and statistically significant.

3.2 ICAPM vs Other Factor Models: Maximum Sharpe Ratios

In this subsection, we compare the tangency portfolio Sharpe ratios (i.e., the “maximum

Sharpe ratios”) of different factor models. Based on Barillas and Shanken (2017), such anal-

ysis is sufficient for comparing the pricing ability of different factor models.33

Table 7 Panel A shows the (annualized) maximum Sharpe ratios, SRmax, of the different

32In all cases over the Long Sample, we extend the factors to their first date available and then apply the
Stambaugh (1997)’s estimation procedure. For instance, for the q5 model, factor data is available starting in
1967. We then use this factor data and apply the estimation in Stambaugh (1997) to get the Long Sample
estimates for b, treating the 1928-2019 period as the “long history” and the 1967-2019 period as the “short
history” as per Stambaugh (1997)’s terminology. We always treat the ICAPM and FFC4 factors as available
over the “long history” regardless of which SDF projection we are estimating. As such, in the case of the
comparison between the ICAPM and the FFC4 model (as well as the FF3 model), the procedure is equivalent
to the analysis performed over our Modern Sample. We use bootstrap standard errors to obtain t-statistics
for our Long Sample estimates that rely on the method in Stambaugh (1997).

33A simplified version of the Barillas and Shanken (2017) argument can be seen directly from the
Gibbons, Ross, and Shanken (1989) (GRS) test statistic. Specifically, the GRS statistic is given by
SR2(f,R)− SR2(f) = α

′

Σ−1α, where SR2(f) is the Sharpe ratio of the tangency portfolio formed with

f . If we include all existing assets in the set of testing assets, R, then SR2(f,R) = SR
2
is the same for any

set of factors we include in f . Therefore, the factor model with the highest SR2(f) is also the model with
the best pricing ability according to the GRS statistic. As such, it is sufficient to compare models based on
their maximum Sharpe ratios (i.e., to compare SR(f) for different f) in order to rank their pricing abilities.
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factor models, with parentheses reporting the percent of bootstrap simulations over which

the ICAPM has higher SRmax than the given model. The first row shows in-sample SRmax

over the entire Modern Sample with models ordered by publication year. Interestingly, SRmax

increases monotonically with the publication year, with the q5 model displaying the highest

in-sample SRmax = 2.10. In contrast, the ICAPM’s SRmax = 0.79 is only higher than the

SRmax of the CAPM and the FF3 model.

However, many of these in-sample SRmax are too high to be real and effectively repre-

sent “near-arbitrage” opportunities (a term from Kozak, Nagel, and Santosh (2018)). For

instance, Ross (1976) and Cochrane and Saá-Requejo (2000) argue that any SRmax higher

than
√
2 · SRCAPM and 2 ·SRCAPM , respectively, is unlikely to be truly available to investors

in financial markets (see also Shanken (1992) and MacKinlay (1995)). In contrast, all factor

models we explore except the FF3 and the ICAPM have SRmax > 2 · SRCAPM in-sample.

As pointed out by Fama and French (2018) and Kan, Wang, and Zheng (2019), one of

the issues with in-sample SRmax is that it is subject to overfitting since the weights of

the tangency portfolio are chosen over the same period over which SRmax is calculated. To

address this issue, we follow Kan, Wang, and Zheng (2019) and break the Modern Sample

into two periods, with the 1st half representing the period from January/1973 to June/1995

and the 2nd half the period from July/1996 to December/2019 (the respective in-sample

Sharpe ratios are also provided in the table). We then estimate the SRmax weights over the

1st half and obtain our out-of-sample SRmax over second half. The results indicate that the

ICAPM’s SRmax is higher than the SRmax of all models except SY4, DHS3, and q5.

The out-of-sample analysis above restricts the weights to be estimated over the first half

of the Modern Sample. However, some factor models (such as the ICAPM) have data going

back further, which allows investors to obtain weights in real time using a much longer

sample. As such, we also provide the out-of-sample SRmax of each model after allowing the

weights to be estimated from all data available up to June/1995. The results get stronger

for the ICAPM, with little changes for other models so that the ICAPM’s SRmax remains

higher than the SRmax of all models except SY4, DHS3, and q5.

28



While the analysis above considers the SRmax overfitting problem, there is another issue

related to differences in implementation costs across different factors. Specifically, each factor

is constructed following a different procedure. For instance, the FF3 factors are based on 30%

and 70% breakpoints while the DHS3 factors rely on 20% and 80% breakpoints. In the absence

of theory, there is no reason to restrict a given factor to a given set of construction rules, but

the implementation differences can generate substantial differences in trading costs, which

can have a strong effect on Sharpe ratios. To address this issue, we follow Detzel, Novy-

Marx, and Velikov (2020) and also report, in Table 7 Panel B, a SRmax analysis that relies

on net (of trading costs) factor returns.34 The results are qualitatively similar to Panel A, but

quantitatively stronger for the ICAPM, indicating that the trading costs in implementing

the ICAPM are smaller than for other models.

The core results from Table 7 are provided visually in Figure 4. In summary, we find that

the ICAPM performs well relative to other factor models in terms of its maximum Sharpe

ratio despite its factors being constrained to reflect risks that theoretically matter for long-

term investing. In fact, only three out of the eight factor models studied have SRmax that

are higher than the ICAPM SRmax once we account for overfitting. Moreover, the ICAPM

SRmax is stable whether estimated in-sample or out-of-sample and whether we account for

trading costs or not, which is not the case for the other multifactor models we study. The

ICAPM SRmax stability highlights the importance of relying on theory to overcome the

natural publication biases that arise in the context of the search for the multifactor model

that will replace the CAPM in the years to come.

34We follow the same procedure as Detzel, Novy-Marx, and Velikov (2020), except that we use the trading
cost measure of Chen and Velikov (2020) for the adjustment (and thank Andrew Chen for sharing the data).
As Chen and Velikov (2020) demonstrate, their high frequency trading cost measure more accurately reflects
trading costs and implies, on average, lower trading costs than the main alternative measures used in the
literature. This choice is conservative from our perspective because, as we show, the ICAPM is less affected by
trading costs than the other factor models we consider. This result is a consequence of our factor construction
relying on single sorts whereas other models use double or triple sorts, which overweight small stocks.
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3.3 ICAPM vs Other Factor Models: Pricing Errors

While focusing on SRmax is sufficient for comparing factor models in a world without publi-

cation bias, there are important limitations of a SRmax analysis when we consider that the

publication prospects of proposed factor models likely correlate with the Sharpe ratios of the

proposed factors. This issue can be seen directly from Table 7 as SRmax increases monoton-

ically with the model’s publication year. The out-of-sample analysis in the previous section

deals with overfitting but not with publication bias because the factors are still based on a

publication process that relied on Sharpe ratios over the period we treat as “out-of-sample.”

One approach is to wait for several years to perform a truly out-of-sample SRmax analysis.

This subsection considers an imperfect, but still useful, alternative solution. Namely,

we compare the ICAPM to previous factor models based on the pricing of testing assets

that the original studies did not consider. For this task, we focus on the testing assets

recommended by Lewellen, Nagel, and Shanken (2010): single stocks, industry portfolios,

correlation-clustered portfolios (Ahn, Conrad, and Dittmar (2009)), and bond portfolios.

This choice alleviates concerns associated with publication bias in testing assets (Harvey

(2017) and Lo and MacKinlay (1990)) and with testing assets that are formed from sig-

nals closely related to the factors themselves (e.g., Ferson, Sarkissian, and Simin (1999) and

Kogan and Tian (2015)), which would be a problem if we compared models based on, for

example, well-known anomalies or the twenty decile portfolios we study in Tables 2 and 3

(but we also provide results for these testing assets in Section 4). When analysing testing

assets, we focus on the Modern Sample as it reflects the longest period for which we can

construct all factors we explore.

3.3.1 Single Stocks

At each month t, we select all CRSP common stocks of firms incorporated in the United

States (shrcd = 10 or 11) that trade on NYSE, AMEX, or NASDAQ (exchcd = 1,2 or 3) and

have all returns available over the last five years. We then estimate their pricing errors (αs)

over this five-year window based on the usual factor regressions and calculate the squared
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sum of pricing errors, Σα2.

Table 8 Panel A reports, for each factor model, the time-series averages of these Σα2

normalized by the respective sums of pricing errors computed under risk-neutral pricing

(αRN = E[r]) and the ICAPM (αICAPM). We also report the percent of months for which

the respective sum is lower under the ICAPM than under the given factor model (e.g.,

%(Σα2
ICAPM<Σα

2)), which incorporates sampling variability in a manner similar to Fama

and MacBeth (1973) regressions. The overall results indicate that the ICAPM produces the

smallest pricing errors and the differences are particularly pronounced when comparing the

ICAPM with models that were published more recently, such as SY4, DHS3, and q5.

3.3.2 Industry Portfolios

For this analysis, we focus on the Fama and French (1997)’s 30 industry portfolios (following

Lewellen, Nagel, and Shanken (2010)). In contrast to single stocks, we have a balanced panel

with industry portfolios, and thus calculate one α per portfolio, reporting the same Σα2

(with the same normalizations) as we do with single stocks, but with no time-series average

being required. The percent of samples for which the ICAPM has lower pricing errors than

each model come from bootstrap simulations in this case.

Table 8 Panel B clearly indicates that the ICAPM produces the smallest pricing errors

and the differences are very high, with the ICAPM always outperforming other models in

more than 75% of the bootstrap samples.

3.3.3 Correlation-Clustered Portfolios

We follow Ahn, Conrad, and Dittmar (2009) in constructing 10 correlation-clustered port-

folios. Specifically, at each time t, we calculate return correlations (on a five year rolling

window) between all pairs of stocks used in our analysis of single stocks. We then obtain

the distance between stocks i and j as di,j =
√

2 · (1− Cori,j) and use these distance mea-

sures in a hierarchical clustering analysis, applying the Ward’s minimum variance method to

identity groups. Finally, we combine clusters formed at different points in time by assuring
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that, across adjacent months, each cluster portfolio has the most consistent firm member-

ship possible. As in Ahn, Conrad, and Dittmar (2009), our correlation-clustered portfolios

provide a large spread in average returns (as in typical anomaly sorts) and low correlation

across portfolios (in contrast to typical anomaly sorts). Further details are provided in Ahn,

Conrad, and Dittmar (2009).

Table 8 Panel C reports the results for these correlation-clustered portfolios in the same

format as Panel B. The two best performing factor models in this analysis are the FF3

and FFC4. The ICAPM comes next and performs substantially better than all other factor

models. For instance, the next best performing model is the CAPM and the ICAPM performs

better than it in at least 60% of the bootstrap samples.

3.3.4 Treasury Bond Portfolios

For this analysis, we rely on the Fama bond portfolios available in CRSP, which reflect

Treasury bond portfolios with bond maturities up to h = 1, 2, 3, 4, 5, 10, 30 years.

Table 8 Panel D reports the results for these Treasury bond portfolios in the same format

as Panels B and C. The best performing model is unambiguously the DHS3, with the ICAPM

being the next best performing model. Moreover, all other models perform substantially worse

than the ICAPM, with the next best performing model being the q5, which performs worse

than the ICAPM in at least 58% of the bootstrap samples.

3.3.5 Summarizing α Results

Figure 5 provides a visual summary of the main findings for all four groups of testing assets.

For each group, we also create an alternative definition of portfolios to demonstrate that

the results are not sensitive to auxiliary empirical decisions. Specifically, we consider a ten-

year rolling window for single stocks, the Fama and French (1997)’s 48 industry portfolios,

25 correlation-clustered portfolios, and alternative CRSP US Treasury Indexes that reflect

Treasury bond portfolios with bond maturities up to h = 1, 2, 5, 7, 10, 20, 30 years.

In summary, we find that the ICAPM is always among the best performing models (in
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terms of lowest pricing errors) and is the only factor model to consistently do so across all

four types of testing assets. Table 9 further extends this statement by ranking models based

on normalized Σα2 and also Σ|α| for each set of testing assets we study in this section.

Regardless of whether we focus on Σα2 or Σ|α|, the ICAPM is the model with the best

average rank among all models we consider.

4 Anomalies

Much of the empirical asset pricing literature has focused on anomalies (i.e., strategies based

on signals that were originally proposed as a puzzle to a benchmark asset pricing model,

often the CAPM). This fact creates an important publication bias when using anomalies to

test a given model or compare across different models (see Lo and MacKinlay (1990)). Such

effect is particularly pronounced when some of the factors used to explain anomalies are

themselves created from anomaly signals (Ferson, Sarkissian, and Simin (1999) and Kogan

and Tian (2015)). Nevertheless, this section studies anomalies for completeness. Subsection

4.1 focuses on a comparison across factor models while Subsection 4.2 asks whether investing

in anomalies provides an ex-ante increase in the ICAPM tangency portfolio Sharpe ratio.

4.1 ICAPM vs Other Factor Models: Anomaly Deciles

Table 10, Panel A, provides model comparison results using 158 anomaly decile portfolios

(that are value-weighted and based on NYSE breakpoints) from the data made available

by Chen and Zimmermann (2020), which gives us a total of 1,580 portfolios.35 The ICAPM

performs better than the CAPM, FF3, and FF5 models in pricing anomalies, but worse than

all other models we analyse. The DHS3 and the q5 models are the two best performing

models, with the ICAPM performing better than these models in only 8% of the simulations

35We begin with the 180 “clear predictors” from Chen and Zimmermann (2020), which reflect anomalies
that they classify as being “clearly significant in the original papers”. From these 180 significant anomalies,
we remove anomalies that do not have return records for all 10 decile portfolios for at least half of our
1973-2019 sample. This procedure yields the 158 anomalies (and the corresponding 1,580 decile portfolios)
we explore in Table 10. The data is available at https://github.com/OpenSourceAP/CrossSection.
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based on Σα2 and in no more than 41% of the simulations based on Σ|α|.
As previously pointed out, the signals used in the construction of traditional factor models

are, by design, strongly connected (and sometimes identical) to the signals used in the con-

struction of anomaly portfolios, which creates important issues when studying factor models

(Ferson, Sarkissian, and Simin (1999) and Kogan and Tian (2015)). Table 10, Panel B, gives

a rough indication of the problem. It replaces the deciles formed on the 158 anomalies in

Panel A with the deciles formed on βdp and βσ2 (studied in Tables 2 and 3). The results

indicate the ICAPM is by far the best model in pricing these testing assets. Of course, it

would be misleading to conclude that the ICAPM is the best model based on such an analy-

sis because the ICAPM factors are constructed using βdp and βσ2 as signals. The same logic

(but in reverse) plagues the analysis in Panel A.

4.2 Can we Increase the ICAPM Tangency Portfolio Sharpe Ratio?

Since the ICAPM performs worse than several other factor models in pricing anomaly deciles,

we now ask whether an investor would benefit from adding anomalies to a portfolio that

invests in rm, rE, and rV. We find that this is not necessarily the case. Specifically, we

show that it is hard for investors to increase the tangency portfolio Sharpe ratio ex-ante by

adding anomalies to the ICAPM factors. Consequently, even if one ignores trading costs and

publication biases, it seems investors cannot easily trade on anomalies to improve upon the

ICAPM. As such, an investor who ignores anomalies may not be suffering a large utility loss.

To motivate the analysis, note that the result in Gibbons, Ross, and Shanken (1989)

implies α2
j = σ2

j,ǫ · (SR2
max,j − SR2

max), where σ
2
j,ǫ > 0 reflects the variance of residuals in a

factor regression of portfolio j onto the ICAPM factors. As such, a non-zero α is puzzling

because it implies an investor can increase the ICAPM tangency portfolio Sharpe ratio (ex-

post) from SRmax to SRmax,j. The black lines in Figure 6 show the distribution of annualized

(in-sample estimated) ∆SRj = SRmax,j − SRmax across the 158 anomalies we study. Figure

6(a) considers long-short portfolios based on the three highest and three lowest deciles for

each anomaly, which is in line with how the intertemporal factors are created. Figure 6(b)
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repeats the analysis with long-short portfolios that consider only the highest and lowest

deciles for each anomaly. The in-sample results indicate investors can achieve large increases

in the ICAPM tangency portfolio Sharpe ratio by trading on anomalies with no risk of

decreasing the tangency portfolio Sharpe ratio.

However, as emphasized in Cederburg et al. (2020), the tangency portfolio weights in the

black lines (which are implicitly used in αs) are estimated in-sample. To address this issue,

we divide our Modern Sample in two periods of equal length, estimating the weights (for

both SRmax,j and SRmax) in the first half and calculating the Sharpe ratios in the second

half, which is analogous to how Kan, Wang, and Zheng (2019) (and our Subsection 3.2)

compare the tangency Sharpe ratios of different factor models. The blue lines in Figure 6

show the distribution of these out-of-sample annualized ∆SRs. Clearly, the risk of ultimately

decreasing the tangency Sharpe ratio by adding an anomaly strategy to the ICAPM tangency

portfolio is high (36.7% for both types of anomaly strategies we study). Of course, a real

investor would have access not only to the first half of our Modern Sample, but also to the

period before 1973. As such, the red lines show the analogous distributions when weights

are estimated using all data back to 1928, with the method in Stambaugh (1997) used to

estimate weights when the data for a given anomaly starts later than 1928 (as in Subsection

3.1). In this case, the risk of decreasing the tangency Sharpe ratio by adding an anomaly

strategy is even higher (49.4% and 42.4% for the two types of anomaly strategies we study).

So, investors with access to rm, rE, and rV have a high probability of accidentally decreasing

their Sharpe ratios as they add anomalies to their portfolios.

5 Conclusion

In this paper, we show that a long-term Bayesian investor perceives shocks to the market

dividend yield and realized variance as additional risk factors beyond the market portfolio,

and use this insight to construct an intertemporal factor model in which the tradable factors

capture market risk (rm), reinvestment risk (rE), and volatility risk (rV). We then project

35



the SDF onto our tradable factors and find that their risk prices are consistent with an

underlying structural ICAPM. Finally, we demonstrate that our intertemporal factor model

performs well relative to prominent factor models in several empirical tests.

Our results show that it is fruitful to build models with tradable factors that truly reflect

risks (i.e., that are designed to mimick the risks of some underlying theory). Such risk factor

models are more informative about investors’ motives than traditional factor models, which

are not directly linked to investors’ preferences and/or beliefs (Kozak, Nagel, and Santosh

(2018)). At the same time, risk factor models allow for the identification of risk factors that

matter to investors without being subject to the important sensitivity issues associated with

estimating the risk prices of non-tradable factors (Lewellen, Nagel, and Shanken (2010)).

We hope the future literature continues to tackle the important task of building risk factor

models (or sentiment factor models) closely guided by theory. This can be done by extending

the ICAPM to incorporate issues we abstract from such as adding other assets to the wealth

portfolio (Cederburg and O’Doherty (2019)) or by implementing factor models that reflect

other economic frameworks such as intermediary asset pricing (Adrian, Etula, and Muir

(2014)). The ultimate objective of risk factor models must not be to fully explain the cross-

section of returns, but rather to understand how much of the cross-section is explained by

particular risk-based frameworks. As such, the important unifying theme is that future work

should strive to demonstrate that the proposed tradable factors capture the underlying risks

for which they intend to proxy.

References

Adrian, T., E. Etula, and T. Muir (2014). “Financial Intermediaries and the Cross-Section

of Asset Returns”. In: Journal of Finance 69.6, pp. 2557–2596.

Ahn, D.-H., J. Conrad, and R. F. Dittmar (2009). “Basis Assets”. In: Review of Financial

Studies 22.12, pp. 5133–5174.

36



Alekseev, G., S. Giglio, Q. Maingi, J. Selgrad, and J. Stroebel (2021). “A Quantity-based

approach to constructing climate risk hedge portfolios”. Working Paper.

Anderson, E. W., E. Ghysels, and J. L. Juergens (2009). “The impact of risk and uncertainty

on expected returns”. In: Journal of Financial Economics 94, pp. 233–263.

Ang, A., R. J. Hodrick, Y. Xing, and X. Zhang (2006). “The Cross-Section of Volatility and

Expected Returns”. In: Journal of Finance 61.1, pp. 259–299.

Ang, A., J. Liu, and K. Schwarz (2020).“Using Stocks or Portfolios in Tests of Factor Models”.

In: Journal of Financial and Quantitative Analysis 55.3, pp. 709–750.

Baker, M. and J. Wurgler (2006). “Investor Sentiment and the Cross-Section of Stock Re-

turns”. In: Journal of Finance 61.4.

Bansal, R., D. Kiku, I. Shaliastovich, and A. Yaron (2014). “Volatility, the Macroeconomy,

and Asset Prices”. In: Journal of Finance 69.6, pp. 2471–2511.

Barillas, F. and J. Shanken (2017). “Which Alpha?” In: Review of Financial Studies 30.4,

pp. 1316–1338.

Barroso, P., M. Boons, and P. Karehnke (2020). “Time-varying state variable risk premia in

the ICAPM”. In: Journal of Financial Economics Forthcoming.

Berk, J. B. (2000). “Sorting out sorts”. In: Journal of Finance 55.1, pp. 407–427.

Binsbergen, J. H. v. and R. S. J. Koijen (2010). “Predictive Regressions: A Present-Value

Approach”. In: Journal of Finance 65.4, pp. 1439–1471.

Boons, M. (2016). “State variables, macroeconomic activity, and the cross section of individ-

ual stocks”. In: Journal of Financial Economics 119, pp. 489–511.

Breeden, D. T., M. R. Gibbons, and R. H. Litzenberger (1989). “Empirical Test of the

Consumption-Oriented CAPM”. In: Journal of Finance 44.2, pp. 231–262.

Brennan, M. J., A. W. Wang, and Y. Xia (2004). “Estimation and Test of a Simple Model

of Intertemporal Capital Asset Pricing”. In: Journal of Finance 59.4, pp. 1743–1775.

Campbell, J. Y. (1993).“Intertemporal Asset Pricing without Comsumption Data”. In: Amer-

ican Economic Review 83.3, pp. 487–512.

37



Campbell, J. Y. (1996). “Understanding Risk and Return”. In: Journal of Political Economy

104.2, pp. 298–345.

Campbell, J. Y., S. Giglio, C. Polk, and R. Turley (2018). “An Intertemporal CAPM with

Stochastic Volatility”. In: Journal of Financial Economics 128.2, pp. 207–233.

Campbell, J. Y. and R. J. Shiller (1989). “The Dividend-Price Ratio and Expectations of

Future Dividends and Discount Factors”. In: Review of Financial Studies 1.3, pp. 195–228.

Campbell, J. Y. and T. Vuolteenaho (2004). “Bad Beta, Good Beta”. In: American Economic

Review 94.5, pp. 1249–1275.

Carhart, M. M. (1997).“On Persistence in Mutual Fund Performance”. In: Journal of Finance

52.1, pp. 57–82.

Cederburg, S. (2019). “Pricing intertemporal risk when investment opportunities are unob-

servable”. In: Journal of Financial and Quantitative Analysis 54.4, pp. 1759–1789.

Cederburg, S. and M. S. O’Doherty (2015). “Asset-pricing anomalies at the firm level”. In:

Journal of Econometrics 186, pp. 113–128.

Cederburg, S. and M. S. O’Doherty (2019). “Understanding the Risk-Return Relation: The

Aggregate Wealth Proxy Actually Matters”. In: Journal of Business & Economic Statistics

37.4, pp. 721–735.

Cederburg, S., M. S. O’Doherty, F. Wang, and X. S. Yan (2020). “On the Performance of

Volatility-Managed Portfolios”. In: Journal of Financial Economics 138.1, pp. 95–117.

Chacko, G. and L. M. Viceira (2005). “Dynamic Consumption and Portfolio Choice with

Stochastic Volatility in Incomplete Markets”. In: Review of Financial Studies 18.4,

pp. 1369–1402.

Chen, A. Y. and M. Velikov (2020). “Zeroing in on the Expected Returns of Anomalies”.

Working Paper.

Chen, A. Y. and T. Zimmermann (2020). “Open Source Cross-Sectional Asset Pricing”.

Working Paper.

Chen, L. and X. Zhao (2009).“Return Decomposition”. In: Review of Financial Studies 22.12,

pp. 5213–5249.

38



Cochrane, J. H. (2005). Asset Pricing. Revised Edition. Princeton University Press.

Cochrane, J. H. (2008). “Financial Markets and the Real Economy”. In: Handbook of the

Equity Premium. Ed. by R. Mehra. 1st ed. Elsevier Science. Chap. 7, pp. 237–330.

Cochrane, J. H. (2014). “A Mean-Variance Benchmark for Intertemporal Portfolio Theory”.

In: Journal of Finance 69.1, pp. 1–49.
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(a) Reinvestment Risk (Long Sample) (b) Reinvestment Risk (Modern Sample)
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(c) Volatility Risk (Long Sample) (d) Volatility Risk (Modern Sample)
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Figure 2
Filtered Intertemporal Risk Factors

These graphs compare filtered versions of ex-ante and ex-post mimicking portfolios for NE and NV (using the filtering
procedure in Campbell et al. (2018), which is described in Footnote 24). Panels (a) and (b) compare our tradable
reinvestment risk factor (rE) to the ex-post NE mimicking factor (rNE). Panels (c) and (d) compare our tradable
volatility risk factor (rV) to the ex-post NV mimicking factor (rNV). To construct rE (rV), we buy a value-weighted
portfolio of the stocks with the 30% highest exposures to ∆dp (∆σ2) and sell a value-weighted portfolio of the stocks
with the 30% lowest exposures to ∆dp (∆σ2). To construct rNE (rNV), we project NE (NV) onto returns from decile
portfolios constructed by sorting stocks based on their exposure to NE (NV) and imposing that projection coefficients
sum to zero (i.e., the factors are zero-net-cost portfolios). The tradable risk factors, rE and rV, as well as the decile
portfolios necessary to obtain rNE and rNV are constructed each month using risk exposures estimated on a 5-year rolling
window. Expected return news (NE) and volatility news (NV) are based on Equations 21 and 22, and are estimated ex-
post using our Long Sample (1928-2019) in Panels (a) and (c) and Modern Sample (1973-2019) in Panels (b) and (d). A
brief explanation of our news estimation procedure is provided in Subsection 1.3.4 with a detailed description available
in Internet Appendix B.1. Subsection 1.3.3 provides further empirical details on the construction of the tradable risk
factors.
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(a) βs of βdp Deciles (Long Sample) (b) βs of βσ2 Deciles (Long Sample)

(c) βs of βdp Deciles (Modern Sample) (d) βs of βσ2 Deciles (Modern Sample)

βdp Deciles βσ2 Deciles

Figure 3
βs of βdp and βσ2 Decile Portfolios

These graphs show ex-post decile portfolio betas in market beta units (see Footnote 26) with various measures of
reinvestment risk (∆dp, NE, rE, and rNE) and volatility risk (∆σ2, NV, rV, and rNV). Panels (a) and (b) use data from
our Long Sample (1928-2019). Panels (c) and (d) use data from our Modern Sample (1973-2019). Panels (a) and (c)
use portfolios sorted on ex-ante exposure to ∆dp. Panels (b) and (d) use portfolios sorted on ex-ante exposure to ∆σ2.
See Subsection 1.3 for details related to the measurement of risk factors and decile portfolio construction.
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Figure 4
ICAPM vs Other Factor Models: Maximum Sharpe Ratios

This graph shows (in- and out-of-sample) maximum (gross and net-of-trading-cost) Sharpe ratios constructed using the
ICAPM factors or using factors from other prominent factor models, which are described at the beginning of Section
3. Results are provided for three different periods: “Full Data” (1973-2019), “1st Half” (1973-1995), and “2nd Half”
(1995-2019). For each model, the first three bars display maximum Sharpe ratios constructed using tangency portfolio
weights estimated in-sample and applied to factors within each of these three periods. The fourth bar displays the
Sharpe ratio that results from applying tangency portfolio weights estimated during the “1st Half” period to construct
a portfolio of factors during the “2nd Half” period. The last bar displays the analogous out-of-sample Sharpe ratio when
net-of-cost factors are used to both estimate weights and form the factor portfolio (see Footnote 34 for a description of
the net-of-cost factor construction).
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(a) Single Stocks: Σα2 / Σα2
ICAPM

(b) Industry Portfolios: Σα2 / Σα2
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Figure 5
ICAPM vs Other Factor Models: αs for Testing Assets in LNS

These graphs report Σα2/Σα2
ICAPM , which reflect the sum of squared pricing errors from various prominent factor

models (described at the beginning of Section 3) relative to that from the ICAPM. Each panel is based on a different
group of the test assets recommended in Lewellen, Nagel, and Shanken (2010). Panel A focuses on single stocks with
αs for each stock computed on either a 5- or 10-year rolling basis and recorded each month. Panel B focuses on either
the 30 or 48 industry portfolios from Fama and French (1997). Panel C focuses on either 10 or 25 correlation-clustered
portfolios (constructed using the method in Ahn, Conrad, and Dittmar (2009)). Panel D focuses on either the Fama
bond portfolios or the CRSP US Treasury Indexes. In the case of single stocks (Panel A), we compute Σα2/Σα2

ICAPM

each month using only stocks that have full return data in the given rolling period and then plot time-series averages
of the monthly Σα2/Σα2

ICAPM . In the case of portfolios (Panels B, C, and D), Σα2/Σα2
ICAPM is computed using the

full panel of portfolio returns. All data are from our Modern Sample (1973-2019).
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(a) Anomaly Strategy: 30% High − 30% Low
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(b) Anomaly Strategy: 10% High − 10% Low
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Figure 6
Distribution of Changes to the Tangency Portfolio Sharpe Ratio:

Adding one Anomaly H-L Strategy to ICAPM Tangency Portfolio

These graphs display the empirical density function of ∆SRj = SRmax,j−SRmax. SRmax reflects the ICAPM tangency
portfolio Sharpe ratio and SRmax,j reflects the tangency Sharpe ratio that can be achieved by adding each of the High-
Low strategies based on the 158 anomalies we study (from Chen and Zimmermann (2020)) to the ICAPM factors. We
consider in-sample (IS) Sharpe ratios as well as out-of-sample (OS) Sharpe ratios in which the weights are calculated
prior to the Sharpe ratio measurement period. Subsection 4.2 provides further details.
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Table 1
Correlations: News Proxies, Tradable Factors, and Ex-post Mimicking Factors

This table reports correlations between our tradable risk factors (rE and rV) and ex-post news (NE and NV) as well
as ex-post news mimicking factors (rNE and rNV). To construct rE (rV), we buy a value-weighted portfolio of the
stocks with the 30% highest exposures to ∆dp (∆σ2) and sell a value-weighted portfolio of the stocks with the 30%
lowest exposures to ∆dp (∆σ2). To construct rNE (rNV), we project NE (NV) onto returns from decile portfolios
constructed by sorting stocks based on their exposure to NE (NV) and imposing that projection coefficients sum to
zero (i.e., the factors are zero-net-cost portfolios). The news are based on Equations 21 and 22, and are estimated
ex-post using our Long Sample (1928-2019) or Modern Sample (1973-2019). The tradable risk factors, rE and
rV, as well as the decile portfolios necessary to obtain the ex-post mimicking factors are constructed each month
using risk exposures estimated on a 5-year rolling window. Subsections 1.3.3 and 1.3.4 provide further empirical
details on the construction of the tradable and ex-post mimicking risk factors. A detailed description of our news
estimation procedure is available in Internet Appendix B.1.

PANEL A: Reinvestment Risk (NE)

Long Sample (1928-2019) Modern Sample (1973-2019)

∆dp NE rE rNE ∆dp NE rE rNE

∆dp 1 0.91 0.68 0.68 1 0.88 0.54 0.57

NE 0.91 1 0.51 0.51 0.88 1 0.36 0.39

rE 0.68 0.51 1 0.93 0.54 0.36 1 0.89

rNE 0.68 0.51 0.93 1 0.57 0.39 0.889 1

PANEL B: Volatility Risk (NV)

Long Sample (1928-2019) Modern Sample (1973-2019)

∆σ2 NV rV rNV ∆σ2 NV rV rNV

∆σ2 1 0.75 0.24 0.27 1 0.92 0.25 0.30

NV 0.75 1 0.24 0.30 0.92 1 0.28 0.36

rV 0.24 0.24 1 0.81 0.25 0.28 1 0.84

rNV 0.27 0.30 0.81 1 0.30 0.36 0.84 1
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Table 2
Decile Portfolios Sorted on βdp

This table reports statistics related to monthly returns on 10 βdp-sorted portfolios. Panels A and B provide results
from our Long (1928-2019) and Modern (1973-2019) samples, respectively. In the top portion of each panel, we
report portfolio return exposures to our expected return news proxy (∆dp), the in-sample expected return news
measure (NE), our tradable reinvestment risk factor (rE), and the NE mimicking portfolio (rNE). Portfolio return
exposures to each of these time series are denoted by βdp, βNE, βE, and βNE, respectively, and are normalized
to be in market beta units (see Footnote 26). In the bottom portion of each panel, we report portfolio average
returns (E [r]) and αs when computed with respect to the CAPM (αm), the ICAPM excluding rE (αm,V), and the
full ICAPM (αm,E,V). All returns are in percent and annualized (approximately) by multiplying monthly returns
by 12. The “Slope” statistic is a measure of the slope of the 10 related portfolio statistics with respect to portfolio
decile (see Footnote 26). Portfolios are rebalanced monthly based on individual stock exposures to ∆dp with
further details provided in Subsection 1.3. The 10-1 portfolio t-statistics are computed according to Newey and
West (1987, 1994). The Slope t-statistics are computed according to the method in Driscoll and Kraay (1998)
using the procedure in Newey and West (1994) to select the number of lags.

PANEL A: Long Sample (1928-2019)

Dec = 1 2 3 4 5 6 7 8 9 10 10-1 (t10−1) Slope (tSlope)

βdp -1.54 -1.29 -1.18 -1.09 -1.01 -0.94 -0.85 -0.76 -0.65 -0.55 0.99 (11.5) 0.89 (8.46)

βNE -1.15 -0.97 -0.89 -0.81 -0.77 -0.70 -0.64 -0.57 -0.49 -0.41 0.74 (6.65) 0.67 (5.05)

βE -1.72 -1.41 -1.22 -1.07 -0.95 -0.85 -0.72 -0.59 -0.43 -0.33 1.39 (56.2) 1.29 (55.4)

βrNE -1.71 -1.40 -1.21 -1.11 -0.99 -0.88 -0.77 -0.65 -0.48 -0.35 1.36 (19.2) 1.23 (17.1)

E[r] 9.7% 8.8% 9.2% 9.2% 9.0% 9.5% 8.8% 8.1% 8.3% 6.7% -3.0% (-1.11) -2.0% (-0.57)

αm -3.9% -2.6% -1.4% -0.6% -0.1% 1.2% 1.2% 1.3% 2.5% 1.9% 5.8% (2.87) 5.9% (2.54)

αm,V -4.0% -2.7% -1.4% -0.6% -0.1% 1.2% 1.2% 1.3% 2.5% 1.9% 5.8% (3.77) 5.9% (3.31)

αm,E,V 0.5% 1.0% 1.0% 0.8% 0.8% 1.9% 1.4% 0.5% 1.0% 0.5% -0.1% (-0.08) 0.0% (-0.02)

PANEL B: Modern Sample (1973-2019)

Dec = 1 2 3 4 5 6 7 8 9 10 10-1 (t10−1) Slope (tSlope)

βdp -1.27 -1.02 -0.91 -0.84 -0.81 -0.74 -0.70 -0.61 -0.55 -0.44 0.84 (10.4) 0.70 (7.69)

βNE -0.85 -0.67 -0.59 -0.54 -0.54 -0.49 -0.46 -0.39 -0.37 -0.28 0.57 (6.94) 0.47 (4.46)

βE -1.50 -1.14 -0.93 -0.75 -0.69 -0.60 -0.50 -0.35 -0.24 -0.13 1.38 (43.7) 1.22 (56.6)

βrNE -1.50 -1.07 -0.85 -0.75 -0.67 -0.60 -0.51 -0.41 -0.29 -0.17 1.33 (17.5) 1.12 (12.9)

E[r] 7.5% 6.7% 7.0% 7.1% 7.9% 8.0% 7.2% 7.2% 8.2% 6.4% -1.1% (-0.31) 0.1% (0.02)

αm -3.3% -2.2% -1.0% -0.3% 0.9% 1.5% 1.0% 1.8% 3.3% 2.6% 5.9% (2.30) 6.0% (2.08)

αm,V -3.5% -2.3% -1.0% -0.2% 1.0% 1.6% 1.1% 1.8% 3.4% 2.7% 6.2% (3.26) 6.2% (2.94)

αm,E,V 0.1% 0.9% 1.3% 0.6% 1.7% 2.2% 0.8% 0.4% 1.0% 0.1% 0.0% (0.01) -0.1% (-0.16)
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Table 3
Decile Portfolios Sorted on βσ2

This table reports statistics related to monthly returns on 10 βσ2-sorted portfolios. Panels A and B provide results
from our Long (1928-2019) and Modern (1973-2019) samples, respectively. In the top portion of each panel, we
report portfolio return exposures to our volatility news proxy (∆σ2), the in-sample volatility news measure (NV),
our tradable volatility risk factor (rV), and the NV mimicking portfolio (rNV). Portfolio return exposures to each
of these time series are denoted by βσ2 , βNV, βV, and βNV, respectively, and are normalized to be in market beta
units (see Footnote 26). In the bottom portion of each panel, we report portfolio average returns (E [r]) and αs
when computed with respect to the CAPM (αm), the ICAPM excluding rV (αm,E), and the full ICAPM (αm,E,V).
All returns are in percent and annualized (approximately) by multiplying monthly returns by 12. The “Slope”
statistic is a measure of the slope of the 10 related portfolio statistics with respect to portfolio decile (see Footnote
26). Portfolios are rebalanced monthly based on individual stock exposures to ∆σ2 with further details provided
in Subsection 1.3. The 10-1 portfolio t-statistics are computed according to Newey and West (1987, 1994). The
Slope t-statistics are computed according to the method in Driscoll and Kraay (1998) using the procedure in
Newey and West (1994) to select the number of lags.

PANEL A: Long Sample (1928-2019)

Dec = 1 2 3 4 5 6 7 8 9 10 10-1 (t10−1) Slope (tSlope)

βσ2 -0.49 -0.42 -0.40 -0.38 -0.35 -0.31 -0.31 -0.26 -0.24 -0.24 0.25 (6.77) 0.24 (5.00)

βNV -0.53 -0.44 -0.43 -0.41 -0.38 -0.35 -0.34 -0.30 -0.27 -0.27 0.27 (6.52) 0.24 (4.53)

βV -1.27 -1.14 -0.97 -0.84 -0.70 -0.59 -0.54 -0.42 -0.36 -0.34 0.93 (34.0) 0.96 (66.0)

βrNV -1.11 -0.96 -0.78 -0.75 -0.61 -0.52 -0.45 -0.39 -0.31 -0.27 0.85 (23.1) 0.83 (20.2)

E[r] 9.8% 10.2% 10.9% 9.3% 9.1% 8.2% 8.0% 7.4% 7.5% 5.8% -4.0% (-1.98) -4.2% (-1.55)

αm -2.0% -0.3% 1.4% 0.4% 0.8% 0.8% 0.8% 0.8% 0.9% -1.0% 0.9% (0.53) 0.8% (0.38)

αm,E 0.9% 1.8% 2.7% 1.1% 1.0% 0.4% 0.3% -0.1% 0.0% -1.8% -2.6% (-1.97) -2.9% (-1.89)

αm,E,V -0.4% 0.3% 1.5% 0.3% 0.9% 0.3% 0.5% 0.8% 1.4% 0.1% 0.5% (0.49) 0.5% (0.79)

PANEL B: Modern Sample (1973-2019)

Dec = 1 2 3 4 5 6 7 8 9 10 10-1 (t10−1) Slope (tSlope)

βσ2 -0.53 -0.41 -0.41 -0.39 -0.33 -0.31 -0.28 -0.25 -0.22 -0.21 0.32 (4.94) 0.29 (3.64)

βNV -0.62 -0.48 -0.48 -0.46 -0.39 -0.38 -0.34 -0.30 -0.26 -0.25 0.36 (5.25) 0.33 (3.84)

βV -1.20 -0.99 -0.80 -0.70 -0.55 -0.40 -0.34 -0.23 -0.13 -0.08 1.12 (33.5) 1.10 (70.9)

βrNV -1.18 -0.92 -0.75 -0.73 -0.57 -0.46 -0.38 -0.31 -0.21 -0.13 1.05 (15.2) 0.97 (14.2)

E[r] 8.8% 9.1% 9.5% 7.4% 9.1% 7.8% 7.6% 6.7% 6.6% 4.7% -4.1% (-1.47) -3.8% (-1.03)

αm -0.9% 0.6% 1.8% -0.1% 2.3% 1.5% 1.6% 0.9% 1.2% -1.1% -0.1% (-0.05) 0.2% (0.06)

αm,E 2.3% 2.5% 3.0% 0.7% 2.6% 0.9% 0.8% -0.5% -0.4% -2.7% -5.0% (-2.91) -4.6% (-2.18)

αm,E,V 0.0% 0.3% 1.6% 0.0% 2.3% 1.1% 1.2% 0.7% 1.4% 0.0% -0.1% (-0.07) 0.3% (0.46)
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Table 4
The ICAPM Factor Risk Premia

This table reports ICAPM risk factor correlations, expected returns, standard deviations, and Sharpe ratios over
our Long (1928-2019) and Modern (1973-2019) Samples (Panels A and B, respectively). Statistics are provided
for the raw factors (r) as well as for factors that are orthogonalized in-sample (IS r⊥) according to the weighting
procedure outlined in Subsection 2.3. Out-of-sample versions of the orthogonalized factors (OS r⊥) are constructed
using weights estimated using this same procedure but applied to 10-year rolling windows preceding each month
in which the weights are applied. E [r] and σ [r] are the annualized average returns and return standard deviations
of each of each factor. The t-statistics are computed according to Newey and West (1987, 1994).

PANEL A: Long Sample (1928-2019)

Cor(r, rm) Cor(r, rE) Cor(r, rV) E[r] (tE[r]) σ[r] E[r]/σ[r]

r

m 1.00 -0.77 -0.64 7.8% (3.74) 18.5% 0.42

E -0.77 1.00 0.82 -1.3% (-0.71) 18.0% -0.07

V -0.64 0.82 1.00 -3.7% (-2.57) 13.7% -0.27

IS r⊥
m 0.63 0.00 0.00 10.5% (4.58) 18.5% 0.57

E 0.00 0.47 0.00 9.9% (5.04) 18.5% 0.53

V 0.00 0.00 0.58 -6.6% (-3.69) 18.5% -0.36

OS r⊥
m 0.56 0.13 0.12 10.2% (4.88) 18.0% 0.57

E -0.02 0.50 0.06 10.8% (5.88) 17.7% 0.61

V -0.04 0.11 0.58 -7.9% (-3.87) 18.1% -0.44

PANEL B: Modern Sample (1973-2019)

Cor(r, rm) Cor(r, rE) Cor(r, rV) E[r] (tE[r]) σ[r] E[r]/σ[r]

r

m 1.00 -0.68 -0.51 6.8% (2.83) 15.6% 0.43

E -0.68 1.00 0.80 0.5% (0.24) 15.0% 0.04

V -0.51 0.80 1.00 -3.2% (-1.64) 13.1% -0.24

IS r⊥
m 0.73 0.00 0.00 10.2% (4.25) 15.6% 0.65

E 0.00 0.52 0.00 10.3% (4.47) 15.6% 0.66

V 0.00 0.00 0.61 -7.6% (-3.51) 15.6% -0.48

OS r⊥
m 0.74 -0.02 -0.01 9.4% (3.59) 16.3% 0.58

E -0.05 0.49 -0.02 13.2% (5.04) 17.8% 0.74

V 0.07 -0.04 0.51 -10.7% (-3.83) 18.5% -0.58
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Table 5
The ICAPM Risk Prices and Pricing Errors

Panel A reports estimated CAPM and ICAPM risk prices (b) according to Equation 8 while Panel B reports
the annualized average returns (E[r]) and associated pricing errors (α) for the three orthogonalized strategies
introduced in Subsection 2.3. The ICAPMγ column reports the respective information when imposing the ICAPM
structural restrictions in Footnote 11, which imply relative risk aversion, γ, is the only parameter as it determines
all three risk prices (see Footnote 30 for estimation details). For the first four columns of each panel, we use
γ = bm = 1

′

mΣ
−1
f E[f ] (see Subsection 1.3.1). Since bs are not easily comparable, we report σk · bk for each factor

fk,t so that the reported values can be interpreted as the change inMt induced by a one standard deviation change
in the respective fk,t (holding other factors fixed). b is estimated by Generalized Method of Moments (GMM) and
the t-statistics are computed according to GMM asymptotic theory with Newey and West (1987, 1994) for the
spectral density matrix (see Internet Appendix B.2).

Long Sample (1928-2019) Modern Sample (1973-2019)

CAPM ICAPME ICAPMV ICAPM ICAPMγ CAPM ICAPME ICAPMV ICAPM ICAPMγ

PANEL A: Risk Prices (Mt = a+ b
′

ft)

bm 0.12 0.26 0.12 0.26 0.34 0.12 0.24 0.12 0.26 0.29

(tstat) (3.05) (3.57) (2.35) (3.59) (6.00) (2.44) (3.23) (2.13) (3.45) (7.19)

bE 0.18 0.32 0.26 0.18 0.37 0.27

(tstat) (3.02) (4.28) (5.05) (2.64) (4.19) (6.14)

bV -0.00 -0.18 -0.11 -0.01 -0.23 -0.23

(tstat) (-0.03) (-3.34) (-2.53) (-0.15) (-3.52) (-3.07)

[γ] [2.3] [4.9] [2.2] [4.8] [6.3] [2.8] [5.4] [2.7] [5.6] [6.9]

PANEL B: Annualized Pricing Errors (αs)

E[r⊥
m
] 10.5% 10.5% 10.5% 10.5% 10.5% 10.2% 10.2% 10.2% 10.2% 10.2%

αm 5.6% -0.1% 5.6% 0.0% -3.2% 5.2% 0.5% 5.3% 0.0% -2.2%

(tstat) (3.72) (-3.36) (5.07) (0.00) (-2.18) (3.32) (3.26) (4.47) (0.00) (-1.01)

E[r⊥
E
] 9.9% 9.9% 9.9% 9.9% 9.9% 10.3% 10.3% 10.3% 10.3% 10.3%

αE 9.9% 4.4% 9.9% 0.0% 2.0% 10.3% 5.4% 10.3% 0.0% 2.6%

(tstat) (5.07) (3.36) (5.07) (0.00) (2.33) (4.47) (3.26) (4.47) (0.00) (1.89)

E[r⊥
V
] -6.6% -6.6% -6.6% -6.6% -6.6% -7.6% -7.6% -7.6% -7.6% -7.6%

αV -6.6% -6.6% -6.5% 0.0% -2.7% -7.6% -7.6% -7.3% 0.0% -0.2%

(tstat) (-3.38) (-3.36) (-5.07) (0.00) (-1.46) (-3.29) (-3.26) (-4.47) (0.00) (-0.12)
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Table 6
The ICAPM Risk Prices Controlling for Factors in Other Factor Models

This table reports estimated risk prices (b) for ICAPM risk factors (ft) according to Equation 8 when controlling
for factors from other prominent factor models (xt), which are described at the beginning of Section 3. Panels A
and B cover our Long (1928-2019) and Modern (1973-2019) samples, respectively. In the case of the Long Sample,
we include the earliest factor data available for each model (with the starting year listed in parentheses below each
model) and use the Stambaugh (1997) procedure to estimate b over the entire Long Sample (see Subsection 3.1 for
more details). Since bs are not easily comparable, we report σf · b so that the reported values can be interpreted as
the change inMt induced by a one standard deviation change in the respective factor (holding other factors fixed).
b is estimated by Generalized Method of Moments (GMM) and the t-statistics are computed using a bootstrap
exercise in Panel A (see Internet Appendix B.4) and GMM asymptotic theory with Newey and West (1987, 1994)
for the spectral density matrix in Panel B (see Internet Appendix B.2).

PANEL A: Long Sample (1928-2019)

Mt = a − b
′

ft − b
′

x
xt

x = None FF3 FFC4 FF5 q4 SY4 DHS3 q5

(1928) (1928) (1928) (1963) (1963) (1967) (1972) (1967)

rm
b 0.26 0.27 0.27 0.31 0.29 0.45 0.34 0.42

(tstat) (3.59) (3.60) (3.93) (5.03) (4.57) (6.44) (5.23) (5.47)

rE
b 0.32 0.45 0.38 0.26 0.34 0.34 0.21 0.22

(tstat) (4.28) (5.53) (4.71) (3.24) (3.80) (3.81) (2.38) (2.18)

rV
b -0.18 -0.23 -0.24 -0.31 -0.38 -0.38 -0.35 -0.37

(tstat) (-3.34) (-4.72) (-4.60) (-4.51) (-5.33) (-5.16) (-4.51) (-4.49)

PANEL B: Modern Sample (1973-2019)

Mt = a − b
′

ft − b
′

x
xt

x = None FF3 FFC4 FF5 q4 SY4 DHS3 q5

rm
b 0.26 0.28 0.27 0.30 0.27 0.41 0.33 0.37

(tstat) (3.45) (3.58) (3.56) (4.17) (3.82) (5.32) (4.30) (4.74)

rE
b 0.37 0.37 0.28 0.29 0.27 0.20 0.15 0.16

(tstat) (4.19) (4.23) (3.16) (3.02) (2.69) (2.24) (1.85) (1.58)

rV
b -0.23 -0.23 -0.24 -0.35 -0.38 -0.36 -0.36 -0.35

(tstat) (-3.52) (-3.62) (-3.45) (-4.58) (-4.84) (-4.47) (-5.09) (-3.94)

54



Table 7
ICAPM vs Other Factor Models: Maximum Sharpe Ratios

This table reports the maximum Sharpe ratios constructed (in- and out-of-sample) using the ICAPM factors or
using factors from other prominent factor models, which are described at the beginning of Section 3. We also
simulate factor data and report the percent of times the ICAPM maximum Sharpe ratio is higher than each
alternative model in parenthesis. The simulation results are based on a bootstrap analysis that samples the data
100,000 times with replacement, then recomputes each model’s maximum Sharpe ratio within each simulation (see
Internet Appendix B.4). Panel A presents results using the gross (of trading cost) factors and Panel B presents
results using net-of-trading-cost factors (described in Footnote 34). Results reported for the “Modern Sample”,
“1st Half”, and “2nd Half” are based on portfolio weights (w) estimated in-sample. Results reported for “2nd Half
OS (w from 1973-1995)” use factor data from 1973 through the first half of 1995 to estimate w. Results reported
in “2nd Half OS (w from 1928-1995)”use factor data from 1928 through the first half of 1995 (or the earliest factor
data available for each factor model, which is summarized in Table 6, Panel A) to estimate w.

PANEL A: Gross (of Trading Costs) Factor Returns

CAPM FF3 FFC4 FF5 q4 SY4 DHS3 q5 ICAPM

Modern Sample 0.43 0.68 0.99 1.11 1.37 1.61 1.70 2.10 0.79

(1973-2019) (100%) (73%) (11%) (3%) (0%) (0%) (0%) (0%) -

1st Half 0.36 0.96 1.43 1.72 2.22 2.21 2.28 2.87 0.84

(1973-1995) (100%) (27%) (1%) (0%) (0%) (0%) (0%) (0%) -

2nd Half 0.51 0.55 0.74 1.19 1.08 1.41 1.37 1.67 0.79

(1995-2019) (100%) (88%) (53%) (2%) (9%) (0%) (1%) (0%) -

2nd Half OS 0.51 0.43 0.56 0.66 0.66 1.16 1.17 1.32 0.69

(w from 1973-1995 ) (74%) (77%) (63%) (48%) (48%) (5%) (5%) (2%) -

2nd Half OS 0.51 0.47 0.52 0.64 0.71 1.18 1.17 1.39 0.74

(w from 1928-1995) (86%) (86%) (75%) (59%) (51%) (7%) (8%) (2%) -

PANEL B: Net (of Trading Costs) Factor Returns

CAPM FF3 FFC4 FF5 q4 SY4 DHS3 q5 ICAPM

Modern Sample 0.43 0.62 0.75 0.87 0.90 1.19 1.23 1.70 0.66

(1973-2019) (100%) (61%) (26%) (7%) (7%) (0%) (0%) (0%) -

1st Half 0.36 0.85 0.99 1.17 1.18 1.36 1.50 2.06 0.60

(1973-1995) (100%) (11%) (3%) (0%) (1%) (0%) (0%) (0%) -

2nd Half 0.51 0.53 0.63 1.06 0.90 1.30 1.20 1.50 0.74

(1995-2019) (100%) (87%) (65%) (4%) (20%) (0%) (2%) (0%) -

2nd Half OS 0.51 0.39 0.48 0.53 0.54 0.95 0.82 1.30 0.68

(w from 1973-1995 ) (67%) (76%) (69%) (57%) (57%) (14%) (24%) (2%) -

2nd Half OS 0.51 0.49 0.51 0.51 0.58 1.01 0.82 1.35 0.73

(w from 1928-1995) (84%) (86%) (77%) (70%) (62%) (14%) (31%) (2%) -
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Table 8
ICAPM vs Other Factor Models: αs for Testing Assets in LNS

This table reports Σα2 for each factor model (described in Section 3) normalized by ΣE[r]2 or Σα2
ICAPM . Each

panel is based on a different group of the testing assets recommended in Lewellen, Nagel, and Shanken (2010).
Panel A focuses on single stocks with αs computed on a 5-year rolling basis and recorded each month. Panel B
focuses on the 30 industry portfolios from Fama and French (1997). Panel C focuses on 10 correlation-clustered
portfolios (constructed as in Ahn, Conrad, and Dittmar (2009)). Panel D focuses on the Fama bond portfolios. In
the case of single stocks (Panel A), we compute Σα2 ratios each month using only stocks that have full return data
in the given rolling period and then report time-series averages of the monthly Σα2 ratios. In the case of portfolios
(Panels B, C, and D), Σα2 ratios are computed using the full panel of portfolio returns. For each panel and
model, we also report %(Σα2

ICAPM
< Σα), which reflects the percent of times in which the Σα2 generated by the

ICAPM is below that generated by the alternate model. In the case of single stocks (Panel A), %(Σα2
ICAPM

< Σα)
is based on the time series of Σα2. In the case of portfolios (Panels B to D), %(Σα2

ICAPM
< Σα) is based on a

bootstrap analysis that samples the data with replacement, then recomputes each model’s α ratio metric within
each simulation (see Internet Appendix B.4). All data are from our Modern Sample (1973-2019).

PANEL A: Single Stocks

CAPM FF3 FFC4 FF5 q4 SY4 DHS3 q5 ICAPM

Σα2 / ΣE[r]2 0.60 0.62 0.60 0.74 0.69 0.76 0.82 0.75 0.58

Σα2 / Σα2
ICAPM

1.05 1.11 1.06 1.33 1.23 1.37 1.43 1.33 1.00

%(Σα2
ICAPM

< Σα) (61%) (71%) (58%) (85%) (84%) (87%) (95%) (87%) -

PANEL B: Industry Portfolios

CAPM FF3 FFC4 FF5 q4 SY4 DHS3 q5 ICAPM

Σα2 / ΣE[r]2 0.09 0.15 0.12 0.20 0.16 0.12 0.07 0.11 0.06

Σα2 / Σα2
ICAPM

1.66 2.72 2.17 3.61 2.80 2.12 1.33 1.90 1.00

%(Σα2
ICAPM

< Σα) (86%) (95%) (92%) (96%) (92%) (85%) (76%) (83%) -

PANEL C: Correlation-clustered Portfolios

CAPM FF3 FFC4 FF5 q4 SY4 DHS3 q5 ICAPM

Σα2 / ΣE[r]2 0.09 0.06 0.06 0.14 0.16 0.11 0.10 0.13 0.08

Σα2 / Σα2
ICAPM

1.08 0.76 0.77 1.71 1.95 1.32 1.19 1.58 1.00

%(Σα2
ICAPM

< Σα) (60%) (17%) (25%) (92%) (96%) (79%) (75%) (86%) -

PANEL D: Treasury Bond Portfolios

CAPM FF3 FFC4 FF5 q4 SY4 DHS3 q5 ICAPM

Σα2 / ΣE[r]2 0.87 1.04 0.70 0.85 0.64 0.73 0.22 0.48 0.44

Σα2 / Σα2
ICAPM

1.97 2.37 1.59 1.94 1.46 1.66 0.51 1.08 1.00

%(Σα2
ICAPM

< Σα) (98%) (99%) (88%) (96%) (78%) (86%) (23%) (58%) -
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Table 9
ICAPM vs Other Factor Models: Summarizing α Results

This table reports Σα2/ΣE [r]2 (Panel A) and Σ|a|/Σ|E[r]| (Panel B) ranks across each model within each test
asset group recommend in Lewellen, Nagel, and Shanken (2010). Lower ranks correspond to lower ratio values
(i.e., better models). The last row in each panel reports the average rank of the ICAPM and each other factor
model (described in Section 3) across the eight test asset groups.

PANEL A: Squared Pricing Errors (Σα2/ΣE[r]2) Ranks

CAPM FF3 FFC4 FF5 q4 SY4 DHS3 q5 ICAPM

Single Stocks
5-Year Window 2 4 3 6 5 8 9 7 1

10-Year Window 2 3 4 6 7 8 9 5 1

Industry Port
30 Portfolios 3 7 6 9 8 5 2 4 1

48 Portfolios 2 7 4 9 8 5 3 6 1

Cor Clust Port
10 Portfolios 4 1 2 8 9 6 5 7 3

25 Portfolios 4 2 1 6 7 8 5 9 3

Bond Portfolios
Fama Bond Port 8 9 5 7 4 6 1 3 2

CRSP Bond Port 8 9 5 7 4 6 1 3 2

Average Rank = 4.1 5.3 3.8 7.3 6.5 6.5 4.4 5.5 1.8

PANEL B: Absolute Pricing Errors (Σ|α|/Σ|E[r]|) Ranks

CAPM FF3 FFC4 FF5 q4 SY4 DHS3 q5 ICAPM

Single Stocks
5-Year Window 4 1 2 6 5 7 9 8 3

10-Year Window 3 1 2 5 6 7 9 8 4

Industry Port
30 Portfolios 3 7 6 9 8 5 2 4 1

48 Portfolios 3 5 4 9 8 7 2 6 1

Cor Clust Port
10 Portfolios 5 2 1 8 9 4 7 6 3

25 Portfolios 4 2 1 6 7 8 9 5 3

Bond Portfolios
Fama Bond Port 8 9 5 7 4 6 1 3 2

CRSP Bond Port 8 9 5 7 4 6 1 3 2

Average Rank = 4.8 4.5 3.3 7.1 6.4 6.3 5.0 5.4 2.4
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Table 10
ICAPM vs Other Factor Models: Anomaly Deciles

This table reports Σα2 and Σ|α| for each factor model (described at the beginning of Section 3) normalized by
(respectively) the sum of squared or absolute average returns (ΣE[r]2 or Σ|E[r]|) or ICAPM alphas (Σα2

ICAPM or
Σ|αICAPM |). Panel A focuses on deciles formed on 158 anomalies from Chen and Zimmermann (2020). Panel B
focuses on the 20 deciles formed on βdp and βσ2 sorts. αs for each set of portfolios are estimated once using the full
data from our Modern Sample (1973-2019) for each model. We also simulate portfolio return data and report the
percent of times in which Σα2 or Σ|a| generated by the ICAPM is below that generated by the alternate model
in parentheses. The simulation results are based on a bootstrap analysis that samples the data with replacement,
then recomputes each model’s α ratio metric within each simulation (see Internet Appendix B.4).

PANEL A: Deciles Based on 158 Anomalies

CAPM FF3 FFC4 FF5 q4 SY4 DHS3 q5 ICAPM

Σα2 / ΣE[r]2 0.29 0.32 0.23 0.26 0.22 0.20 0.18 0.19 0.25

Σα2 / Σα2
ICAPM

1.17 1.28 0.93 1.05 0.89 0.83 0.72 0.79 1.00

%(Σα2
ICAPM

< Σα2) (89%) (96%) (25%) (59%) (23%) (9%) (8%) (7%) -

Σ|α| / Σ|E[r]| 0.30 0.30 0.25 0.28 0.27 0.25 0.26 0.26 0.28

Σ|α| / Σ|α
ICAPM

| 1.10 1.08 0.91 1.02 0.97 0.91 0.96 0.93 1.00

%(Σ|α
ICAPM

| < Σ|α|) (92%) (84%) (8%) (54%) (42%) (20%) (41%) (29%) -

PANEL B: Deciles Based on βdp and βσ2 Sorts

CAPM FF3 FFC4 FF5 q4 SY4 DHS3 q5 ICAPM

Σα2 / ΣE[r]2 0.05 0.04 0.03 0.06 0.07 0.06 0.09 0.08 0.02

Σα2 / Σα2
ICAPM

2.30 1.88 1.14 2.47 2.93 2.54 3.80 3.52 1.00

%(Σα2
ICAPM

< Σα2) (98%) (85%) (72%) (92%) (94%) (90%) (97%) (97%) -

Σ|α| / Σ|E[r]| 0.20 0.17 0.14 0.20 0.21 0.21 0.23 0.24 0.12

Σ|α| / Σ|α
ICAPM

| 1.65 1.41 1.13 1.69 1.77 1.74 1.89 1.97 1.00

%(Σ|α
ICAPM

| < Σ|α|) (97%) (83%) (68%) (90%) (92%) (88%) (95%) (95%) -
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Internet Appendix

“An Intertemporal Risk Factor Model”

By Fousseni Chabi-Yo, Andrei S. Gonçalves, and Johnathan Loudis

This Internet Appendix is organized as follows. Section A contains technical derivations

required to support the results in the paper. Section B provides some econometric details.

Section C describes data sources and measurement for the analysis. Section D describes

additional results that supplement the main findings in the paper.
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A The ICAPM Derivation

This section derives the ICAPM results we rely on in the main text. Subsection A.1 describes

the ICAPM budget constraint, Subsection A.2 derives the general ICAPM SDF, Subsection

A.3 specifies investment opportunity dynamics, and Subsection A.4 solves for the ICAPM

SDF as a function of our final risk factors.

To simplify notation, we define rw ≡ log(Rw), use tilde to represent shocks (e.g.,

x̃t ≡ xt − Et−1[xt]), and suppress time subscripts inside first and second moments when con-

venient (e.g., Et[x] ≡ Et[xt+1] and Vart[x] ≡ Vart[xt+1]).

A long-term (i.e., infinitely lived) investor has Epstein-Zin recursive preferences (Epstein

and Zin (1989, 1991) and Weil (1989)) with time discount factor δ, intertemporal elastic-

ity of substitution ψ, and relative risk aversion γ. The investor chooses consumption, Ct,

and portfolio allocation, ̟t, to maximize lifetime utility subject to the budget constraint

Wt+1 = (Wt − Ct) ·Rw,t+1, with Rw,t = ̟
′

tRt representing the investor’s wealth portfolio.

A.1 The ICAPM Budget Constraint

It is instructive to start by rewriting the budget constraint as

Rw,t =

(
Ct−1

Wt−1 − Ct−1

)
·
(

Ct
Ct−1

)
·
(
Wt

Ct

)
, (IA.1)

or in logs,
rw,t = crwt−1 +∆ct − cwt, (IA.2)

where crwt = −log(e−cwt − 1) is consumption over reinvested wealth.

This alternative way to write the budget constraint demonstrates that shocks to returns

on the wealth portfolio can be written as

r̃w,t = ∆̃ct − c̃wt = ∆̃wt. (IA.3)

In parts of the derivations, we rely on a log-linear approximation to the consumption-
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wealth ratio,

cwt ≈ k + δ · crwt (IA.4)

which yields the log-linearized budget constraint

rw,t ≈ − k

δ
+

1

δ
· cwt−1 +∆ct − cwt, (IA.5)

where δ = e−crw/(e−crw + 1) and k = δ · log(δ) + (1 − δ) · log(1 − δ) are log-linearization

coefficients.IA.1

A.2 The ICAPM SDF

This subsection derives the ICAPM SDF

A.2.1 A Quick Derivation for ICAPM SDF Shocks

Start from the well-known form of the Epstein-Zin SDF,

SDFt+1 = δ ·
(
Ct+1

Ct

)−1/ψ

·
(

Vt+1

Et[V
1−γt
t+1 ]1/(1−γt)

)−(γ−1/ψ)

, (IA.6)

and note that Hansen, Heaton, and Li (2008) provide a link between consumption, wealth,

and the continuation value function (henceforth “value”),

c̃t = ψ · w̃t + (1− ψ) · ṽt. (IA.7)

In this case, shocks to the log SDF are given by:

s̃df t+1 = − 1/ψ · ∆̃ct+1 − (γ − 1/ψ) · ṽt+1

= − w̃t+1 − (γ − 1) · ṽt+1

= − γ · r̃w,t+1 − (γ − 1) · ṽwt+1, (IA.8)

where the second equality uses Equation IA.7 and the third equality uses Equation IA.3.

IA.1As we demonstrate below (in Equation IA.15), the optimality conditions yield cwt = log(1 − δ) and
crwt = log((1 − δ)/δ) if ψ = 1, which implies that this log-linear approximation is exact with δ = δ and
rw,t = ∆ct − log(δ) in this case.
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In the rest of this subsection we formalize this quick exposition by directly deriving the

ICAPM log SDF, sdft+1 =
γ−1

δ
·
(
vwt − f(ψ, δ, δ)

)
− γ · rw,t+1 − (γ − 1) · vwt+1, based on the

investor’s optimality conditions.

A.2.2 Deriving the ICAPM SDF with ψ = 1

With ψ = 1, the investor’s value function can be written as

V (Wt) = Max
{Ct,̟t}

C1−δ
t ·

(
Et

[
V (Wt+1)

1−γ
])δ/(1−γ)

, (IA.9)

or in log terms,

log(Vt) = Max
{Ct,̟t}

(1− δ) · log(Ct) +
δ

(1− γ)
log
(
Et

[
V 1−γ
t+1

])
, (IA.10)

where the second equation simplifies the notation by suppressing the dependence of the value

function on wealth.

The consumption first order condition (FOC) then yields:

(1− δ)

Ct
=

δ

Et[V
1−γ
t+1 ]

Et[V
−γ
t+1 · ∂WVt+1 ·Rw,t+1], (IA.11)

and the Benveniste and Scheinkman (1979) condition relative to wealth implies

∂W log(Vt) =
∂WVt
Vt

=
δ

Et[V
1−γ
t+1 ]

Et[V
−γ
t+1 · ∂WVt+1 ·Rw,t+1], (IA.12)

so that combining the two optimality conditions gives

∂WVt = (1− δ) · Vt
Ct
. (IA.13)

Equation IA.13 is the main optimality condition we need to derive the ICAPM SDF. To

do so, start by conjecturing that V (Wt) is homogeneous of degree one (i.e., Vt/Wt is not a

function of wealth). This conjecture implies that ∂WVt = Vt/Wt, which, after substituting

into Equation IA.13 and using crwt = −log(e−cwt − 1), yields

Ct/Wt = (1− δ), (IA.14)

cwt = log(1− δ), and crwt = log((1− δ)/δ), (IA.15)
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so that Equation IA.7 holds when ψ = 1.

Now, rewrite the objective function (i.e., Equation IA.10) as

vwt = (1− δ) · cwt − δ · wt +
δ

(1− γ)
log
(
Et

[
e(1−γ)·vt+1

])

= (1− δ) · cwt +
δ

(1− γ)
log
(
Et

[
e(1−γ)·vt+1−(1−γ)·wt

])

= (1− δ) · cwt +
δ

(1− γ)
log
(
Et

[
e(1−γ)·(log(δ)+vwt+1+rw,t+1)

])

= (1− δ) · log(1− δ) +
δ

(1− γ)
log
(
Et

[
e(1−γ)·(log(δ)+vwt+1+rw,t+1)

])
, (IA.16)

where the third equality relies on the budget constraint (Equation IA.2) and the last equality

uses Equation IA.15.

Equation IA.16 represents a recursion for vwt that shows that if vwt+1 does not depend

on wealth, then vwt also does not. As such, the conjecture that V (Wt) is homogeneous of

degree one is valid.

We can further work on Equation IA.16 to get

log(evwt) = log
(
(1− δ)(1−δ)

)
+ log

(
Et

[
e(1−γ)·(log(δ)+vwt+1+rw,t+1)

]δ/(1−γ))

= log

(
Et

[
e(1−γ)·(

1−δ
δ

·log(1−δ)+log(δ)+vwt+1+rw,t+1)
]δ/(1−γ))

⇓

1 = Et

[
e(1−γ)·(

1−δ
δ

·log(1−δ)+log(δ)− 1
δ
vwt+vwt+1+rw,t+1)

]

= Et

[
e

(γ−1)
δ

·[vwt−f0(δ,δ)] − γ·rw,t+1 − (γ−1)·vwt+1 ·Rw,t+1

]
, (IA.17)

where f0(z, y) = (1− y) · log(1− z) + y · log(z).
Now, rewrite the budget constraint as Wt+1 = (Wt − Ct) · (Rf,t+1 +̟

′

t(Rt+1 −Rf,t+1))
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and substitute it in V (Wt+1) so that the FOC with respect to ̟t yields

0 = Et


δ ·

(
Ct+1

Ct

)−1

·
(

Vt+1

Et[V
1−γ
t+1 ]1/(1−γ)

)−(γ−1)

· (Rt+1 −Rf,t+1)




= Et

[
e−∆̃ct+1 − (γ−1)·ṽt+1 · (Rt+1 −Rf,t+1)

]

= Et

[
e−γ·r̃w,t+1 − (γ−1)·ṽwt+1 · (Rt+1 −Rf,t+1)

]

= Et

[
e

(γ−1)
δ

·[vwt−f0(δ,δ)] −γ·rw,t+1 − (γ−1)·vwt+1 · (Rt+1 −Rf,t+1)
]
, (IA.18)

where the third equality is based on the same derivation as in Equation IA.8 and the second

and fourth equalities use the fact that we can multiply any arbitrary variable known as of

time t on both sides of this FOC.

Equations IA.17 and IA.18 jointly imply that the ICAPM SDF, given by

sdft+1 =
(γ − 1)

δ
· [vwt − f0(δ, δ)] − γ · rw,t+1 − (γ − 1) · vwt+1, (IA.19)

prices all assets available to the long-term investor.

A.2.3 Deriving the ICAPM SDF with ψ 6= 1

With ψ 6= 1, the investor’s value function can be written as

Max
{Ct,̟t}

{
(1− δ) · C1−1/ψ

t + δ · Et
[
V (Wt+1)

1−γ
] 1−1/ψ

1−γ

}1/(1−1/ψ)

. (IA.20)

The consumption FOC then yields

(1− δ) · C−1/ψ
t = δ · Et[V 1−γ

t+1 ]
γ−1/ψ
1−γ · Et[V −γ

t+1 · ∂WVt+1 ·Rw,t+1], (IA.21)

and the Benveniste and Scheinkman (1979) condition relative to wealth implies

∂WVt = V
1/ψ
t · δ · Et[V 1−γ

t+1 ]
γ−1/ψ
1−γ · Et[V −γ

t+1 · ∂WVt+1 ·Rw,t+1], (IA.22)

so that combining the two optimality conditions gives

∂WVt = (1− δ) ·
(
Vt
Ct

)1/ψ

(IA.23)

Equation IA.23 is the main optimality condition we need to derive the ICAPM SDF. To
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do so, start by conjecturing that V (Wt) is homogeneous of degree one (i.e., Vt/Wt is not a

function of wealth). This conjecture implies that ∂WVt = Vt/Wt, which, after substituting

into Equation IA.23, yields:

(Vt/Wt)
1−1/ψ = (1− δ) · (Ct/Wt)

−1/ψ (IA.24)

⇓

cwt = ψ · log(1− δ) + (1− ψ) · vwt, (IA.25)

so that Equation IA.7 also holds when ψ 6= 1.

Now, rewrite the objective function (i.e., Equation IA.20) as:

(Wt · Vt/Wt)
1−1/ψ = (1− δ) ·W 1−1/ψ

t · (Ct/Wt)
1−1/ψ + δ · Et

[
W 1−γ
t+1

(
Vt+1

Wt+1

)1−γ
] 1−1/ψ

1−γ

⇓

(Vt/Wt)
1−1/ψ = (1− δ) · (Ct/Wt)

1−1/ψ + δ · Et
[(

Wt+1

Wt

)1−γ (
Vt+1

Wt+1

)1−γ
] 1−1/ψ

1−γ

= Ct/Wt · (Vt/Wt)
1−1/ψ + δ · Et

[(
1− Ct

Wt

)1−γ (
Vt+1

Wt+1

)1−γ

R1−γ
w,t+1

] 1−1/ψ
1−γ

= δ · Et
[
(1− Ct/Wt)

1− 1
ψ

(
Vt+1

Wt+1

)1−γ

R1−γ
w,t+1

] 1−1/ψ
1−γ

, (IA.26)

where the third equality relies on Equation IA.24 and the budget constraint (Equation IA.1).

Equation IA.26 represents a recursion for Vt/Wt that shows that if Vt+1/Wt+1 does not

depend on wealth, then Vt/Wt also does not.IA.2 As such, the conjecture that V (Wt) is

homogeneous of degree one is valid.

We can further work on Equation IA.26 to get

IA.2The recursion in Equation IA.26 also depends on Ct/Wt. However, Equation IA.24 shows that Ct/Wt

is a function of Vt/Wt, and thus the recursion implies that Vt/Wt is a function of the distribution of
[Vt+1/Wt+1,Rw,t+1], which does not depend on the wealth level from the perspective of the representative
investor.
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1 = Et

[{
δ

1−γ
1−1/ψ · (1− Ct/Wt)

1− 1
ψ ·R−γ

w,t+1 ·
(
Vt+1/Wt+1

Vt/Wt

)−(γ−1)
}

·Rw,t+1

]

= Et

[
efsdf (ψ,δ,γ,cwt) − γ·rw,t+1 − (γ−1)·vwt+1 ·Rw,t+1

]
, (IA.27)

where fsdf (ψ, δ, γ, cwt) = (γ − 1) ·
(
vwt +

1
ψ−1

· [cwt − crwt]− 1
1−1/ψ

· log(δ)
)

is implicitly

defined in Equation IA.27.

Now, rewrite the budget constraint as Wt+1 = (Wt − Ct) · (Rf,t+1 +̟
′

t(Rt+1 −Rf,t+1))

and substitute it in V (Wt+1) so that the FOC with respect to ̟t yields

0 = Et


δ ·

(
Ct+1

Ct

)−1/ψ

·
(

Vt+1

Et[V
1−γ
t+1 ]1/(1−γ)

)−(γ−1/ψ)

· (Rt+1 −Rf,t+1)




= Et

[
e−1/ψ·∆̃ct+1 − (γ−1/ψ)·ṽt+1 · (Rt+1 −Rf,t+1)

]

= Et

[
e−γ·r̃w,t+1 − (γ−1)·ṽwt+1 · (Rt+1 −Rf,t+1)

]

= Et

[
efsdf (ψ,δ,γ,cwt) −γ·rw,t+1 − (γ−1)·vwt+1 · (Rt+1 −Rf,t+1)

]
, (IA.28)

where the third equality is based on the same derivation as in Equation IA.8 and the second

and fourth equalities use the fact that we can multiply any arbitrary variable known as of

time t on both sides of this FOC.

Equations IA.27 and IA.28 jointly imply that the ICAPM SDF, given by

sdft+1 = fsdf (ψ, δ, γ, cwt) − γ · rw,t+1 − (γ − 1) · vwt+1, (IA.29)

prices all assets available to the long-term investor.

A.2.4 The General ICAPM SDF

As Equations IA.19 and IA.29 demonstrate, the SDF shocks with Epstein-Zin preferences

can be written as

s̃df t+1 = − γ · r̃w,t+1 − (γ − 1) · ṽwt+1. (IA.30)

The SDF level is more complicated due to the nonlinear fsdf (ψ, δ, γ, cwt) function. How-
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ever, we can simplify this function to

fsdf (ψ, δ, γ, cwt) = (γ − 1) ·
(
vwt +

1

ψ − 1
· [cwt − crwt]−

1

1− 1/ψ
· log(δ)

)

≈ (γ − 1) ·
(
vwt +

1

ψ − 1
·
[
cwt −

(
−k
δ
+

1

δ
· cwt

)]
− 1

1− 1/ψ
· log(δ)

)

=
γ − 1

δ
·
(
vwt −

1

ψ − 1

[
ψ · f0(δ, δ)− f0(δ, δ)

])

=
γ − 1

δ
·
(
vwt − f0(δ, δ)−

1

ψ − 1
·
[
f0(δ, δ)− f0(δ, δ)

])
, (IA.31)

where f0(z, y) = (1 − y) · log(1 − z) + y · log(z), with the second equality relying on the

log-linear approximation to cwt in Campbell (1993) (Equation IA.4), which is exact if ψ = 1,

and the third equality using Equation IA.25.

As such, the ICAPM log SDF can be written as

sdft+1 =
γ − 1

δ
·
(
vwt − f(ψ, δ, δ)

)
− γ · rw,t+1 − (γ − 1) · vwt+1

= κt − γ · rw,t+1 − (γ − 1) · ṽwt+1 (IA.32)

where

κt = (γ − 1) ·
(
vwt/δ − Et[vw]− f(ψ, δ, δ)/δ

)
(IA.33)

and

f(ψ, δ, δ) =




f0(δ, δ) if ψ = 1

f0(δ, δ) +
1

ψ−1
·
[
f0(δ, δ)− f0(δ, δ)

]
if ψ 6= 1.

(IA.34)
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A.2.5 The ICAPM SDF with NE and NV

The asset pricing Euler condition, Et[SDFt+1 ·Rw,t+1] = 1, can be written as

0 = Et [sdft+1 + rw,t+1] + log
(
Et

[
es̃df t+1+r̃w,t+1

])

= Et [sdft+1 + rw,t+1] + log
(
Et

[
e(1−γ)·ṽt+1

])

≈ Et [sdft+1 + rw,t+1] +
(γ − 1)2

2
· Vart [vt+1] (IA.35)

where the second line uses the identity ṽt = r̃w,t + ṽwt and the third line relies on a second

order Taylor approximation that hold exactly if ṽt is conditionally normal.IA.3

Then, substituting the sdft from Equation IA.32 into Equation IA.35, results in

vwt = f(ψ, δ, δ) + δ · Et [rw,t+1] + δ · Et [vwt+1] − δ · (γ − 1)

2
· Vart [vt+1] (IA.36)

and a recursive substitution of this equation yields

vwt =
f(ψ, δ, δ)

1− δ
+ Et

[
∞∑

h=1

δ
h · rw,t+h

]
− (γ − 1)

2
· Et

[
∞∑

h=1

δ
h · Vart+h−1 [vt+h]

]
(IA.37)

which implies

ṽwt+1 = NE,t+1 − (γ − 1)

2
·NV,t+1 (IA.38)

where

NE,t+1 = (Et+1 − Et)
[∑∞

h=1 δ
h · rw,t+h

]
is expected return news

IA.3To derive the second order Taylor approximation in Equation IA.35, let xt be a random variable with
Et[xt+1] = 0 (i.e., a shock), then log(Et[e

xt ]) is the conditional entropy of xt, which is equivalent to K(1),
where K(ǫ) = log(Et[e

ǫ·xt+1 ]) is the cumulant-generating function of xt. Then, a second order taylor expansion
of K(ǫ) around ǫ = 0 yields

K(ǫ) ≈ {∂ǫEt[e
ǫ·xt+1 ]}ǫ=0 · (ǫ− 0) +

1

2
· {∂ǫǫEt[e

ǫ·xt+1 ]}ǫ=0 · (ǫ− 0)2

=

{
Et[e

ǫ·xt+1 · xt+1]

Et[eǫ·xt+1 ]

}

ǫ=0

· ǫ +
1

2
·
{
Et[e

ǫ·xt+1 · x2t+1] · Et[e
ǫ·xt+1 ]− Et[e

ǫ·xt+1 · xt+1] · Et[e
ǫ·xt+1 · xt+1]

Et[eǫ·xt+1 ]2

}

ǫ=0

· ǫ2

=
1

2
· Vart[xt+1] · ǫ2

so that setting xt = (1 − γ) · ṽt implies that the asset pricing Euler condition can be written as K(1) = 0,
which results in the approximation in Equation IA.35. Note that if r̃w,t and ṽwt are conditionally joint
normal (so that ṽt is conditionally normal), then this approximation is exact.
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NV,t+1 = (Et+1 − Et)
[∑∞

h=1 δ
h · Vart+h[vt+1+h]

]
is volatility news

Then, substituting ṽwt+1 into the SDF from Equation IA.32 yields

sdft+1 = κt − γ · rw,t+1 − (γ − 1) · ṽwt+1

= κt − γ · rw,t+1 − (γ − 1) ·NE,t+1 +
(γ − 1)2

2
·NV,t+1 (IA.39)

In the main text, we simplify the exposition by assuming ψ = 1 and Et[vw] ≈ vwt/δ so

that δ = δ and κt = κ = (γ − 1) · ((1 − 1/δ) · log(1 − δ) − log(δ)). The small time varying

component that we effectively ignore (i.e., κt − κ) has no implications for risk premia (only

for interest rate variation), and thus does not play a role in our analysis.

A.3 The Wealth Return Dynamics

Our ICAPM empirical implementation requires a map from NE and NV to observable vari-

ables. To avoid the ICAPM“fishing license” (Fama (1991)) when constructing NE and NV, we

do not specify an arbitrary set of state variables for the wealth return dynamics, but instead

build a simple Bayesian learning framework in which a long-term investor observes only mar-

ket prices and dividends to derive a belief about the wealth return dynamics (i.e., expected

returns and volatility). Our framework can be thought of as an extension of Binsbergen and

Koijen (2010) in the sense that we add time-varying volatility to their framework.

A.3.1 The Underlying Environment

Letting rw,t and ∆dt reflect the monthly log wealth return and growth in annual dividends,

we assume that rw,t, µt = Et[rw,t+1|µt], and gt = Et[∆dt+1|gt] have monthly dynamics given

by

rw,t+1 = µt + r̃∗w,t+1 (IA.40)

µt+1 = µ + φµ · (µt − µ) + µ̃∗
t+1 (IA.41)

gt+1 = g + φg · (gt − g) + g̃∗t+1 (IA.42)

Σt = ΣV · Vrt (IA.43)
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where [r̃∗w,t+1, µ̃
∗
t+1, g̃

∗
t+1] ∼ N(0,Σt) are unobservable shocks and Vrt = Vart[r

∗
w,t+1] captures

the wealth portfolio return variance with dynamics detailed in Subsection A.3.5.

Moreover, we parametrize ΣV such that it is positive definite, which assures a positive

semidefinite Σt for all t. The ΣV matrices is otherwise fully flexible with the following pa-

rameters:IA.4

ΣV =




1 νr,µ νr,g

νr,µ ν2µ νµ,g

νr,g νµ,g ν2g




(IA.44)

A.3.2 The µt Signals

From the log-linear valuation identity in Campbell and Shiller (1989), we have

dpt − dp =
∞∑

h=0

ρh · Et
[
Σ12
j=1(rw,t+12·h+j − µ)|µt

]
−

∞∑

h=0

ρh · Et
[
Σ12
j=1(∆dt+12·h+j − g)|gt

]

=
(1− φ12

µ )

(1− φµ)
·

∞∑

h=0

ρh · Et[µt+12·h − µ] −
(1− φ12

g )

(1− φg)
·

∞∑

h=0

ρh · Et[gt+12·h − g]

=
(1− φ12

µ )

(1− φµ)
·

∞∑

h=0

ρh · (φ12
µ )h · (µt − µ) −

(1− φ12
g )

(1− φg)
·

∞∑

h=0

ρh · (φ12
g )h · (gt − g)

=
(1− φ12

µ )

(1− φµ) · (1− ρ · φ12
µ )

· (µt − µ) −
(1− φ12

g )

(1− φg) · (1− ρ · φ12
g )

· (gt − g)

= Φµ · (µt − µ) − Φg · (gt − g) (IA.45)

where Φµ = (1 − φ12
µ )/[(1 − φµ)(1 − ρ · φ12

µ )], Φg = (1 − φ12
g )/[(1 − φg)(1 − ρ · φ12

g )], and

ρ = e−dp/(1 + e−dp), with dpt = log(Dt/Pt) reflecting the annual dividend yield and dp

capturing the average dpt.

Moreover, letting d̃p
∗

t = Φµ · µ̃∗
t − Φg · g̃∗t reflect the monthly unobservable shock to dpt,

IA.4In our estimation detailed in Subsection B.1.2, we search only over the space of parameters that yield
a positive definite ΣV.
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we can obtain

Vart[d̃p
∗

t+1] = ν2dp · Vrt (IA.46)

Covt[r̃
∗
w,t+1, d̃p

∗

t+1] = νr,dp · Vrt (IA.47)

Covt[µ̃
∗
t+1, d̃p

∗

t+1] = νµ,dp · Vrt (IA.48)

Covt[g̃
∗
t+1, d̃p

∗

t+1] = νg,dp · Vrt (IA.49)

where

νdp =
√

Φ2
µ · ν2µ + Φ2

g · ν2g − 2 · Φµ · Φg · νµ,g
νr,dp = Φµ · νr,µ − Φg · νr,g
νµ,dp = Φµ · ν2µ − Φg · νµ,g
νg,dp = Φµ · νµ,g − Φg · ν2g

Repeating Equation IA.40, we have

rw,t+1 = µt + r̃∗w,t+1 (IA.50)

Moreover, isolating gt in Equation IA.45 and substituting into Equation IA.42 yieldsIA.5

dpot+1 = µt + νo · d̃p
∗

t+1 (IA.51)

IA.5To derive Equation IA.51, note that Equation IA.45 implies

(gt − g) = (Φµ/Φg) · (µt − µ) − (1/Φg) · (dpt − dp)

which we can substitute into Equation IA.42 to get

(Φµ/Φg) · (µt+1 − µ)− (1/Φg) · (dpt+1 − dp) = φg · [(Φµ/Φg) · (µt − µ)− (1/Φg) · (dpt − dp)] + g̃∗t+1

⇓
Φµ ·

[
φµ · (µt − µ) + µ̃∗

t+1

]
− (dpt+1 − dp) = φg · [Φµ · (µt − µ)− (dpt − dp)] + Φg · g̃∗t+1

⇓
Φµ · (φg − φµ) · (µt − µ) + (dpt+1 − dp) − φg · (dpt − dp) = Φµ · µ̃∗

t+1 − Φg · g̃∗t+1

⇓
µ + νo · [(dpt+1 − dp) − φg · (dpt − dp)] = µt + νo · d̃p

∗

t+1
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where νo = 1/[Φµ · (φµ − φg)] and

dpot+1 = µ + νo · [(dpt+1 − dp)− φg · (dpt − dp)] (IA.52)

Equations IA.50 and IA.51 represent two µt signals that the investor observes at time

t+1, and thus can use when forming the endogenous expected wealth return process, Ert =

Et[rw,t+1] = Et[µt].

A.3.3 Some Auxiliary Results

We use the following lemma concerning jointly normal vectors in our derivations (see Section

4.2 of Rencher (2002)):

Lemma 1. If


 X1

X2


 ∼ N




 E[X1]

E[X2]


 ,


 Var[X1] Cov[X1, X2]

′

Cov[X1, X2] Var[X2]




 (IA.53)

then

E[X1|X2 = x2] = E[X1] + Cov[X1, X2]
′

Var[X2]
−1 · (x2 − E[X2]) (IA.54)

Var[X1|X2 = x2] = Var[X1] − Cov[X1, X2]
′

Var[X2]
−1
Cov[X1, X2] (IA.55)

We also rely on a simple result about the expectation operator. Specifically, letting

d̃p
o

t+1 ≡ dpot+1 − Ert

= µt − Ert + νo · d̃p
∗

t+1 (IA.56)

and

r̃w,t+1 ≡ rw,t+1 − Ert

= µt − Ert + r̃∗w,t+1 (IA.57)

so that Et[d̃p
o

t+1] = 0 and Et[r̃w,t+1] = 0, and defining the Ft subset of the investor’s infor-
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mation set such that Ft+1 = {Ft ∪ (d̃p
o

t+1,r̃w,t+1)}, we have

Et+1[f(µt+1)] = Et[f(µt+1)|Ft+1]

= Et[f(µt+1)|d̃p
o

t+1, r̃w,t+1,Ft]

= Et[f(µt+1)|d̃p
o

t+1, r̃w,t+1] + Et[f(µt+1)|Ft]− Et[f(µt+1)]

= Et[f(µt+1)|d̃p
o

t+1, r̃w,t+1] (IA.58)

for any arbitrary function f(µt+1). The first line follows from the fact that the investor

updates the µt belief based only on the signals summarized by the Ft information set and

the third line follows from Theorem 2.4 in Chapter 5 of Anderson and Moore (1979).

Given Lemma 1 and Equation IA.58, so long as we can show that the joint distribution

of µt+1, d̃p
o

t+1, and r̃t+1 conditioned on time t information is normal, we can obtain Ert+1 =

Et+1[µt+1] = Et[µt+1|d̃p
o

t+1, r̃w,t+1] and Uµt+1 = Vart+1[µt+1] = Vart[µt+1|d̃p
o

t+1, r̃w,t+1].

From the dynamics of µt, d̃p
o

t , and r̃t in Equations IA.41, IA.56, and IA.57, we have:



µt+1

d̃p
o

t+1

r̃w,t+1



∼ N







Et[µt+1]

0

0



,




Vart[µt+1] Covt[µt+1, d̃p
o

t+1] Covt[µt+1, r̃w,t+1]

Covt[µt+1, d̃p
o

t+1] Vart[d̃p
o

t+1] Covt[d̃p
o

t+1, r̃w,t+1]

Covt[µt+1, r̃w,t+1] Covt[d̃p
o

t+1, r̃w,t+1] Vart[r̃w,t+1]







(IA.59)

where (with Vrt = Vart[r̃
∗
w,t+1] and Uµt = Vart[µt])

Et[µt+1] = Et[µ + φµ · (µt − µ) + µ̃∗
t+1]

= µ + φµ · (Ert − µ) (IA.60)

Vart[r̃w,t+1] = Vart[µt − Ert + r̃∗w,t+1]

= Uµt + Vrt (IA.61)

Vart[µt+1] = Vart[µ + φµ · (µt − µ) + µ̃∗
t+1]

= φ2
µ · Uµt + ν2µ · Vrt (IA.62)
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Vart[d̃p
o

t+1] = Vart[µt − Ert + νo · d̃p
∗

t+1]

= Uµt + ν2o · ν2dp · Vrt (IA.63)

Covt[µt+1, d̃p
o

t+1] = Covt[φµ · µt + µ̃∗
t+1, µt − Ert + νo · d̃p

∗

t+1]

= φµ · Covt[µt, µt] + νo · Covt[µ̃∗
t+1, d̃p

∗

t+1]

= φµ · Uµt + νo · νµ,dp · Vrt (IA.64)

Covt[µt+1, r̃w,t+1] = Covt[φµ · µt + µ̃∗
t+1, µt − Ert + r̃∗w,t+1]

= φµ · Covt[µt, µt] + Covt[µ̃
∗
t+1, r̃

∗
w,t+1]

= φµ · Uµt + νr,µ · Vrt (IA.65)

Covt[d̃p
o

t+1, r̃w,t+1] = Covt[µt + νo · d̃p
∗

t+1, µt − Ert + r̃∗w,t+1]

= Covt[µt, µt] + νo · Covt[d̃p
∗

t+1, r̃
∗
w,t+1]

= Uµt + νo · νr,dp · Vrt (IA.66)

Moreover, since


A B

C D




−1

=
1

A ·D − B · C ·




D −B

−C A


 (IA.67)

if we define

Ωt =




Vart[d̃p
o

t+1] Covt[d̃p
o

t+1, r̃w,t+1]

Covt[d̃p
o

t+1, r̃w,t+1] Vart[r̃w,t+1]


 (IA.68)

then we also have

Ω−1
t =

1

ξt
×




Uµt + Vrt −(Uµt + νo · νr,dp · Vrt)

−(Uµt + νo · νr,dp · Vrt) (Uµt + ν2o · ν2dp · Vrt)


 (IA.69)
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where

ξt = ν2o · (ν2dp − ν2r,dp) · Vr2t + (1 + ν2o · ν2dp − 2 · νo · νr,dp) · Vrt · Uµt

A.3.4 The Ert and Uµt Dynamics

Given the results in the previous subsection, Ert+1 is given by

Ert+1 = Et+1[µt+1]

= Et[µt+1|d̃p
o

t+1, r̃w,t+1]

= Et[µt+1] +




Covt[µt+1, d̃p
o

t+1]

Covt[µt+1, r̃w,t+1]




′

× Ω−1
t ×



d̃p

o

t+1

r̃w,t+1




= µ + φµ · (Ert − µ) +



ξdp,t

ξr,t




′

×



d̃p

o

t+1

r̃w,t+1




= Er + φE · (Ert − Er) + Ẽrt+1 (IA.70)

where Er = µ, φE = φµ, and

Ẽrt+1 = ξdp,t · d̃p
o

t+1 + ξr,t · r̃w,t+1, (IA.71)

with

ξdp,t =
1

ξt
·




Covt[µt+1, d̃p
o

t+1] · (Uµt + Vrt)

−Covt[µt+1, r̃w,t+1] · (Uµt + νo · νr,dp · Vrt)




=
1

ξt
·




(φµ · Uµt + νo · νµ,dp · Vrt) · (Uµt + Vrt)

−(φµ · Uµt + νr,µ · Vrt) · (Uµt + νo · νr,dp · Vrt)




=
1

ξt
·




νo · (νµ,dp − νr,µ · νr,dp) · Vr2t

+(φµ · (1− νo · νr,dp) + νo · νµ,dp − νr,µ) · Vrt · Uµt


 (IA.72)
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and

ξr,t =
1

ξt
·




−Covt[µt+1, d̃p
o

t+1] · (Uµt + νo · νr,dp · Vrt)

+Covt[µt+1, r̃w,t+1] · (Uµt + ν2o · ν2dp · Vrt)




=
1

ξt
·




−(φµ · Uµt + νo · νµ,dp · Vrt) · (Uµt + νo · νr,dp · Vrt)

+(φµ · Uµt + νr,µ · Vrt) · (Uµt + ν2o · ν2dp · Vrt)




=
1

ξt
·




ν2o · (νr,µ · ν2dp − νµ,dp · νr,dp) · Vr2t

+(νr,µ + φµ · ν2o · ν2dp − νo · νµ,dp − φµ · νo · νr,dp) · Vrt · Uµt


 (IA.73)

Similarly, given the results in the previous subsection, Uµt+1 is given by

Uµt+1 = Vart+1[µt+1]

= Vart[µt+1|d̃p
o

t+1, r̃w,t+1]

= Vart[µt+1] −




Covt[µt+1, d̃p
o

t+1]

Covt[µt+1, r̃w,t+1]




′

×Ω−1
t ×




Covt[µt+1, d̃p
o

t+1]

Covt[µt+1, r̃w,t+1]




=
(
φ2
µ · Uµt + ν2µ · Vrt

)
−



ξdp,t

ξr,t




′

×




Covt[µt+1, d̃p
o

t+1]

Covt[µt+1, r̃w,t+1]




=
(
φ2
µ · Uµt + ν2µ · Vrt

)
−



ξdp,t

ξr,t




′

×



φµ · Uµt + νo · νµ,dp · Vrt

φµ · Uµt + νr,µ · Vrt




= φU,t · Uµt + φU,V,t · Vrt (IA.74)

where

φU,t = φ2
µ − φµ · ξdp,t − φµ · ξr,t

φU,V,t = ν2µ − νo · νµ,dp · ξdp,t − νr,µ · ξr,t
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A.3.5 The Vrt Dynamics

The framework in the prior subsections is general enough to accommodate any Vrt process.

However, to derive an expression for NV, we need to specify the Vrt dynamics. We model

Vrt as a Realized log-GARCH process (see Hansen, Huang, and Shek (2012)) so that

log(Vrt+1) = ωVr + φVr · log(Vrt) + φσ · σ2
t+1 (IA.75)

σ2
t+1 = ωσ + log(Vrt) + σ̃2

t+1 (IA.76)

which can be combined to yield

log(Vrt+1) = ωV + φV · log(Vrt) + φσ · σ̃2
t+1 (IA.77)

where ωV = ωVr + φσ · ωσ, φV = φVr + φσ, and σ̃2
t

iid∼ N(0, σ2
σ), with σ2

t reflecting the

log of the realized variance of rw over month t. Moreover, for simplicity, we assume that

Covt[r̃w, σ̃
2] = σr,σ and Covt[d̃p

o
, σ̃2] = νo · σdp,σ.

Our use of a Realized log-GARCH process effectively treats the conditional variance as

observable even though µt is not. This approach simplifies exposition and is consistent with

prior literature (e.g., Anderson, Ghysels, and Juergens (2009)), with the justification being

that an econometrician can consistently estimate ex-post variance through sampling returns

over arbitrarily short time intervals while the same is not true about average returns (see,

e.g., Merton (1980) and Foster and Nelson (1996)). However, our log(Vrt) process can be

derived as the Bayesian posterior of a latent stochastic volatility model in which σ2
t provides

a noisy signal for the log conditional variance, as we demonstrate below.

Consider the following stochastic volatility model in which the log conditional variance,

σ2
t , is unobservable:

σ2
t+1 = ωσ + φσ · σ2

t + ut+1 (IA.78)

σ2
t+1 = ωσ + σ2

t + ǫt+1 (IA.79)

where ut
iid∼ N(0, σ2

u) and ǫt
iid∼ N(0, σ2

ǫ ) are unobservable shocks with Covt[ǫ, u] = σǫ,u.
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Now, let log(Vrt) ≡ Et[σ
2
t ] to get

σ̃2
t+1 = σ2

t+1 − Et[σ
2
t+1]

= σ2
t+1 − (ωσ + log(Vrt)) (IA.80)

and define the Fσ
t subset of the investor’s information as Fσ

t+1 = {Fσ
t ∪ σ̃2

t+1} so that

Et+1[f(σ
2
t+1)] = Et[f(σ

2
t+1)|Fσ

t+1]

= Et[f(σ
2
t+1)|σ̃2

t+1,Fσ
t ]

= Et[f(σ
2
t+1)|σ̃2

t+1] + Et[f(σ
2
t+1)|Fσ

t ]− Et[f(σ
2
t+1)]

= Et[f(σ
2
t+1)|σ̃2

t+1] (IA.81)

for any arbitrary function f(µt+1). The first line following from the fact that the investor

updates the σ2
t belief based only on the signals summarized by the Fσ

t information set and

the third line follows from Theorem 2.4 in Chapter 5 of Anderson and Moore (1979).

Given Lemma 1 and Equation IA.81, so long as we can derive the joint distribution of

σ2
t+1 and σ̃2

t+1 conditioned on time t information, we can obtain log(Vrt+1) = Et+1[σ
2
t+1] =

Et[σ
2
t+1|σ̃2

t+1].

From the dynamics of σ2
t+1 and σ̃2

t+1 in Equations IA.80 and IA.78, we have:


σ2
t+1

σ̃2
t+1


 ∼ N







Et[σ
2
t+1]

0


 ,




Vart[σ
2
t+1] Covt[σ

2
t+1, σ̃

2
t+1]

Covt[σ
2
t+1, σ̃

2
t+1] Vart[σ̃

2
t+1]





 (IA.82)

where (with Uσ2
t = Vart[σ

2
t ])

Et[σ
2
t+1] = Et[ωσ + φσ · σ2

t + ut+1]

= ωσ + φσ · log(Vrt) (IA.83)

Vart[σ
2
t+1] = Vart[ωσ + φσ · σ2

t + ut+1]

= Uσ2
t + σ2

u (IA.84)
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Vart[σ̃
2
t+1] = Vart[σ

2
t+1 − (ωσ + log(Vrt))]

= Vart[σ
2
t − log(Vrt) + ǫt+1)]

= Uσ2
t + σ2

ǫ (IA.85)

Covt[σ
2
t+1, σ̃

2
t+1] = Covt[ωσ + φσ · σ2

t + ut+1, σ
2
t+1 − (ωσ + log(Vrt))]

= φσ · Covt[σ2
t , σ

2
t+1] + Covt[ut+1σ

2
t+1]

= φσ · Covt[σ2
t , σ

2
t ] + Covt[ut+1, ǫt+1]

= φσ · Uσ2
t + σǫ,u (IA.86)

From Lemma 1, we then have

log(Vrt+1) = Et+1[σ
2
t+1]

= Et[σ
2
t+1|σ̃2

t+1]

= Et[σ
2
t+1] +

Covt[σ
2
t+1, σ̃

2
t+1]

Vart[σ̃2
t+1]

· σ̃2
t+1

= ωσ + φσ · log(Vrt) +
φσ · Uσ2

t + σǫ,u
Uσ2

t + σ2
ǫ

· σ̃2
t+1 (IA.87)

and

Uσ2
t+1 = Vart+1[σ

2
t+1]

= Vart[σ
2
t+1|σ̃2

t+1]

= Vart[σ
2
t+1] − Covt[σ

2
t+1, σ̃

2
t+1]

2

Vart[σ̃2
t+1]

= Uσ2
t + σ2

u − (φσ · Uσ2
t + σǫ,u)

2

Uσ2
t + σ2

ǫ

(IA.88)

which is a deterministic recursion, and thus (under standard regularity conditions for the
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parameters) converges to Uσ2.IA.6

Without loss of generality, we can then substitute Uσ2
t = Uσ2 in Equation IA.87 to obtain

log(Vrt+1) = ωV + φV · log(Vrt) + φσ · σ̃2
t+1 (IA.89)

where ωV = ωσ, φV = φσ, φσ = (φσ · Uσ2 + σǫ,u)/(Uσ
2 + σ2

ǫ ).

Consequently, our log-GARCH specification in Equations IA.76 and IA.77 is equivalent to

the latent stochastic volatility model in Equations IA.78 and IA.79. This equivalence is often

explored in the econometrics literature to provide simple and robust methods to estimate

the parameters of latent stochastic volatility models (e.g., Fleming and Kirby (2003)). In

our context, we rely on this equivalence to simplify our ICAPM by directly specifying a

log-GARCH process for the market conditional variance.

A.4 The NE and NV Expressions

We now use the Ert, Vrt, and Uµt dynamics in the previous subsection to derive expressions

for NE and NV in terms of measurable variables.

A.4.1 The NE Expression

From the Ert dynamics in Equation IA.70, we have

Et

[
∞∑

h=1

δ
h · rw,t+h

]
=
δ · Er
1− δ

+ θE · (Ert − Er) (IA.90)

IA.6While not necessary for our purpose, we can find Uσ2 as a function of the other model parameters by
substituting Uσ2

t+1 = Uσ2 and Uσ2
t = Uσ2 in Equation IA.88 and solving the resulting quadratic equation

for Uσ2.
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which implies that NE in Equation IA.38 is

NE,t+1 = (Et+1 − Et)

[
∞∑

h=1

δ
h · rw,t+h

]

= θE · Ẽrt+1

= θdp,t · d̃p
o

t+1 + θr,t · r̃w,t+1 (IA.91)

where θE = δ/(1− δ · φE), θdp,t = θE · ξdp,t, and θr,t = θE · ξr,t.

A.4.2 The NV Expression

Now, our objective is to obtain an expression for NV. Unfortunately, given our wealth return

dynamics, NV does not have an analytical solution. As such, this subsection uses several

approximations to obtain the analytical approximation NV,t ≈ θσ · σ̃2
t , which we use in

the main text. In Subsection D.7, we solve for the nonlinear NV solution numerically (i.e.,

obviating the need for the approximations to generate the analytical solution) and provide

results that are very similar to the baseline results we report in the main text.

The wealth return dynamics in Section A.3 can be fully summarized by

rw,t+1 = Ert + r̃w,t+1 (IA.92)

Ert+1 = Er + φE · (Ert − Er) + Ẽrt+1 (IA.93)

Uµt+1 = φU,t · Uµt + φU,V,t · Vrt (IA.94)

log(Vrt+1) = ωVr + φVr · log(Vrt) + φσ · σ2
t+1 (IA.95)

σ2
t+1 = ωσ + log(Vrt) + σ̃2

t+1 (IA.96)
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where the shocks are normally distributed with variance and covariance terms given by

Vart




r̃w,t+1

Ẽrt+1

σ̃2
t+1

Ũµt+1




=




Vart[r̃w,t+1] Covt[r̃w,t+1, Ẽrt+1] Covt[r̃w,t+1, σ̃
2
t+1] 0

Covt[r̃w,t+1, Ẽrt+1] Vart[Ẽrt+1] Covt[Ẽrt+1, σ̃
2
t+1] 0

Covt[r̃w,t+1, σ̃
2
t+1] Covt[Ẽrt+1, σ̃

2
t+1] Vart[σ̃

2
t+1] 0

0 0 0 0




(IA.97)

withIA.7

Vart[r̃w,t+1] = Uµt + Vrt

Vart[Ẽrt+1] = (ξ2dp,t+ ξ
2
r,t+2 · ξdp,t · ξr,t) ·Uµt+(ν2o · ν2dp · ξ2dp,t+ ξ2r,t+2 · νo · νr,dp · ξdp,t · ξr,t) ·Vrt

Vart[σ̃
2
t+1] = σ2

σ

Covt[r̃w,t+1, Ẽrt+1] = (ξdp,t + ξr,t) · Uµt + (νo · νr,dp · ξdp,t + ξr,t) · Vrt
Covt[r̃w,t+1, σ̃

2
t+1] = σr,σ

IA.7The derivation of the Ẽrt variance and covariance expressions is as follows:

Vart[Ẽrt+1] = Vart[ξdp,t · d̃p
o

t+1 + ξr,t · r̃w,t+1]

= ξ2dp,t · Vart[d̃p
o

t+1] + ξ2r,t · Vart[r̃w,t+1] + 2 · ξdp,t · ξr,t · Covt[d̃p
o

t+1, r̃w,t+1]

= ξ2dp,t · (Uµt + ν2o · ν2dp · Vrt) + ξ2r,t · (Uµt + Vrt) + 2 · ξdp,t · ξr,t · (Uµt + νo · νr,dp · Vrt)

= (ξ2dp,t + ξ2r,t + 2 · ξdp,t · ξr,t) · Uµt + (ν2o · ν2dp · ξ2dp,t + ξ2r,t + 2 · νo · νr,dp · ξdp,t · ξr,t) · Vrt

Covt[r̃w,t+1, Ẽrt+1] = Covt[r̃w,t+1 , ξdp,t · d̃p
o

t+1 + ξr,t · r̃w,t+1]

= ξdp,t · Covt[r̃w,t+1, d̃p
o

t+1] + ξr,t · Covt[r̃w,t+1, r̃w,t+1]

= ξdp,t · (Uµt + νo · νr,dp · Vrt) + ξr,t · (Vrt + Uµt)

= (ξdp,t + ξr,t) · Uµt + (νo · νr,dp · ξdp,t + ξr,t) · Vrt

Covt[Ẽrt+1, σ̃
2
t+1] = Covt[ξdp,t · d̃p

o

t+1 + ξr,t · r̃w,t+1 , σ̃
2
t+1]

= ξdp,t · Covt[d̃p
o

t+1, σ̃
2
t+1] + ξr,t · Covt[r̃w,t+1, σ̃

2
t+1]

= νo · σdp,σ · ξdp,t + σr,σ · ξr,t
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Covt[d̃p
o

t+1, σ̃
2
t+1] = νo · σdp,σ

Covt[Ẽrt+1, σ̃
2
t+1] = νo · σdp,σ · ξdp,t + σr,σ · ξr,t

The first linear approximation we use (derived in Subsection A.4.3) yields

Vrt+1 ≈ Vr + φV · (Vrt − Vr) + Ṽrt+1 (IA.98)

where

Vr = eωV/(1−φV)

ωV = ωVr + φσ · ωσ
φV = φVr + φσ

Ṽrt = Vr · φσ · σ̃2
t

Vart[Ṽrt+1] = σ2
V
= Vr2 · φ2

σ · σ2
σ

Covt[r̃w,t+1, Ṽrt+1] = σr,V = Vr · φσ · σr,σ
Covt[d̃p

o

t+1, Ṽrt+1] = νo · σdp,V = νo · Vr · φσ · σdp,σ
Covt[Ẽrt+1, Ṽrt+1] = νo · σdp,V · ξdp,t + σr,V · ξr,t

We then conjecture (with verification below) that NV,t+1 = θV · Ṽrt+1, which results in

Vart[vt+1] = Vart[r̃w,t+1 + ṽwt+1]

= Vart[r̃w,t+1 + θE · Ẽrt+1 − 0.5 · (γ − 1) · θV · Ṽrt+1]

= Vart[r̃w,t+1 − 0.5 · (γ − 1) · θV · Ṽrt+1] + θ2
E
· Vart[Ẽrt+1]

+ 2 · θE · Covt[r̃w,t+1, Ẽrt+1] − (γ − 1) · θV · θE · Covt[Ẽrt+1, Ṽrt+1]

= Vart[r̃w,t+1] + (0.5 · (γ − 1) · θV)2 · Vart[Ṽrt+1]− (γ − 1) · θV · Covt[r̃w,t+1, Ṽrt+1]

+ θ2
E
· Vart[Ẽrt+1] + 2 · θE · Covt[r̃w,t+1, Ẽrt+1]− (γ − 1) · θV · θE · Covt[Ẽrt+1, Ṽrt+1]

= (0.5 · (γ − 1) · θV · σV)2 − (γ − 1) · θV · σr,V + Uµt + Vrt + θ2
E
· Vart

[
Ẽrt+1

]

+ 2 · θE · Covt
[
r̃w,t+1, Ẽrt+1

]
− (γ − 1) · θV · θE · Covt

[
Ẽrt+1, Ṽrt+1

]

= ϕ0,t + ϕV,t · Vrt + ϕU,t · Uµt (IA.99)

where
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ϕ0,t = (0.5 · (γ − 1) · θV · σV)2 − (γ − 1) · θV · σr,V
−(γ − 1) · νo · θE · θV · σdp,V · ξdp,t − (γ − 1) · θE · θV · σr,V · ξr,t

ϕV,t = 1 + 2 · θE · νo · νr,dp · ξdp,t + 2 · θE · ξr,t
+ θ2

E
· ν2o · ν2dp · ξ2dp,t + θ2

E
· ξ2r,t + 2 · θ2

E
· νo · νr,dp · ξdp,t · ξr,t

ϕU,t = 1 + 2 · θE · ξdp,t + 2 · θE · ξr,t + θ2
E
· ξ2dp,t + θ2

E
· ξ2r,t + 2 · θ2

E
· ξdp,t · ξr,t

Equations IA.99 and IA.74 imply that Vart[vt+1] and Uµt+1 are non-linear functions of

Vrt and Uµt. In Subsection A.4.3, we provide first order Taylor approximations that allow

us to write

Vart [vt+1] ≈ ϕ0 + ϕV · Vrt + ϕU · Uµt (IA.100)

and

Uµt+1 ≈ Uµ + φU · (Uµt − Uµ) + φU,V · (Vrt − Vr) (IA.101)

where the expressions for ϕ0, ϕV, ϕU, Uµ, φU, and φU,V are provided in Subsection A.4.3.

Using the approximation in Equation IA.100 and then the approximation in Equation

IA.101, we have

Et

[
∞∑

h=1

δ
h · Vart+h−1 [vt+h]

]
≈ δ · ϕ0

1− δ
+ ϕV ·

∞∑

h=1

δ
h · Et [Vrt+h−1] + ϕU ·

∞∑

h=1

δ
h · Et [Uµt+h−1]

=
δ · (ϕ0 + ϕV · Vr + ϕU · Uµ)

1− δ
+ θV · (Vrt − Vr) + θU · (Uµt − Uµ)

(IA.102)

so that NV in Equation IA.38 is

NV,t = (Et+1 − Et)

[
∞∑

h=1

δ
h · Vart+h[vt+1+h]

]

≈ θV · Ṽrt

= θσ · σ̃2
t (IA.103)

which approximately confirms our NV,t+1 = θV · Ṽrt+1 conjecture and further implies (when

added to Equations IA.37 and IA.90)
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vwt =
f(ψ, δ, δ) + δ · Er

1− δ
+ θE · (Ert − Er) − (γ − 1)

2
· Et

[
∞∑

h=1

δ
h · Vart+h−1 [vt+h]

]

≈ θ0 + θE · Ert − (γ − 1)

2
· θV · Vrt − (γ − 1)

2
· θU · Uµt (IA.104)

whereIA.8

θ0 =
f(ψ,δ,δ)−0.5·(γ−1)·δ·ϕ0

1−δ
+
(

δ
1−δ

− θE

)
·Er− (γ−1)

2
·
(
δ·ϕV

1−δ
− θV

)
·Vr− (γ−1)

2
·
(
δ·ϕU

1−δ
− θU

)
·Uµ

θE = δ/(1− δ · φE)

θV = ϕV · [δ/(1− δ · φV)] + ϕU · (δ2 · φU,V)/[(1− δ · φV) · (1− δ · φU)]

θU = ϕU · δ/(1− δ · φU)

θσ = Vr · φσ · θV
with the θV expression representing a recursive equation since it expresses θV as an implicit

function of θV and other parameters.

A.4.3 The Approximations Used to Derive the NV Expression

We now derive all approximations used in the previous subsection to obtain ourNV,t ≈ θV·Ṽrt
approximation.

IA.8To derive the θV and θU expressions, note that

Et

[(
Vrt+h−1 − Vr
Uµt+h−1 − Uµ

)]
=

[
φV 0
φU,V φU

]h−1

×
(

Vrt − Vr
Uµt − Uµ

)

so that

∞∑

h=1

δ
h · Et

[(
Vrt+h−1 − Vr
Uµt+h−1 − Uµ

)]
= δ ·

[
1− δ · φV 0

−δ · φU,V 1− δ · φU

]−1

×
(

Vrt − Vr
Uµt − Uµ

)

= δ · 1

(1− δ · φV) · (1− δ · φU)
·
[

1− δ · φU 0

δ · φU,V 1− δ · φV

]
×
(

Vrt − Vr
Uµt − Uµ

)

=




δ
1−δ·φV

· (Vrt − Vr)

δ
2
·φU,V

(1−δ·φV)·(1−δ·φU)
· (Vrt − Vr) + δ

1−δ·φU

· (Uµt − Uµ)




which yields the θV and θU expressions.
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(a) Approximation for Vrt Dynamics

Our log-GARCH dynamics for Vrt are given by

log(Vrt+1) = ωVr + φVr · log(Vrt) + φσ · σ2
t+1 (IA.105)

σ2
t+1 = ωσ + log(Vrt) + σ̃2

t+1 (IA.106)

which can be combine to yield

log(Vrt+1) = ωV + φV · log(Vrt) + φσ · σ̃2
t+1 (IA.107)

where ωV = ωVr + φσ · ωσ, φV = φVr + φσ, and σ̃
2
t
iid∼ N(0, σ2

σ).

As such, we have:

Vrt+1 = VrφVt · eωV + φσ ·σ̃2
t+1

≈ VrφV · eωV + φV · VrφV−1 · eωV · (Vrt − Vr) + VrφV · eωV · φσ · σ̃2
t+1 (IA.108)

where the second line follows from a first order Taylor expansion around Vrt = Vr and

σ̃2
t+1 = 0.

Now, taking unconditional expectation on both sides of Equation IA.108 implies

Vr = eωV/(1−φV), which allows us to write Equation IA.108 as

Vrt+1 ≈ Vr + φV · (Vrt − Vr) + Ṽrt+1 (IA.109)

where

Ṽrt = Vr · φσ · σ̃2
t

Vart[Ṽrt+1] = σ2
V
= Vr2 · φ2

σ · σ2
σ

Covt[r̃w,t+1, Ṽrt+1] = σr,V = Vr · φσ · σr,σ
Covt[d̃p

o

t+1, Ṽrt+1] = νo · σdp,V = νo · Vr · φσ · σdp,σ
Covt[Ẽrt+1, Ṽrt+1] = νo · σdp,V · ξdp,t + σr,V · ξr,t
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(b) Approximation for Vart [vt+1] Dynamics

For notation convenience, if xt = f(Vrt,Uµt), then we define the expressions x ≡ f(Vr,Uµ),

∂Vrx ≡ ∂Vr {xt}(Vrt,Uµt)=(Vr,Uµ), and ∂Uµx ≡ ∂Uµ {xt}(Vrt,Uµt)=(Vr,Uµ).

Applying a first order Taylor expansion around Vrt ≈ Vr and Uµt ≈ Uµ on Equation

IA.99, we have

Vart [vt+1] ≈ Var [v] + ∂VrVar [v] · (Vrt − Vr) + ∂UµVar [v] · (Uµt − Uµ)

=
(
Var [v]− ∂VrVar [v] · Vr − ∂UµVar [v] · Uµ

)
+ ∂VrVar [v] · Vrt + ∂UµVar [v] · Uµt

= ϕ0 + ϕV · Vrt + ϕU · Uµt (IA.110)

where

ϕ0 = ϕ0 + (ϕV − ϕV) · Vr + (ϕU − ϕU) · Uµ
ϕV = ∂Vrϕ0 + ∂VrϕV · Vr + ϕV + ∂VrϕU · Uµ
ϕU = ∂Uµϕ0 + ∂UµϕV · Vr + ∂UµϕU · Uµ + ϕU

∂Vrϕ0 = −νo · θE · θV · (γ − 1) · σdp,V · ∂Vrξdp − (γ − 1) · θV · θE · σr,V · ∂Vrξr
∂Uµϕ0 = −νo · θE · θV · (γ − 1) · σdp,V · ∂Uµξdp − (γ − 1) · θV · θE · σr,V · ∂Uµξr
∂VrϕV = 2 · θE · νo ·

(
νr,dp + θE · νo · ν2dp · ξdp

)
· ∂Vrξdp + 2 · θE ·

(
1 + θE · ξr

)
· ∂Vrξr

+ 2 · θ2
E
· νo · νr,dp · ∂Vrξr · ξdp

∂UµϕV = 2 · θE · νo ·
(
νr,dp + θE · νo · ν2dp · ξdp

)
· ∂Uµξdp + 2 · θE ·

(
1 + θE · ξr

)
· ∂Uµξr

+ 2 · θ2
E
· νo · νr,dp · ∂Uµξr · ξdp

∂VrϕU = 2 · θE · (1 + θE · ξdp) · ∂Vrξdp + 2 · θE · (1 + θE · ξr) · ∂Vrξr + 2 · θ2
E
· ∂Vrξr · ξdp

∂UµϕU = 2 · θE · (1 + θE · ξdp) · ∂Uµξdp + 2 · θE · (1 + θE · ξr) · ∂Uµξr + 2 · θ2
E
· ∂Uµξr · ξdp

∂Vrξr · ξdp = ∂Vrξr · ξdp + ∂Vrξdp · ξr
∂Uµξr · ξdp = ∂Uµξr · ξdp + ∂Uµξdp · ξr
∂Vrξdp = (∂Vrξ · ξdp · ξ − ∂Vrξ · ξ · ξdp)/ξ2

∂Uµξdp = (∂Uµξ · ξdp · ξ − ∂Uµξ · ξ · ξdp)/ξ2

∂Vrξr = (∂Vrξ · ξr · ξ − ∂Vrξ · ξ · ξr)/ξ2

∂Uµξr = (∂Uµξ · ξr · ξ − ∂Uµξ · ξ · ξr)/ξ2

IA.28



∂Vrξ = 2 · ν2o · (ν2dp − ν2r,dp) · Vr + (1 + ν2o · ν2dp − 2 · νo · νr,dp) · Uµ
∂Uµξ = (1 + ν2o · ν2dp − 2 · νo · νr,dp) · Vr
∂Vrξ · ξdp = 2 · νo · (νµ,dp − νr,µ · νr,dp) · Vr

+(φµ · (1− νo · νr,dp) + νo · νµ,dp − νr,µ) · Uµ
∂Uµξ · ξdp = (φµ · (1− νo · νr,dp) + νo · νµ,dp − νr,µ) · Vr
∂Vrξ · ξr = 2 · ν2o · (νr,µ · ν2dp − νµ,dp · νr,dp) · Vr

+(νr,µ + φµ · ν2o · ν2dp − νo · νµ,dp − φµ · νo · νr,dp) · Uµ
∂Uµξ · ξr = (νr,µ + φµ · ν2o · ν2dp − νo · νµ,dp − φµ · νo · νr,dp) · Vr

(c) Approximation for Uµt Dynamics

Applying a first order Taylor expansion around Vrt ≈ Vr and Uµt ≈ Uµ on Equation IA.74,

we have

Uµt+1 ≈ Uµ + ∂UµUµ · (Uµt − Uµ) + ∂VrUµ · (Vrt − Vr)

= Uµ + φU · (Uµt − Uµ) + φU,V · (Vrt − Vr) (IA.111)

where

Uµ = Uµ = φ0 + φU · Uµ + φU,V · VrIA.9

φU = ∂UµUµ = ∂UµφU · Uµ + φU + ∂UµφU,V · Vr
φU,V = ∂VrUµ = ∂VrφU · Uµ + ∂VrφU,V · Vrt + φU,V

∂VrφU = − φµ · ∂Vrξdp − φµ · ∂Vrξr
∂UµφU = − φµ · ∂Uµξdp − φµ · ∂Uµξr
∂VrφU,V = − νo · νµ,dp · ∂Vrξdp − νr,µ · ∂Vrξr
∂UµφU,V = − νo · νµ,dp · ∂Uµξdp − νr,µ · ∂Uµξr
with expressions for ∂Vrξdp, ∂Vrξr, ∂Uµξdp, and ∂Uµξr provided in the prior subsection.

IA.9Note that this is a non-linear equation for Uµ since both sides of the equation (including φ0, φU, and
φU,V) depend on Uµ.

IA.29



(d) Accuracy of Approximations Used to Derive NV

Figures IA.1(a) to IA.1(c) show that the approximations for the dynamics of Vrt, Uµt,

and Vart[v] (i.e., Equations IA.109 to IA.111) are fairly accurate given our estimated pa-

rameters under the structural ICAPM (with γ = 6.3 as per our long sample GMM es-

timation). However, the accuracy that ultimately matters for our purpose is of NV =

(Et+1 − Et)(
∑∞

h=1 δ
h · Vart+h[vt+1+h]). Figure IA.1(d) plots the NV expression that results

from our approximations (i.e., Equation IA.103) against the same quantity solved numeri-

cally following the procedure detailed in Subsection D.7 (but fixing γ = 6.3). As it is clear

from the figure, our solution is very accurate. Hence, it is not surprising that we find (in Sub-

section D.7) results that are very similar to the ones reported in the main text after solving

for the nonlinear NV numerically. If anything, the nonlinear NV is slightly more volatile than

the approximate NV, which results in slightly stronger bV in our GMM estimation.

IA.30



B Econometric Details

This section provides econometric details related to some of the results described in the

main text. Subsection B.1 explains the estimation of the wealth return dynamics, Subsection

B.2 focuses on our estimation of risk prices, Subsection B.3 shows the equivalence of factor

spanning tests and our SDF tests, and Subsection B.4 describes our bootstrap simulations.

B.1 Estimating the Wealth Return Dynamics

This subsection explains how we estimate the wealth return dynamics summarized by the

Vrt and Ert processes.

B.1.1 Estimating Vrt

The Realized log-GARCH dynamics for Vrt are given by

log(Vrt+1) = ωVr + φVr · log(Vrt) + φσ · σ2
t+1 (IA.112)

σ2
t+1 = ωσ + log(Vrt) + σ̃2

t+1 (IA.113)

where σ̃2
t
iid∼ N(0, σ2

σ), Covt[r̃w, σ̃
2] = σr,σ, and Covt[d̃p

o
, σ̃2] = νo · σdp,σ.

The Vrt parameters are ΘV = (ωVr, ωσ, φVr, φσ, σ
2
σ, σr,σ, σdp,σ). We first estimate the pa-

rameters (ωVr, ωσ, φVr, φσ), which allows us to obtain the Vrt process and the σ̃2
t shocks.

We then estimate (σ2
σ, σr,σ, σdp,σ) from the sample covariance matrix of our σ̃2, r̃w, and d̃p

o

shocks (with the construction of r̃w and d̃p
o
detailed in the next subsection). Note that while

we describe the estimation of (ωVr, ωσ, φVr, φσ) and (σ2
σ, σr,σ, σdp,σ) in two steps, all seven

parameters are jointly estimated (the same way that the slope and the residual variance are

jointly estimated in a regression) with the (σ2
σ, σr,σ, σdp,σ) parameters matching the sample

variances and covariances given the (ωVr, ωσ, φVr, φσ) parameters.

We estimate φVr and φσ by Nonlinear Least Squares (NLS) with the objective function

Min
{φVr , φσ}

T−H∑

t=1

(
H∑

h=1

RVt+h − Et

[
H∑

h=1

RVt+h

])2

(IA.114)
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where RVt = eσ
2
t is the realized variance of market returns in month t and H = 120 months

in our estimation. As such, we are effectively estimating the Vrt parameters by targeting

long-run (10-year) variance dynamics.

The parameter ωVr is obtained inside the objective function to impose that the average

Vrt matches the unconditional variance of rw. Similarly, the parameter ωσ is obtained inside

the objective function to impose E[σ̃2] = 0 over our sample period (i.e., ωσ = E[σ2] −
E[log(Vrt)]). This approach is equivalent to including ωVr and ωσ as optimizing parameters

in the objective function IA.114 while adding two constraints to the optimization (that

E[σ̃2] = 0 and E[Vrt] = Var[rw] must hold).

We now explain how we obtain the Et[
∑H

h=1RVt+h] term inside the objective function

given all relevant parameter values. To start, note that Equation IA.113 implies

Et [RVt+1] = Et

[
eσ

2
t+1

]
= eωσ+0.5·σ2

σ · Vrt (IA.115)

so that

Et

[
H∑

h=1

RVt+h

]
= eωσ+0.5·σ2

σ ·
H∑

h=1

Et [Vrt+h−1] (IA.116)

Now, we need an expression for Et[Vrt+h] given an arbitrary h. To obtain such an expres-

sion, note that combining Equations IA.112 and IA.113 yields

log(Vrt+1) = ωV + φV · log(Vrt) + φσ · σ̃2
t+1 (IA.117)

where ωV = ωVr + φσ · ωσ and φV = φVr + φσ. As such, we have

Et

[
Vrτt+1

]
= Et

[
eτ ·(ωV+φσ ·σ̃

2
t+1) · Vrτ ·φVt

]
= A(τ) · Vrτ ·φVt (IA.118)

where A(τ) = eτ ·ωV+0.5·τ2·φ2σ ·σ
2
σ . Finally, we can use the generic Equation IA.118 to obtain

Et [Vrt+1] = A(1) · VrφVt
Et [Vrt+2] = Et [Et+1 [Vrt+2]] = Et

[
A(1) · VrφVt+1

]
= A(1) · A(φV) · Vrφ

2
V

t

Et [Vrt+3] = Et [Et+1 [Vrt+3]] = Et

[
A(1) · A(φV) · Vrφ

2
V

t+1

]
= A(1) · A(φV) · A(φ2

V
) · Vrφ

3
V

t
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and so on, which generalizes to

Et [Vrt+h] =

(
h−1∏

j=0

A(φj
V
)

)
· Vrφ

h
V

t (IA.119)

and, when combined with Equation IA.116, yields

Et

[
H∑

h=1

RVt+h

]
= eωσ+0.5·σ2

σ ·
H∑

h=1

(
h−2∏

j=0

A(φj
V
)

)
· Vrφ

h−1
V

t (IA.120)

Our ΘV estimates are reported in Panel B of Table IA.1.

B.1.2 Estimating Ert

The Ert parameters are given by ΘE = (ρ, µ, φµ, φg, νµ, νg, νr,µ, νr,g, νµ,g) and they can be com-

bined with observations of dpt, rw,t, and Vrt (with the latter obtained in the prior subsection),

to recover

Ert+1 = Er + φE · (Ert − Er) + ξdp,t · d̃p
o

t+1 + ξr,t · r̃ow,t+1 (IA.121)

and

Uµt+1 = φU,t · Uµt + φU,V,t · Vrt (IA.122)

where

Er = µ

φE = φµ

Φµ = (1− φ12
µ )/[(1− φµ)(1− ρ · φ12

µ )]

Φg = (1− φ12
g )/[(1− φg)(1− ρ · φ12

g )]

νo = 1/[Φµ · (φµ − φg)]

νdp =
√
Φ2
µ · ν2µ + Φ2

g · ν2g − 2 · Φµ · Φg · νµ,g
νr,dp = Φµ · νr,µ − Φg · νr,g
νµ,dp = Φµ · ν2µ − Φg · νµ,g
νg,dp = Φµ · νµ,g − Φg · ν2g
d̃p

o

t+1 = µ + νo · [(dpt+1 − dp)− φg · (dpt − dp)]− Ert
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r̃ow,t+1 = rw,t+1 − Ert

ξt = ν2o · (ν2dp − ν2r,dp) · Vr2t + (1 + ν2o · ν2dp − 2 · νo · νr,dp) · Vrt · Uµt
ξdp,t = (1/ξt) · [νo · (νµ,dp − νr,µ · νr,dp) · Vr2t

+(φµ · (1− νo · νr,dp) + νo · νµ,dp − νr,µ) · Vrt · Uµt]
ξr,t = (1/ξt) · [ν2o · (νr,µ · ν2dp − νµ,dp · νr,dp) · Vr2t

+(νr,µ + φµ · ν2o · ν2dp − νo · νµ,dp − φµ · νo · νr,dp) · Vrt · Uµt]
φU,t = φ2

µ − φµ · ξdp,t − φµ · ξr,t
φU,V,t = ν2µ − νo · νµ,dp · ξdp,t − νr,µ · ξr,t
with initial conditions given by Er0 = Er and Uµ0 = Uµ.IA.10

We estimate µ and dp (needed for ρ = e−dp/(1 + e−dp)) from the average values of rw,t

and dpt. We then obtain the other parameters in ΘE by Maximum Likelihood Estimation

(MLE). Specifically, we have

 rw,t+1

dpt+1


 | Ft ∼ N




 Et[rw,t+1]

Et[dpt+1]


 ,


 Vart[rw,t+1] Covt[rw,t+1, dpt+1]

Covt[rw,t+1, dpt+1] Vart[dpt+1]






(IA.123)

whereIA.11

Et[rw,t+1] = Ert

Et[dpt+1] = dp + φg · (dpt − dp) + (1/νo) · (Ert − Er)

Vart[rw,t+1] = Vart[µt + r̃w,t+1] = Uµt + Vrt

Vart[dpt+1] = Vart[(1/νo) · (µt − µ) + d̃p
∗

t+1] = (1/ν2o ) · Uµt + ν2dp · Vrt
Covt[rw,t+1, dpt+1] = Covt[µt + r̃∗w,t+1, (1/νo) · (µt − µ) + d̃p

∗

t+1] = (1/νo) · Uµt + νr,dp · Vrt
Hence, letting ut+1 = [rw,t+1 − Et[rw,t+1] , dpt+1 − Et[dpt+1]]

′

= [r̃w,t+1 , d̃pt+1] and Σu,t

IA.10To obtain the unconditional µt uncertainty (Uµ0 = Uµ), we solve Equation IA.122 at steady state.
Specifically, we solve for Uµ based on the non-linear equation Uµ = φU · Uµ + φU,V · Vr, with Vr obtained

from the prior subsection and φU and φU,V obtained by substituting Uµt = Uµ and Vrt = Vr into φU,t and
φU,V,t.
IA.11Note that Equation IA.51 implies

dpt+1 = dp + φg · (dpt − dp) + (1/νo) · (µt − µ) + d̃p
∗

t+1

IA.34



reflect its covariance matrix in Equation IA.123, the likelihood function of the data is

det(2 · π · Σu,t)
−1/2 · exp

{
−1

2
· u′

t+1Σ
−1
u,tut+1

}
(IA.124)

which implies that the MLE we rely on is given by

Θ
(MLE)
E

= argmin
ΘE

T∑

t=1

[
log (det(Σu,t)) + u

′

t+1Σ
−1
u,tut+1

]
(IA.125)

Our ΘE estimates are reported in Panel A of Table IA.1.

B.2 Estimating Risk Prices

Equation 8 shows that b = E [M ] · Σ−1
f E [f ] and we estimate b from the sample analogue

b̂ = 1 · Σ̂−1
f Ê [f ] (with a E [M ] = 1 normalization). Despite its simplicity, our estimation

approach has a clear economic justification (i.e., it represents the projection of the true SDF

onto the factors) and can be motivated by efficiency and/or robustness arguments. This

subsection elaborates on these aspects and shows how to compute b̂ standard errors.

We begin by motivating our risk price estimation using a linear regression framework.

Next, we show how this maps directly into a GMM estimate of the same risk prices and use

GMM theory to develop asymptotic standard errors. Finally, we show that this methodology

can be motivated by efficiency and robustness arguments. In terms of efficiency, if we were to

add other testing assets to the analogous GMM framework, this would leave our estimator

unaffected as long as we rely on the efficient GMM weighting matrix. In terms of robustness,

we show that our b estimate using the linear regression framework converges in probability

to the projection of the SDF onto f even if the M = a + b
′

f model is mispecified, a result

that does not hold for other b estimators.

We consider an environment that is more general than our intertemporal factor model so

that we can understand what our estimation procedure uncovers if the intertemporal factor

model is false. As such, for the rest of this section, Mt represents the true SDF and
...
M t

reflects a given model for Mt. Obviously, any model’s implication is that Mt =
...
M t, but the

implication might not hold in reality (i.e., the model might be misspecified), in which case
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it is important to consider the distinction between Mt and
...
M t. We consider models of the

form
...
M t = a− b′ft, where ft are excess returns on traded factors and a risk-free asset exists,

since this is by far the most common case in the empirical asset pricing literature (and nests

our ICAPM risk factor model).

B.2.1 Linear Regression Framework

Since any model of interest is likely misspecified, we want a procedure that is consistent for

a and b if Mt =
...
M t = a − b′ft holds, but that is “reasonable” (i.e., delivers

...
M t = a − b′ft

with some useful properties) if Mt 6=
...
M t holds instead.

To find such a procedure, start by projecting Mt onto ft, which can always be done

whether
...
M t is well specified or not. Then, we have Mt = a − b′ft − ǫt where E [ǫ · f ] = 0

and E [ǫ] = 0. Thus, Mt can always be understood as a linear factor model with k + 1

factors in which the last factor, ǫt, is orthogonal to the first k. This means that for any given

set of factors, the linearity assumption can always be justified as long as we recognize that

we might have a missing factor. In this case, the original misspecification is incorporated

into this unobservable factor, making the linearity of Mt on ft well specified. If
...
M t is well

specified, then we have Mt =
...
M t = a − b′ft and ǫt = 0 ∀ t. However, if it is misspecified,

we have Mt 6=
...
M t = a − b′ft and

...
M t recovers the best linear predictor of Mt given ft or

...
M t = Proj (Mt|ft). Moreover, ǫt does not help pricing ft.

If we demeanMt, we haveMt − E [M ] = −b′ (ft − E [f ]). Then, a projection ofMt − E [M ]

onto ft − E [f ] yields b = −Σ−1
f E [(ft − E [f ]) (Mt − E [M ])] which, after some algebra, be-

comes:

b = E [M ] · Σ−1
f E [f ] (IA.126)

where Σf is the covariance matrix of the factors.

Note that Equation IA.126 is equivalent to the expression for b in Equation 8, and that

a can be easily recovered from a = E [M ] + b′E [f ]. Simply plugging in sample analogues to
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the moments in these expressions gives a consistent estimator:



â = 1 + b̂′Ê [f ]

b̂ = 1 · Σ̂−1
f Ê [f ]

(IA.127)

where Σ̂f = Ê[(f − Ê[f ])(f − Ê[f ])′] represents the sample covariance matrix, Ê [·] represents
the sample average, and we use the normalization E [M ] = 1.

In summary, Equation IA.127 delivers consistent estimates for a and b under the validity

of
...
M t and recovers the projection of Mt onto ft when

...
M t is misspecified, transforming the

misspecification into an orthogonal missing factor, ǫt, such that E [ǫ · f ] = 0 and E [ǫ] = 0.

B.2.2 GMM Framework

We formalize the GMM procedure that leads to the â and b̂ estimates in the previous subsec-

tion and provide standard errors for it. For the rest of this subsection, we stack the risk-free

payoff (a constant 1) together with the factors. We do the same for prices and parameters

(with the normalization that the price of a payoff of 1 equals E [M ] = 1). Thus, we define

the new terms Ft ≡ (1 , f ′
t)

′, PFt−1 ≡ (1 , 0′)′, and θ ≡ (a , −b′)′.
We have k + 1 Euler conditions summarized by E[MtFt] = E[PFt−1]. Then, substituting

Mt = θ′Ft − ǫt and E[ǫ · F ] = 0 into the Euler conditions yields E[θ′FtFt] = E[PFt−1]. Given

this just identified system, θ̂ is the solution to Ê[FtF
′
t θ̂] = Ê[PFt−1], which is given by:IA.12

θ̂= Ê [FtF
′
t ]

−1
Ê [PFt−1] . (IA.128)

We can use GMM to get the asymptotic covariance matrix for θ̂ as follows. Let

ut (θ) = θ′FtFt − PFt−1 and g (θ) = E [ut (θ)]. Then, from general GMM theory (see Hansen

IA.12Note that Ê[FtF
′
t θ̂] = Ê[PFt−1] is equivalent to




Ê

[
â− b̂′f

]
= 1

Ê

[(
â− b̂′f

)
f
]
= 0.

which yields the same estimates as in Equation IA.127 once we solve for â and b̂.
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(1982)), we have that aV ar(θ̂) =
(
∂g(θ)
∂θ

′
S−1 ∂g(θ)

∂θ

)−1

, where S =
∞∑

j=−∞

E
[
ut (θ) ut−j (θ)

′].
Thus, simply substituting terms in the expression for the asymptotic variance-covariance

matrix gives:

aV ar(θ̂) =
1

T



E [FtF

′
t ]
′

(
∞∑

j=−∞

E
[
ut (θ) ut−j (θ)

′]
)−1

E [FtF
′
t ]





−1

. (IA.129)

To estimate the asymptotic variance-covariance matrix, we plug in Ê[FtF
′
t ] as an estimator

for E[FtF
′
t ], θ̂ to obtain ut(θ̂), and use Newey and West (1987, 1994) to estimate the spectral

density matrix (i.e., the infinity summation in Equation IA.129). We then use this aV ar(θ̂)

estimate to compute standard errors for our risk price estimates.

B.2.3 Efficiency and Robustness

a) Efficiency

In general, b = E [M ] · Σ−1
f µf , where µf is the vector of risk premia for the factors (see

Ludvigson (2013)). Thus, we effectively estimate b by the respective sample moments,

b̂ = 1 · Σ̂−1
f Ê [f ]. The first two moments are obviously fine, and thus we should question

how efficient it is to estimate µf using Ê [f ].

Suppose we try to estimate µf using a cross-sectional regression of betas on average returns

of testing assets including not only the factors, but also all other assets in the economy. In

this case, the efficient Generalized Least Squares (GLS) gives µ̂f = ET [ft] and ignores the

cross-section information on all other assets (see Cochrane (2005)). A similar result holds for

the maximum likelihood estimator of µf in factor regressions (Gibbons, Ross, and Shanken

(1989)) and on two-pass regressions (Shanken (1992)). Hence, Ê [f ] is the efficient choice of

estimator for µf .

This well-known result extends to our b̂. Suppose we try to estimate b directly using

GMM, but relying on a set of testing assets that includes ft as well as other assets. Then,

the efficient GMM ignores (asymptotically) all testing assets other than ft (see Section 3 in

Nagel (2013)), which makes our b̂ asymptotically efficient.
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b) Robustness

If we include other testing assets in the GMM, then, in finite samples, the estimates for a

and b vary with the assets included. This is quite problematic as the estimates will depend

not only on the model under analysis, but also on the testing assets used. The problem gets

worse if the model is misspecified. In this case, not only are the estimates dependent on the

cross-section of assets used, but so is their probability limit (as T grows). This means that, if

the model is mispecified, what we are estimating varies with the testing assets under GMM.

To see this point, consider a well specified model such that Mt =
...
M t = a − b′ft. In

this case, although â and b̂ depend on the cross-section of asset used, GMM with any

set of testing assets provides estimates that converge to the same (and correct) a and

b. That is not the case if the model is misspecified. Under misspecification, the â and b̂

converge to the a and b in the projection Mt = a− b′ft − ǫt if and only if θ̂ converge to

E[FtF
′
t ]
−1
E[MtFt]. This is the case with our estimator because E[PFt−1] = E[MtFt], and thus

θ̂ = Ê[FtF
′
t ]
−1
Ê[PFt−1]

p→ E[FtF
′
t ]
−1
E[PFt−1] = E[FtF

′
t ]
−1
E[MtFt].

Therefore, our â− b̂′ft has the robust interpretation that it always reflects the projection

of Mt onto ft regardless of whether Mt =
...
M t or not. The same does not hold true for GMM

estimators that rely on other testing assets and a non-optimal weighting matrix.

B.3 SDF Projections as Factor Spanning Tests

We would like to understand whether adding ft to xt in a factor model improves the pricing

of testing assets (i.e., increases the Sharpe ratio of the tangency portfolio). It is well-known

in the literature that fk,t adds to xt if and only if αk 6= 0 and that the sign of αk tells us

whether we would like to long or short fk. Tests of αi are called factor spanning tests. Below,

we show that the b in the SDF Mt = a− b
′

ft− b
′

xxt provides the same economic information

as factor spanning tests, with the added advantage that the SDF version of the test controls

not only for xt but also for other ft factors when testing each ft factor, which is important

in the context of the ICAPM as discussed in Subsection 2.3.

To start, generalize the framework to allow for mispecification as in Subsection B.2. That
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is, considerMt =
...
M t − ǫt in whichMt is the true SDF and

...
M t is a model under consideration.

Moreover, note that the α of any asset rj relative to any arbitrary model
...
M t is given by

αj = −E[ǫ · rj]/E[
...
M ].IA.13 Then, the proposition below assures the SDF projection Mt =

a− b
′

ft − b
′

xxt − ǫt contains the same economic information as a factor spanning test.

Proposition 2. The SDF projection Mt = a− b
′

ft − b
′

xxt − ǫt results in bk = 0 if and

only if αk = 0, where αk represents the pricing error of fk,t relative to the model
...
M t =

...
a −

...
b

′

f−k,t −
...
b

′

xxt, with f−k,t reflecting all factors in ft except fk,t.

Proof. Suppose bk = 0. In this case, estimating Mt =
...
M t − ǫt results in the same ǫt obtained

from the SDF projection Mt = a− b
′

ft − b
′

xxt − ǫt. Then, we have αk = −E[ǫ · fk]/E[
...
M ] = 0

since, by construction, the SDF projection implies E[ǫ · fk] = 0.

Alternatively, suppose αk = 0. Then, we must have E[ǫ·fk] = 0 since αk = −E[ǫ·fk]/E[
...
M ].

As such, estimating the SDF projection Mt = a− b
′

ft − b
′

xxt − ǫt yields bk = 0 because the

ǫt in Mt =
...
a −

...
b

′

f−k,t −
...
b

′

xxt − ǫt is already orthogonal to fk,t.

B.4 Details Related to our Bootstrap Analyses

We use bootstrap simulations for two purposes. The first is to estimate t-statistics associated

with the Long-Sample risk prices (and risk premia) estimated in Table 6 when applying the

Stambaugh (1997) procedure. The second is to estimate sampling statistics related to Sharpe

ratios (Table 7) and sum-squared-alpha metrics (Tables 8 and 10) across different factor

models. We describe each of the related bootstrapping methodologies below.

B.4.1 Long-Sample Risk Price t-Statistics

The Stambaugh (1997) procedure allows us to estimate both Σf and E [f ] needed to compute

risk prices according to Equation 8 for a set of factors over the Long Sample (1928-2019)

IA.13To see this result, note that
...
M implies

...
E[rj ] = −Cov( ...M, rj)/E[

...
M ], and thus

αj = E[rj ]−
...
E[rj ] = E[rj ]−

Cov(
...
M, rj)

E[
...
M ]

= E[rj ]−
Cov(M, rj)

E[M ]
− Cov(ǫ, rj)

E[
...
M ]

= −E[ǫ · rj ]
E[

...
M ]
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when some of these factors are not available during the early period (“short factors” from the

“short sample”) where other factors are available (“long factors” from the “Long Sample”).

For example, we have ICAPM risk factor data available from 1928-2019, but only have FF5

factor data available from 1963-2019. We use this procedure to estimate ICAPM risk prices

over the Long Sample when controlling for factors from the following models: FF5, q4, SY4,

DHS3, and q5.

We would like to estimate Σf and E [f ] for all factors in both models over the Long

Sample so that we can estimate the Long Sample risk prices in Table 6. The Stambaugh

(1997) procedure allows us to compute consistent estimates of these variables by projecting

short factors onto long factors that are available during both the long and short samples,IA.14

then using this projection to extrapolate over the Long Sample. The fact that both Σf and

E [f ] are estimated with error results in complications for the asymptotic theory needed to

estimate standard errors on the resulting b estimates. As opposed to using something like

the Delta Method to estimate asymptotic standard errors, we instead choose to estimate

standard errors using simulation.

We run bootstrap simulations as follows. Let T be the total number of months in the Long

Sample (i.e., the number of months from 1928-2019). For a given alternative factor model

(such as the FF5 model), let TS be the total number of months in the short sample over which

data for the alternative model is available (e.g., in the case of the FF5 model, the number of

months from 1963-2019). We randomly select TS months of factor data (with replacement)

from the the short sample to estimate the projection of the short factors onto the long

factors. Next, we randomly select T −TS months of data from the early period (1928-1962 in

the example) with replacement and merge the data with the short-period simulated data to

estimate Σf and E [f ] following Stambaugh (1997). Finally, we calculate the resulting Long

Sample b according to Equation 8. We repeat this procedure 100,000 times and record the

estimated b in each simulation. We use the standard deviation from the resulting distribution

IA.14We use the ICAPM and FFC4 factors, which are available during the entire Long Sample (1928-2019)
as long factors in the Stambaugh (1997) procedure.
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of bs as an estimate of the standard error on our b estimated from the full data using the

Stambaugh (1997) procedure.

B.4.2 Sharpe Ratio Statistics

We use bootstrap simulations to estimate the percent of times the ICAPM Sharpe ratio is

higher than that from alternative models under various IS/OS constructions given boot-

strapped distributions. These values are reported in parentheses in Table 7

The simulation procedure is slightly different depending on whether we are concerned with

IS Sharpe ratios (i.e., those reported for the “Modern Sample”, “1st Half”, and “2nd Half”),

OS Sharpe ratios using weights estimated from 1973-1995 (i.e., those reported for “2nd Half

OS (w from 1973-1995)”), or OS Sharpe ratios using weight estimates from 1928-1995 (i.e.,

those reported for “2nd Half OS (w from 1928-1995)”). We will describe each of the three

simulation procedures in turn below. Regardless of the procedure, we repeat it 100,000 and

note the resulting Sharpe ratios for each model in each simulation. We then compute the

reported metric as the percent of simulations in which the ICAPM Sharpe ratio was higher

than the Sharpe ratio for a particular alternative model. These simulations are motivated by

a similar sampling procedure in Fama and French (2018) and similar data-splitting procedure

in Kan, Wang, and Zheng (2019).

We simulate IS Sharpe ratios for three different periods: (i) The “Modern Sample” from

1973-2019, (ii) The “1st Half” of the Modern Sample from 1973-1995, and (iii) The “2nd

Half” of the Modern Sample from 1995-2019. Let the particular period of interest contain

T months of factor data. Within each simulation, we randomly sample T months of data

from the original sample period (with replacement) and then use these simulated data to

compute the maximum Sharpe ratios for the ICAPM and each alternative model. We record

these Sharpe ratios and repeat the process 100,000 times. Reported values are the percent

of times the ICAPM Sharpe ratio is greater than that for the alternative model across all

simulations.

IA.42



We simulate the “2nd Half OS (w from 1973-1995)” Sharpe ratios as follows.IA.15 Let there

be T months in the Modern Sample from 1973-2019. Within each simulation, we randomly

select T/2 months of data from the first half of the Modern Sample (i.e., from 1973-1995) with

replacement. For each of these randomly-selected months, t, we pair it with month t + T/2

from the second half of the Modern Sample (1995-2019). We use the simulated data from the

first half of the sample to construct factor weights, w, that produce the maximum in-sample

Sharpe ratio for each model, then apply these weights to the paired simulated factor data

from the second half of the sample and compute the resulting OS Sharpe ratios for each

model. We record these Sharpe ratios and repeat the process 100,000 times. Reported values

are the percent of times the ICAPM Sharpe ratio is greater than that for the alternative

model across all simulations.

The simulation methodology we use for “2nd Half OS (w from 1928-1995)” is similar to

that used for “2nd Half OS (w from 1973-1995)”, but allows us to use factor data from before

1973 (where available) to estimate in-sample weights, w. Within each simulation, we select IS

and OS data from 1973-1995 and 1995-2019, respectively, in the same manner as for the “2nd

Half OS (w from 1973-1995)” simulations. For a given model, let there be N months of data

available before 1973. We also randomly sample N months from this data (with replacement)

and combine it with the data sampled from 1973-1995. We the use this combined data to

estimate factor weights that produce the maximum in-sample Sharpe ratio, then apply these

weights to the randomly-sampled data from 1995-2019 and compute the OS Sharpe ratio

from this data. In this way, we make use of data available before 1973 (when available),

which helps improve the stability of the estimated weights, w. We record these Sharpe ratios

and repeat the process 100,000 times. Reported values are the percent of times the ICAPM

Sharpe ratio is greater than that for the alternative model across all simulations.

IA.15Recall that we use data from 1973-1995 to estimate weights, w, applied to the factors to construct
maximum Sharpe ratios in the 1973-1995 sample, and then apply these weights to factor data from 1995-
2019 to construct the OS Sharpe ratios.
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B.4.3 Comparing Σα2/ΣE [r]2 Across Factor Models

We use bootstrap simulations to estimate the percent of times the ICAPM Σα2/ΣE [r]2 ratio

is lower than those from alternative models under the bootstrapped distribution when the

models are applied to various testing assets (Table 8) and 158 anomalies from Chen and

Zimmermann (2020) (Table 10).

The simulation procedure is as follows. Let there be T months of data from 1973-2019.

In each simulation, we randomly select T months of data (with replacement) from the 1973-

2019 period and record the associated factor values and test asset returns. We then compute

the Σα2/ΣE [r]2 metric for each model given the sampled data and record these values.

We repeat the process 100,000 times for all results except for those reported in Table 10

related to anomalies. In that case, we repeat the process 10,000 times due to data processing

limitations associated with simulating returns from 1,580 anomaly portfolios. In all cases,

reported values are the percent of times the ICAPM Σα2/ΣE [r]2 metric is less than that for

the alternative model across all simulations.
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C Data Sources and Measurement

This section contains details on the data sources and measurement beyond the information

provided in the main text. Subsection C.1 details the aggregate variables necessary to obtain

rE, rV, NE, and NV, Subsection C.2 describes our estimation of betas to construct rE, rV,

rNE, and rNV, Subsection C.3 focuses on the factor models we study in Sections 3 and 4

(beyond the intertemporal factor model), and Subsection C.4 focuses on the anomaly deciles

we explore in Section 4.

C.1 Aggregate Variables used to Measure rE, rV, NE, and NV

Constructing our tradable intertemporal risk factors requires the measurement of dpt and σ
2
t .

Similarly, the estimation of Ert and Vrt (described in Subsection B.1) requires the measure-

ment of rw,t, dpt, and σ
2
t . As such, measuring rE, rV, NE, and NV for our baseline analysis

requires only the measurement of rw,t, dpt, and σ
2
t .

Our monthly log realized variance measure is given by σ2
t = log( 21

Nt
· ΣNt

i=1r
2
w,t,i) with t

indexing the month and i the day. rw,t,i is measured from daily log returns on the CRSP

value-weighted index and Nt represents the number of trading days on month t.

Our wealth log return and dividend yield, rw,t and dpt, are based on a value-weighted

portfolio containing all common stocks available in the CRSP dataset and their measurement

accounts for delistings and mergers and acquisitions (M&A) paid in cash. We do not use the

CRSP value-weighted index because accounting for delistings and M&A activity requires a

“bottom-up” approach.

We start by adjusting returns for delistings. For each firm for which we can identify

a delisting (delisting code available and different from 100), we adjust the (ex- and cum-

dividend) return for the month in which the distribution of proceeds took place by assigning

the delisting return to that month. If no delisting return is available, we base the delisting

return on the findings in Shumway (1997) and assign to the delisting month a return of -30%

if the delisting was for cause (delisting code between 400 and 599) and of 0% otherwise. We
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assign a 0% return to all months between delisting and distribution when there is a temporal

gap between the two events.

With ex- and cum-dividend returns accounting for delistings, we construct returns based

on a value-weighted equity portfolio. We start by selecting all common shares (share codes

10 and 11) listed on NYSE, NASDAQ, or AMEX (exchange code 1, 2, and 3) and then

calculate value-weighted cum- and ex-dividend monthly returns (Rcum
mon,t and R

ex
mon,t).

Since our dividend measurement accounts for M&A paid in cash (as suggested in Allen and

Michaely (2003) and Sabbatucci (2015)), we also construct a monthly “M&A yield” (M&Ay)

at the aggregate level. Specifically, each month we sum all proceeds from distributions that

can be classified as originating from an M&A paid in cash (distribution code between 3000

and 3400) across all firms that have lagged market equity available, and we divide this value

by the sum of the lagged market equity for these firms.

To get dividends that incorporate M&A activity, we calculate a normalized aggregate price

series, Pt, by cumulating Rex
mon,t −M&Ay. We then calculate dividends from cum- and ex-

dividend returns as is standard in the literature (see Koijen and Nieuwerburgh (2011)), but

relying on the adjusted ex-dividend return so thatDmon,t =
(
Rcum
mon,t −Rex

mon,t +M&Ay
)
·Pt−1.

Finally, we follow Binsbergen and Koijen (2010) to get the monthly series of annual dividends

(Dt) as the sum of the monthly dividends (Dmon,t) over the respective period.

Our annual dividend yield is given by dpt = log(Dt/Pt) and our monthly real log return

by rw,t = log((Pt + Dmon,t)/Pt−1) − log(CPIt/CPIt−1), where CPI is the consumer price

index obtained from the Federal Reserve of St. Louis webpage.

C.2 Betas Estimated on a Rolling Window

As we explain in the main text, we use a 5-year rolling window to estimate βdp and βσ2 and

require stocks to have the full five years of data available to be included in the construction

of rE and rV. The only exception to the 5-year rolling window rule is in the beginning of our

sample period, before we have five years of data on ∆dp and ∆σ2 available to estimate betas.

Our first observation for ∆dpt is on January/1927 and for ∆σ2
t is on February/1926. As such,
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at the end of December/1927, we use stock returns going back to January/1927 for βdp (i.e.,

12 months of data) and February/1926 for βσ2 (i.e., 23 months of data). For the subsequent

months, we expand the window for each factor (keeping the January/1927 and February/1926

starting points) until we have five years of data to estimate the respective beta. Once we

have five years of data to estimate beta (December/1931 for βdp and January/1931 for βσ2)

we start applying the five year rolling window procedure. To assure the universe of stocks

used to construct the factors are always the same, we impose that stocks need to have

returns available for the entire βσ2 measurement window (which starts earlier than the βdp

measurement window before December/1931).

We face a related challenge when estimating βNE and βNV to build the decile portfolios

necessary to obtain rNE and rNV. Specifically, since NE and NV are estimated in-sample

(using either our Long Sample or our Modern Sample), we cannot estimate βNE and βNV on

a 5-year rolling window during the first five years of the relevant sample period. As such, for

the first five years in each sample period, we use the βNE and βNV estimated over the first

five years to create the deciles instead of using a rolling window. This approach allows us to

obtain rNE and rNV over the same period we have our tradable risk factors, rE and rV.

C.3 Replicating Factors from Prominent Factor Models

We obtain the factor data for all factor models from the original authors.IA.16 We also replicate

factors from all the factor models we investigate for two reasons. First, replicating the factors

allows us to extend factors from the SY4 and DHS3 models beyond their publicly-available

end dates (2016 and 2018, respectively) to the end of our sample (2019). In these cases,

we use our replicated versions of the factors from 2017-2019 and in 2019, respectively, in

our main results. Second, we need to reconstruct the factors each month to create the net-

IA.161928-2019 data for the factors in FF3 and FFC4 as well as 1963-2019 data for the factors in FF5 are
obtained from Kenneth French’s data library (https://mba.tuck.dartmouth.edu/pages/faculty/ken.
french/data_library.html). 1967-2019 data for the factors in q4 and q5 are obtained from the global-q
data library (http://global-q.org/index.html). 1963-2016 data for the factors in SY4 are obtained from
Robert Stambaugh’s webpage (http://finance.wharton.upenn.edu/~stambaug/). 1972-2018 data for the
factors in DHS3 are obtained from Lin Sun’s webpage (https://sites.google.com/view/linsunhome).
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trading-cost factors used to produce results in Figure 4 and in Table 7 (Panel B). We follow

Detzel, Novy-Marx, and Velikov (2020) in the cost adjustment, with the necessary details

provided in Footnote 34.

We describe how we obtain or construct signals used to create factors from each model

we investigate below. Once the signals are constructed, we follow the sorting procedures

described in the original papers to create the respective factors. For instance, to construct

the FF3 SMB and HML factors, we use the 2x3 sorting procedure described in Fama and

French (1993). Note that we need not account for trading costs associated with the market

factor since it is a passive strategy that just holds the market portfolio.

a) FF3 factors (SMB and HML)

SMB and HML are constructed annually at the end of June in each year t using the same

procedure as in Fama and French (1993). We use market equity, computed by multiplying

CRSP shares outstanding (shrout) with absolute price (prc) at the end of June in year t, as

the sorting signal for size. The sorting signal for HML is book-to-market equity, where book

equity is based on accounting data that is available at the end of December in year t − 1

and market equity is from the same month. We construct book equity using COMPUSTAT

data as described in Fama and French (1993) with two slight modifications. First, we exclude

deferred taxes from the calculation for fiscal years starting in 1993 due to changes in tax

treatments.IA.17 Second, we augment the COMPUSTAT book equity data with hand-collected

book equity data from Moody’s Manuals.IA.18 Finally, we use NYSE breakpoints for the size

and book-to-market signals for sorting, which we obtain from Kenneth French’s website. We

reconstruct SMB and HML over our Long Sample (1928-2019) and achieve correlations of

99.8% and 99.6% with the original factors, respectively, over that period.

IA.17Note that this modification is also used to construct the publicly available SMB and HML factors.
Further details can be found on Kenneth French’s webpage.
IA.18This data is available on Kenneth French’s website and is based on Davis, Fama, and French (2000).
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b) FFC4 factors (MOM)

MOM is constructed monthly using a stock’s cumulative returns over the past 12 months

and skipping the last month (i.e., the “12-2 return”) as in Carhart (1997). The factor is then

constructed using an independent double-sorting procedure that sorts on the momentum

measure and market equity, computed by multiplying CRSP shares outstanding (shrout)

with absolute price (prc), at the end of each month as in Carhart (1997). We reconstruct

MOM over our Long Sample (1928-2019) and achieve a correlation of 99.9% with the original

factor over that period.

c) FF5 factors (SMB, CMA, and RMW)

The FF5 model uses the same HML factor as the FF3 model. However, its construction of

SMB is slightly different than that in the FF3 model. The FF5 model also adds CMA and

RMW factors. Therefore, we reconstruct the FF5 SMB, CMA, and RMW factors annually

at the end of June in each year t using the same procedure as in Fama and French (2015).

To construct the CMA and RMW, we use COMPUSTAT data to construct asset growth

(“investment”) and profitability (“operating profitability”) signals as described in Fama and

French (2015). We use NYSE breakpoints for the investment and operating profitability

signals for sorting, which we obtain from Kenneth French’s website. We reconstruct the FF5

SMB, CMA, and RMW factors from 1963-2019 and achieve correlations of 99.7%, 98.2%, and

98.9% with the original factors, respectively, during the period in which they are available

(1963-2019).

d) q4 and q5 models (ME, IA, ROE, and EG)

We reconstruct the ME, IA, ROE, and EG factors using the same procedure described in

Hou, Xue, and Zhang (2015) and Hou et al. (2020) using signals that were provided directly

by the authors.IA.19 Our reconstructed ME, IA, ROE, and EG factors achieve correlations of

IA.19We thank the authors of these papers for sharing these data.
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99.9%, 99.6%, 99.8%, and 99.7% with the original factors, respectively, during the period in

which they are available (1967-2019).

e) SY4 model (SMB, MGMT, and PERF)

We reconstruct the SY4 SMB, MGMT, and PERF factors using the same procedure described

in Stambaugh and Yuan (2017). For the SY4 SMB factor, the signal is the same as in the SMB

factor of the FF3 model even though the factor construction differs from the approach in FF3.

Therefore we rely on the same size signal we use in the FF3 SMB construction to obtain the

SY4 size signal. The MGMT factor requires six different signals: net stock issues, composite

equity issues, accruals, net operating assets, asset growth, and the investment-to-assets ratio.

We obtain four of these signals (accruals, net operating assets, asset growth, and investment-

to-asset ratio) from the signal data Chen and Zimmermann (2020) make publicly available

(the respective labels are “Accruals”, “NOA”, “AG”, and “InvestPPEInv”).IA.20 We construct

the other two signals (net stock issues and composite equity issues) directly from CRSP and

COMPUSTAT data following Stambaugh and Yuan (2017) because Chen and Zimmermann

(2020)’s construction of the two analogous signals differs slightly from the construction in

Stambaugh and Yuan (2017).IA.21 The PERF factor requires five different signals: financial

distress, O-score, 12-2 momentum, gross profitability, and quarterly return on assets. We

use the same momentum signal as in our MOM factor. The remaining four signals (financial

distress, O-score, gross profitability, and quarterly return on assets) are obtained from the

signal data in Chen and Zimmermann (2020) (the respective labels are “FailureProbability”,

“OScore”, “GP”, and “roaq”). Given these signals, we construct SMB, MGMT, and PERF as

in Stambaugh and Yuan (2017). Our reconstructed SMB, MGMT, and PERF factors achieve

correlations of 95.7%, 96.7%, and 93.0% with the original factors, respectively, during the

period in which they are available (1963-2016). Note that we reconstruct these factors over

the 1963-2019 period and augment the original factors with our reconstructed factors only

IA.20See https://github.com/OpenSourceAP/CrossSection
IA.21Note that the construction of net stock issues and composite equity issues in Stambaugh and Yuan
(2017) differs from the construction used in the DHS3 FIN factor of Daniel, Hirshleifer, and Sun (2020).
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from 2017 to 2019 in our main results.

f ) DHS3 model (FIN and PEAD)

We construct FIN and PEAD factors using the same procedure described in Daniel, Hirsh-

leifer, and Sun (2020). The FIN factor requires two signals: net stock issues and composite

equity issues. We construct net stock issues as in Daniel, Hirshleifer, and Sun (2020) directly

using COMPUSTAT data.IA.22 We use the “CompEqIss” signal from Chen and Zimmermann

(2020) for composite equity issues since it is constructed in the same way as the corresponding

signal in Daniel, Hirshleifer, and Sun (2020). The PEAD factor uses the four-day cumula-

tive returns around earnings announcements as a signal. We use the “AnnouncementReturn”

signal from Chen and Zimmermann (2020) since it is constructed in the same way as the cor-

responding signal in Daniel, Hirshleifer, and Sun (2020). Our reconstructed FIN and PEAD

factors achieve correlations of 97.3% and 97.2% with the original factors, respectively, during

the period in which they are available (1972-2018). Note that we reconstruct these factors

over the 1972-2019 period and augment the original factors with our reconstructed factors

only for 2019 in our main results.

C.4 Anomaly Portfolios

We obtain 158 anomaly decile portfolios (that are value-weighted and based on NYSE break-

points) from Chen and Zimmermann (2020) (see Footnote IA.20), which gives us a total of

1,580 portfolios. In particular, we begin with the 180 “clear predictors” from Chen and Zim-

mermann (2020), which reflect anomalies that they classify as being “clearly significant in

the original papers”. From these 180 significant anomalies, we remove anomalies that do not

have return records for all 10 decile portfolios for at least half of our 1973-2019 sample. This

procedure yields the 158 anomalies (and the corresponding 1,580 decile portfolios) we use as

test assets in Section 4.

IA.22Note that the construction of net stock issues and composite equity issues in Daniel, Hirshleifer, and
Sun (2020) differs from the construction used in the SY4 MGMT factor of Stambaugh and Yuan (2017).

IA.51



D Supplementary Empirical Results

This section provides empirical results that supplement our analysis in the main text. Subsec-

tion D.1 discusses the risk price distortion that arises if one relies on orthogonalized factors

in the SDF estimation, Subsection D.2 explores principal components to estimate the mim-

icking factor weights used as sorting signals in our analysis, Subsection D.3 considers 3-year

rolling window betas instead our our baseline 5-year rolling window betas, Subsection D.4

compares our log-GARCH with a level-GARCH specification, Subsection D.5 studies NE and

NV constructed from vector autoregressions, Subsection D.6 considers a maximum likelihood

estimation of our log-GARCH process, Subsection D.7 provides results with a nonlinear NV

solved numerically, Subsection D.8 reports the ICAPM risk prices controlling for sentiment

and liquidity, Subsection D.9 provides further risk price results controlling for the betting

against beta factor, and Subsection D.10 relates our risk price results to some of the prior

ICAPM literature.

D.1 Risk Price Distortion with Orthogonalized Factors

In Subsection 2.3, we discuss the fact that our tradable risk factors (rm, rE, and rV) are

strongly correlated. While this result is in line with the ICAPM logic that market prices

and investment opportunities vary jointly, it is unusual in the factor model literature as

typical factor models are constructed such that their tradable factors are (at least close to)

orthogonal. This aspect raises the question of whether we should design our ICAPM factors to

be orthogonal. This subsection shows that doing so would distort the risk prices we estimate,

and thus break their link to risk aversion and our structural ICAPM more broadly.

We assume that the true SDF is generally given by

Mt = a − b
′

ft (IA.130)

with ft reflecting a vector of K risk factors with covariance matrix Σf .

Now, note that if Λ is the positive definite square-root matrix of Σf (i.e., Σf = ΛΛ
′

), then
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we have Var[Λ−1ft] = Λ−1ΣfΛ
−1′ = Λ−1ΛΛ

′

Λ−1′ = I.IA.23 As such, the orthogonal factors

fdt = ΓΛ−1ft (IA.131)

satisfy

Var[fdt ] =




σ2
1,d 0 · · · 0

0 σ2
2,d · · · 0

0 0
. . .

...

0 0 · · · σ2
K,d




(IA.132)

so long as Γ is a diagonal matrix with elements σk,d

As such, if we create fdt , and estimate the SDF Mt = a − b
′

df
d
t , then we recover the true

SDF in Equation IA.130, but with distorted risk prices

bd = Γ−1Λb (IA.133)

so that bd = b if and only if Λ = Γ, which requires the square-root matrix Λ to be diagonal.

That is, unless ft is already orthogonal, relying on orthogonal factors for the SDF estimation

will distort risk prices. In the context of our analysis, ft is unlikely to be orthogonal be-

cause market prices and investment opportunities vary jointly, and thus relying on fdt would

complicate the interpretation of risk prices.

In the main text, we use ft in our SDF but also consider the risk premia on

f⊥
t = Ψf ot = ΨΣ−1

f ft, where Ψ is a diagonal matrix with elements
√
Var[rm]/Var[f ok ]. We

refer to f⊥
t as orthogonal factors, but the meaning of “orthogonal” in the context of f⊥

t is

different from the meaning we use above when discussing fdt . Specifically, f
⊥
t are orthogo-

nal to ft since Cov[f⊥, f ] = Cov[ΨΣ−1
f f, f ] = Ψ, but are not orthogonal to each other since

Var[f⊥] = Var[ΨΣ−1
f f ] = ΨΣ−1

f Ψ. These f⊥
t factors are useful because their variances match

the market variance, Var[f⊥
k,t] = Var[rm], whereas their risk premia are proportional to the ft

risk prices, E[f⊥
t ] = ΨΣ−1

f E[ft] ∝ b. However, using f⊥
t to estimate the SDF Mt = a− b

′

⊥f
⊥
t

IA.23Note that there exists an infinite number of matrices Γ such that Σf = ΓΓ
′

, but there is a unique

positive definite Γ such that Σf = ΓΓ
′

.
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would also lead to risk price distortion since we have b⊥ = Ψ−1Σfb so that, similar to above,

b⊥ = b if and only if Σf = Ψ, which requires Σf to be diagonal.

D.2 Mimicking Portfolio Weights from PCA

As explained in Subsections 1.3.3 and 1.3.4, to construct rE, rNE, rV, and rNV, we build

basis portfolios by sorting stocks based on their univariate betas relative to the respective

non-tradable factors (similar to Herskovic, Moreira, and Muir (2019)). A stock’s univariate

beta relative to a generic risk factor, xt, is a natural sorting signal given its direct connection

to the mimicking factor weight (see Footnote 19).

To understand whether we can improve upon our univariate beta signals, we now explore

a more sophisticated method to estimate the mimicking factor weights (from Giglio and Xiu

(2020)) that relies on Principal Component Analysis (PCA). Specifically, over each 5-year

rolling window, we obtain the first ten principle components of stock returns and project

∆dp and ∆σ2 onto them with the restriction that the final stock weights (πE and πV) sum to

zero so that we have long-short portfolios. This method provides direct estimates of πE and

πV, which we use as a replacement for the β∆dp and β∆σ2 signals we rely on in our baseline

analysis. The decile portfolios needed to construct rNE and rNV follow a similar procedure

except that the πE and πV weights are based on projections of NE and NV onto the principle

components.

Table IA.2 adds the resulting factors, rPCA
E

, rPCANE
, rPCA

V
, and rPCANV

, to the correla-

tions in Table 1. In general, we have Cor(rPCA
E

, NE) < Cor(rE, NE) and Cor(rPCA
V

, NV) <

Cor(rV, NV) as well as Cor(r
PCA
NE

, NE) < Cor(rNE, NE) and Cor(r
PCA
NV

, NV) < Cor(rNV, NV).

Moreover, Cor(rPCA
E

, rPCANE
) < Cor(rE, rNE) and Cor(rPCA

V
, rPCANV

) < Cor(rV, rNV). So, all

correlations become weaker when we use a more sophisticated method to obtain mimicking

factor weights as sorting signals. Moreover, using five or fifteen principle components yields

similar results (not tabulated).

It is important to point out that the results described in the prior paragraph are likely

related to the fact that using single stocks to construct mimicking factors yields a large cross-
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section with very few time periods, which can be detrimental to the performance of principle

component methods. However, we are reluctant to change from single stocks as base assets

to typical anomaly portfolios used in the literature for two reasons. First, most anomaly

portfolios can only be constructed after COMPUSTAT variables are available, which (after

accounting for some initial training period to estimate the principle components) would only

allow us to construct tradable risk factors starting (at the earliest) in the 1980s. Second, the

choice of characteristics used to obtain anomalies is subject to serious statistical/empirical

problems (see, for example, Berk (2000), Cederburg and O’Doherty (2015), Ang, Liu, and

Schwarz (2020), and Tian (2021)) as well as publication biases (see Lo and MacKinlay (1990)

and Harvey (2017)). These issues can be avoided by relying on single stocks to construct our

risk factors, with Table 1 and Figures 2 and 3 demonstrating that our tradable factors are

already good ex-ante proxies for the NE and NV mimicking portfolios.

D.3 Exposure to ∆dp and ∆σ2 using Three-Year Rolling Windows

In this subsection, we construct portfolios and factors based on stock exposures to ∆dp and

∆σ2 (βdp and βσ2 , respectively) using 3-year rolling estimation windows rather than 5-year

windows as in our baseline analysis.

Table IA.3 reports results analogous to those in Tables 2 and 3 when stocks are sorted

into decile portfolios based on either βdp (Panel A) or βσ2 (Panel B) estimated using the

3-year rolling windows. As in our main results, these portfolios sort well on ex-post exposure

to the original expected return and variance news proxies (∆dp and ∆σ2) as well as the

news components themselves (NE and NV). For brevity, we only provide results for our Long

Sample (1928-2019), but the results for our Modern Sample (1973-2019) are also similar to

our main results for that period.

Table IA.4 reports estimated ICAPM risk prices and risk premia when the ICAPM factors

are constructed from stocks based on βdp and βσ2 estimated using the 3-year rolling windows.

Results are quantitatively similar to our main results (with 5-year rolling windows), implying

that the consistency of ICAPM factor model risk prices with ICAPM theory is robust to
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modifying the β estimation window.

D.4 Vrt from Log-GARCH vs Level-GARCH

As described in Subsection A.3.5, we model the market variance, Vrt, as a log-GARCH

and demonstrate that our log(Vrt) process can be derived as the Bayesian posterior for the

log conditional variance in a stochastic volatility model in which log realized variance, σ2
t ,

provides a noisy signal for the unobservable log conditional variance. However, we could have

alternatively modeled Vrt as a level-GARCH and used the same latent stochastic volatility

framework to provide a Bayesian interpretation for the model so long as we interpreted σt and

σt as the level (and not the log) of the realized and conditional variances respectively. This

subsection explains why we use a log-GARCH instead of a level-GARCH in our empirical

analysis.

First, while level-GARCH models are often used in the literature for their linearity, there

is little tractability gains in our framework given that the closed-form solution NV ≈ θV · σ̃t
requires linear approximations whether we use a log-GARCH or a level-GARCH. As such, the

key benefit of level-GARCH models does not apply in our context while the main benefit of

the log-GARCH framework (i.e., better ability to forecast variance) is present in our setting

as can be seen in Figures IA.2(a) and Figures IA.2(b). Specifically, these figures demonstrate

that the sum of squared errors (when forecasting subsequent realized variance at different

horizons) of a level-GARCH are higher than those of a log-GARCH.

And second, our Bayesian framework requires normality of the unobservable shocks (oth-

erwise the Bayesian updating is non-linear), which implies normality of σ̃2
t in our GARCH

model. While asymptotically (as the number of observations used to estimate σ2
t grows) σ̃2

t

converges to a normal distribution whether σ2
t is the realized variance or its log (Barndorff-

Nielsen and Shephard (2002)), in small samples nether model yields normal σ2
t shocks, but

σ̃2
t is approximately normal in the log-GARCH model whereas it is far from normal in the

level-GARCH model (Andersen et al. (2001a,b) and Barndorff-Nielsen and Shephard (2005)).

Figures IA.2(c) and IA.2(d) provide a visualization of this well-established result in the con-
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text of our empirical analysis (we estimate the level-GARCH using a procedure analogous to

our log-GARCH estimation in Subsection B.1.1). While neither model yields normal shocks,

the log-GARCH σ̃2
t can be approximated by a normal distribution so that our Bayesian

interpretation is reasonable whereas the level-GARCH σ̃2
t is far from normally distributed,

which would render the Bayesian interpretation much less reasonable.

D.5 NE and NV from Vector Autoregressions

In the main text, we avoid the ICAPM “fishing license” (Fama (1991)) when constructing

NE and NV as we do not specify an arbitrary set of state variables for expected returns

and volatility, but instead build a simple Bayesian learning framework in which a long-term

investor observes only market prices and dividends (similar to Binsbergen and Koijen (2010)).

In our framework, NE and NV are ultimately linked to log dividend yield shocks and log

realized variance shocks, respectively. While our approach is parsimonious and theoretically

founded, much of the prior ICAPM literature relies on vector autoregressions (VARs) with

multiple state variables that have some logical link to expected returns and volatility (e.g.,

Campbell et al. (2018) and Gonçalves (2021a)).

In this subsection, we show that our tradable intertemporal risk factors (rE and rV) are

good ex-ante mimicking factors for NE and NV even if these news terms are constructed from

a VAR. To estimate the VAR, we assume that zt = (rw,t, st) evolves as (with st reflecting a

state vector that includes dpt and RVt = eσ
2
t )

zt+1 − z = B(zt − z) + z̃t+1 (IA.134)

We then estimate B in-sample (using OLS equation-by-equation) and define

B∞ = δ · B (I − δ · B)−1, 1
′

rzt = rw,t, and 1
′

RV zt = RVt, so that news to long-term expected

returns and volatility are given by NE,t = 1
′

rB∞z̃t and NV,t ∝ NRV = 1
′

RVB∞z̃t. Following

Gonçalves (2021a), we fix the first B column to be zero before the estimation because rw is

not a good predictor of future returns or variance, but the NE and NV constructed without

this step are very similar. In our most extensive specification, st contains dpt, RVt, and four
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extra state variables (all measured in natural log units): the credit spread (CS), Treasury

yield (TY ), term spread (TS), and value spread (V S).IA.24

Table IA.5 reports Cor(rNE, NE), Cor(rE, NE), and Cor(rE, rNE) (as well as the analogous

NV, rNV, and rV correlations) over our long and modern sample periods for different VAR

specifications (as well as for our Bayesian framework for comparability). Moreover, Figure

IA.3 provides ex-post βrNE and βrNV of decile portfolios sorted on ∆dp and ∆σ2.

Table IA.5, Panel B sets st = (dpt, σ
2
t ) so that the dividend yield and realized variance are

the only state variables used to construct NE and NV. The idea behind this specification is to

check whether cross-predictability (i.e., dpt forecasting realized variance and σ2
t forecasting

returns) makes a VAR specification sufficiently different from our Bayesian framework as to

render rE and rV bad at mimicking NE and NV. We find that this is not the case. Specifically,

Cor(rE, rNE) and Cor(rV, rNV) are quite high in this specification (0.95 and 0.83 over the

Long Sample and 0.90 and 0.76 over the Modern Sample) and Figure IA.3 shows large spreads

in betas across the decile portfolios, suggesting that cross-predictability is not a problem for

our analysis.

Table IA.5, Panel C sets st = (dpt, σ
2
t , CSt) to explore a specification that contains the

three state variables that, according to Campbell et al. (2018), jointly capture long-term

volatility.IA.25 We continue to observe high values for Cor(rE, rNE) and Cor(rV, rNV) (0.93

IA.24Our measurement of these variables largely follows Gonçalves (2021a). The credit spread (CSt) is the
difference between Moody’s corporate BAA and AAA log yields with both coming from the Federal Reserve
of St. Louis website. The Treasury yield (TY ) is the annualized 3-month log Treasury bill rate and comes from
Global Financial Data until December 1933 and from the Federal Reserve of St. Louis webpage after that.
The term spread (TS) is the difference between the 10-year log Treasury yield and TY , where the former
comes from Global Financial Data until March 1953 and from the Federal Reserve of St. Louis website
thereafter. The value spread (V S) is the difference between the log book-to-market ratios of the value and
growth portfolios formed based on small stocks and adjusting for within-year movements in market equity.
The data come from Kenneth French’s data library and measurement follows Campbell and Vuolteenaho
(2004).
IA.25Campbell et al. (2018) argue that long-term volatility news is jointly captured by three state variables:
the realized volatility, the smooth earnings yield, and the credit spread. Our specification uses the same
three variables, except that, following Gonçalves (2021a), we use dpt as a valuation ratio instead of the
smooth earnings yield. The reason is that, as our Bayesian framework makes it clear, dpt provides a signal
for expected returns. Moreover, Campbell (1991) log-linear approximation for stock returns implies that state
vectors that do not span dpt are mispecified (see Engsted, Pedersen, and Tanggaard (2012) for details).

IA.58



and 0.77 over the Long Sample and 0.89 and 0.75 over the Modern Sample) and large beta

spreads across decile portfolios (see Figure IA.3), results that indicate that our tradable

intertemporal factors continue to capture well ex-post mimicking factors for NE and NV even

when the credit spread is included in the state vector.

Table IA.5, Panel D sets st = (dpt, σ
2
t , CSt, TYt, TSt), which includes the three state

variables that capture long-term volatility (according to Campbell et al. (2018)) as well as

the Treasury yield, TY , and the term spread, TS, which are classical interest rate and equity

premium predictors (Fama and Schwert (1977), Fama (1981), Campbell (1987), and Fama

and French (1989)). Remarkably, the Cor(rE, rNE) and Cor(rV, rNV) values remain high and

very similar to what we observe in Panels B and C (0.92 and 0.77 over the Long Sample and

0.90 and 0.77 over the Modern Sample). Moreover, Figure IA.3 continues to display beta

spreads across decile portfolios that are similar to what we observe for other specifications.

As such, our tradable intertemporal factors capture well ex-post mimicking factors for NE

and NV even when ex-post news are constructed from a multivariate system that includes

several traditional state variables in the predictability literature.

Table IA.5, Panel E sets st = (dpt, σ
2
t , CSt, TYt, TSt, V St), which includes all state

variables in our analysis. The beta spreads in Figure IA.3 remain large and the Cor(rE, rNE)

level remains very high (0.91 over the Long Sample and 0.86 over the Modern Sample).

However, Cor(rV, rNV) sharply declines (0.46 over the Long Sample and 0.63 over the Modern

Sample). This result indicates that there is a component of long-run variance captured by the

value spread that is not fully reflected in our rE and rV factors. Interestingly, this limitation

of rV as a proxy for rNV under this particular VAR specification concentrates in the late

1990s and early 2000s, which is the tech boom and bust period, suggesting that it is an

isolated incident. In fact, Cor(rV, rNV) is 0.63 over our Long Sample and 0.70 over our

Modern Sample if we exclude the years from 1999 to 2002. So, overall, we conclude that rE

and rV are generally good ex-ante proxies for the NE and NV mimicking factors even in a

specification that includes all state variables we explore.

The results in Table IA.5 and Figure IA.3 indicate that our interpretation of rE and rV as
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mimicking factors for NE and NV is robust to the use of a VAR framework to estimate NE and

NV. However, the strength of the rV interpretation does weaken a bit as we include the value

spread in the VAR. To address this issue, we perform an extra exercise that asks whether

VAR models with several state variables are better at forecasting long-term variance than

our simple log-GARCH framework. Specifically, Figures IA.4(a) and IA.4(b) display the sum

of squared forecasting errors for different VAR specifications (relative to the same quantity

for our log-GARCH model) at different forecasting horizons from 1 month to 120 months (10

years). As it is clear from the figures, our simple log-GARCH model is better at forecasting

long-run variance than all VAR specifications we explore. Moreover, the VAR that includes

the value spread is not the best performing VAR in terms of predicting long-run variance.

As such, our long-run variance predictability results limit any remaining concerns with the

interpretation of our rV factor.

D.6 ICAPM Risk Prices with log-GARCH Estimated by MLE

Using our log-GARCH, we find that the rV risk price that is restricted by the ICAPM (with

γ as the only parameter) is large and comparable to the unrestricted rV risk price. This result

may seem surprising given that prior literature (e.g., Chacko and Viceira (2005)) finds that

news to long-term variance induces a quantitatively small hedging demand when conditional

variance is modeled as a univariate autoregressive process.

The crux of the matter is that, as explained in Subsection B.1.1, we estimate our log-

GARCH process by targeting long-run (10-year) realized variance. The underlying idea is

that targeting long-run expectations provides a robust estimation method if we recognize that

any autoregressive model is likely mispecified (see Ederington and Guan (2010) and Jordà

and Kozicki (2011)). To demonstrate that the targeting of long-run variance is the driver of

the strong rV risk price, we reestimate the log-GARCH by maximum likelihood, which effec-

tively focuses on short-term variance dynamics as it assumes that the intertemporal variance

dynamics in the log-GARCH specification are exactly correct.IA.26 We then reestimate the

IA.26The log-GARCH implies σ2
t+1 ∼ N(ωσ + log(Vrt), σ

2
σ) so that the maximum likelihood estimation that
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NE and NV dynamics using this alternative Vrt process and obtain new ICAPM risk prices,

with the final results reported in Table IA.6 under the column“MLE NV”. As it is clear from

the table, the rV risk price is quantitatively small (albeit significant) when the log-GARCH

process is estimated by maximum likelihood, a result that is in line with the weak volatil-

ity hedging channel in the prior literature that models conditional variance as a univariate

autoregressive process (e.g., Chacko and Viceira (2005)).

Figures IA.4(c) and IA.4(d) show why estimating our log-GARCH by maximum like-

lihood is not appropriate if the main objective of the estimation is to capture long-term

variance dynamics. In particular, VAR models tend to perform better than this log-GARCH

estimated by maximum likelihood at forecasting long-term variance (for most horizons), in

stark contrast with the results we find in Figures IA.4(a) and IA.4(b) when we estimate the

log-GARCH by a NLS that targets long-run variance.

D.7 ICAPM Risk Prices with Nonlinear NV

Our baseline estimate of ex-post variance news, NV ≈ θσ · σ̃2
σ, relies on three linear approxi-

mations (see Subsection A.4.3 for details on the approximations). In this subsection, we solve

for vwt numerically without relying on these linearizations and use the resulting solution to

obtain a nonlinear NV. We then use this nonlinear NV in our ICAPM estimation, with the

results reported in Table IA.6 under the column “Nonlinear NV”. As can be seen by compar-

ing the “Baseline NV” and “Nonlinear NV” columns, this nonlinear NV yields results that are

quantitatively similar to (and even a bit stronger than) our baseline results. The rest of this

subsection explains the numerical procedure we rely on to obtain our nonlinear NV.

Let rw,t reflect wealth portfolio returns and st be a state vector so that zt = [rw,t, st] is

we rely on is based on

Min
{ωVr,ωσ,φVr,φσ,σ2

σ}

T∑

t=1

[
log
(
σ2
σ

)
+

(
σ2
t+1 − ωσ − log(Vrt)

)2

σ2
σ

]

with log(Vrt+1) = ωVr + φVr · log(Vrt) + φσ · σ2
t+1.
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modeled as

rw,t+1 = Er(st) + r̃w,t+1 (IA.135)

st+1 = Es(st) + s̃t+1. (IA.136)

Vart[r̃w,t+1] = Vr(st) (IA.137)

Vart[s̃t+1] = Vs(st) (IA.138)

Covt[r̃w,t+1, s̃t+1] = Crs(st) (IA.139)

where the functions Er(st), Es(st), Vr(st), Vs(st), and Crs(st) are known and can be mea-

sured in the data.

We know that the log value-wealth ratio is a function of st, vwt = vw(st), and we would

like to solve for the vw(st) function using the recursive Equation IA.36, which is reproduced

here for convenience:

vwt = f(ψ, δ, δ) + δ · Et[rw,t+1] + δ · Et[vwt+1] − δ · (γ − 1)

2
· Vart[vt+1] (IA.140)

First, let’s rewrite the recursive equation in a way that makes the dependence on st

explicit:

vw(st) = f(ψ, δ, δ) + δ · Er(st) + δ · Et[vw(st+1)] (IA.141)

− δ · (γ − 1)

2
· (Vr(st) + Vart[vw(st+1)] + 2 · Covt[r̃w,t+1, vw(st+1)])

with this result relying on Vart[vt+1] = Vart[rw,t+1 + vwt+1]. For notational convenience, the

rest of the derivations suppress the dependence of some of the functions on st by defining

Est = Es(st) and Vst = Vs(st).

In principle, Equation IA.141 can be solved numerically as a function iteration on the

data grid with interpolation for vw(st) and numerical integration to compute the vw mo-

ments, Et[vw(st+1)], Vart[vw(st+1)], and Covt[r̃w,t+1, vw(st+1)]. However, depending on the

application, this approach is too costly from a computational standpoint. We now rely on a
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conditional second order Taylor approximation for vw(st+1) to solve for the vw moments so

that the recursion can be efficiently evaluated.

Given a current guess for vw(st) (we later detail the algorithm to initiate and update the

vw(st) function), we have

vw0(st+1,Est) ≈ vw(Est) + G(Est)
′

(st+1 − Est) +
1

2
· (st+1 − Est)

′H(Est)(st+1 − Est) (IA.142)

where G(x) is the vw gradient vector evaluated at x and H(x) is the vw hessian matrix

evaluated at x.

Using the approximation in Equation IA.142, we then have:IA.27

Et[vw(st+1)] = vw(Est) +
1

2
· tr (H(Est)Vst) (IA.143)

Vart[vw(st+1)] = G(Est)VstG(Est)
′

+
1

2
· tr (VstH(Est)VstH(Est)) (IA.144)

Covt[r̃w,t+1, vw(st+1)] = G(Est)
′

Crs(st) (IA.145)

where tr(X) is the trace of matrix X.

Substituting Equations IA.143, IA.144, and IA.145 into Equation IA.141, we have

vw(st) = f(ψ, δ, δ) + δ · Er(st) + δ ·
(
vw(Est) +

1

2
· tr (H(Est)Vst)

)
(IA.146)

− δ · (γ − 1)

2
· Vr(st)

− δ · (γ − 1)

2
·
(
G(Est)VstG(Est)

′

+
1

2
· tr (VstH(Est)VstH(Est))

)

− δ · (γ − 1) · G(Est)
′

Crs(st)

We now specialize the state vector to include the state variables in our model. In particular,

IA.27Note that our second order Taylor approximation is conditional and is only being used to approximate
the vw moments: Et[vw(st+1)], Vart[vw(st+1)], and Covt[r̃w,t+1, vw(st+1)]. As such, our numerical solution
method is still global and our vw(st) function is still allowed to be arbitrarily nonlinear. This approach is
commonly use in the nonlinear filtering literature (see Chapter 8 of Anderson and Moore (1979)).
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we have st = [Ert, log(Vrt), Uµt] with

Er(st) = Ert, (IA.147)

Es(st) =




Er + φE · (Ert − Er)

ωV + φV · log(Vrt)

φU,t · Uµt + φU,V,t · Vrt



, (IA.148)

Vr(st) = Vart[r̃w,t+1], (IA.149)

Vs(st) =




Vart[Ẽrt+1] φσ · Covt[Ẽrt+1, σ̃
2
t+1] 0

φσ · Covt[Ẽrt+1, σ̃
2
t+1] φ2

σ · Vart[σ̃2
t+1] 0

0 0 0



, and (IA.150)

Crs(st) =




Covt[r̃w,t+1, Ẽrt+1]

φσ · Covt[r̃w,t+1, σ̃
2
t+1]

0



. (IA.151)

The expressions for all variance and covariance terms above are provided below Equation

IA.97 and are functions of Vrt and Uµt (and thus of st). Note that φU,t, φU,V,t, ξdp,t, and ξr,t

are also functions of Vrt and Uµt (and thus of st).

Equation IA.146 provides an algorithm for solving for vw(st) as a function of γ:

1. Create a three-dimensional grid that covers reasonable state space variable valuesIA.28

IA.28To define the state space upper and lower bounds, we simulate the state vector given parameter estimates
for 100,000 months. We take the resulting maximum and minimum simulated state variable values as the
boundaries in the state space on which we solve for the value function. Furthermore, we create a 11×11×11
three-dimensional state space grid using equal-spacings across each state variable dimension. We choose to
use 11 grid points in each state variable dimension to balance granularity of our solutions with computation
time. In practice, we find that the converged vwt is smooth with low curvature, so this grid spacing is unlikely
to significantly impact our results related to the nonlinear NV.
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2. Start from an arbitrary function vwn−1(st) at points on the grid (e.g., vwn−1(st) = 0,

or a previous solution possibly from a different γ0 close to the current γ)

3. Calculate (numerically) the G(Est) vector and the H(Est) matrix at the Est value

associated with each grid point (i.e., the gradient and hessian evaluated at the expected

state vector value next period given the state vector value on the grid)IA.29

4. Evaluate the right hand side of Equation IA.146 at each dataset grid point and call

the resulting values vwn(st)

5. Repeat steps 2 to 4 until vwn(st) converges for all points in the dataset

6. Given a converged solution, vw(st), compute NV at each date in our sample according

to Equation IA.38IA.30

The algorithm described above solves for the value function given a pre-specified γ. In order

to identify the optimal γ through our GMM procedure given the nonlinear NV, we have an

outter algorithm:

1. Solve for vwt over a grid of γ values (we begin with an initial grid that ranges from 1

to 10)

2. Evaluate the GMM objective given NV associated with each of these γ grid points and

identify the grid point with the lowest objective

IA.29To numerically estimate the G(Est) vector and the H(Est) matrix at each iteration given vwn−1(st),
we use linear interpolation to estimate vwn−1(st) off the grid points at points necessary for the numerical
derivative approximations. In all cases, we use standard expressions for the numerical derivatives that are
second-order accurate in the step size used to estimate the derivatives. We use step sizes equal to 1/4 of
the grid spacings in each state variable dimension. Since we estimate vwn−1(st) off the grid points using
linear interpolation for tractability and stability, we cannot use very small step sizes to estimate numerical
derivatives since this would lead to second derivative estimates equal to zero. We find this choice to be
innocuous, again because the value function solution has relatively low curvature on the state space grid.
IA.30To compute ṽwt at each date in our sample, we use Equation IA.143 to compute Et−1[vw(st)]. We then
approximate the realized vwt via linear interpolation given our converged solution on the grid, vw(st), and
obtain ṽwt = vwt−Et−1[vw(st)]. Based on Equation IA.38, we then have NV = 2 · (NE,t− ṽwt)/(γ−1), with
NE based on Equation IA.91, which is an exact solution that is independent of the NV solution method.
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3. Create a new γ grid that spans the next lowest and next highest γ values on the current

grid relative to the value that produced the lowest objective

4. Repeat steps 1-3 until the γ grid convergesIA.31

Our final NV time series used in Table IA.6 is that associated with this optimal γ. Note that

we implement this procedure separately in our Long and Modern Samples.

D.8 ICAPM Risk Prices Controlling for Sentiment and Liquidity

In this subsection, we explore whether the ICAPM risk prices are robust to controlling for

two other factors: sentiment and liquidity.

These factors are outside the models we investigate in the main paper, but have been

shown to explain some aspects of the cross section of average returns. The sentiment factor

we use is a tradable version of the sentiment index in Baker and Wurgler (2006), which

we construct by creating a mimicking portfolio for changes to sentiment using the same

methodology as we do to construct our intertemporal risk factors, rE and rV. We obtain the

sentiment data from Jeffrey Wurgler’s website. Note that these data are only available until

December 2018, so our analysis using sentiment ends one year before our standard ending

period of December 2019. For liquidity, we use the tradable liquidity factor in Pástor and

Stambaugh (2003), and we obtain the relevant data from CRSP.

Table IA.7 provides results analogous to those in Table 6 when controlling for the sentiment

and liquidity factors. Panel A provides results over our Long Sample (1928-2019) and Panel

B provides results over our Modern Sample (1973-2019). In all cases, our main results are

qualitatively unchanged. The market and reinvestment factors have positive and statistically

significant risk prices. The volatility factor has a negative and statistically significant price

of risk. The risk prices remain quantitatively similar to their original values as well, except

for the case of the volatility risk price when controlling for the liquidity factor. In this case,

the volatility risk price magnitude decreases slightly, which is reasonable since volatility and

IA.31In practice, we iterate until the final γ grid range is lower than 0.0001.
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liquidity tend to be correlated. However, the volatility risk price remains large in magnitude

and statistically significant.

D.9 ICAPM Risk Prices Controlling for the Betting Against Beta Factor

In this subsection, we further explore whether the ICAPM risk prices are robust to controlling

for the betting against beta (BaB) factor of Frazzini and Pedersen (2014).

We start by replicating their BaB factor following their exact methodology.IA.32 The risk

prices related to this replication are provided in Table IA.8 under the header “Original

BaB”. As the table shows, the ICAPM risk prices are strong and statistically significant

after controlling for the BaB factor. Interestingly, the only exception to this result is that

the market price of risk becomes much weaker and only marginally significant over our Long

Sample after all four factors are included in the SDF. However, as we detail below, this result

is an artifact of the fact that the BaB factor has an embedded long position on the market

portfolio to hedge the negative market beta of the rest of the portfolio.

As Novy-Marx and Velikov (2022) demonstrate, the returns on the BaB factor can be

written as:IA.33

rOriginalBaB,t+1 =
RL,t+1 −Rf,t+1

βm,L
− RH,t+1 −Rf,t+1

βm,H

= rnoHedgeBaB,t+1 + rHedgeBaB,t+1 (IA.152)

where

rnoHedgeBaB,t+1 = RL,t+1 −RH,t+1

rHedgeBaB,t+1 =
(
(β−1

m,L − 1) ·RL,t+1 + (1− β−1
m,H) ·RH,t+1

)
− (β−1

m,L − β−1
m,H) ·Rf,t+1

The factor rnoHedgeBaB is a BaB factor with no hedge. That is, this factor is negatively exposed

to market risk since it longs low beta stocks and shorts high beta stocks. The factor rHedgeBaB

IA.32Over the period we have data from the original paper (04/1929 to 03/2012), our replicating BaB factor
has a correlation of 0.99 with the original BaB factor. Moreover, over the same period, our replicating BaB
factor has an average return of 0.73% with a volatility of 3.34%, which are close to the average return (0.70%)
and volatility (3.10%) of the original BaB factor.
IA.33We set βm,L,t = βm,L and βm,H,t = βm,H to simplify the exposition, but we account for the time-varying
betas when constructing the BaB factor (and the arguments we make remain valid with time-varying betas).
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is a hedging portfolio that buys equities financed by borrowing at the risk-free rate. The

rHedgeBaB market beta is positive with the same magnitude as the (negative) market beta of the

rnoHedgeBaB factor. As such, rOriginalBaB = rnoHedgeBaB + rHedgeBaB has zero market beta (i.e., it is hedged

against market risk).

As Novy-Marx and Velikov (2022) point out, implementing rHedgeBaB is non-standard and

very costly. In fact, it would be much more natural to hedge against the negative market

risk of rnoHedgeBaB by buying the market portfolio itself. In this case, the BaB factor would be

rMktHedged
BaB,t+1 = rnoHedgeBaB,t+1 + (βm,H − βm,L) · rm,t+1 (IA.153)

with rMktHedged
BaB also having zero market beta. The risk prices that use rMktHedged

BaB as the BaB

factor are provided in Table IA.8 under the header “Mkt Hedged BaB”. The ICAPM risk

prices remain strong and statistically significant. Perhaps more importantly, once the hedge

is based on the market factor, the BaB factor is the weakest from a statistical standpoint

(but it remains statistically significant).

Equation IA.153 also clarifies why the market risk price seems relatively weak when the

BaB factor is included in the SDF. Specifically, we have

Mt+1 = a + bm · rm,t+1 + bBaB · rMktHedged
BaB,t+1

= a + bm · rm,t+1 + bBaB · rnoHedgeBaB,t+1 + bBaB · (βm,H − βm,L) · rm,t+1

= a + [bm + bBaB · (βm,H − βm,L)] · rm,t+1 + bBaB · rnoHedgeBaB,t+1 (IA.154)

and analogously in the SDF specification that controls for the intertemporal risk factors.

As such, the market hedge embedded in rMktHedged
BaB incorporates a portion of the market

risk price, and thus artificially decreases the estimated bm. To address this issue, we further

provide risk prices for a specification that uses rnoHedgeBaB as the BaB factor in Table IA.8

under the header “Not Hedged BaB”. As it is clear from the table, the BaB factor remains

the weakest from a statistical standpoint (but it also remains statistically significant over

our Modern Sample). However, the market risk price controlling for the BaB factor is now

at least as strong as (and typically stronger than) the market risk price in the specifications
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that do not control for the BaB factor.

In summary, the ICAPM risk prices remain strong and statistically significant after con-

trolling for the BaB factor. This result is true whether we use the original BaB factor or

alternative versions that either rely on the market portfolio for hedging purpose or that do

not hedge at all. In contrast, the risk price of the original BaB factor is extremely strong, but

its statistical power weakens substantially if we use the market portfolio for hedging purpose

or do not hedge at all when constructing the BaB factor.

D.10 Relation Between our Risk Prices and the Prior ICAPM Literature

Some prior papers estimate the risk prices of shocks to market expected returns and volatility

in the context of an ICAPM without controlling for each other. This subsection relates our

findings to this literature.

(a) rE Risk Price

In terms of the rE risk price, the ICAPME column in Table 5 shows that bE is much smaller

when we do not control for rV, but it is still strong and statistically significant. This result

is consistent with several papers in the ICAPM literature that estimate the risk price of

news to long-term expected returns through auxiliary econometric models (e.g., Campbell

and Vuolteenaho (2004), Brennan, Wang, and Xia (2004), Maio (2013), Cederburg (2019),

and Gonçalves (2021b)). However, one paper in the ICAPM literature (Kozak and Santosh

(2020)) finds that the risk price of shocks to expected returns is actually negative. This

paper is important because it does not require an auxiliary econometric model to estimate

expected returns. In particular, Kozak and Santosh (2020) show that the covariance of an

asset, rj,t, relative to market expected return shocks can be measured using the risk factor

ΣH
h=1κ

h−1 · rm,t+h since future returns are composed of expected returns plus an error term

that is orthogonal to rj,t.

To understand this apparent contradiction to our results, we follow our rE construction to

create a tradable factor based on the Kozak and Santosh (2020) measure of expected returns.

IA.69



We call this tradable factor rST
E

and report SDF regressions that include this factor in Table

IA.9. Consistent with Kozak and Santosh (2020), the rST
E

factor has a negative risk price

(although the noise makes it statistically weak in the Modern Sample), but controlling for it

has basically no effect on the risk prices of our ICAPM factors (and vice versa). Table IA.10

shows that the reason is that the factor in Kozak and Santosh (2020) captures relatively

short-term expected returns. Specifically, market returns display long-term reversal, which

implies that ΣH
h=1κ

h−1 · rm,t+h is negatively correlated with subsequent long-term returns.

As such, ΣH
h=1κ

h−1 · rm,t+h is a good measure for short-term expected returns, but not for

long-term expected returns. From the perspective of Kozak and Santosh (2020), this aspect

is not a problem since their goal is to estimate the risk price on expected return shocks.

However, our goal is to construct a tradable factor that captures news to long-term expected

returns as implied by our ICAPM, and thus the Kozak and Santosh (2020) measure is not

appropriate for our purpose. In any case, the results in Tables IA.9 and IA.10 demonstrate

that there is no contradiction between our results and the ones in Kozak and Santosh (2020).

(b) rV Risk Price

In terms of the rV risk price, the ICAPMV column in Table 5 shows that bV is close to zero

(and statistically insignificant) when we control for rm but not for rE. This result seems to

contradict the findings in Ang et al. (2006) and Adrian and Rosenberg (2008) but, as we

explain below, it does not.

First, Ang et al. (2006) find a negative volatility risk premium that is statistically signif-

icant (although not that large economically) in a model that includes the market portfolios.

To understand their result, it is important to note that their volatility exposure is based on

multivariate betas that control for the market factor, not univariate betas or covariances.

This aspect implies that the risk price they report is proportional to the univariate projection

coefficient of the SDF onto the volatility factor, not the multivariate projection coefficient of

the SDF onto the volatility factor controlling for other factors (see Chapter 13.4 in Cochrane

(2005)). In other words, their result is comparable to our E[rV] and not our bV. As such, our

IA.70



results are in line with Ang et al. (2006) as our E[rV] is negative (although statistically weak

in the Modern Sample).

Second, Adrian and Rosenberg (2008) estimate a volatility model that has short- and

long-run (nontradable) volatility components and find that volatility risk is strongly priced

controlling for market returns. While their risk prices are estimated using covariances as

risk exposures, and thus reflect bs in our terminology, they effectively control for expected

returns indirectly. Specifically, when estimating their volatility model, they impose a general

equilibrium condition that the market expected return is linear in their two volatility com-

ponents. As such, our results are consistent with theirs since bV is strong and statistically

significant after we control for rE in our SDF projections. As explained in Subsection 2.5, we

treat our ICAPM as a partial equilibrium model so that we do not impose the equilibrium

condition that the market risk premium is linear in our volatility factor because we would

like to accommodate the possibility that variation in expected returns are also driven by

other channels such as sentiment (as in Kozak, Nagel, and Santosh (2018)) and risk aversion

(as in Gonçalves (2021a)) without explicitly modeling such effects.
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Figure IA.1
Accuracy of Approximations Used to Derive NV,t ≈ θV · σ̃2

t

Panels (a) to (c) show the approximations for (and exact values of) Vrt (Equation IA.109), Uµt (Equation
IA.111), and Vart[v] (Equation IA.110). These approximations are used to derive an approximate expression for

NV,t = (Et+1 − Et)[
∑∞

h=1 δ
h · Vart+h[v]] (Equation IA.103), which is displayed in panel (d) together with its numerical

solution (solved globally as described in Subsection D.7), which we still label “exact”. To help visualize the correlation
in panel (d), we use a filter analogous to the one in Figure 2, except that we do not divide the shocks by their respective
standard deviations so that differences in standard deviation between the exact and approximate series are displayed
(note that the correlation number displayed is still based on the original news). To normalize units, all panels report the
z-scores for each variable but with means and standard deviations calculated always based on the exact series so that
the figures display any difference in means and standard deviations between the exact and approximate solutions. All
results are reported using our benchmark estimation for Ert and Vrt in TableIA.1 over our Long Sample (1928-2019)
and, for panels (c) and (d), the γ value obtained in our structural estimation in Table 5 over our Long Sample.
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(a) Long Sample (b) Modern Sample
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Figure IA.2
Log-GARCH vs Level-GARCH

Panels (a) and (b) provide the forecasting sum of squared errors (SSE) of a level-GARCH relative to our baseline
log-GARCH model. We provide the relative SSE values for different forecasting horizons going from one month to one
hundred and twenty months (ten years). Panels (c) and (d) provide empirical density estimates for the shocks of the
same log-GARCH and level-GARCH models. Subsection D.4 provides further details.

IA.80
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-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

1 2 3 4 5 6 7 8 9 10

Bayesian Framework
VAR: dp+RV
VAR: dp+RV+CS
VAR: dp+RV+CS+TY+TS
VAR: dp+RV+CS+TY+TS+VS

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

1 2 3 4 5 6 7 8 9 10

Bayesian Framework
VAR: dp+RV
VAR: dp+RV+CS
VAR: dp+RV+CS+TY+TS
VAR: dp+RV+CS+TY+TS+VS

(c) βrNE of βdp Deciles (Modern Sample) (d) βrNV of βσ2 Deciles (Modern Sample)

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

1 2 3 4 5 6 7 8 9 10

Bayesian Framework
VAR: dp+RV
VAR: dp+RV+CS
VAR: dp+RV+CS+TY+TS
VAR: dp+RV+CS+TY+TS+VS

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

1 2 3 4 5 6 7 8 9 10

Bayesian Framework
VAR: dp+RV
VAR: dp+RV+CS
VAR: dp+RV+CS+TY+TS
VAR: dp+RV+CS+TY+TS+VS

βdp Deciles βσ2 Deciles

Figure IA.3
βrNE and βrNV of βdp and βσ2 Decile Portfolios: NE and NV from a VAR System

These graphs show ex-post decile portfolio betas (in market beta units as explained in Footnote 26) with respect to
the NE and NV mimicking factors (rNE and rNV) when news are computed under our baseline Bayesian framework in
Subsection 1.3.2 or under different vector autoregressive (VAR) specifications. In particular, we estimate news using
four alternative VAR specifications that include different combinations of the following state variables: dividend yield
(dp), realized variance (RV ), credit spread (CS), Treasury yield (TY ), term spread (TS), and value spread (V S).
Panels (a) and (b) use data from our Long Sample (1928-2019) whereas Panels (c) and (d) use data from our Modern
Sample (1973-2019). Panels (a) and (c) use portfolios sorted on ex-ante exposures to ∆dp (βdp) whereas Panels (b) and
(d) use portfolios sorted on ex-ante exposures to ∆σ2 (βσ2). See Subsection D.5 for more details.
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Figure IA.4
VAR Forecasting Sum Squared Errors

Panels (a) and (b) provide the forecasting sum of squared errors (SSE) of different VAR specifications relative to our
baseline log-GARCH model, which is estimated by targeting long-run variance (see Subsection B.1.1), while Panels (c)
and (d) provide analogous results when the log-GARCH model is estimated by maximum likelihood. We consider four
alternative VAR specifications that include different combinations of the following state variables: dividend yield (dp),
realized variance (RV ), credit spread (CS), Treasury yield (TY ), term spread (TS), and value spread (V S). Subsections
D.5 and D.6 provide further details.
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Table IA.1
Ert and Vrt Parameters

Panel A reports the parameter estimates related to the Ert process while Panel B reports the parameter estimates
related to the Vrt process. The estimation procedure is described in Subsection B.1. Parameter estimates are re-
ported in their original units with two exceptions. First, some parameters are annualized for interpretability, with
their label providing the explicit annualization (e.g., 12 ·µ is the annualized mean rw). Second, the units of param-
eters related to covariances (νr,µ, νr,g, νµ,g, σr,σ, σdp,σ) is hard to interpret, and thus we instead report correlation

values. Specifically, we report Corr,µ = νr,µ/νµ, Corr,g = νr,g/νg, Corµ,g = νµ,g/(νµ · νg), Corr,σ = σr,σ/(
√
Vr · σσ),

and Cordp,σ = σdp,σ/(
√
Vr · νdp · σσ), where Vr = eωV/(1−φV).

PANEL A: Ert Process

Long Sample (1928-2019) Modern Sample (1973-2019)

ρ 0.964 0.968

12 · µ 0.064 0.062

φ12
µ

0.9473 0.967

φ12
g

0.182 0.237

νµ 0.011 0.012

νg 0.209 0.272

Corr,µ -0.635 -0.518

Corr,g 0.050 -0.054

Corµ,g 0.736 0.859

PANEL B: Vrt Process

Long Sample (1928-2019) Modern Sample (1973-2019)
√
Vr 0.045 0.040

ωV -0.160 -0.597

ωVr -0.026 -0.502

ωσ -0.520 -0.169

φV 0.974 0.908

φVr 0.716 0.343

φσ 0.258 0.564

σσ 0.692 0.646

Corr,σ -0.455 -0.456

Cordp,σ 0.430 0.396
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Table IA.2
Correlations: News Proxies, Tradable Factors, and Ex-post Mimicking Factors

(Adding Factors based on PCA)

This table reports correlations between our tradable risk factors (rE, rV, r
PCA
E

, and rPCA
V

) and ex-post news (NE

and NV) as well as ex-post news mimicking factors (rNE, rNV, r
PCA
NE

, rPCANV
). To construct rE (rV), we buy value-

weighted portfolios of the stocks with the 30% highest exposures to ∆dp (∆σ2) and sell a value-weighted portfolio
of the stocks with the 30% lowest exposures to ∆dp (∆σ2). Similarly, to construct rPCA

E
(rPCA

V
), we buy value-

weighted portfolios of the stocks with the 30% highest weights on the ∆dp (∆σ2) mimicking portfolio and sell a
value-weighted portfolio of the stocks with the 30% lowest weights on the ∆dp (∆σ2) mimicking portfolio, with
mimicking weights estimated by Principal Component Analysis (PCA) using the method in Giglio and Xiu (2020).
To construct rNE and rPCANE

(rNV and rPCANV
), we project NE (NV) onto returns from decile portfolios constructed

by sorting stocks based on the same signals used for rE and rPCA
E

(rV and rPCA
V

) while imposing that projection
coefficients sum to zero (i.e., the factors are zero-net-cost portfolios). The news are based on Equations 21 and
22, and are estimated ex-post using our Long Sample (1928-2019) or Modern Sample (1973-2019). The tradable
risk factors as well as the decile portfolios necessary to obtain the ex-post mimicking factors are constructed
each month using their respective signals estimated on a 5-year rolling window. Subsections 1.3.3, 1.3.4, and D.2
provide further empirical details on the construction of the tradable and ex-post mimicking risk factors. A detailed
description of our news estimation procedure is available in Subsection B.1.

PANEL A: Reinvestment Risk (NE)

Long Sample (1928-2019) Modern Sample (1973-2019)

∆dp NE rE rNE rPCA
E

rPCA
NE

∆dp NE rE rNE rPCA
E

rPCA
NE

∆dp 1 0.91 0.68 0.68 0.39 0.57 1 0.88 0.54 0.57 0.41 0.47

NE 0.91 1 0.51 0.51 0.31 0.44 0.88 1 0.36 0.39 0.28 0.36

rE 0.68 0.51 1 0.93 0.53 0.81 0.54 0.36 1 0.89 0.74 0.68

rNE 0.68 0.51 0.93 1 0.44 0.76 0.57 0.39 0.89 1 0.66 0.69

rPCA
E

0.39 0.31 0.53 0.44 1 0.63 0.41 0.28 0.74 0.66 1 0.71

rPCA
NE

0.57 0.44 0.81 0.76 0.63 1 0.47 0.36 0.68 0.69 0.71 1

PANEL B: Volatility Risk (NV)

Long Sample (1928-2019) Modern Sample (1973-2019)

∆σ2 NV rV rNV rPCA
V

rPCA
NV

∆σ2 NV rV rNV rPCA
V

rPCA
NV

∆σ2 1 0.75 0.24 0.27 0.09 0.24 1 0.92 0.25 0.30 0.18 0.28

NV 0.75 1 0.24 0.30 0.12 0.26 0.92 1 0.28 0.36 0.22 0.32

rV 0.24 0.24 1 0.81 0.47 0.70 0.25 0.28 1 0.84 0.69 0.79

rNV 0.27 0.30 0.81 1 0.42 0.72 0.30 0.36 0.84 1 0.57 0.74

rPCA
V

0.09 0.12 0.47 0.42 1 0.53 0.18 0.22 0.69 0.57 1 0.68

rPCA
NV

0.24 0.26 0.70 0.72 0.53 1 0.28 0.32 0.79 0.74 0.68 1
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Table IA.3
Decile Portfolios Sorted on βdp and βσ2 (Three-Year βs)

This table reports statistics related to monthly returns on 10 βdp-sorted portfolios (Panel A) and 10 βσ2-sorted
portfolios (Panel B) when sorting on exposure to either ∆dp or ∆σ2, respectively, estimated over three-year
rolling windows. All data is from our Long Sample (1928-2019). The portion of Panel A reports portfolio return
exposures to our expected return news proxy (∆dp), the in-sample expected return news measure (NE), our
tradable reinvestment risk factor (rE), and the NE mimicking portfolio (rNE). Portfolio return exposures to each
of these time series are denoted by βdp, βNE, βE, and βrNE, respectively, and are normalized to be in market
beta units. The portion of Panel B reports portfolio return exposures to our volatility news proxy (∆σ2), the
in-sample volatility news measure (NV), our tradable volatility risk factor (rV), and the NV mimicking portfolio
(rNV). Portfolio return exposures to each of these time series are denoted by βσ2 , βNV, βV, and βrNV, respectively,
and are normalized to be in market beta units (see Footnote 26). In the bottom portion of each panel, we report
portfolio average returns (E [r]) and αs when computed with respect to the CAPM (αm), the ICAPM excluding
rE (αm,V) or rV (αm,E), and the full ICAPM (αm,E,V). All returns are in percent and annualized (approximately)
by multiplying monthly returns by 12. The “Slope” statistic is a measure of the slope of the 10 related portfolio
statistics with respect to portfolio decile (see Footnote 26). Portfolios are rebalanced monthly based on individual
stock exposures to ∆dp or σ2 with further details provided in Subsection 1.3.1. The 10-1 portfolio t-statistics
are computed according to Newey and West (1987, 1994). The Slope t-statistics are computed according to the
method in Driscoll and Kraay (1998) using the procedure in Newey and West (1994) to select the number of lags.

PANEL A: βdp-Sorted Portfolios

Dec 1 2 3 4 5 6 7 8 9 10 10-1 (t10−1) Slope (tSlope)

βdp -1.52 -1.30 -1.18 -1.07 -1.00 -0.94 -0.83 -0.74 -0.67 -0.57 0.96 (9.93) 0.88 (7.98)

βNE -1.14 -0.98 -0.88 -0.80 -0.75 -0.71 -0.62 -0.55 -0.50 -0.42 0.72 (6.16) 0.66 (4.88)

βE -1.70 -1.41 -1.21 -1.04 -0.94 -0.85 -0.71 -0.55 -0.45 -0.34 1.36 (55.1) 1.27 (56.0)

βrNE -1.68 -1.41 -1.18 -1.06 -0.93 -0.84 -0.71 -0.59 -0.47 -0.34 1.35 (32.5) 1.24 (35.5)

E[r] 9.4% 8.7% 9.1% 9.3% 8.8% 9.3% 9.5% 8.2% 7.6% 6.8% -2.7% (-0.98) -1.9% (-0.54)

αm -4.1% -2.9% -1.4% -0.3% -0.2% 0.9% 2.1% 1.6% 1.6% 1.8% 5.9% (2.98) 5.9% (2.50)

αm,V -4.3% -3.1% -1.5% -0.3% -0.2% 1.0% 2.2% 1.7% 1.7% 1.9% 6.2% (4.00) 6.2% (3.27)

αm,E,V 0.0% 0.1% 0.8% 1.2% 0.6% 1.4% 2.3% 0.6% 0.3% 0.1% 0.1% (0.10) 0.3% (0.45)

PANEL B: βσ2-Sorted Portfolios

Dec 1 2 3 4 5 6 7 8 9 10 10-1 (t10−1) Slope (tSlope)

βσ2 -0.50 -0.41 -0.38 -0.37 -0.33 -0.30 -0.29 -0.29 -0.26 -0.26 0.24 (6.55) 0.21 (5.02)

βNV -0.54 -0.44 -0.42 -0.41 -0.37 -0.34 -0.33 -0.31 -0.29 -0.30 0.25 (6.35) 0.22 (4.62)

βV -1.23 -1.09 -0.96 -0.80 -0.65 -0.59 -0.50 -0.39 -0.36 -0.38 0.85 (15.8) 0.90 (43.9)

βrNV -1.16 -1.00 -0.87 -0.75 -0.61 -0.55 -0.45 -0.40 -0.34 -0.38 0.78 (14.5) 0.81 (17.9)

E[r] 10.8% 10.1% 10.5% 9.6% 9.0% 8.7% 7.8% 7.6% 6.5% 6.2% -4.5% (-2.27) -4.7% (-1.82)

αm -0.6% -0.4% 1.0% 0.8% 1.0% 1.3% 0.7% 0.8% -0.3% -1.1% -0.5% (-0.27) -0.2% (-0.10)

αm,E 1.7% 1.4% 2.1% 1.4% 1.1% 1.1% 0.0% 0.1% -0.9% -1.6% -3.3% (-2.38) -3.3% (-2.03)

αm,E,V 0.1% 0.0% 0.8% 0.8% 0.8% 0.9% 0.1% 1.0% 0.3% 0.0% -0.1% (-0.07) 0.0% (0.01)
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Table IA.4
The ICAPM Risk Prices and Pricing Errors (Three-Year βs)

Panel A reports estimated CAPM and ICAPM risk prices (b) according to Equation 8 while Panel B reports
the annualized average returns (E[r]) and associated pricing errors (α) for the three orthogonalized strategies
introduced in Subsection 2.3. The ICAPMγ column reports the respective information when imposing the ICAPM
structural restrictions in Footnote 11, which imply relative risk aversion, γ, is the only parameter as it determines
all three risk prices (see Footnote 30 for estimation details). For the CAPM and ICAPM columns of each panel,
we use γ = bm = 1

′

mΣ
−1
f E[f ] (see Subsection 1.3.1). Since bs are not easily comparable, we report σk · bk for each

factor fk,t so that the reported values can be interpreted as the change in Mt induced by a one standard deviation
change in the respective fk,t (holding other factors fixed). b is estimated by Generalized Method of Moments
(GMM) and the t-statistics are computed according to GMM asymptotic theory with Newey and West (1987,
1994) for the spectral density matrix (see Subsection B.2).

Long Sample (1928-2019) Modern Sample (1973-2019)

(5-Year Betas) (3-Year Betas) (5-Year Betas) (3-Year Betas)

CAPM ICAPM ICAPMγ ICAPM ICAPMγ CAPM ICAPM ICAPMγ ICAPM ICAPMγ

PANEL A: Risk Prices (Mt = a+ b
′

ft)

bm 0.12 0.26 0.34 0.25 0.31 0.12 0.26 0.29 0.24 0.268

(tstat) (3.05) (3.59) (6.00) (3.31) (5.49) (2.44) (3.45) (7.19) (3.20) (6.41)

bE 0.32 0.26 0.28 0.24 0.37 0.27 0.30 0.23

(tstat) (4.28) (5.05) (3.70) (4.55) (4.19) (6.14) (3.82) (5.37)

bV -0.18 -0.11 -0.15 -0.08 -0.23 -0.23 -0.17 -0.17

(tstat) (-3.34) (-2.53) (-3.06) (-2.28) (-3.52) (-3.07) (-3.01) (-2.69)

[γ] [2.3] [4.8] [6.3] [4.6] [5.9] [2.8] [5.6] [6.9] [5.3] [6.2]

PANEL B: Annualized Pricing Errors (αs)

E[r⊥
m
] 10.5% 10.5% 10.5% 10.5% 10.1% 10.2% 10.2% 10.2% 10.2% 9.7%

αm 5.6% 0.0% -3.2% 0.0% -2.7% 5.2% 0.0% -2.2% 0.0% -1.07%

(tstat) (3.72) (0.00) (-2.18) (0.00) (-2.05) (3.32) (0.00) (-1.01) (0.00) (-0.80)

E[r⊥
E
] 9.9% 9.9% 9.9% 9.9% 9.3% 10.3% 10.3% 10.3% 10.3% 9.2%

αE 9.9% 0.0% 2.0% 0.0% 1.4% 10.3% 0.0% 2.6% 0.0% 2.2%

(tstat) (5.07) (0.00) (2.33) (0.00) (1.77) (4.47) (0.00) (1.89) (0.00) (1.61)

E[r⊥
V
] -6.6% -6.6% -6.6% -6.6% -6.0% -7.6% -7.6% -7.6% -7.6% -5.9%

αV -6.6% 0.0% -2.7% 0.0% -2.7% -7.6% 0.0% -0.2% 0.0% -0.1%

(tstat) (-3.38) (0.00) (-1.46) (0.00) (-1.45) (-3.29) (0.00) (-0.12) (0.00) (0.04)
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Table IA.5
Correlations: News Proxies, Tradable Factors, and Ex-post Mimicking Factors

(News from Bayesian Framework and VAR Specifications)

This table reports correlations between our tradable risk factors (rE and rV) and ex-post news (NE and NV) as
well as ex-post news mimicking factors (rNE and rNV). To construct rE (rV), we buy a value-weighted portfolio
of the stocks with the 30% highest exposures to ∆dp (∆σ2) and sell a value-weighted portfolio of the stocks
with the 30% lowest exposures to ∆dp (∆σ2). To construct rNE (rNV), we project NE (NV) onto returns from
decile portfolios constructed by sorting stocks based on their exposure to NE (NV) and imposing that projection
coefficients sum to zero (i.e., the factors are zero-net-cost portfolios). The news are estimated ex-post over our
Long (1928-2019) or Modern (1973-2019) Sample based on the Bayesian framework (Equations 21 and 22) of the
VAR in Equation IA.134, with different panels using different state vectors. The tradable risk factors, rE and rV,
as well as the decile portfolios necessary to obtain the ex-post mimicking factors are constructed each month using
risk exposures estimated on a 5-year rolling window. Subsections 1.3.3, 1.3.4, and D.5 provide further details on
the state variables and construction of risk factors.

PANEL A: News from Bayesian Framework

Sample Cor(rNE, NE) Cor(rE, NE) Cor(rE, rNE) Cor(rNV, NV) Cor(rV, NV) Cor(rV, rNV)

Long 0.51 0.51 0.93 0.30 0.24 0.81

Modern 0.39 0.36 0.89 0.36 0.28 0.84

PANEL B: News from VAR with s = (dp, RV )

Sample Cor(rNE, NE) Cor(rE, NE) Cor(rE, rNE) Cor(rNV, NV) Cor(rV, NV) Cor(rV, rNV)

Long 0.69 0.66 0.95 0.60 0.48 0.83

Modern 0.58 0.50 0.90 0.22 0.17 0.76

PANEL C: News from VAR with s = (dp, RV, CS)

Sample Cor(rNE, NE) Cor(rE, NE) Cor(rE, rNE) Cor(rNV, NV) Cor(rV, NV) Cor(rV, rNV)

Long 0.64 0.62 0.93 0.62 0.46 0.77

Modern 0.58 0.50 0.89 0.34 0.22 0.75

PANEL D: News from VAR with s = (dp, RV, CS, TY, TS)

Sample Cor(rNE, NE) Cor(rE, NE) Cor(rE, rNE) Cor(rNV, NV) Cor(rV, NV) Cor(rV, rNV)

Long 0.67 0.64 0.92 0.57 0.43 0.77

Modern 0.59 0.51 0.90 0.37 0.25 0.77

PANEL E: News from VAR with s = (dp, RV, CS, TY, TS, V S)

Sample Cor(rNE, NE) Cor(rE, NE) Cor(rE, rNE) Cor(rNV, NV) Cor(rV, NV) Cor(rV, rNV)

Long 0.61 0.57 0.91 0.56 0.25 0.46

Modern 0.60 0.51 0.86 0.32 0.19 0.63
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Table IA.6
The ICAPM Risk Prices and Pricing Errors (Alternative NV)

Panel A reports estimated ICAPM risk prices (b) while Panel B reports the annualized average returns (E[r])
and associated pricing errors (α) for the three orthogonalized strategies introduced in Subsection 2.3. All columns
impose the ICAPM structural restrictions in Footnote 11, which imply relative risk aversion, γ, is the only
parameter as it determines all three risk prices (see Footnote 30 for estimation details). Since bs are not easily
comparable, we report σk ·bk for each factor fk,t so that the reported values can be interpreted as the change inMt

induced by a one standard deviation change in the respective fk,t (holding other factors fixed). b is estimated by
Generalized Method of Moments (GMM) and the t-statistics are computed according to GMM asymptotic theory
with Newey and West (1987, 1994) for the spectral density matrix (see Internet Appendix B.2). Columns differ
in the NV specification, with the first column of each panel reporting our baseline results. Column “MLE NV”
estimates our log-GARCH process used to obtain NV by maximum likelihood (see Subsection D.6), and column
“Nonlinear NV” obtains the nonlinear NV numerically (see Subsection D.7).

Long Sample (1928-2019) Modern Sample (1973-2019)

(Baseline NV) (MLE NV) (Nonlinear NV) (Baseline NV) (MLE NV) (Nonlinear NV)

ICAPMγ ICAPMγ ICAPMγ ICAPMγ ICAPMγ ICAPMγ

PANEL A: Risk Prices (Mt = a+ b
′

ft)

bm 0.34 0.32 0.33 0.29 0.34 0.27

(tstat) (6.00) (5.18) (6.80) (7.19) (5.23) (7.97)

bE 0.26 0.26 0.25 0.27 0.30 0.23

(tstat) (5.05) (4.30) (5.68) (6.14) (4.54) (6.65)

bV -0.11 -0.02 -0.14 -0.23 -0.08 -0.26

(tstat) (-2.53) (-2.15) (-2.84) (-3.07) (-2.27) (-3.33)

[γ] [6.3] [5.9] [6.1] [6.9] [7.6] [6.0]

PANEL B: Annualized Pricing Errors (αs)

E[r⊥
m
] 10.5% 10.5% 10.5% 10.2% 10.2% 10.2%

αm -3.2% -2.3% -2.7% -2.2% -3.5% -0.7%

(tstat) (-2.18) (-2.33) (-1.58) (-1.01) (-2.17) (-0.30)

E[r⊥
E
] 9.9% 9.9% 9.9% 10.3% 10.3% 10.3%

αE 2.0% 1.9% 2.3% 2.6% 1.8% 3.7%

(tstat) (2.33) (1.88) (2.38) (1.89) (1.50) (2.30)

E[r⊥
V
] -6.6% -6.6% -6.6% -7.6% -7.6% -7.6%

αV -2.7% -5.7% -1.2% -0.2% -4.8% 1.0%

(tstat) (-1.46) (-2.83) (-0.71) (-0.12) (-2.28) (0.74)
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Table IA.7
The ICAPM Risk Prices Controlling for Sentiment and Liquidity Factors

This table reports estimated risk prices (b) for ICAPM risk factors (ft) according to Equation 8 when controlling
for sentiment and liquidity factors (xt) in the SDFMt = a−b′ft−b′xxt. The sentiment factor is a tradable version of
the index in Baker and Wurgler (2006), with construction analogous to rE and rV, and data (until 2018) obtained
from Jeffrey Wurgler’s website. For liquidity, we use the tradable liquidity factor in Pástor and Stambaugh (2003)
available on CRSP. Panels A and B cover our Long (1928-2019) and Modern (1973-2019) samples, respectively.
In the case of the Long Sample, we include the earliest factor data available for each model (1970 for sentiment
and 1968 for liquidity) and use the Stambaugh (1997) procedure to estimate b over the entire Long Sample (see
Subsection 3.1 for more details). Since bs are not easily comparable, we report σf ·b so that the reported values can
be interpreted as the change in Mt induced by a one standard deviation change in the respective factor (holding
other factors fixed). b is estimated by Generalized Method of Moments (GMM) and the t-statistics are computed
using a bootstrap exercise in Panel A (see Internet Appendix B.4) and GMM asymptotic theory with Newey and
West (1987, 1994) for the spectral density matrix in Panel B (see Subsection B.2).

PANEL A: Long Sample (1928-2019)

x = CAPM ICAPM CAPM+SENT ICAPM+SENT CAPM+LIQ ICAPM+LIQ

rm
b 0.12 0.26 0.14 0.25 0.12 0.26

(tstat) (3.05) (3.59) (2.86) (4.50) (2.45) (4.70)

rE
b 0.32 0.32 0.29

(tstat) (4.28) (4.57) (4.03)

rV
b -0.18 -0.19 -0.14

(tstat) (-3.34) (-3.38) (-2.30)

rSENT b 0.08 0.05 0.11 0.09

or rLIQ (tstat) (1.79) (1.28) (2.73) (2.05)

PANEL B: Modern Sample (1973-2019)

x = CAPM ICAPM CAPM+SENT ICAPM+SENT CAPM+LIQ ICAPM+LIQ

rm
b 0.12 0.26 0.13 0.24 0.15 0.25

(tstat) (2.44) (3.45) (2.39) (3.31) (2.34) (3.44)

rE
b 0.37 0.34 0.34

(tstat) (4.19) (3.97) (3.78)

rV
b -0.23 -0.23 -0.19

(tstat) (-3.52) (-3.69) (-2.80)

rSENT b 0.11 0.05 0.30 0.09

or rLIQ (tstat) (2.64) (1.15) (3.62) (1.87)
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Table IA.8
The ICAPM Risk Prices Controlling for the Betting Against Beta Factor

This table reports estimated risk prices (b) for ICAPM risk factors (ft) according to Equation 8 when controlling
for the betting against beta (BaB) factor of Frazzini and Pedersen (2014) in the SDF Mt = a− b′ft− bBaB · rBaB,t.
The columns under “Original BaB” rely on our replication of the BaB factor in Frazzini and Pedersen (2014).
The columns under “Mkt Hedged BaB” adjust the BaB factor so that its implicit market hedge is based on a
position on the market portfolio. The columns under “Not Hedged BaB” fully remove the market hedging position
from the BaB factor. Further details associated with the different column headers are provided in Subsection D.9.
Panels A and B cover our Long (1928-2019) and Modern (1973-2019) samples, respectively. Since bs are not easily
comparable, we report σf · b so that the reported values can be interpreted as the change in Mt induced by a
one standard deviation change in the respective factor (holding other factors fixed). b is estimated by Generalized
Method of Moments (GMM) and the t-statistics are computed using GMM asymptotic theory with Newey and
West (1987, 1994) for the spectral density matrix (see Subsection B.2).

PANEL A: Long Sample (1928-2019)

x = CAPM ICAPM Original BaB Mkt Hedged BaB Not Hedged BaB

rm
b 0.12 0.26 0.14 0.12 0.14 0.19 0.26 0.29

(tstat) (3.05) (3.59) (3.09) (1.86) (3.18) (3.12) (3.26) (3.46)

rE
b 0.32 0.14 0.22 0.23

(tstat) (4.28) (2.03) (3.15) (3.29)

rV
b -0.18 -0.21 -0.19 -0.19

(tstat) (-3.34) (-3.45) (-3.36) (-3.33)

rBaB

b 0.24 0.26 0.13 0.11 0.19 0.14

(tstat) (4.34) (4.27) (2.73) (2.04) (2.62) (1.68)

PANEL B: Modern Sample (1973-2019)

x = CAPM ICAPM Original BaB Mkt Hedged BaB Not Hedged BaB

rm
b 0.12 0.26 0.15 0.16 0.15 0.16 0.32 0.36

(tstat) (2.44) (3.45) (2.34) (2.29) (2.63) (2.50) (3.05) (3.40)

rE
b 0.37 0.21 0.22 0.22

(tstat) (4.19) (2.34) (2.47) (2.38)

rV
b -0.23 -0.28 -0.29 -0.30

(tstat) (-3.52) (-3.26) (-3.43) (-3.38)

rBaB

b 0.30 0.32 0.19 0.22 0.27 0.33

(tstat) (3.62) (3.38) (2.76) (2.37) (2.74) (2.29)
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Table IA.9
The ICAPM Risk Prices Controlling for a Short-term Expected Return Factor

This table reports estimated risk prices (b) for ICAPM risk factors (ft) according to Equation 8 when controlling
for a tradable version of the short-term expected return factor in Kozak and Santosh (2020) through the SDF
Mt = a− b

′

ft − bST
E

· rST
E,t . The construction of rST

E
is analogous to the construction of rE and rV except that the

betas used for sorting are based on stock exposures to the factor ΣH
h=1κ

h−1 ·rm,t+h and the beta estimation window
ends H months before the sorting date to avoid a look-ahead bias. We rely on κ = 0.90 and the columns differ
in the H used. The baseline analysis in Kozak and Santosh (2020) is based on κ = 0.90 and H=12 months, with
H=36 months being the longest horizon they explore. Further details on rST

E
are provided in Subsection D.10.

Panels A and B cover our Long (1928-2019) and Modern (1973-2019) samples, respectively. Since bs are not easily
comparable, we report σf · b so that the reported values can be interpreted as the change in Mt induced by a
one standard deviation change in the respective factor (holding other factors fixed). b is estimated by Generalized
Method of Moments (GMM) and the t-statistics are computed using GMM asymptotic theory with Newey and
West (1987, 1994) for the spectral density matrix (see Subsection B.2).

PANEL A: Long Sample (1928-2019)

x = CAPM ICAPM H=12 months H=24 months H=36 months

rm
b 0.12 0.26 0.13 0.28 0.12 0.27 0.12 0.27

(tstat) (3.05) (3.59) (3.48) (3.88) (3.20) (3.82) (3.08) (3.75)

rE
b 0.32 0.31 0.32 0.32

(tstat) (4.28) (3.83) (3.92) (3.97)

rV
b -0.18 -0.15 -0.15 -0.16

(tstat) (-3.34) (-2.66) (-2.69) (-2.74)

rST
E

b -0.08 -0.07 -0.07 -0.07 -0.07 -0.07

(tstat) (-2.44) (-2.08) (-2.05) (-1.94) (-1.89) (-1.92)

PANEL B: Modern Sample (1973-2019)

x = CAPM ICAPM H=12 months H=24 months H=36 months

rm
b 0.12 0.26 0.12 0.25 0.11 0.25 0.11 0.24

(tstat) (2.44) (3.45) (2.36) (3.42) (2.23) (3.32) (2.14) (3.25)

rE
b 0.37 0.36 0.37 0.36

(tstat) (4.19) (4.03) (4.11) (4.10)

rV
b -0.23 -0.22 -0.22 -0.22

(tstat) (-3.52) (-3.19) (-3.25) (-3.30)

rST
E

b -0.07 -0.07 -0.06 -0.07 -0.05 -0.06

(tstat) (-1.61) (-1.59) (-1.33) (-1.47) (-1.09) (-1.23)

IA.91



Table IA.10
Return Reversals over Long Horizons

This table reports correlations between relatively short term market returns, ΣH−1
h=0 κ

h · rm,t−h and subsequent
long-term market returns Σ120

h=1δ
h · rm,t+h. We also report 95% confidence intervals for these correlations, which

are robust to autocorrelation and heteroskedasticity (see Dalla, Giraitis, and Phillips (2020)). The rows differ in
the κ value used (κ = 0.90 and κ = 0.97) and the columns differ in the H value used (12 months, 24 months, and
36 months). The baseline analysis in Kozak and Santosh (2020) is based on κ = 0.90 and H=12 months, with
κ = 0.97 being the highest discounting they explore and H=36 months being the longest horizon they explore.

PANEL A: Long Sample (1928-2019)

H=12 months H=24 months H=36 months

κ = 0.90
Cor

(
H−1∑
h=0

κh · rm,t−h ,
120∑
h=1

δh · rm,t+h

)
-0.06 -0.06 -0.07

[Robust 95% Confidence Interval] [-0.12 ; 0.00] [-0.12 ; 0.00] [-0.13 ; 0.00]

κ = 0.97
Cor

(
H−1∑
h=0

κh · rm,t−h ,
120∑
h=1

δh · rm,t+h

)
-0.07 -0.08 -0.07

[Robust 95% Confidence Interval] [-0.13 ; -0.01] [-0.14 ; -0.01] [-0.14 ; 0.00]

PANEL B: Modern Sample (1973-2019)

H=12 months H=24 months H=36 months

κ = 0.90
Cor

(
H−1∑
h=0

κh · rm,t−h ,
120∑
h=1

δh · rm,t+h

)
-0.24 -0.34 -0.35

[Robust 95% Confidence Interval] [-0.36 ; -0.12] [-0.47 ; -0.20] [-0.49 ; -0.21]

κ = 0.97
Cor

(
H−1∑
h=0

κh · rm,t−h ,
120∑
h=1

δh · rm,t+h

)
-0.26 -0.38 -0.45

[Robust 95% Confidence Interval] [-0.37 ; -0.14] [-0.51 ; -0.25] [-0.59 ; -0.31]
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