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Abstract

We build a competition network that links two industries through their com-
mon market leaders. Industries with higher centrality on the competition network
have higher expected stock returns because of higher exposure to the cross-industry
spillover of distress shocks. The competition intensity on the network is endogenously
determined by the major players’ economic and financial distress. We examine the
core mechanism — the causal effects of firms’ distress risk on their product market
behavior and the propagation of these firm-specific distress shocks through the com-
petition network — by exploiting the occurrence of local natural disasters to identify
idiosyncratic distress shocks. Firms hit by natural disasters exhibit increased distress
and then compete more aggressively by cutting profit margins. In response, their
industry peers also cut profit margins and then become more distressed, especially in
industries with high entry barriers. Crucially, distress shocks can propagate to other
industries through common market leaders operating in multiple industries. These
results cannot be explained by demand commonality or other network externality.

Keywords: Competition network centrality, Economic and financial distress, Tacit
collusion, Natural disasters, Spillover and treatment externality.
JEL: G32, G33, L11, L14.

∗Dou (Corresponding Author) is at University of Pennsylvania (Wharton). Johnson and Wu are at
Texas A&M University (Mays). Shao is at San Diego State University. Emails: wdou@wharton.upenn.edu,
shane@tamu.edu, mao@sdsu.edu, and wwu@mays.tamu.edu. We thank Andy Abel, Rui Albuquerque,
Torben Andersen, Scott Baker, Simcha Barkai, Michael Barnett, Effi Benmelech, Jonathan Berk, Bo Bian,
Gideon Bornstein, Cecilia Bustamante, Murray Carlson, Hui Chen, Lauren Cohen, Alex Corhay, Nicolas
Crouzet, Jesse Davis, Miguel De Jesus, Ian Dew-Becker, Jack Favilukis, Christian Riis Flor, Carola Frydman,
Lorenzo Garlappi, Ron Giammarino, Vincent Glode, Itay Goldstein, Joao Gomes, Marius Guenzel, Qiang
Guo, Jarrad Harford, Gerard Hoberg, Claire Hong, Lawrence Hsiao, Qiushi Huang, Ravi Jagannathan, Yeejin
Jang, Zhengyang Jiang, Yawen Jiao, William Johnson, Chad Jones, Richard Kihlstrom, Pete Klenow, Adam
Kolasinski, Bob Korajczyk, Camielia Kuhnen, Howard Kung, Tim Landvoigt, Jun Li, Kai Li, Wenhao Li,
Dmitry Livdan, Gregor Matvos, Timothy McQuade, Filippo Mezzanotti, Steffen Meyer, Alan Moreira, Erwan
Morellec, David Musto, Marcus Opp, Jun Pan, Mitchell A. Petersen, Gordon Phillips, Jacopo Ponticelli,
Julio Riutort, Hervé Roche, Sergio Salgado, Alexander Schandlbauer, Lukas Schmid, Andrei Shleifer, Harbir
Singh, Rob Stambaugh, Luke Taylor, Alberto Teguia, Viktor Todorov, Yuri Tserlukevich, Rodrigo Wagner,
Chaojun Wang, Jessie Wang, Wei Xiong, Hong Yan, David Zeke, Ben Zhang, Mo Zhang, Chao Zi, and
seminar and conference participants at Adolfo Ibáñez University, ASU (W. P. Carey), AsianFA, EFA, FMA,
Financial Markets and Corporate Governance Conference, Mack Institute for Innovation Management,
Northwestern (Kellogg), SDSU (Fowler), SFS Cavalcade, Shanghai Advanced Institute of Finance (SAIF),
Suffolk (Sawyer), Texas A&M (Mays), The 5th Annual Virtual QES Global Quant and Macro Investing
Conference, The 28th Finance Forum, University of British Columbia (Sauder), USC (Marshall), University
of Southern Denmark, UTSA, Wharton, Wharton MLG seminar, and Workshop of the Discussion Group on
Macro-Finance Trends for their comments. We thank Scott Baker for sharing firms’ retail consumer data.
We thank Yao Han, Joseph Janko, and Xinyi Xia for excellent research assistance. All errors are our own.
First draft is on August 7, 2020, and this draft is on December 1st, 2021.



1 Introduction

Strategic competition among market leaders in product markets plays a vital role in
determining firms’ cash flows and financial distress, because product markets are often
highly concentrated in the hands of a few market leaders, some of which are considered
“superstar firms.”1 Naturally, strategic competition and distress risk create a positive
feedback loop between imperfect product and credit markets (Chen et al., 2020). Since the
pioneering works by Phillips (1995), Chevalier (1995), and Kovenock and Phillips (1995),
there has been a fast-growing literature empirically showing the strong relation between
firms’ financial conditions and their product market behaviors.2 These theories and
empirical evidence suggest that strategic competition among peers in a given industry
(i.e., horizontal competition) could be an important channel through which distress shocks
propagate. However, there is still little evidence on the causal effect of a firm’s distress risk
on the competitive behavior of itself and its peers in the product market, not to mention
the exact mechanisms through which shocks are propagated within an industry and cross
different industries on the competition network. This paper provides the first elements
to fill the gap in the literature. Importantly, our model and empirical findings together
support the hypothesis that industry competition in the form of tacit collusion is prevalent
in the economy, consistent with extensive evidence documented in the economic and
legal literature, as well as real-life practices such as antitrust enforcements, accusations,
and announcements.3 Further, this paper emphasizes that how shocks are propagated on
the competition network is an “elephant in the room” that has been overlooked so far,
although shock propagation on the production network has been extensively studied in
the literature. Our results show that the competition network has first-order implications
for both corporate finance and asset pricing.

We first introduce a novel form of network that connects industries through common
market leaders (i.e., conglomerates) in product markets. Each industry is a node on the
competition network, and two industries as two nodes are linked if and only if they
share common market leaders which are multi-industry firms (see Figure 1). We compare

1See, e.g., Gutiérrez and Philippon (2017), Grullon, Larkin and Michaely (2019), Autor et al. (2020),
De Loecker, Eeckhout and Unger (2020). Recently, Gutiérrez, Jones and Philippon (2019) and Corhay,
Kung and Schmid (2020b) argue that high industry concentration due to high entry costs has been a
fundamental driver of high markup and low investment levels in the United States (US) for the past a few
decades. According to the US Census data, the top four firms within each four-digit Standard Industrial
Classification (SIC) industry account for about 48% of the industry’s total revenue (see Dou, Ji and Wu,
2021a, Online Appendix B).

2See, e.g., Kovenock and Phillips (1997), Busse (2002), Matsa (2011a,b), Hadlock and Sonti (2012),
Hortaçsu et al. (2013), Phillips and Sertsios (2013, 2017), Cookson (2017), and Chen et al. (2020).

3“Tacit collusion” need not involve any collusion with explicit agreements in the legal sense, and an
interchangeable term is “tacit coordination” (e.g., Ivaldi et al., 2007; Green, Marshall and Marx, 2014).
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Note: This figure illustrates how the competition network is defined and constructed. Each big circle represents an industry, and
the small blocks within a given circle represent the market leaders in the industry. Two industries are connected if and only if they
share common market leaders.

Figure 1: Competition Network over Industries.

the competition network with the production network of industries, and find that they
have distinctive network structures and are not overlapped. We show that there are
indeed many multi-industry market leaders that connect the related industries on the
competition network in the data, consistent with the findings of Hoberg and Phillips
(2020).

We then build the idea of competition network into a simple theoretical framework
that allows us to derive closed-form model solutions and illustrate the core economic
mechanism in a transparent manner. Our illustrative model of competition network
is a simplified variant of the full-fledged quantitative dynamic model of Chen et al.
(2020). Although the main contributions of this paper are the empirical findings, the
model serves as a coherent conceptual framework to formally set forth the hypotheses,
guide the empirical tests, and make sense of the data patterns that we find. In the
model, market leaders compete intertemporally in repeated games so that they can tacitly
collude, trading off the benefits of future cooperation against those of reaping higher
short-run profits by undercutting their rivals. Higher distress effectively makes firms
more impatient and care less about future cooperation, leading to lower collusion capacity
and profit margins. Thus, the competition intensity is endogenously determined by
collusion capacity, which is in turn affected by the distress level of the market leaders.
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Alternatively, market leaders can also compete non-collusively in which case the outcome
of the economy is characterized by the non-collusive Nash equilibrium. Different from
tacit collusion, higher distress of a market leader makes its production effectively more
costly, which reduces its own market power but increases its rival’s in a standard Cournot
competition. Consequently, higher distress of a market leader reduces its own profit
margin but increases its rival’s, making the rival less distressed.

Despite an extensive set of direct micro-level evidence showing that firms compete in
the form of tacit collusion in various specific industries, it is still controversial whether
tacit collusion exerts a dominating force on the aggregate economy and capital market.
Importantly, our model, as well as that of Chen et al. (2020), sharply contrasts the
collusive Nash equilibrium with the non-collusive one by showing that they generate
the opposite within-industry spillover effect, which leads to substantially different asset
pricing implications. Such widely diverging predictions between the collusive and non-
collusive equilibria allow for strong inference and enable us to test the hypothesis of
tacit collusion as a prevalent form of industry competition by exploiting the econometric
tools for analyzing spillover effects and asset pricing mechanisms. Specifically, our model
predicts that, in the collusive Nash equilibrium, an adverse idiosyncratic distress shock
(e.g., local natural disaster shocks) on a market leader lowers its rivals’ profit margins,
making them more distressed, because all firms become effectively more impatient. By
contrast, in the non-collusive Nash equilibrium, an adverse idiosyncratic distress shock
(e.g., local natural disaster shocks) on a market leader weakening its market power,
enabling its rivals to increase their profit margins. Moreover, if some rivals are common
market leaders that connect this industry to others, the initial adverse idiosyncratic
distress shock can be propagated to the connected industries. But, the cross-industry
spillover is very different in the collusive and non-collusive equilibrium — the direct
effect and the within- and cross-industry spillover effects of distress shocks have the same
direction in the collusive Nash equilibrium, whereas the direct and spillover effects have
opposite directions in the non-collusive Nash equilibrium.

Intuitively, the cross-industry spillover effect implies that industries with higher
competition network centrality on the competition network (i.e., industries that are more
connected to others through common market leaders) have higher risk-adjusted expected
stock returns in the collusive Nash equilibrium, after excluding the common market
leaders. Industries with higher competition network centrality are more exposed to
an economy-wide distress shock because the cross-industry spillover effect amplifies
the direct loading on the economy-wide distress shock. By contrast, the cross-industry
spillover effect tends to generate no clear (if not the opposite) asset pricing pattern in

3



the non-collusive Nash equilibrium. In fact, industries with higher competition network
centrality can be less exposed to an economy-wide distress shock because the cross-
industry spillover effect can offset the direct loading on the economy-wide distress shock.
We provide a comprehensive set of asset pricing tests and find that higher competition
network centrality on the competition network is associated with higher risk-adjusted
expected stock returns, supporting the hypothesis tacit collusion prevails.

Providing empirical evidence on the propagation of distress shocks via the competition
network is a challenging task. The first main empirical challenge in studying the causal
impact of distress risk on product market competition is endogeneity. Omitted variables
such as new entrants can simultaneously drive both the likelihood of firms’ distress
risk and their product market behaviors. In addition, distress risk can be driven by
industry-level factors that also affect industry peers directly, making it difficult to identify
the impact of a firm’s distress risk on its industry peers. To address the endogeneity
problem, we use major natural disasters from the past 25 years in the US as idiosyncratic
distress shocks. Following Barrot and Sauvagnat (2016) who study the propagation of
idiosyncratic shocks on the production network, we focus on a set of major US natural
disasters that caused substantial property losses. We show that these local natural
disasters increase distress for the treated firms, consistent with the empirical findings of
Aretz, Banerjee and Pryshchepa (2019).

The second challenge is to deal with treatment externality (i.e., interference) in the
difference-in-differences (DID) setting. The existence of the spillover effect violates the
stable unit treatment value assumption (SUTVA), which has served as the basis of causal
effect estimation (e.g., Rubin, 1980; Manski, 1993, 2013). To tackle this challenge, we
adopt the approach of two-stage quasi-natural experiments with partial interference to
simultaneously identify the total treatment effect of the treated firms and the spillover
effect to non-treated industry peer firms using the DID approach with the group-level
spillover effects well controlled for. Similar empirical problem and methods have been
studied in the statistical and econometric literature (e.g., Rubin, 1978, 1990; Sobel, 2006;
Rosenbaum, 2007; Hudgens and Halloran, 2008; Liu and Hudgens, 2014; Basse and
Feller, 2018).4 We match treated firms (i.e., firms hit by natural disasters) with non-treated
industry peer firms in the same industry having similar asset size, tangibility, and age. We
find that the treated firms experience significant increases in distress risk and significant
decreases in distance to default, indicating that these firms see increased distress following
major natural disasters. Following increases in distress, the treated firms compete more

4Applications of causal inference with interference include Miguel and Kremer (2004), Athey, Eckles
and Imbens (2018), Boehmer, Jones and Zhang (2020), Berg, Reisinger and Streitz (2021), Bustamante and
Frésard (2021), and Grieser et al. (2021).
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aggressively, as evidenced by significantly reduced gross profit margins. Importantly,
consistent with the prediction of our model in the collusive Nash equilibrium, the DID
analysis indicates the existence of a strong within-industry spillover effect. Specifically,
we find that industry peers that are unaffected directly by natural disasters also exhibit a
significant increase in their distress levels.

We explore the heterogeneity of the within-industry spillover effects and test a list
of alternative explanations using the natural disaster setting. We find that the spillover
effects are stronger in industries with higher entry barriers. This finding is consistent
with the theory work of Chen et al. (2020), who show that firms will compete more
aggressively with their distressed peers in industries with higher entry barriers because
the winners of a price war in these industries enjoy larger economic rents after pushing
out their competitors who are unlikely to be replaced by new entrants. The spillover
effects are also stronger in industries with worse economic conditions and higher levels of
financial constraints, which is intuitive because firms in these industries are effectively less
patient and thus have more incentives to compete after the arrival of negative shocks. We
then show that the within-industry spillover effects are unlikely rationalized by a list of
alternative explanations including demand commonality, production network externality,
lender commonality, and institutional blockholder commonality.

We further exploit two one-time economy-wide shocks to identify the spillover effects
of changes in firms’ financial distress risk: the American Jobs Creation Act of 2004 (AJCA)
(see Faulkender and Petersen, 2012) and the Lehman crisis (see Chodorow-Reich, 2014;
Chodorow-Reich and Falato, 2021), which lead to a reduction and an increase in the
distress levels of the treated firms, respectively. Consistent with the prediction of our
model in the collusive Nash equilibrium, we find that firms compete less aggressively in
the product market after the passage of AJCA while they compete more aggressively after
the Lehman crisis. Moreover, the distress levels of the non-treated industry peers reduce
significantly after AJCA and while they increase significantly after the Lehman crisis.

Finally, we examine the distress contagion effects across industries. As discussed
above, a focal firm will reduce its profit margin together with a peer that is negatively
affected by idiosyncratic distress shocks due to lower collusion capacity in the collusive
Nash equilibrium. If the focal firm is a market leader in another industry, the reduced
collusion capacity extends to the other industry so that firms in that industry exhibit
reduced profit margins as well. Thus, the propagation of a distress shock can transmitted
from one industry to others via the competition network. This is indeed what we find in
the data. Moreover, consistent with the prediction of our model in the collusive Nash
equilibrium, we find that the cross-industry spillover effects are stronger in industries
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with higher efficiency of internal capital market of common leaders.

Related Literature. Our paper contributes to the literature that studies the propagation
of idiosyncratic shocks in the economy. The extant literature has primarily focused
on how shocks propagate across industries or sectors through input-output linkages
(e.g., Horvath, 1998, 2000; Cohen and Frazzini, 2008; Acemoglu et al., 2012; Di Giovanni,
Levchenko and Mejean, 2014; Barrot and Sauvagnat, 2016; Dew-Becker, Tahbaz-Salehi and
Vedolin, 2020; Dew-Becker, 2021). Recently, a growing body of research has suggested that
production network externality has important asset pricing implications (e.g., Cohen and
Frazzini, 2008; Ahern, 2013; Herskovic, 2018; Herskovic et al., 2020; Gofman, Segal and Wu,
2020; Grigoris, Hu and Segal, 2021). We differ from the literature by examining distress
propagation through the competition network that connects different product markets.
Our analysis is similar to that of Chen et al. (2020) in this regard, but we differ from their
paper by being the first to study such distress propagation in a causal framework and to
document the asset pricing implications of competition network centrality.

Our paper also contributes to the literature studying the impact of financial characteris-
tics on firms’ competitive behaviors in the product market (e.g., Titman, 1984; Bolton and
Scharfstein, 1990; Maksimovic and Titman, 1991; Phillips, 1995; Chevalier, 1995; Kovenock
and Phillips, 1995; Chevalier and Scharfstein, 1996; Kovenock and Phillips, 1997; Zingales,
1998; Allen and Phillips, 2000; Busse, 2002; Campello, 2006; Matsa, 2011a,b; Hadlock and
Sonti, 2012; Hortaçsu et al., 2013; Phillips and Sertsios, 2013; Cookson, 2017; Phillips and
Sertsios, 2017; Banerjee et al., 2019; Grieser and Liu, 2019; Chen et al., 2020; Bustamante
and Frésard, 2021). Matsa (2011b) shows that excessive leverage undermines firms’ in-
centive to provide product quality. Phillips and Sertsios (2013) examine the interaction
of product quality and pricing decisions with financial conditions in the airline industry.
We contribute to the literature in several ways. First, we exploit the natural disaster
setting to study the causal impact of distress risk on firms’ product market behaviors. By
addressing endogeneity concerns, our paper differs from previous studies on the product
market implications of firms’ (voluntary) decisions on financial structure (e.g., Phillips,
1995; Chevalier, 1995; Kovenock and Phillips, 1997). Second, we systematically examine
changes in the profit margins of distressed firms and their industry peers in a broad
sample of industries, which differentiates our paper from previous studies that have
focused primarily on product market behaviors in one specific industry (e.g., Zingales,
1998; Busse, 2002; Matsa, 2011a,b; Hadlock and Sonti, 2012; Hortaçsu et al., 2013; Phillips
and Sertsios, 2013; Cookson, 2017, 2018). Third, we document a cross-industry distress
contagion effect through the competition network. Such a contagion effect is different
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economically from the contagion effect through the production network.
Our paper adds to the literature on distress risk’s asset pricing implications (e.g.,

Campbell, Hilscher and Szilagyi, 2008; Gomes and Schmid, 2010; Garlappi and Yan, 2011;
Gomes and Schmid, 2021) and real effects (e.g., Andrade and Kaplan, 1998; Campello,
Graham and Harvey, 2010; Giroud et al., 2012; Phillips and Sertsios, 2013; Brown and
Matsa, 2016; Giroud and Mueller, 2017; Baghai et al., 2020). Giroud et al. (2012) show that
debt overhang in highly leveraged firms hurts operating performance. Brown and Matsa
(2016) show that distress risk makes it more difficult for firms to attract high quality job
applicants. Giroud and Mueller (2017) find that more highly leveraged firms experience
significantly larger employment losses in response to declines in local consumer demand.
Our evidence complements and extends these studies by focusing on the product market
implications of distress risk. We show that firms and their industry peers engage in more
aggressive price competition when firms face increased distress risk.

Our paper also contributes to the growing literature on financial contagion. As nicely
summarized by Goldstein (2013), financial contagion takes place through two major
classes of channels — fundamental- and information-based. The fundamental-based
channel is through real linkages between economic entities, such as common (levered)
investors (e.g., Kyle and Xiong, 2001; Kodres and Pritsker, 2002; Kaminsky, Reinhart and
Végh, 2003; Martin, 2013; Gârleanu, Panageas and Yu, 2015) , financial-network linkages
(e.g., Allen and Gale, 2000; Acemoglu, Ozdaglar and Tahbaz-Salehi, 2015), and supply-
chain linkages (e.g., Barrot and Sauvagnat, 2016). Contagion can also work through the
information-based channel such as self-fulfilling beliefs (e.g., Goldstein and Pauzner,
2004). Our paper proposes a novel channel of strategic dynamic competition through
which distress risk is contagious among product-market peers.

Finally, our paper provides additional empirical evidence on tacit collusion. There
has been extensive empirical evidence showing that tacit collusion can arise and be
sustained for various reasons. The most direct real-life evidence is the observed antitrust
enforcements, accusations, and government announcements over explicit collusion (e.g.,
Clark and Houde, 2013; Connor, 2016; Dasgupta and Zaldokas, 2018). Moreover, Wang
(2009) shows high-frequency evidence highlighting the importance of short-run price
commitment in tacit collusion as predicted by Maskin and Tirole (1988). More recently,
there has been fast-growing real-life and experimental evidence on the hypothesis that
AI pricing algorithms may raise their prices above the competitive level in a coordinated
fashion, even if they have not been specifically instructed to do so and even if they do
not communicate with one another (e.g., Beneke and Mackenrodt, 2020; Calvano et al.,
2020). Furthermore, regulations such as price ceilings provide a focal-point mechanism
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to facilitate the tacit collusion of peers (e.g. Rey and Tirole, 2019), and many studies
find strong evidence of tacit collusion that supported by the focal point mechanism (e.g.,
Knittel and Stango, 2003; Lewis, 2015). In addition, price experiments can also act as a
testing and signaling device to facilitate tacit profit margin coordination (e.g., Byrne and
de Roos, 2019). Last but not least, many studies find that (public) communication even
cheap talk can help sustain tacit collusion because it can facilitate information revelation
and monitoring. The tacit collusion can be sustained via firms’ public announcements (e.g.,
Borenstein, 2004; Miller, 2010; Bourveau, She and Zaldokas, 2020; Aryal, Ciliberto and
Leyden, 2021; Foros and Nguyen-Ones, 2021; Bertomeu et al., 2021). The communication
can also be conducted via industry conferences and trade organization events, physical
monitoring (e.g., Gan and Hernandez, 2013), and common ownership (e.g., Gutiérrez and
Philippon, 2017). Importantly, high common ownership can facilitate tacit collusion in the
long run via the communication channel, not necessarily reduce competition immediately
in the short run via the merger and combined control channel (e.g., O’Brien and Salop,
2000; José, Schmalz and Tecu, 2018). In other words, the comovement between common
ownership and industry competition should be at a low frequency or a long-run co-trend,
like Gutiérrez and Philippon (2017) suggest, rather than at a high frequency, consistent
with the recent findings by Dennis, Gerardi and Schenone (2021), Koch, Panayides and
Thomas (2021), and Lewellen and Lowry (2021), among others. This is intuitive because
the exact mechanism through which common ownership facilitates tacit collusion is
likely to be the communication channel for tacit coordination, which usually takes the
investors and managers quite some time to develop. As an example, He and Huang (2017)
provide supporting evidence on the communication and monitoring channel through
which institutional cross-ownership facilitates tacit collusion and collaboration among
firms in product markets.

The rest of the paper proceeds as follows. In Section 2, we present an illustrative
model for the core mechanism. In Section 3, we explain the data sources. In Section 4, we
present our empirical findings. Finally, Section 5 concludes the paper.

2 An Illustrative Model for the Core Mechanism

The model in this section serves three main purposes. First, it helps illustrate the spillover
effect of distress shocks through the competition network. Second, it shows that industries
with higher centrality on the competition network are more exposed to systematic shocks
that make all firms more distressed and carry negative market prices of risk, and thus
the industries with higher centrality have higher expected stock returns. Third, although
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Note: This figure illustrates a setting with three industries and four firms, where firms ci and cj operate in two industries as
common market leaders connecting different industries. When market leader ai in industry i becomes more distressed, economically
or financially, caused by a firm-specific shock, the tacit collusion capacity decreases because of its shorter cash flow horizon, and
thus the competition intensity rises in industry i, thereby making firm ci more distressed. Market leader ci responds by competing
more aggressively in both industries i and c, which hurts the profitability of market leader cj in industry c and makes it more
distressed. Consequently, the tacit collusion capacity of industry j decreases, making market leader cj compete more aggressively in
both industries c and j. The increasingly competitive environment of industry j eventually hurts the profitability of market leader j,
making the firm more distressed.

Figure 2: Distress contagion through endogenous competition of collusive equilibria in
product markets.

the main contributions of this paper are the empirical findings, the model serves as
a coherent conceptual framework to formally present the hypotheses and guide the
empirical tests. We intentionally illustrate the core mechanism using a simple repeated
game. A full-fledged, quantitative, continuous-time model is developed by Chen et al.
(2020); we do not repeat the same model, but rather use a parsimonious yet generic model
as the theoretical device to qualitatively illustrate the key ideas.

Each industry is atomistic in the economy. We consider four firms and three indus-
tries. The industries are connected through common market leaders that simultaneously
compete in two industries, as demonstrated in Figure 2. For simplicity, we assume that
the three industries are isolated from others on the competition network. We index the
three industries by i, c, and j, and the four firms by ai, ci, cj, and aj, where a represents
stand-alone market leaders and c common market leaders. As shown in Figure 2, firms i
and ci compete in industry i, firms j and cj compete in industry j, and the two common
market leaders ci and cj also compete with each other in industry c. We define the index
sets of industries and firms by K ≡ {i, c, j} and F ≡ {ai, ci, cj, aj}, respectively.

Distress Risk. We consider an infinite-horizon model with time periods t = 1, 2, · · ·
and the game starts at t = 1. In each period, firm f ∈ F survives with a risk-neutral
probability λ(x f , π f ) where x f captures the degree of financial constraints and π f is the
profit of firm f ∈ F in this period. Distress risk is measured by the risk-neutral probability
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of exit, 1− λ(x f , π f ). For simplicity, we assume that an identical new market leader
enters the industry immediately upon a firm’s exit. We exogenously specify the logistic
function of the risk-neutral survival probability as a function of x f and π f :

λ(x f , π f )

1− λ(x f , π f )
≡ e−x f +γπ f , (2.1)

where the degree of financial constraints x f can be decomposed into economy-wide and
idiosyncratic components, and the firm-level profit π f is the aggregation of firm f ’s
profits generated from different industries as follows:

x f = βx + ε f , (2.2)

π f = ∑
k∈K

π f ,k, (2.3)

where ε f captures firm f ’s idiosyncratic degree of financial constraints, x captures
the economy-wide financial condition, and π f ,k is the profit of firm f generated from
industry k. The logistic specification follows Campbell, Hilscher and Szilagyi (2008) to
parsimoniously connect the probability of bankruptcy or failure over the next period with
the degree of financial constraints and cash flows.

Intuitively, equation (2.1) highlights that a higher degree of financial constraints
x f leads to a higher risk-neutral probability of exit (i.e., a higher distress level). And,
γ in equation (2.1) captures the sensitivity of the risk-neutral survival probability to
fluctuations of firm-level profits π f , and we assume that γ > 0 to emphasize that
higher profits lead to a lower risk-neutral probability of exit (i.e., a lower distress level).
The coefficient β in equation (2.2) captures the loading of firm f ’s degree of financial
constraints x f on the aggregate financial condition x. We emphasize that the loadings of
stock returns on x are endogenously different, depending on the centrality of an industry,
although we assume that all firms’ degrees of financial constraints x f load homogeneously
on x in our model to highlight the network effect. A variation in x can be interpreted as
the financial constraints shock (e.g., Whited and Wu, 2006; Buehlmaier and Whited, 2018;
Dou et al., 2021).5

Market Structure and Firm Profits. In industry k ∈ K, the two market leaders can
maintain a duopoly market structure by incurring a proportional cost of φq f ,k with
f = 1, 2. The quantities q1,k, and q2,k are firm 1’s and firm 2’s output in each period. The

5One prominent example of financial constraints shocks is the unexpected variation in external financing
costs (e.g., Bolton, Chen and Wang, 2013; Gilchrist et al., 2017; Belo, Lin and Yang, 2019).
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fixed cost can be interpreted as a lobbying cost or a research and development expense
to prevent many small followers from entering the market, turning it into a perfect
competitive market. Under the duopoly market structure, the two market leaders face a
downward-sloping demand curve:

pk = a− bqk, with qk = q1,k + q2,k, (2.4)

where qk is the total output of industry k in each period, and pk is the price of goods in
industry k. Firm f incurs a proportional cost to produce the goods, and its marginal cost
is ω(x f ), which includes the cost φ to maintain the duopoly market structure. We assume
that ω(x f ) increases in financial constraints xt. That is, ω(·) > 0 and ω′(·) > 0, which
captures the important idea that higher distress or financial constraints leads to higher
marginal monetary costs to retain customer bases and suppliers. Thus, the profit of firm
f from industry k is

π f ,k =
[
a− b(q1,k + q2,k)−ω(x f )

]
q f ,k. (2.5)

There are two states for the industry competition – non-collusive and collusive. In
the state of non-collusive competition, firms maximize their own values and thus profit
levels conditioning on their competitors’ behaviors. The non-collusive Nash equilibrium
exists and is unique. In the state of collusive competition, firms tacitly coordinate to
reach possibly higher profit levels. Although the agreed total market size qk and thus
the equilibrium price pk cannot be freely changed by any firm in the state of collusive
competition, a firm can deviate from the agreed supply scheme by “stealing” part of the
demand from its competitor. In response to the deviation behavior, the competitor will
start a “mad” price war. Specifically, in a mad price war, the competitor will never tacitly
coordinate or maintain the duopoly market structure starting from the next period, and
consequently, the market will become perfectly competitive with zero profits for every
firm.

Suppose the collusive profits πC
1,k and πC

2,k are sustained by the collusive outputs qC
1,k

and qC
2,k in the following way:

πC
f ,k =

[
a− b(qC

1,k + qC
2,k)−ω(x f )

]
qC

f ,k. (2.6)

As demonstrated in Table 1, if firm 1 deviates from the tacit coordination, it will
“steal” demand qC

1,kδeηπC
2,k from firm 2 without changing the agreed total market size

qC
k = qC

1,k + qC
2,k, thereby keeping the price pC

k unaffected. Thus, the profit of firm 1 after its

deviation becomes πC
1,k

(
1 + δeηπC

2,k

)
, while the profit of firm 2 gets hurt because it loses
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Table 1: Profits of firms 1 and 2 in industry k ∈ K.

Firm 2

Collude Not collude

Firm 1
Collude πC

1,k , πC
2,k πC

1,k

(
1− δeηπC

1,k qC
2,k/qC

1,k

)
, πC

2,k

(
1 + δeηπC

1,k
)

Not collude πC
1,k

(
1 + δeηπC

2,k
)

, πC
2,k

(
1− δeηπC

2,k qC
1,k/qC

2,k

)
πN

1,k , πN
2,k

the amount of demand qC
1,kδeηπC

2,k . Importantly, the amount of demand can be “stolen”
increases with the rival’s profit level πC

2,k, which is quite intuitive since an excessively high
profit level tends to compromise the customers’ brand loyalty. The sensitivity coefficient
η captures the within-industry elasticity. Larger η makes it easier for a firm to attract its
rival’s customers by deviating from the tacit coordination. Similarly, if firm 2 deviates
from the tacit coordination, it will “steal” demand qC

2,kδeηπC
1,k from firm 1 without changing

the agreed total market size qC
k or the price pC

k . We assume that the within-industry
elasticity is sufficiently high in the sense that η−1γ is sufficiently small.

Again, we emphasize that the goal here is not to develop a stochastic dynamic game-
theoretic models for asset pricing. For a full-fledged model, the reader is referred to
Chen et al. (2020). Here, we use comparative static analysis to illustrate the endogenous
responses of competition intensity, profit margin, and distress level to changes in economic
conditions.

Within-Industry Spillover. The profit margin is defined as

θ f ,k ≡
π f ,k

pkq f ,k
, (2.7)

where π f ,k is the profit of market leader f in industry k, pk is the price of goods sold in
industry k, and q f ,k is the output of market leader f in industry k. And, firm f ’s total
profit margin is

θ f ≡
π f

∑k∈K pkq f ,k
. (2.8)

Proposition 2.1. Consider an industry k ∈ K in which there are two market leaders, denoted by
f and p. The direct and spillover effects of idiosyncratic changes in distress levels on firms’ profit
margins can be summarized as follows:

(i) In the non-collusive Nash equilibrium, a firm’s profit margin θN
f decreases with the idiosyn-

cratic distress level ε f , yet in contrast, peer firm p’s profit margin θN
p increases with firm
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f ’s idiosyncratic distress level ε f as a spillover effect; i.e.,

∂θN
f

∂ε f
< 0 and

∂θN
p

∂ε f
> 0.

(ii) In the collusive Nash equilibrium, firm f ’s profit margin θC
f decreases with its idiosyncratic

distress level ε f , and peer firm p’s profit margin θC
p also decreases with firm f ’s idiosyncratic

distress level ε f as a spillover effect; i.e.,

∂θC
f

∂ε f
≤ 0 and

∂θC
p

∂ε f
≤ 0.

Proposition 2.1 implies two important results. The proposition first implies that an
increase in a firm’s distress level has direct negative impact on its profit margin in both the
non-collusive and collusive equilibrium. However, the profit level of a firm endogenously
decreases in response to heightened distress for different reasons. On the one hand, in the
non-collusive equilibrium, a firm’s profit margin decreases with its distress level because
higher distress makes the production more costly and thus the market power lower. On
the other hand, in the collusive equilibrium, a firm’s profit margin decreases with its
distress level because higher distress of the firm makes the value of future cooperation
lower for itself and suppresses the tacit collusion capacity of the industry.

Further, the proposition shows how the within-industry spillover effect works through
the distressed competition mechanism, which is first proposed by Chen et al. (2020). The
profit level of a firm increases with the idiosyncratic distress level of its rival firm in the
non-collusive equilibrium, whereas its profit level decreases with the idiosyncratic distress
level of its rival firm in the collusive equilibrium. At first glance, it seems striking that
the spillover effect can have opposite signs in the non-collusive and collusive equilibrium.
In fact, these theoretical results are quite intuitive and generic. In the non-collusive
equilibrium, a firm’s profit margin increases with its rival’s distress level because the
rival’s market power is compromised by a higher distress level. On the contrary, in
the collusive equilibrium, a firm’s profit margin decreases with its rival’s distress level
because higher distress of the rival makes the value of future cooperation lower for these
firms and suppresses the tacit collusion capacity of the industry.

These results lead to the following corollary on distress spillover. The intuitions of
Proposition 2.1 and Corollary 2.1 are nicely illustrated in Figure 2.

Corollary 2.1. Consider an industry k ∈ K in which there are two market leaders, denoted
by f and p. The spillover effect of idiosyncratic changes in distress levels on the risk-neutral
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probability of exit can be summarized as follows:

(i) In the non-collusive Nash equilibrium, peer firm p’s risk-neutral probability of survival
λ(xp, πN

p ) increases with firm f ’s idiosyncratic distress level ε f as a spillover effect; i.e.,

∂λ(xp, πN
p )

∂ε f
≥ 0.

(ii) In the collusive Nash equilibrium, peer firm p’s risk-neutral probability of survival λ(xp, πC
p )

decreases with firm f ’s idiosyncratic distress level ε f as a spillover effect; i.e.,

∂λ(xp, πC
p )

∂ε f
≤ 0.

Cross-Industry Spillover. The following proposition shows that the profit level of an
industry endogenously decreases in response to an adverse idiosyncratic change in the
distress level of a market leader in a different industry as long as these two industries
are connected on the competition network. The proof of Proposition 2.2 is in Online
Appendix A.2.

Proposition 2.2. Consider two connected industries k and k′ with k 6= k′ ∈ K and a market
leader f in industry k. In the collusive Nash equilibrium, the profit margin θC

f ′ of firm f ′ in
industry k′ decreases with the idiosyncratic distress level ε f of firm f in the other industry k:

∂θC
f ′

∂ε f
≤ 0.

The cross-industry spillover effect relies on the positive complementarity between two
connected industries’ profit levels through their common market leader in the collusive
equilibrium. More precisely, the two industries share a common market leader whose
risk-neutral survival probability depends positively on both the industries’ profit levels
(i.e., γ > 0). This result leads to the following corollary on cross-industry distress spillover.
The intuitions of Proposition 2.2 and Corollary 2.2 are clearly illustrated in Figure 2.

Corollary 2.2. Consider two connected industries k and k′ with k 6= k′ ∈ K and a market leader
f in industry k. In the collusive equilibrium, the risk-neutral probability of survival λ(x f ′ , πC

f ′)

of firm f ′ in industry k′ decreases with the idiosyncratic distress level ε f of firm f in the other
industry k:

∂λ(x f ′ , θC
f ′)

∂ε f
≤ 0.
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Systematic Risk Exposure and Competition Network Centrality. The following propo-
sition shows that the profit levels of industries with higher centrality on the competition
network are more sensitive to fluctuations in the aggregate distress level x in equation
(2.2), which captures the economy-wide degree of financial constraints. A higher x corre-
sponds to a higher marginal utility of investors. Thus, industries with higher centrality
on the competition network have higher expected stock returns. The proof of Proposition
2.3 is in Online Appendix A.3.

Proposition 2.3. In the collusive Nash equilibrium, for the three industries i, c, and j ∈ K where
all four market leaders have the same distress level, it holds that

∂θC
c

∂x
<

∂θC
i

∂x
< 0 and

∂θC
c

∂x
<

∂θC
j

∂x
< 0, (2.9)

where θC
k is the profit margin of industry k in the collusive Nash equilibrium for any k ∈ K.

We now use Figure 2 to recap the key mechanism. Suppose three industries i, c, and j
are connected through two common market leaders. Specifically, industries i and c are
connected by the common market leader ci, while c and j are connected by the common
market leader cj. Our model predicts that an adverse idiosyncratic shock (e.g., local
natural disaster shocks) to market leader ai in industry i will cause common market leader
ci to significantly lower its profit margin in response to the more aggressive competition
of market leader ai, making market leader ci more distressed. Because market leader
ci also competes with market leader cj in industry c, when ci becomes more distressed,
market leader cj will also lower its profit margin and become more distressed. Lastly,
market leader cj also competes with market leader aj in industry j, when cj becomes more
distressed, market leader aj will also lower its profit margin and become more distressed.
Taken together, the initial adverse idiosyncratic shock to market leader ai would result
in a lower profit margin of market leader aj through the lower profit margin set by the
common market leaders ci and cj.

Hypotheses to Test. It is not surprising that the distress conditions of competitors are
interdependent within an industry. Our paper pushes one step further by investigating
the exact economic mechanism of the distress shock propagation from one firm to its
rivals in a given industry and even from one industry to others through the common
market leaders. Importantly, our simple model suggests a set of general hypotheses
regarding the within- and cross-industry spillover effects of distress shocks on profit
margins and distress level. First, the model predicts that the direction toward which a
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firm’s profit margin and distress level move depends on the form of industry competition
— non-collusive competition or tacit collusion. Specifically, we show that a firm will have
a lower profit margin and a higher distress level in response to an increase in its rivals’
distress level because of reduced collusion capacity if they compete in the form of tacit
collusion. By contrast, a firm will have a higher profit margin and a lower distress level
in response to an increase in its rivals’ distress level if they compete non-collusively, the
opposite to what would happen if they compete in the form of tacit collusion.

Second, we show that a firm will have a lower profit margin and a higher distress level
when its rival’ rival is hit by adverse distress shocks in a different industry because of
reduced collusion capacity in both industries if they compete in the form of tacit collusion.
By contrast, there is no clear prediction on the cross-industry spillover if firms compete
non-collusively, because whether a common market leader gains market power or the
opposite depends on whether itself gets the hit by an adverse distress shock or its rival
gets it, which in turn leads to different impact on the common market leader’s rivals in
another industry.

Third, we show that industries with high centrality on the competition network have
higher systematic risk exposures because of cross-industry spillover effects, thereby
compensating the investors with higher expected returns, if firms compete in the form of
tacit collusion. In a sharp contrast, the relation between competition network centrality
and systematic risk exposure is unclear if firms compete non-collusively, because the
cross-industry spillover effect may amplify or cancel off the direct effect of aggregate
shocks.

Such opposite predictions for the non-collusive and collusive equilibrium enable us to
infer whether market leaders compete under a cooperative framework by directly testing
the existence and direction of the within- and cross-industry spillover effects, as well as
the asset pricing implications of the cross-industry spillover effects.

3 Data

We assemble the data from various sources. In this section, we explain them in detail.

Industry Classification and Portfolio Returns. We obtain stock returns from the Center
for Research in Security Prices (CRSP). Our model focuses on strategic competition among
a few oligopolistic firms whose products are close substitutes. We therefore use four-digit
SIC codes to define industries, following the literature (e.g., Hou and Robinson, 2006;
Gomes, Kogan and Yogo, 2009; Frésard, 2010; Giroud and Mueller, 2010, 2011; Bustamante
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and Donangelo, 2017).6

We compute the industry-level stock returns as the value-weighted average of the
firm-level stock returns in a given industry weighted by their 1-month lagged market
capitalization. We use CRSP delisting returns to adjust for stock delists and we exclude
utility and financial industries (i.e., industries with four-digit SIC codes 4900 – 4999 and
6000 – 6999, respectively) from the analysis.

Measures for Distress Risk. We use several empirical measures for distress risk. The
first measure is the distress risk measure constructed as in Campbell, Hilscher and
Szilagyi (2008, see the third column in Table IV of their paper). The second measure is
the distance to default measure constructed using the naive Merton default probability as
in Bharath and Shumway (2008, see equation 12 of their paper). The distance to default
measure negatively captures the distress risk; namely, lower distance to default measure
means higher distress risk. The two empirical measures for distress risk are yearly and
depend on market price, which enables them to better capture potential spillover effects
quickly. In Online Appendix B, we explain the construction method of the above two
measures in detail.

We use bond yield spread and CDS spread as two additional measures for distress risk.
Bond yield spread is the average yield spread of all bonds issued by a firm. As in Chen
et al. (2018) and Chen et al. (2020), our bond yield spread data combine the Mergent Fixed
Income Securities Database (FISD) from 1973 to 2004 and the TRACE database from 2005
to 2018. We clean the Mergent FISD and TRACE data following Collin-Dufresn, Goldstein
and Martin (2001) and Dick-Nielsen (2009). For each transaction, we calculate the bond
yield spread by taking the difference between the bond yield and the Treasury yield with
corresponding maturity. We obtain CDS spread from Markit. Following previous studies
(e.g., Klingler and Lando, 2018; Collin-Dufresne, Junge and Trolle, 2020), we focus on
CDS contracts with “XR” (no restructuring) as restructuring clause and we examine the
par-equivalent CDS spread. The bond yield spread and CDS spread are market-based
measures for distress risk, and thus arguably more directly capture distress risk than the
measure of Campbell, Hilscher and Szilagyi (2008) and the distance to default measure.
The disadvantage of these two measures is that their coverage is relatively small in the

6Like Bustamante and Donangelo (2017), we use four-digit SIC codes in Compustat instead of historical
SIC codes from CRSP to define industries, because previous studies have concluded that Compustat-based
SIC codes are, in general, more accurate (e.g., Guenther and Rosman, 1994; Kahle and Walkling, 1996;
Bhojraj, Lee and Oler, 2003). Earlier studies have also pointed out that the four-digit SIC codes in Compustat
often end with a 0 or 9, which could represent a broader three-digit industry definition. To address this
problem, we follow Bustamante and Donangelo (2017) and replace the SIC code of firms whose SIC code
ends with a 0 or 9 with the SIC code of the main segment in the Compustat segment data. We further
remove those firms whose four-digit SIC code still ends with a 0 or 9 after this adjustment.
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cross section. The bond yield spread dataset spans the period from 1973 to 2018 and
covers a cross section of 421 to 746 firms in the CRSP-Compustat merged sample (i.e.,
on average around 11.2% of firms in the cross section of CRSP-Compustat). The CDS
dataset spans the period from 2001 to 2018, and it covers 90 firms in the CRSP-Compustat
merged sample in 2001 and a cross section of 310 to 584 firms from 2002 to 2018 (i.e., on
average around 7.5% of firms in the cross section of CRSP-Compustat).

Measures for Profit Margins and Markups. Following the recent literature (e.g., Antras,
Fort and Tintelnot, 2017; Anderson, Rebelo and Wong, 2020; Autor et al., 2020; De Loecker,
Eeckhout and Unger, 2020), we use the wedge between sales and variable costs of
production to measure gross profit margins and markups in our main empirical analyses,
and use cost of goods sold (COGS) from the financial statement of the firm as an empirical
proxy for the variable cost of production. The item COGS bundles all expenses directly
attributable to the production of the goods sold by the firm and includes materials and
intermediate inputs, ordinary labor cost, energy, and so on. Specifically, gross profit
margins are computed as the difference between sales and cost of goods sold divided by
sales, and markups are computed as the natural log of the ratio between sales and cost of
goods sold. The data of sales and cost of goods sold are from Compustat.

For robustness analysis, we use the wedge between sales and total costs of operating
the firm to measure net profit margins and operating markups, similar to those empirical
measures in the literature (e.g., Karabarbounis and Neiman, 2018; Baqaee and Farhi,
2019; Anderson, Rebelo and Wong, 2020), and use selling, general and administrative
expenses (SG&A) as an operating expenses from the financial statement of the firm to
gauge fixed costs of operating the firm, interest expenses (XINT) to gauge fixed costs of
working capital for running the firm (e.g., Bolton, Chen and Wang, 2011, 2014; Jermann
and Quadrini, 2012), and capital depreciation (DP) to gauge additional variable costs of
production (e.g., Greenwood, Hercowitz and Huffman, 1988). The total cost of operating
the business is the sum of COGS, SG&A, DP, and XINT. The item SG&A includes selling
expenses (salaries of sales personnel, advertising, rent), general operating expenses, and
administration (executive salaries, general support related to the overall administration).
Specifically, net profit margins are computed as the difference between sales and total
costs of operating the firm (i.e., COGS + SG&A + DP + XINT) divided by sales. The
data are from Compustat.

Our measures are based on the so-called “accounting profits approach” to estimate
profit margins and markups (e.g., Baqaee and Farhi, 2019; Autor et al., 2020).7 We

7To differentiate the profit margin and markup measures based on the accounting profits approach
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consider gross profit margins and markups to focus on production profits of firms, while
we consider net profit margins and operating markups to capture the operating profits
of firms. As emphasized by Baqaee and Farhi (2019), the accounting profits approach
has the virtue of requiring very little manipulation of the raw data and being robust
to potential mis-specification in the user-cost estimation approach and the production
function estimation approach.

Natural Disaster Data. We obtain information on the property losses caused by natural
disasters hitting the US territory from the Spatial Hazard Events and Loss Databases for
the United States (SHELDUS). The dataset has been widely used in the recent finance
literature (e.g., Morse, 2011; Barrot and Sauvagnat, 2016; Bernile, Bhagwat and Rau, 2017;
Cortés and Strahan, 2017; Alok, Kumar and Wermers, 2020; Dou, Ji and Wu, 2021b; Dou,
Kogan and Wu, 2021), and it covers natural hazards such as thunderstorms, hurricanes,
floods, wildfires, and tornados, as well as perils such as flash floods and heavy rainfalls.
For each event, the database provides information on the start date, end date, and the
identifiers of all affected counties. We map public firms in Compustat-CRSP to SHELDUS
based on the locations of their headquarters and establishments. We collect the locations
of firms’ headquarters from their 10-K filings downloaded from the Electronic Data
Gathering, Analysis, and Retrieval (EDGAR) system. We collect the locations of firms’
establishments from the Infogroup Historical Business Database.8 The merged location
data span the period from 1994 to 2018.

Production Network Data. We measure industry-level production network connected-
ness using the forward and backward connectedness measures of Fan and Lang (2000),
which are computed based on input-output accounts data. We identify firm-level supplier-
customer links based on Compustat customer segment data and Factset Revere data
following Barrot and Sauvagnat (2016) and Gofman, Segal and Wu (2020). We identify
firm pairs that have a high potential for vertical relatedness based on vertical relatedness
data from Frésard, Hoberg and Phillips (2020).

Firms’ Individual Consumer Data. We identify the geographic locations of firms’ in-
dividual consumers using a detailed dataset from Baker, Baugh and Sammon (2020),

from the conceptual “marginal” profit margin and markup, Baqaee and Farhi (2019) use the term “average”
markup when referring to the accounting-based measures.

8Infogroup gathers geographic location-related business and residential data from various public data
sources, such as local yellow pages, credit card billing data, etc. The data contain addresses, sales, and
number of employees at the establishment level. We merge Infogroup to Compustat-CRSP based on stock
tickers and firm names.
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which provides firms’ sales to individual consumers at the city level from 2010 to 2015.
The individual consumer dataset is constructed based on a transaction-level database
that covers debit and credit card spending across around two million American users
to gain insights about the firms that they patronize, and it mainly covers firms in the
consumer-facing industries (i.e., airlines, grocery stores, hotels, retailers, restaurants,
utilities, and many online services). We thank Scott Baker for generously allowing us to
access this dataset.

Credit Lending Data. We use Thomson Reuters LPC DealScan syndicated loan data to
capture lenders’ exposure to natural disasters and to construct the firm-specific credit
supply shocks during the Lehman crisis. The DealScan database contains comprehensive
historical information on loan characteristics, such as borrower names, lender names,
pricing, start dates, end dates, and loan purposes. The loan characteristics are compiled
from filings of the US Securities and Exchange Commission (SEC) and other internal
resources. According to Carey and Hrycray (1999), the DealScan database covers between
50% and 75% of commercial loans in the US. We merge borrowers in DealScan to
Compustat-CRSP based on the link table built by Chava and Roberts (2008). We merge
lenders in DealScan to Compustat-CRSP based on the link table built by Schwert (2018).

AJCA Data. We examine the impact of AJCA, in which firms are allowed to repatriate
foreign profits to the US at a 5.25% tax rate, rather than the existing 35% corporate tax
rate. We define the firms shocked by the passage of AJCA as those with more than 33%
pre-tax income from abroad during the 3-year period prior to AJCA (i.e., 2001 to 2003).
Firms’ foreign pre-tax income and the total pre-tax income are from Compustat. We
follow Grieser and Liu (2019) in using a cutoff value of 33%. Our results are robust to
alternative cutoff values such as 10%, 25%, and 50%.

4 Empirical Results

We describe our empirical findings in this section. Section 4.1 illustrates how we build
the competition network through common market leaders and how we construct the
competition network centrality measure. Section 4.2 shows that industries with higher
competition network centrality are associated with higher expected returns. Sections 4.3
and 4.4 exploit the natural disaster setting to examine the within-industry spillover effects
and the cross-industry contagion effects, respectively. Section 4.5 presents evidence from
the AJCA tax holiday and the Lehman crisis.
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Table 2: Connected four-digit SIC pairs of the competition and production networks.

Competition network

0 1 Total

Production network
0 531, 791 1, 129 532, 920

1 1, 129 12 1, 141

Total 532, 920 1, 141 534, 061

4.1 Competition Network and Centrality Measures

Construction of Competition Network. Motivated by our model, we construct the
competition network of industries linked by common market leaders (i.e., conglomerates).
Based on the competition network, we test whether the natural disaster shocks hitting
market leaders in one industry can influence the profit margins of market leaders in
another industry if these two industries share some common market leaders. We provide
details on the construction of the competition network and describe the empirical design
of our study below.

When constructing the competition network, we use Compustat historical segment
data that provide information on the SIC codes for all the segments in which firms
operate. Compustat historical segment data are widely used in the literature to identify
the segments in which firms operate (e.g., Lamont, 1997; Rajan, Servaes and Zingales,
2000). The coverage of the data starts in 1976. We define a firm as a common market
leader for a pair of four-digit SIC industries i and j if the firm is ranked among the top
10 based on the segment-level sales in both industries. The competition network at any
point in time t is a collection of industries linked by common leaders. The network is
updated dynamically every year according to our definition of common market leaders.

We construct the competition network at the four-digit SIC industry level. We drop
financial industries (SIC codes from 6000 to 6999) in constructing the network. Two
industries are connected on the competition network if they share at least one common
market leader. To illustrate the difference between competition network and production
network, we use the network structure in 1994 (i.e., the first year of our data in the natural
disaster analysis) as an example. There are 1,141 pairs of connected industries out of
534,061 possible industry pairs in the competition network of 1994. We construct the
production network based on the connectedness measures of Fan and Lang (2000). Specif-
ically, we average the forward-connectedness and backward-connectedness measures
between two four-digit SIC industries to get an average connectedness measure. We
then define whether two four-digit SIC industries are connected or not in the production
network. Two industries are connected on the production network if their connectedness
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Competition network Production network

Note: This figure shows the competition and production networks at the two-digit SIC industry level in 1994, which is the first year
of our data in the natural disaster analysis. The numbers in the graph represent the two-digit SIC industries. The size of the circles
represents the magnitude of node degree (i.e., the number of other two-digit SIC industries to which a given industry connects). The
thickness of the line represents the strength of connection between the two-digit SIC industries.

Figure 3: Competition network versus production network.

measure is above a cutoff value. We choose a cutoff value such that the total number of
connections matches with that of the competition network in the 1994 snapshot. By doing
this, we effectively normalize the total number of connections, which enables us to focus
on the difference in the distribution of connections among industry pairs (i.e., the extent
to which the competition network is overlapped with the production network).

Table 2 compares the connected four-digit SIC pairs of the competition network with
those of the production network. These two networks share only 1.0% of connections,
and the vast majority of the connected industry pairs are different between the two
networks. Figure 3 further visualizes the structure of the two networks. We aggregate
the industry connections to the two-digit SIC level in this plot to make the number of
nodes manageable. The plot clearly shows that the competition network we construct
and examine in this paper is distinct from the production network emphasized in the
extant literature. Such a clear distinction between the two networks is evident in every
year of our data sample. Consistently, in Section 4.2, we show that the asset pricing
implications of the competition network centrality cannot be explained by other industry
characteristics such as product network centrality. In Sections 4.3 and 4.4, we show
that the within-industry and cross-industry spillover effects of distress risk cannot be
explained by production network externality.
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Common Market Leaders. Common market leaders operate in more than one industries.
Although they are larger than an average firm, common market leaders are not mecessarily
the largest firms in the economy. As shown in Table 3, there are around 496 common
market leaders each year. Only 6.43% of the common market leaders are “superstar”
firms (i.e., top 50 firms ranked by sales). The majority of the common market leaders are
actually not the largest firms. For example, more than 87% of common market leaders
are ranked outside of top 100 firms in terms of sales, while more than 55% of common
market leaders are ranked outside of top 500 firms. Within the subset of the largest firms
ranked by sales, about half or more are stand-alone firms that are not common market
leaders. For example, in the top 100 firms, on average 59 of them are common market
leaders and the rest are stand-alone firms. In the top 500 firms, on average 220 of them
are common market leaders and the rest are stand-alone firms.

One may think that common market leaders are unlikely to experience distress risk
because they are large enough to weather negative shocks. We find that this conjecture is
not true in the data. Figure 4 shows the distress risk (Panel A) and financial constraint
(Panel B) of the common market leaders. We also plot the two measures for the superstar
firms (i.e., top 50 firms ranked by sales) and all firms in the economy. The distress
risk measure is constructed as in the work of Campbell, Hilscher and Szilagyi (2008),
while the financial constraint measure is the delay investment score from Hoberg and
Maksimovic (2015). From these two plots, we can see that the distribution of the distress
risk and financial constraint are quite wide for common market leaders. As shown in
Panel A of Figure 4, we find that although the level of the distress risk for the common
market leaders is lower than an average firm in the economy, common market leaders
exhibit a wide distribution of distress risk. The distribution of the financial constraint
measure looks even more similar among the three groups of firms (see Panel B). This
pattern suggests that common market leaders, and even superstar firms seems to have
fairly similar chances to become financially constrained to other firms in the economy.
This finding is consistent with Hoberg and Maksimovic (2015), who show that financial
constraint captured by the delay investment score cannot be simply explained by firm
size.

Panel C of Table 3 shows the distribution of the number of industries in which industry
market leaders operate. We find that common market leaders mostly operate in two or
three industries and this pattern is stable over time. The distribution pattern suggests
that it is unlikely for common market leaders to fully eliminate their distress risk through
diversification, which is consistent with what we see in Figure 4.
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Table 3: Common market leaders.

Panel A: number of common market leaders in the largest firms

Mean Median SD Min p10th p25th p75th p90th Max

Top 50 firms 30.7 31 3.8 20 26 28 34 35 37
Top 100 firms 58.5 59 7.0 34 51 54 63 68 71
Top 200 firms 108.7 106 14.5 73 95 99 119 133 140
Top 500 firms 219.6 211 35.9 150 186 190 232 284 295
All firms 495.8 448 107.6 317 399 415 560 687 726

Panel B: # of common market leaders in the largest firms normalized by the total # of common market leaders (%)

Mean Median SD Min p10th p25th p75th p90th Max

Top 50 firms 6.43 6.53 1.36 3.31 4.31 5.54 7.42 8.15 8.52
Top 100 firms 12.11 12.43 1.82 8.26 9.80 10.45 13.36 14.36 14.84
Top 200 firms 22.31 22.56 2.19 17.63 19.22 20.43 23.81 25.06 25.97
Top 500 firms 44.78 45.20 3.04 39.14 40.30 42.02 47.15 48.61 49.55

Panel C: distribution of the number of industries in which industry market leaders operate (%)

# of industries 1 2 3 4 5 6 7 8

Year 1990 77.76 14.85 4.66 1.89 0.61 0.19 0.04 0
Year 2000 75.94 16.40 5.03 1.80 0.59 0.17 0.07 0
Year 2010 74.55 17.98 5.25 1.51 0.47 0.14 0 0.09
Year 2018 75.48 17.87 5.68 0.65 0.13 0.13 0.06 0

Note: For each year from 1976 to 2018, we count the number of common market leaders contained in the largest 50, 100, 200, and
500 firms (ranked by firm sales) and in the full sample. Panel A shows the summary statistics (i.e., mean, median standard deviation,
min, 10th percentile, 25th percentile, 75th percentile, 90th percentile, max) for the corresponding yearly time series. Panel B shows
the summary statistics for the number of common market leaders contained in the largest 50, 100, 200, and 500 firms normalized
by the total number of common market leaders in the full sample. Panel C shows the distribution of the number of industries in
which industry market leaders operate (%). Note that common market leaders are industry market leaders operate in two or more
industries. We show the distributions in four snapshots: 1990, 2000, 2010, and 2018.
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Note: This figure shows the distress risk (Panel A) and financial constraint (Panel B) of the common market leaders (solid blue lines),
top 50 firms ranked by sales (dotted red lines), and all firms (dashed black lines).The distress risk measure is constructed as in the
work of Campbell, Hilscher and Szilagyi (2008). The financial constraint measure is the delay investment score from Hoberg and
Maksimovic (2015).

Figure 4: Distress risk and financial constraint of the common market leaders.
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Table 4: Competition network centrality measures.

Panel A: Correlation among centrality measures

Degree Closeness Betweenness Eigenvector

Degree 1

Closeness 0.59∗∗∗ 1

Betweenness 0.80∗∗∗ 0.42∗∗∗ 1

Eigenvector 0.66∗∗∗ 0.27∗∗∗ 0.58∗∗∗ 1

Panel B: Variance explained by the principal components

PC1 PC2 PC3 PC4

Variance explained (%) 67.28 18.72 10.05 3.95

Note: Panel A shows the correlation among the four centrality measures (degree, closeness, betweenness, and eigenvector) com-
puted from the competition networks. The sample period of the data is from 1977 to 2018. *, **, and *** indicate statistical significance
at the 10%, 5%, and 1% levels, respectively. We perform principal component analysis based on the time series of the four centrality
measures. Panel B shows the amount of variance explained by the four individual principal components.

Construction of Competition Network Centrality Measures. We consider four centrality
measures for all industries connected on the competition network – closeness, degree,
betweenness, and eigenvector – following the literature (e.g., Sabidussi, 1966; Bonacich,
1972; Freeman, 1977; El-Khatib, Fogel and Jandik, 2015). Closeness is the inverse of the
sum of the (shortest) weighted distances between a node and all other nodes in a given
network. It indicates how easily a node can be affected by disturbances to other nodes
in the network. Degree is the number of direct links a node has with other nodes in
the network. The more links the node has, the more central this node is in the network.
Betweenness gauges how often a node lies on the shortest path between any other two
nodes of the network. Hence, it indicates how much control a node could have on the
spillover effect on the network, because a node located between two other nodes can
either dampen or amplify the spillover effects between those two nodes through the
network links. Finally, eigenvector centrality is a measure of the importance of a node
in the network. It takes into account the extent to which a node is connected with other
highly connected nodes. In Online Appendix D, we provide mathematical formulas and
a simple example to demonstrate the calculations.

We construct all four measures and find that they are all highly correlated (see Table
4). Given the fact that they comove significantly and positively with each other over time
and each of them only captures some, but by no means all, aspects of the centrality of
nodes on the competition network, we consider the first principal component of the four
centrality measures as our major measure in the paper. As a robustness check, we also
show that the asset pricing results hold for each one of the four proxies as the centrality
measure on the competition network. The eigen-decomposition of the covariance matrix
of four different measures of network centrality exhibits a dominant highest eigenvalue
and fast decay for the rest of the eigenvalues. Panel B of Table 4 shows that there is one
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Table 5: Excess industry returns sorted on competition network centrality.

Q1 (low) Q2 Q3 Q4 Q5 (high) Q5 − Q1

Panel A: Single sort on PC1 of the four centrality measures

5.33 6.67∗ 5.46 7.82∗∗ 9.67∗∗∗ 4.34∗∗

[1.59] [1.95] [1.59] [2.56] [2.96] [2.54]

Panel B: Single sort on degree centrality

5.99∗ 5.06 6.42∗ 8.52∗∗∗ 9.40∗∗∗ 3.41∗∗

[1.80] [1.47] [1.94] [2.67] [2.88] [1.99]

Panel C: Single sort on closeness centrality

5.65∗ 6.01∗ 7.12∗∗ 7.39∗∗ 9.42∗∗∗ 3.77∗∗

[1.70] [1.79] [2.07] [2.34] [2.91] [2.23]

Panel D: Single sort on betweenness centrality

6.00∗ 5.69∗ 7.68∗∗ 7.13∗∗ 9.10∗∗∗ 3.10∗

[1.72] [1.80] [2.36] [2.28] [2.80] [1.83]

Panel E: Single sort on eigenvector centrality

5.58∗ 4.97 7.41∗∗ 7.97∗∗ 9.52∗∗∗ 3.94∗∗

[1.68] [1.54] [2.18] [2.43] [2.89] [2.43]

Note: This table shows the average excess industry returns for the industry quintile portfolios sorted on various measures of
competition network centrality. In June of each year t, we sort industries into quintiles based on the centrality measure in year
t− 1. Once the portfolios are formed, the industry monthly returns are tracked from July of year t to June of year t + 1. Because
common leaders and conglomerates operate in more than one industry, we exclude them in computing industry returns. Industry
returns are value-weighted from stock returns of the stand-alone firms in the industries based on firms’ 1-month lagged market
capitalization. We exclude from the analysis financial and utility industries and very small industries that contain fewer than three
firms. Newey-West standard errors are estimated with one lag. We annualize average excess returns by multiplying them by 12.
The sample period of the data is from July 1977 to June 2018. We include t-statistics in brackets. *, **, and *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively.

dominant common factor that drives much of the covariances of four different centrality
measures on the competition network — the first principal component (PC1).

4.2 Asset Pricing Results

In this section, we use both portfolio sorting analyses and Fama-MacBeth regressions to
test one of the main predictions of our model summarized in Proposition 2.3. Specifically,
we test the hypothesis that industries with higher competition network centrality tend
to have higher exposures to the systematic distress shock that carries a negative market
price, thereby compensating the investors with higher expected stock returns.

Portfolio Sorting Analysis. In June of each year t, we sort industries into quintiles based
on their competition network centrality measure in year t− 1. Once the portfolios are
formed, their monthly returns are tracked from July of year t to June of year t + 1. We
apply several filters in the construction of industry-level returns that are defined as the
value-weighted average of firm-level returns in a given industry. First, we exclude com-
mon leaders from the sample in computing industry-level returns because they operate in
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more than one industry. Similar to Bustamante and Donangelo (2017), we further exclude
firms that operate in more than three segments according to the Compustat segment
data. By focusing on industry returns constructed from non-conglomerate firms in each
industry, we address the concern of the double counting issue of market leaders’ stock
returns in different industries and the concern that the asset pricing results may be driven
by the diversification effect of conglomerates (e.g., Lamont and Polk, 2001; Hann, Ogneva
and Ozbas, 2013). Finally, we exclude financial and utility industries, as well as very
small industries that contain fewer than three firms.

Table 5 shows the average excess returns of the industry portfolios sorted on the
competition network centrality measure. Following previous asset pricing studies that
examine the returns of industry portfolios (e.g., Hou and Robinson, 2006; Bustamante
and Donangelo, 2017), we compute the returns of an industry quintile portfolio as the
equal-weighted returns across industries in this industry quintile portfolio. We find
that industries with higher competition network centrality are associated with higher
excess returns, consistent with the prediction of Proposition 2.3. The magnitudes of
return spread are economically large. The spread in average excess returns between the
industries with the highest competition network centrality (Q5) and the industries with
the lowest competition network centrality (Q1) is 4.34%. These spreads are comparable
to the equity premium and value premium. We find similar patterns when we form
industry portfolios using each one of the four single centrality measures. We also show
that industries with higher competition network centrality are associated with higher
alphas (i.e., risk-adjusted excess returns) after adjusting for the market return, Fama-
French three factors, Pástor-Stambaugh liquidity factor, Stambaugh-Yuan mispricing
factor, Hou-Xue-Zhang q factors, and Fama-French five factors (see Table 6). The result
on the risk-adjusted excess returns based on various influential multi-factor asset pricing
models suggests that the systematic distress shock that generates the dispersion of stock
returns on the competition network is generically a consequence of the joint work of
various primitive economic shocks.

As shown in Table OA.5 of the Online Appendix, competition network centrality
seems to be largely unrelated to other industry characteristics including production
network centrality, industry size, industry-level book-to-market ratio, industry-level
gross profitability, and Herfindahl-Hirschman index (HHI). To formally control for these
industry characteristics in our asset pricing tests, we perform a double sort analysis in
which we first sort on these industry characteristics and then sort on competition network
centrality. We find that the return spreads of competition network centrality remain
robust after controlling for these industry characteristics (see Tables OA.6 and OA.7 of
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Table 6: Risk-adjusted excess industry returns sorted on competition network centrality.

CAPM model Fama-French
three-factor model

Pástor-Stambaugh
liquidity-

factor model

Stambaugh-Yuan
mispricing-

factor model

Hou-Xue-Zhang
q-factor model

Fama-French
five-factor model

Panel A: Long-short quintile portfolio sorted on PC1 of the four centrality measures

4.13∗∗ 4.18∗∗ 4.05∗∗ 4.58∗∗∗ 5.24∗∗ 4.80∗∗

[2.37] [2.29] [2.18] [2.24] [2.23] [2.52]

Panel B: Long-short quintile portfolio sorted on degree centrality

3.59∗∗∗ 3.60∗∗ 3.35∗ 3.86∗∗ 4.17∗ 3.87∗∗

[2.11] [2.09] [1.86] [1.99] [1.83] [2.12]

Panel C: Long-short quintile portfolio sorted on closeness centrality

3.68∗∗ 3.60∗∗ 3.75∗∗ 4.23∗∗ 5.37∗∗ 4.87∗∗∗

[2.17] [2.02] [2.06] [2.13] [2.32] [2.62]

Panel D: Long-short quintile portfolio sorted on betweenness centrality

3.48∗∗ 3.41∗∗ 3.08∗ 3.22∗ 3.61∗ 3.73∗∗

[2.03] [1.97] [1.71] [1.70] [1.66] [2.11]

Panel E: Long-short quintile portfolio sorted on eigenvector centrality

3.53∗∗ 4.09∗∗ 4.11∗∗ 4.83∗∗∗ 5.71∗∗∗ 5.85∗∗∗

[2.16] [2.47] [2.42] [2.69] [2.76] [3.39]

This table shows the alphas of the long-short industry quintile portfolio sorted on various measures of competition network central-
ity. The factor models include the capital asset pricing model (CAPM), Fama-French three-factor model (Fama and French, 1993),
Pástor-Stambaugh liquidity-factor model (Pástor and Stambaugh, 2003), Stambaugh-Yuan mispricing-factor model (Stambaugh and
Yuan, 2017), Hou-Xue-Zhang q-factor model (Hou, Xue and Zhang, 2015), and Fama-French five-factor model (Fama and French,
2015). In June of each year t, we sort industries into quintiles based on the centrality measure in year t− 1. Once the portfolios are
formed, the industry monthly returns are tracked from July of year t to June of year t + 1. Because common leaders and conglomer-
ates operate in more than one industry, we exclude them in computing industry returns. Industry returns are value-weighted from
stock returns of the stand-alone firms in the industries based on firms’ 1-month lagged market capitalization. We exclude from the
analysis financial and utility industries and very small industries that contain fewer than three firms. Newey-West standard errors
are estimated with one lag. We annualize alphas by multiplying them by 12. The sample period of the data is from July 1977 to June
2018. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

the Online Appendix).

Excluding Network Links Connected by the Largest Firms. We have shown that a
subset of common market leaders are largest firms in the economy (see Table 3), which
raises a possibility that the asset pricing implications of the competition network centrality
may be driven by the largest firms that are also common market leaders. In Table 8,
we compute the centrality measures by excluding network links connected by common
market leaders that are also largest firms. We show that the return spread for industries
sorted on the competition network centrality remains significantly positive after we
exclude network links connected by common market leaders in the top 50, 100, and 200
firms ranked by sales. These findings suggest that the asset pricing implications of the
competition network centrality are not driven by a handful of largest firms.
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Table 7: Fama-MacBeth regressions.

(1) (2) (3) (4) (5) (6)
Reti,t (%)

Competition_Centralityi,t−1 0.142∗∗∗ 0.145∗∗∗ 0.096∗∗∗ 0.080∗∗ 0.083∗∗ 0.162∗∗∗

[2.752] [2.748] [2.760] [2.334] [2.535] [3.287]

Production_Centralityi,t−1 0.081 −0.013 −0.025 −0.024 −0.008
[1.401] [−0.221] [−0.465] [−0.444] [−0.106]

LnSalesi,t−1 0.272∗∗∗ 0.303∗∗∗ 0.286∗∗∗ 0.350∗∗∗

[3.860] [4.278] [4.126] [3.463]

LnBEMEi,t−1 0.071 0.092 0.220∗∗

[1.009] [1.306] [2.213]

GPi,t−1 0.122∗∗ 0.276∗∗∗

[2.152] [3.144]

HHIi,t−1 −0.011
[−0.180]

Constant 0.984∗∗∗ 0.963∗∗∗ 0.874∗∗∗ 0.844∗∗∗ 0.845∗∗∗ 0.651∗∗

[3.755] [3.389] [2.985] [2.869] [2.878] [2.245]

Average obs/month 203 203 199 198 198 97
Average R-squared 0.006 0.010 0.026 0.042 0.053 0.096

Note: This table reports the slope coefficients and test statistics from Fama-MacBeth regressions that regress monthly industry
returns (Reti,t) on the competition network centrality measure (Competition_Centralityi,t−1 ) and a set of control variables, which
include production centrality (Production_Centralityi,t−1), natural log of industry revenue (LnSalesi,t−1), natural log of industry
book-to-market ratio (LnBEMEi,t−1), industry gross profitability (GPi,t−1), and industry concentration ratio (HHIi,t−1). The com-
petition network centrality measure is the PC1 of the four centrality measures of the competition network (i.e., degree centrality,
closeness centrality, betweenness centrality, and eigenvector centrality). The production network centrality is the PC1 of the same
four centrality measures of the production network. Industry book-to-market ratio is the ratio between the book equity and the
market equity of an industry. Industry gross profitability is constructed as gross profits (revenue minus cost of goods sold) scaled
by assets, following the definition of Novy-Marx (2013). Industry-level revenue, cost of goods sold, book assets, book equity, and
market equity are the sum of the corresponding firm-level measures for firms in the same industry. Industry concentration ratio is
the HHI index of the top 50 firms. The concentration ratio data come from the US Census which covers manufacturing industries.
All the independent variables are standardized to have means of 0 and standard deviations of 1. Because common leaders and
conglomerates operate in more than one industry, we exclude them in computing industry returns and characteristics. Industry
returns are value-weighted from stock returns of the stand-alone firms in the industries based on firms’ 1-month lagged market
capitalization. We exclude from the analysis financial and utility industries and very small industries that contain fewer than three
firms. The sample period of the data is from 1977 to 2018. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels,
respectively.

Fama-MacBeth Regressions. We perform Fama-MacBeth tests by regressing monthly
stock returns on the PC1 of the competition network centrality measures. As Table 7
shows, the slope coefficient for competition network centrality is positive and statistically
significant. The slope coefficient is also economically significant. According to column
(6) of Table 7, a one-standard-deviation increase in competition network centrality is
associated with a 0.162- (1.94-) percentage-point increase in the monthly (annualized)
stock returns. The relation between competition network centrality measures and returns
is not subsumed by the industry characteristics. In other words, under the Fama-
MacBeth regression setting, we strengthen the results by showing that higher competition
network centrality predicts higher excess returns in the cross section not likely because
of the association between competition network centrality and some other industry
characteristics, such as production network centrality, industry-level sales, industry-level
book-to-market ratios, and industry-level gross profitability. We also control for the HHI

29



Table 8: Return spreads after excluding network links connected by the largest firms.

Q1 (low) Q2 Q3 Q4 Q5 (high) Q5 − Q1

Panel A: Keep all network links connected by common market leaders

5.33 6.67∗ 5.46 7.82∗∗ 9.67∗∗∗ 4.34∗∗

[1.59] [1.95] [1.59] [2.56] [2.96] [2.54]

Panel B: Exclude network links connected by common market leaders in the top 50 firms

5.69∗ 6.10∗ 6.17∗ 6.99∗∗ 10.36∗∗∗ 4.67∗∗∗

[1.75] [1.74] [1.88] [2.21] [3.15] [2.76]

Panel C: Exclude network links connected by common market leaders in top 100 firms

5.73∗ 5.45 7.77∗∗ 6.49∗∗ 9.91∗∗∗ 4.18∗∗

[1.76] [1.54] [2.43] [2.04] [2.98] [2.42]

Panel D: Exclude network links connected by common market leaders in top 200 firms

6.05∗ 6.41∗ 6.76∗∗ 7.35∗∗ 8.98∗∗∗ 2.92∗

[1.88] [1.84] [2.10] [2.32] [2.64] [1.74]

Panel E: Exclude network links connected by common market leaders in top 500 firms

7.45∗∗ 6.81∗∗ 6.60∗∗ 6.05∗ 8.63∗∗ 1.18
[2.26] [2.03] [2.02] [1.94] [2.47] [0.68]

Note: This table shows the average excess industry returns for the industry quintile portfolios sorted on the PC1 of the four
centrality measures. The method that we use to construct portfolio returns is explained in Table 5. In panel A, we keep all network
links connected by common market leaders. This panel is the same as panel A of Table 5. In panels B to E, we compute the centrality
measures by excluding network links connected by common market leaders in the top 50, 100, 200, and 500 firms ranked by sales
each year, respectively. The sample period of the data is from July 1977 to June 2018. We include t-statistics in brackets. *, **, and ***
indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

because industry returns have been shown to be priced in the cross section of industries
(e.g., Hou and Robinson, 2006; Ali, Klasa and Yeung, 2009; Giroud and Mueller, 2011;
Bustamante and Donangelo, 2017; Corhay, Kung and Schmid, 2020a).

Competition Network Centrality and Industry Risk Exposure. If the excess return of the
long-short industry portfolio sorted on competition network centrality is the compensation
for risk exposures, we expect that the long-short return spreads should capture the
fundamental systematic distress shocks, and that the betas of industry stock returns to
the long-short return spreads, denoted by βLS, be correlated with the sorting industry
characteristic (i.e., competition network centrality).9

We estimate the βLS at industry level based on monthly returns of individual industries
and the monthly returns of the long-short portfolio sorted on competition network
centrality. We find that the cross-industry correlation coefficient between βLS,i and the
natural log of the time-series average of the competition network centrality, denoted by
ln(Centralityi), is 0.33, with a p-value smaller than 0.001. Figure 5 shows the relation

9For example, in their seminal paper, Fama and French (1993) show that small stocks have higher
loadings on the small-minus-big (SMB) factor while value stocks have higher loadings on the high-minus-
low (HML) factor. Similar tests are also conducted in Fama and French (2015).
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Note: This figure shows the relation between competition network centrality and industry factor loadings. Factor loadings are
measured by the betas of industry stock returns to the returns of the long-short industry portfolio sorted on competition network
centrality (i.e., βLS). ln(Centrality) is the natural log of the PC1 of the four centrality measures of the competition network. Panel A
presents the binned scatter plot between ln(Centrality) and βLS, in which we sort ln(Centrality) into 10 bins. Panel B presents the
binned scatter plot between ln(Centrality) and βLS, in which we sort ln(Centrality) into 25 bins.

Figure 5: Relation between competition network centrality and industry factor loadings.

between competition network centrality measures and factor loadings βLS using binned
scatter plots. It is evident that βLS is strongly positively correlated with competition
network centrality.

Our model predicts that the earnings of the industries with higher competition network
centrality are more sensitive to fluctuations in aggregate financial condition. Consistent
with our model, we show that the return on equity (ROE) of industries with higher
competition network centrality comoves more negatively with discount rate shocks and
more positively with aggregate cash flow shocks.

In panel A of Table 9, we tabulate the sensitivity of industry earnings to discount rate
for industry quintile portfolios sorted on competition network centrality. We measure
the discount rate using the smoothed earnings-price ratio, which is the reciprocal of the
cyclically adjusted price-earnings ratio (CAPE) proposed by Campbell and Shiller (1988,
1998). We show that the earnings of industries with higher competition net centrality
comove more negatively with discount-rate shocks. In panel B of Table 9, we tabulate the
sensitivity of industry earnings to aggregate cash flow for industry quintile portfolios
sorted on competition network centrality. We measure the aggregate cash flow using the
average ROE across all industries. We show that the earnings of industries with higher
competition network centrality comove more positively with aggregate cash-flow shocks.
The heterogeneous discount-rate and cash-flow loadings across industries are consistent
with the finding that industries with higher competition network centrality are associated
with higher expected returns.
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Table 9: Discount-rate and cash-flow exposures and competition network centrality.

Q1 (low) Q2 Q3 Q4 Q5 (high) Q5 − Q1

Panel A: Sensitivity of industry earnings to discount rate

−0.27 −0.90 −1.85∗ −1.63∗ −2.50∗∗ −2.23∗∗

[−0.32] [−1.23] [−1.95] [−1.99] [−2.43] [−2.21]

Panel B: Sensitivity of industry earnings to aggregate cash flow

0.65∗∗∗ 0.52∗∗∗ 1.08∗∗∗ 0.91∗∗∗ 1.24∗∗∗ 0.58∗∗∗

[4.46] [5.06] [9.24] [8.36] [10.37] [2.87]

Note: This table examine the discount rate and cash flow exposures for industry portfolios sorted on competition network centrality.
In panel A, we tabulate the sensitivity of industry earnings to discount rate for industry quintile portfolios sorted on competition
network centrality. The regression specification is: ROE_shockp,t = β1SmoothEP_shockt + εp,t. ROE_shockp,t is the yearly shock
to the average ROE across industries in portfolio p in year t. Following the definition of ROE by Santos and Veronesi (2010), we
calculate industry-level ROE in year t as the ratio of industry-level clean-surplus earnings in year t and industry-level book equity
in year t− 1, where clean-surplus earnings in year t are the changes in book equity from year t− 1 to year t plus dividends in year
t. SmoothEP_shockt is the yearly shock to the smoothed earnings-price ratio, which is the reciprocal of the CAPE (e.g., Campbell
and Shiller, 1988, 1998). In panel B, we tabulate the sensitivity of industry earnings to aggregate cash flow for industry quintile
portfolios sorted on competition network centrality. The regression specification is: ROE_shockp,t = β1 Agg_ROE_shockt + εp,t.
Agg_ROE_shockt is the yearly shock to the average ROE across all industries in year t. We extract the yearly shock to the portfolio
ROE, aggregate ROE, and smoothed earnings-price ratio using the Hodrick-Prescott (HP) filter with a smoothing parameter of 6.25
(Ravn and Uhlig, 2002). The sample period of the data is from 1977 to 2018. We include t-statistics in brackets. *, **, and *** indicate
statistical significance at the 10%, 5%, and 1% levels, respectively.

Cross Sectional Asset Pricing Tests. We perform the cross sectional asset pricing tests
to examine whether our competition network centrality (CNC) measure is a factor that is
significantly priced in the cross section of asset returns. The test portfolios include 15
industry portfolios double sorted on size (3 groups) and book-to-market ratio (5 groups),
5 Fama French industry portfolios, and 6 maturity-sorted Treasury bond portfolios.10

We focus on industry returns in the test portfolios because exposures to the CNC factor
mainly capture the risk exposure of industries.

For each industry portfolio i = 1, 2, ..., N, we estimate betas from time-series regres-
sions of portfolio excess returns, Re

i,t, on the vector of risk factors, f act:

Re
i,t = ai + β′i, f ac f act + εi,t. (4.1)

We then run a cross-sectional regression of average excess portfolio returns on the

10To construct the 15 industry portfolios double sorted on size and book-to-market ratio, in each June
of year t, we independently sort industries into three groups based on their market cap in year t− 1 and
sort industries into five groups based on their book-to-market ratio in year t− 1. Once the portfolios are
formed, their monthly returns are tracked from July of year t to June of year t + 1. Because common
leaders and conglomerates operate in more than one industry, we exclude them in computing industry
returns and characteristics. The returns of a given industry are value-weighted from stock returns of the
stand-alone firms in the industries based on firms’ 1-month lagged market capitalization. We exclude
financial and utility industries and very small industries that contain fewer than three firms in constructing
the industry portfolios. Following previous asset pricing studies that examine the returns of industry
portfolios (e.g., Hou and Robinson, 2006; Bustamante and Donangelo, 2017), we compute the returns of an
industry portfolio as the equal-weighted returns across industries in this industry portfolio.
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Table 10: Cross sectional asset pricing tests.

(1) (2) (3) (4)
MKT MKT, CNC FF FF, CNC

Panel A: Price of risk

Intercept 3.18 1.90 2.00 1.87
t-FM 3.93 2.56 2.72 2.55
t-Shanken 3.92 1.65 2.40 1.60

MKT 0.71 2.01 1.90 1.93
t-FM 0.98 2.95 2.87 2.92
t-Shanken 0.74 1.64 1.94 1.57

CNC 6.50 6.84
t-FM 4.36 4.08
t-Shanken 2.76 2.52

SMB −1.41 −0.21
t-FM −2.72 −0.45
t-Shanken −2.03 −0.25

HML 0.93 −0.25
t-FM 1.55 −0.43
t-Shanken 1.13 −0.24

Panel B: Test diagnostics

Total MAPE 3.10 1.87 2.39 1.89
Adjusted R-squared 0.228 0.311 0.338 0.387
χ2

N−K 55.99 20.60 42.69 19.30
p-value <0.001 0.606 0.005 0.566

Note: This table presents pricing results for the 15 industry portfolios double sorted on size (3 groups) and book-to-market ratio
(5 groups), Fama French 5 industry portfolios, and 6 Treasury bond portfolios sorted by maturity. Each model is estimated as
E[Re] = λ0 + β f acλ f ac. MKT denotes the market excess returns, FF denotes the Fama-French three factors, CNC denotes the
competition network centrality factor, which the the returns of the long-short quintile industry portfolio sorted on competition
network centrality. Panel A reports the prices of risk with Fama-MacBeth (t-FM) and Shanken t-statistics (t-Shanken). Panel B
reports test diagnostics, including mean absolute pricing errors (MAPEs), adjusted R-squared, and a χ2 statistic that tests whether
the pricing errors are jointly zero. χ2

N−K represents the χ2 statistic with N − K degrees of freedom, where N denotes the number of
test portfolios and K denotes the number of risk factors in the asset pricing model. Data are quarterly, 1977Q3 to 2018Q2. Returns
and risk premia are reported in percent per year (quarterly percentages multiplied by four).

estimated betas:

E[Re
i,t] = λ0 + β′i, f acλ f ac + υi. (4.2)

Following previous studies (e.g., Adrian, Etula and Muir, 2014; He, Kelly and Manela,
2017), we include the intercept (i.e., λ0) in the cross-sectional regression. The results of
the cross sectional asset pricing tests are shown in Table 10. Panel A presents the cross-
sectional prices of risk, while panel B presents a few test diagnostics for each model. The
CAPM model (column 1) is not able to account for the spread in average returns across
portfolios. The cross-sectional intercept is economically large at 3.18% per annum and
statistically significant (t-FM = 3.93 and t-Shanken = 3.92). The factor price of the market
factor is statistically insignificant (t-FM = 0.98 and t-Shanken = 0.74), and the pricing
errors are large as seen by the χ2 test which measures the sum of the squared pricing
errors (χ2 = 55.99 with p-value <0.001). The Fama-French three-factor model (column 3)
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Note: We plot the realized mean excess returns of 20 industry equity portfolios (15 industry portfolios double sorted on size and
book-to-market ratio and 5 Fama French industry portfolios) and 6 maturity-sorted Treasury bond portfolios against the mean excess
returns predicted by various linear factor asset pricing models. Following The sample period is 1977Q3 to 2018Q2. Data are quarterly,
but returns are expressed in percent per year.

Figure 6: Realized versus predicted mean excess returns with the CNC factor.

does a better job in reducing the cross-sectional intercept. The economic magnitude of the
intercept decreases to 2.00% per annum with Fama-MacBeth and Shanken t-statistics to
be 2.72 and 2.40, respectively. However, the pricing errors are still large and statistically
significant (χ2 = 42.69 with p-value = 0.005). In addition, the price of risk for the SMB
factor is in fact significantly negative (t-FM = −2.72 and t-Shanken = −2.03), suggesting
that the SMB factor struggles to price the industry returns. The relative poor performance
of the CAPM model and the Fama-French three-factor model is perhaps not surprising,
because it has been shown that traditional factor models have difficulties explaining
industry returns (e.g., Lewellen, Nagel and Shanken, 2010).

Adding the CNC factor to the CAPM model (column 2) and the Fama-French three-
factor model (column 4) improves the performance of the asset pricing models. The factor
price of CNC is statistically significant (t-Shanken = 2.76 in column 2, t-Shanken = 2.52
in column 4). The economic magnitude of the intercept decreases to 1.90% and 1.87%
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per annum in columns (2) and (4), respectively (t-Shanken = 1.65 in column 2, t-Shanken
= 1.60 in column 4). The pricing errors also reduce significantly after adding the CNC
factor. The χ2 reduces to 20.60 and 19.30 in columns (2) and (4), and both of them are
statistically insignificant (p-value = 0.606 in column 2 and p-value = 0.566 in column 4).
We also plot the realized mean excess returns of test portfolios against their predicted
mean excess returns based on various factor models in Figure 6. Again, we can see that
CAPM fails to price the test portfolios, while the two-factor model with market returns
and CNC produces a cross-sectional fit comparable with the Fama-French three-factor
model. Taken together, the above findings suggest that CNC is indeed a factor that is
significantly priced in the cross section of asset returns, especially in the cross section of
industry returns.

4.3 Within-Industry Spillover Effects with Natural Disaster Shocks

After documenting the asset pricing implications of competition network centrality,
we move on to test the underlying economic mechanisms. Specifically, we exploit the
occurrences of natural disasters as exogenous shocks to firms’ distress risk to examine the
within-industry distress spillover effects in Section 4.3 and the cross-industry spillover
effects in Section 4.4.11

The negative impact of natural disasters on economic activities has been widely
studied in the literature (e.g., Garmaise and Moskowitz, 2009; Strobl, 2011; Baker and
Bloom, 2013; Cavallo et al., 2013; Hsiang and Jina, 2014; Barrot and Sauvagnat, 2016;
Dessaint and Matray, 2017; Seetharam, 2018; Aretz, Banerjee and Pryshchepa, 2019;
Boustan et al., 2020; Brown, Gustafson and Ivanov, 2021). Insurance coverage and public
disaster assistance can only partially offset firms’ losses from natural disasters (see Online
Appendix C for detailed discussion). As a result, natural disaster shocks negatively affect
firms’ cash flow (e.g., Brown, Gustafson and Ivanov, 2021) and increase firms’ distress
risk exogenously (e.g., Aretz, Banerjee and Pryshchepa, 2019). In this section, we first
use DID analysis to identify the spillover effects of natural disasters within industries.
We then show that the spillover effects are stronger for industries with higher levels of
entry barrier and financial constraint. Finally, we show that the within-industry spillover
effects cannot be rationalized by a list of alternative explanations including demand
commonality, production network externality, lender commonality, and institutional
blockholder commonality.

11Besides the natural disaster shocks, in Online Appendix G, we also exploit the setting where firms
suffer from distress due to firm-specific enforcement actions against financial frauds and use the DID
econometric specification with partial interference to examine the spillover impact of firms’ idiosyncratic
adverse distress shocks on their industry peers.
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4.3.1 DID Analysis

Treated and Matched Peer Firms. We follow Barrot and Sauvagnat (2016) in defining
a firm as being negatively affected by a natural disaster in a given year if the county in
which the firm’s headquarter or one of its major establishments is located experiences
property losses due to a major natural disaster during that year.12 We list the major
natural disasters included in our sample in Table OA.8 of the Online Appendix, and we
plot the frequency of major natural disasters for each county in the US mainland from
1994 to 2018 in Figure OA.7 of the Online Appendix. Panel A of Table 12 presents the
summary statistics for the key variables in our analysis. As shown in this panel, major
natural disasters affect around 10% of firms in the Compustat firm-year panel. Major
natural disasters cause substantial economic losses. Based on the SHELDUS data, we find
that the counties in which the treated firms are located experience on average (weighted
by the number of the firms in the counties) $1.9 billion in property losses in the disaster
years. This amount represents the lower bound of the negative economic impact caused
by major natural disasters, because it only includes direct property damage and does not
include other economic losses (e.g., reduction in revenue and growth) of the firms.

Firm Losses Following Major Natural Disasters. Firms report their natural disaster
losses in special items (Compustat item SPI) of the income statement, which contain
large, one-time expenses or source of income that firms do not expect to recur in future
years (e.g., Johnson, Lopez and Sanchez, 2011). To quantify the amount of firm losses
following major natural disasters, we use the following DID regression specification:

Special_itemsi,t/Salesi,t =β1Treati,t × Posti,t + β2Treati,t + β3Posti,t + θi + δt + εi,t. (4.3)

Dependent variable Special_itemsi,t/Salesi,t is the special items scaled by firm sales.
Negative amount of special items represents firm losses. Independent variable Treati,t

is an indicator variable that equals 1 if firm i is negatively affected by a major natural
disaster in year t. Posti,t is an indicator variable that equals 1 for observations after major
natural disasters. The term θi represents firm fixed effects, and the term δt represents
year fixed effects. For each treated firm or matched non-treated peer firm, we include
four yearly observations (i.e., 2 years before and 2 years after major natural disasters) in
the analysis. The coefficient β1 is the coefficient of interest and it captures the amount of

12We follow Barrot and Sauvagnat (2016) to define major natural disasters as those that cause at least
$1 billion in total estimated property damages and that last fewer than 30 days. A major establishment is
defined as an establishment that has 75% of firm-level sales. Our results are robust to other cutoffs such as
25% and 50%. We exclude financial firms from our sample following Barrot and Sauvagnat (2016).
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Table 11: Firm losses following major natural disasters.

(1) (2) (3) (4)

Special_itemsi,t/Salesi,t

Treati,t × Posti,t −0.013∗∗ −0.013∗∗ −0.012∗∗ −0.012∗∗

[−2.187] [−2.145] [−2.171] [−2.131]

Treati,t 0.012∗∗ 0.012∗∗ 0.005 0.005
[2.426] [2.445] [1.171] [1.036]

Posti,t 0.001 0.007∗ 0.002 0.004
[0.186] [1.851] [0.472] [1.241]

Firm FE No No Yes Yes
Year FE No Yes No Yes
Observations 135320 135320 135290 135290
R-squared 0.001 0.004 0.274 0.276

Note: This table examines the amount of firm losses following major natural disasters using a DID analysis. For each treated
firm (i.e., the firm whose headquarter or any of its major establishments is located in a county that is negatively affected by major
natural disasters), we match it with up to five non-treated peer firms in the same four-digit SIC industry. We perform the matching
based on the values of three matching variables (i.e., firm asset size, tangibility, and age) prior to natural disaster shocks using the
shortest distance method. We require that the matched peer firms are not suppliers or customers of the treated firms. We identify
the supplier-customer links using Compustat customer segment data and Factset Revere data. For each major natural disaster, we
include in the analysis four yearly observations (i.e., 2 years before and 2 years after the major natural disaster) for the treated firms
and their matched non-treated peers. The regression specification is: Special_itemsi,t/Salesi,t = β1Treati,t × Posti,t + β2Treati,t +
β3Posti,t + θi + δt + εi,t. The outcome variable is the special items scaled by firm sales. Negative amount of special items represents
firm losses. Treati,t is an indicator variable that equals 1 if firm i is a treated firm. Posti,t is an indicator variable that equals 1 for
observations after major natural disasters. The term θi represents firm fixed effects, and the term δt represents year fixed effects. The
sample of this table spans from 1994 to 2018. Standard errors are clustered at the firm level. We include t-statistics in brackets. *, **,
and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

firm losses following major natural disasters. As shown in Table 11, a firm on average
reports losses that amount to more than 1.2% of its sales when the county in which it is
located is hit by a major natural disaster.

Because special items contain other items besides natural disaster losses. One concern
is that the β1 coefficient may pick up changes of gains or losses other than those from
natural disasters. This concern is unlikely to be the driver of our results because there
is no good reason to believe firms on average experience significant losses from other
channels around idiosyncratic natural disaster shocks. To further alleviate the concern,
we examine the dynamics of firm losses around major natural disasters. We include
six yearly observations (i.e., 3 years before and 3 years after a major natural disaster) in
the DID analysis to better illustrate the dynamics. Specifically, we consider the yearly
regression specification as follows:

Special_itemsi,t/Salesi,t =
2

∑
τ=−3

β1,τ × Treati,t × NDi,t−τ + β2 × Treati,t

+
2

∑
τ=−3

β3,τ × NDi,t−τ + θi + δt + εi,t. (4.4)

Treati,t is an indicator variable that equals 1 if firm i is a treated firm. NDi,t−τ is an
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Note: This figure plots firm losses around major natural disasters. For each treated firm (i.e., the firm whose headquarter or any
of its major establishments is located in a county that is negatively affected by major natural disasters), we match it with up to five
non-treated peer firms in the same four-digit SIC industry. We require that the matched peer firms are not suppliers or customers
of the treated firms. For each major natural disaster shock, we include six yearly observations (i.e., 3 years before and 3 years after
a major natural disaster) for the treated firms and their matched non-treated peers in the analysis. To estimate the dynamics of the
firm losses, we consider the yearly regression specification as follows: Special_itemsi,t/Salesi,t = ∑2

τ=−3 β1,τ × Treati,t × NDi,t−τ +

β2× Treati,t +∑2
τ=−3 β3,τ ×NDi,t−τ + θi + δt + εi,t. The dependent variable is the special items scaled by firm sales. Negative amount

of special items represents firm losses. Treati,t is an indicator variable that equals 1 if firm i is a treated firm. NDi,t−τ is an indicator
variable that equals 1 if firm i (when firm i is a treated firm) or the treated firm to which firm i is matched (when firm i is a
matched non-treated firm) experiences natural disaster shocks in year t− τ. The term θi represents firm fixed effects, and the term
δt represents year fixed effects. When running the regression, we impose β1,−1 = β3,−1 = 0 to avoid collinearity in categorical
regressions, and by doing this, we set the years immediately preceding the disaster years as the benchmark. The sample of this
figure spans from 1994 to 2018. We plot estimated coefficients β1,τ with τ = −3,−2, · · · , 2, as well as their 90% confidence intervals
with standard errors clustered at the firm level. The vertical dashed line represents the occurrence of major natural disasters.

Figure 7: Firm losses following major natural disasters.

indicator variable that equals 1 if firm i (when firm i is a treated firm) or the treated
firm to which firm i is matched (when firm i is a matched non-treated firm) experiences
natural disaster shocks in year t − τ. The term θi represents firm fixed effects, and
the term δt represents year fixed effects. When running the regression, we impose
β1,−1 = β3,−1 = 0 to avoid collinearity in categorical regressions, and by doing this, we
set the years immediately preceding the disaster years as the benchmark. In Figure 7, we
plot estimated coefficients β1,τ with τ = −3,−2, · · · , 2, as well as their 90% confidence
intervals with standard errors clustered at the firm level. We find that the increase in
the reported firm losses takes place only after the occurrence of natural disaster shocks.
There is no significant change in the reporting of special items prior to natural disaster
shocks. This pattern further confirms that the estimates in Table 11 reflect natural disaster
losses of the affected firms.
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Regression Specifications to Identify Within-Industry Spillover Effects. To clearly iden-
tify and dissect out within-industry spillover effects, it is important to recognize that
cross-industry spillover effects also exist simultaneously in the background. For example,
to test whether firm j affected by natural disasters can generate a within-industry spillover
effect to a non-treated peer firm i in the same industry (denote this industry as industry
A), it is important to control for the cross-industry spillover effects caused by natural
disaster shocks in other industries (say industry B) that are connected to industry A via
the competition network. This is because although natural disasters are idiosyncratic
shocks, the concurrent natural disasters can simultaneously affect firms in industries A
and B and thus can lead to biased estimates of within-industry spillover effects. To control
for the strength of cross-industry spillover effects, we construct variable Ln(1 + n(Ci,t)),
which is the natural log of 1 plus the number of industries connected to firm i’s industry
through the competition network and shocked by natural disasters in year t.

We formally test whether natural disasters lead to an increased likelihood of distress
of the treated firms and their industry peers using the following regression specification:

Yi,t =β1Treati,t × Posti,t + β2Treati,t + β3Posti,t + β4Ln(1 + n(Ci,t)) + θi + δt + εi,t. (4.5)

Dependent variable Yi,t represents the distress risk (Distressi,t) and the distance-to-default
measure (DDi,t) of firm i in year t. Independent variable Treati,t is an indicator variable
that equals 1 if firm i is negatively affected by a major natural disaster in year t. Posti,t

is an indicator variable that equals 1 for observations after major natural disasters.
Ln(1 + n(Ci,t)) captures the strength of cross-industry spillover effects. The term θi

represents firm fixed effects, and the term δt represents year fixed effects. For each treated
firm or matched non-treated peer firm, we include four yearly observations (i.e., 2 years
before and 2 years after major natural disasters) in the analysis. In the presence of potential
spillover effects between the treated firms and the corresponding non-treated peer firms,
the summation between coefficient β1 and coefficient β3 captures the total treatment
effect for the treated firms (e.g., Boehmer, Jones and Zhang, 2020), while coefficient β3

alone captures the within-industry spillover effects to the peer firms. Finally, coefficient
β4 captures the cross-industry spillover effects through the competition network. It is
important to point out that natural disasters are not a one-time shock; instead, they
are shocks taking place throughout our sample period, which allows us to separate the
within-industry spillover effects captured by β3 from the aggregate time-series variation
captured by time fixed effect δt.
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DID Analysis Findings. We tabulate the results of the DID regressions for firm distress
in columns (1) to (4) of panel B in Table 12. We find that the distress risk of the treated
firms increases substantially, while the distance-to-default measure of the treated firms
decreases substantially following the natural disaster shocks. The p-value for the null
hypothesis that the total treatment effect is 0 (i.e., β1 + β3 = 0) is lower than 0.001. These
findings suggest that the treated firms become more distressed following major natural
disasters. Our results are consistent with those of Aretz, Banerjee and Pryshchepa (2019),
who show that hurricane strikes substantially increase firms’ distress risk.

We then examine the impact of distress risk on the treated firms’ gross profit margin.
We focus on profit margin rather than product price in this paper for the following
reasons. First, we are concerned with the real impact of product market competition, and
thus, it is the profit margin rather than the nominal price tag that matters here. Second,
the purpose of competition, and even price wars, is not to reduce competitors’ prices, but
to destroy their profit margins. Third, product market price may simply reflect changes
in product costs that can be affected by idiosyncratic shocks such as natural disasters. An
increase in product price does not necessarily mean a reduction in competition intensity.13

Fourth, accurate and detailed data of retail prices and firms’ marginal costs for a broad
set of industries are not available. Even if they were available, implicit discounts, coupons,
rebates, and gifts are not easily observable to economists. Last but not least, price levels
cannot be meaningfully compared across industries, but profit margins can.

To quantify the changes in treated firms’ gross profit margins, we again use the
regression specification (4.5), with dependent variable Yi,t representing the gross profit
margin and markup of firm i in year t. As shown in columns (5) to (8) of panel B in
Table 12, we find that the treated firms significantly reduce their gross profit margins and
markups, suggesting that these firms decide to reduce profitability and compete more
aggressively in the product market after increased distress risk. This finding is consistent
with the prediction of our model in the collusive Nash equilibrium.

Next, we test our model’s predictions on the within-industry spillover effects. Specifi-
cally, our model predicts that industry peers will compete more aggressively with the
distressed firms, which in turn will make the peers themselves more distressed. We find
strong supporting evidence for this prediction. Coefficient β3 in columns (5) to (8) of

13In Section C.2 of the Online Appendix, we show that both gasoline price and crude oil price increased
sharply in response to damage to the refinery industry caused by Hurricanes Harvey and Irma. However,
the amount of increase in gasoline price (in percentage term) was much lower than that of crude oil. As a
result, the profit margin of the oil refinery industry reduced significantly after the hurricanes, suggesting
that refinery firms did not simply pass the increased input costs to their customers; instead, they internalized
some of the increased costs. This finding is consistent with our model in the collusive Nash equilibrium
that predicts intensified product market competition in response to firms’ increased distress risk.
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Table 12: Identifying within-industry spillover effects using DID analysis.

Panel A: Summary statistics of the firm-year panel

Obs. # Mean Median SD p10th p25th p75th p90th

NDi,t 88297 0.100 0 0.301 0 0 0 1
Distressi,t 92185 −7.228 −7.489 1.005 −8.317 −7.986 −6.701 −5.618
DDi,t 80858 5.321 4.506 4.254 0.292 2.070 7.833 11.884
PMi,t 96269 0.346 0.338 0.264 0.092 0.206 0.519 0.703
Markupi,t 96140 0.515 0.412 0.451 0.097 0.230 0.731 1.208
Ln(1 + n(Ci,t)) 98562 0.747 0.693 0.739 0 0 1.386 1.792

Panel B: Identifying within-industry spillover effects using DID analysis

(1) (2) (3) (4) (5) (6) (7) (8)

Distressi,t DDi,t PMi,t Markupi,t

Treati,t × Posti,t 0.019 0.019 −0.087∗ −0.088∗ −0.001 −0.001 −0.001 −0.001
[1.538] [1.556] [−1.717] [−1.743] [−0.196] [−0.218] [−0.267] [−0.291]

Treati,t −0.014 −0.014 0.096∗ 0.097∗ −0.001 −0.001 −0.001 −0.001
[−1.250] [−1.257] [1.940] [1.953] [−0.189] [−0.181] [−0.151] [−0.143]

Posti,t 0.053∗∗∗ 0.052∗∗∗ −0.122∗∗∗ −0.115∗∗∗ −0.007∗∗ −0.007∗∗ −0.010∗∗∗ −0.010∗∗

[6.498] [6.411] [−3.882] [−3.695] [−2.283] [−2.149] [−2.649] [−2.496]

Ln(1 + n(Ci,t)) 0.018∗ −0.083∗∗ −0.006∗∗ −0.009∗∗

[1.952] [−2.295] [−2.227] [−2.449]

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 130099 130099 110581 110581 135037 135037 134924 134924
R-squared 0.565 0.565 0.667 0.667 0.745 0.746 0.773 0.773

Test p-value: β1 + β3 = 0 <10−3 <10−3 <10−3 <10−3 0.004 0.006 <10−3 0.001

Note: This table examines within-industry spillover effects following major natural disasters. Panel A of this table shows the
summary statistics for the firm-year panel from 1994 to 2018. Distressi,t is the distress risk constructed as in the work of Campbell,
Hilscher and Szilagyi (2008). DDi,t is the distance to default constructed following the naive approach illustrated in Bharath and
Shumway (2008). PMi,t is the gross profit margin defined as the difference between sales and cost of goods sold divided by
sales. Markupi,t is the markup, defined as the natural log of the ratio between sales and cost of goods sold. NDi,t is an indicator
variable that equals 1 if firm i is negatively affected by major natural disasters in year t. Ln(1 + n(Ci,t)) captures the strength of
cross-industry spillover effects, and it is the natural log of 1 plus the number of industries connected to firm i’s industry through
competition networks and shocked by natural disasters in year t. Panel B of this table reports the results from the DID analysis. For
each treated firm (i.e., the firm whose headquarter or any of its major establishments is located in a county that is negatively affected
by major natural disasters), we match it with up to five non-treated peer firms in the same four-digit SIC industry. We perform the
matching based on the values of three matching variables (i.e., firm asset size, tangibility, and age) prior to natural disaster shocks
using the shortest distance method. We require that the matched peer firms are not suppliers or customers of the treated firms.
We identify the supplier-customer links using Compustat customer segment data and Factset Revere data. For each major natural
disaster, we include in the analysis four yearly observations (i.e., 2 years before and 2 years after the major natural disaster) for the
treated firms and their matched non-treated peers. The regression specification is: Yi,t = β1Treati,t × Posti,t + β2Treati,t + β3Posti,t +
β4Ln(1 + n(Ci,t)) + θi + δt + εi,t. Treati,t is an indicator variable that equals 1 if firm i is a treated firm. Posti,t is an indicator variable
that equals 1 for observations after major natural disasters. The term θi represents firm fixed effects, and the term δt represents year
fixed effects. In the last row of the table, we present the p-value for the null hypothesis that the total treatment effect for the treated
firms is zero (i.e., β1 + β3 = 0). The sample of this table spans from 1994 to 2018. Standard errors are clustered at the firm level. We
include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

panel B in Table 12 is negative and statistically significant, suggesting that the industry
peers that are unaffected directly by natural disasters also reduce their profit margins
significantly. The intensified product market competition makes the non-treated industry
peers also suffer from a significant increase in distress risk. Coefficient β3 in columns (1)
and (2) of panel B in Table 12 is positive and statistically significant, while coefficient β3

in columns (3) and (4) of panel B in Table 12 is negative and statistically significant. These
findings indicate the existence of the within-industry spillover effect: industry peers
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Table 13: Within-industry spillover effects in bond yield spread and CDS spread.

Panel A: Summary statistics of the firm-year panel

Obs. # Mean Median SD p10th p25th p75th p90th

Bond_yield_spreadi,t(%) 13624 2.981 1.898 3.014 0.698 1.062 3.827 6.284
CDS_spreadi,t(%) 7588 1.082 0.290 2.452 0.070 0.121 0.863 2.521

Panel B: Identifying within-industry spillover effects using DID analysis

(1) (2) (3) (4)

Bond_yield_spreadi,t(%) CDS_spreadi,t(%)

Treati,t × Posti,t 0.022 0.021 −0.103 −0.104
[0.198] [0.193] [−0.638] [−0.641]

Treati,t 0.030 0.031 0.083 0.084
[0.353] [0.365] [0.607] [0.610]

Posti,t 0.176∗∗ 0.180∗∗ 0.340∗∗ 0.347∗∗

[2.115] [2.174] [2.090] [2.052]

Ln(1 + n(Ci,t)) −0.052 −0.107
[−0.869] [−0.734]

Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 15731 15731 7467 7467
R-squared 0.721 0.721 0.628 0.628

Test p-value: β1 + β3 = 0 0.016 0.015 0.094 0.094

Note: This table examines within-industry spillover effects in bond yield spread and CDS spread following major natural disasters.
Panel A of this table shows the summary statistics for the firm-year panel from 1994 to 2018. Bond_yield_spreadi,t is the bond
yield spread, which is the average bond yield spread of all bonds issued by a firm. For each transaction, we calculate the bond
yield spread by taking the difference between the bond yield and the Treasury yield with corresponding maturity. CDS_spreadi,t
is the par-equivalent spread of CDS with 1-year maturity. Both the bond yield spread and CDS spread in year t are the spread in
the last quarter so the spreads capture credit risk at the year end. Panel B of this table reports the results from the DID analysis.
The regression specification is: Yi,t = β1Treati,t × Posti,t + β2Treati,t + β3Posti,t + β4Ln(1 + n(Ci,t)) + θi + δt + εi,t. Definition for the
independent variables are given in Table 12. The sample of bond yield spread spans from 1994 to 2018, while the sample of CDS
spread spans from 2001 to 2018. Standard errors are clustered at the firm level. We include t-statistics in brackets. *, **, and ***
indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

become more distressed, and they compete more aggressively with the firms affected by
natural disaster shocks.

Panel B of Table 12 also reports the coefficients for cross-industry spillover effects
(i.e., β4). These coefficients are statistically significant and the sign of these coefficients is
consistent with the prediction of our model. When more industries linked to the focal
industry through competition networks are shocked by natural disasters, the firms in the
focal industry experience a larger increase in distress and compete more aggressively in
the product market. In Section 4.4, we study cross-industry spillover effects in greater
detail and highlight the role of common leaders as the key players that transmit shocks
across industries through competition networks.

Besides using the distress measure of Campbell, Hilscher and Szilagyi (2008) and the
distance to default measure, we also examine the spillover effect of distress risk using
bond yield spread and CDS spread. Table 13 presents the findings. The within-industry
spillover effect captured by the coefficient β3 is positive and statistically significant for
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both bond yield spread and CDS spread. Following the natural disaster shocks to the
focal firms, the bond yield spread and CDS spread of the unaffected industry peer firms
increase by 18 and 34 basis points, respectively, which are large economically compared
to the means and medians of the spreads. We should note that the coverage of the
spread data is relatively small in the cross section, which is around 10% of the CRSP-
Compustat merged sample. In addition, the CDS spread sample is only avaible after 2001.
The limitation in sample coverage likely accounts for the insignificant coefficients for
cross-industry spillover effects (i.e., β4) in Table 13.

Evidence Supporting the Parallel Trend Assumption. We further examine the dynamics
of within-industry spillover effects. Because the data for the measures of distress risk
and distance to default are at a yearly frequency, we include six yearly observations
(i.e., 3 years before and 3 years after a major natural disaster) in the DID analysis to
better illustrate the dynamics of the spillover effects. Specifically, we consider the yearly
regression specification as follows:

Yi,t =
2

∑
τ=−3

β1,τ × Treati,t × NDi,t−τ + β2 × Treati,t +
2

∑
τ=−3

β3,τ × NDi,t−τ

+ β4 × Ln(1 + n(Ci,t)) + θi + δt + εi,t. (4.6)

The dependent variables (Yi,t) include the distress risk, the distance to default, the bond
yield spread (in percent), and the CDS spread (in percent). Treati,t is an indicator variable
that equals 1 if firm i is a treated firm. NDi,t−τ is an indicator variable that equals 1 if firm
i (when firm i is a treated firm) or the treated firm to which firm i is matched (when firm
i is a matched non-treated firm) experiences natural disaster shocks in year t− τ. The
term θi represents firm fixed effects, and the term δt represents year fixed effects. When
running the regression, we impose β1,−1 = β3,−1 = 0 to avoid collinearity in categorical
regressions, and by doing this, we set the years immediately preceding the disaster years
as the benchmark. In Figure 8, we plot estimated coefficients β3,τ with τ = −3,−2, · · · , 2,
as well as their 90% confidence intervals with standard errors clustered at the firm level.

We find that the spillover effect emerges only after the occurrence of natural disaster
shocks. There is no significant change in the distress risk or distance to default prior to
natural disaster shocks, which provides evidence supporting the parallel trend assumption
for the DID analysis. We also find that within-industry spillover effects last for more than
2 years, which justifies the choice of time window in the DID analysis presented in Table
12.

We also examine the dynamics of the spillover effects for profit margin. Because data
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D: Spillover of CDS spread

Note: This figure plots the within-industry spillover effects of distress risk around major natural disasters. For each treated firm
(i.e., the firm whose headquarter or any of its major establishments is located in a county that is negatively affected by major
natural disasters), we match it with up to five non-treated peer firms in the same four-digit SIC industry. We require that the
matched peer firms are not suppliers or customers of the treated firms. For each major natural disaster shock, we include six
yearly observations (i.e., 3 years before and 3 years after a major natural disaster) for the treated firms and their matched non-
treated peers in the analysis. To estimate the dynamics of the spillover effect, we consider the yearly regression specification as
follows: Yi,t = ∑2

τ=−3 β1,τ × Treati,t×NDi,t−τ + β2× Treati,t +∑2
τ=−3 β3,τ ×NDi,t−τ + β4Ln(1+ n(Ci,t))+ θi + δt + εi,t. The dependent

variables (Yi,t) in panels A to D are the distress risk, the distance to default, the bond yield spread (in percent), and the CDS spread
(in percent), respectively. Treati,t is an indicator variable that equals 1 if firm i is a treated firm. NDi,t−τ is an indicator variable that
equals 1 if firm i (when firm i is a treated firm) or the treated firm to which firm i is matched (when firm i is a matched non-treated
firm) experiences natural disaster shocks in year t− τ. Ln(1 + n(Ci,t)) captures the strength of cross-industry spillover, and it is the
natural log of 1 plus the number of industries that are connected to firm i’s industry through competition networks and are shocked
by natural disasters in year t. The term θi represents firm fixed effects, and the term δt represents year fixed effects. When running
the regression, we impose β1,−1 = β3,−1 = 0 to avoid collinearity in categorical regressions, and by doing this, we set the years
immediately preceding the disaster years as the benchmark. The sample of this figure spans from 1994 to 2018. We plot estimated
coefficients β3,τ with τ = −3,−2, · · · , 2, as well as their 90% confidence intervals with standard errors clustered at the firm level.
The vertical dashed lines represent the occurrence of major natural disasters.

Figure 8: Within-industry spillover effects of distress risk.

for the measures of profit margin and markup can be computed from Compustat at a
quarterly frequency, we follow Barrot and Sauvagnat (2016) in showing the quarterly
dynamic effects. As shown in Figure 9, a reduction in profit margin and markup takes
place within two quarters after the occurrence of natural disasters. There is no significant
change in profit margin or markup prior to natural disaster shocks, which again provides
evidence supporting the parallel trend assumption for the DID analysis. The spillover
effects in profitability last for around 2 years, a time window that is roughly consistent
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B: Within-industry spillover of markup

Note: This figure plots the within-industry spillover effects of profit margin around major natural disasters. For each treated firm
(i.e., the firm whose headquarter or any of its major establishments is located in a county that is negatively affected by major natural
disasters), we match it with up to 10 non-treated peer firms in the same four-digit SIC industry. Because the quarterly data are noisier
than the yearly data, we use a larger matching ratio between the matched peer firms and treated firms. We require that the matched
peer firms are not suppliers or customers of the treated firms. For each firm, we include 16 quarterly observations (i.e., 8 quarters
before and 8 quarters after a major natural disaster) in the analysis. To estimate the dynamics of the spillover effect, we consider the
quarterly regression specification as follows: Yi,t = ∑7

τ=−8 β1,τ × Treati,t × NDi,t−τ + β2 × Treati,t + ∑7
τ=−8 β3,τ × NDi,t−τ + β4Ln(1 +

n(Ci,t)) + θi + δt + εi,t. The dependent variable (Yi,t) is the gross profit margin (PMi,t) and markup (Markupi,t) in panels A and B,
respectively. Treati,t is an indicator variable that equals 1 if firm i is a treated firm. NDi,t−τ is an indicator variable that equals 1
if firm i (when firm i is a treated firm) or the treated firm to which firm i is matched (when firm i is a matched non-treated firm)
experiences natural disaster shocks in quarter t− τ. Ln(1 + n(Ci,t)) captures the strength of cross-industry spillover effect, and it
is the natural log of 1 plus the number of industries connected to firm i’s industry through competition networks and shocked by
natural disasters in year t. The term θi represents firm fixed effects, and the term δt represents quarter fixed effects. When running
the regression, we impose β1,−1 = β3,−1 = 0 to avoid collinearity in categorical regressions, and by doing this, we set the quarters
immediately preceding the disaster quarters as the benchmark. The sample of this figure spans from 1994 to 2018. We plot estimated
coefficients β3,τ with τ = −8,−7, · · · , 7, as well as their 90% confidence intervals with standard errors clustered at the firm level.
The vertical dashed lines represent the occurrence of major natural disasters.

Figure 9: Within-industry spillover effects of profit margin.

with other natural disaster impacts documented in the literature.14

Robustness Checks. We perform a battery of robustness checks. In Table OA.9 of the
Online Appendix, we show that our findings are robust to alternative matching ratios
between the treated firms and non-treated peer firms (i.e., one to ten and one to three). In
Table OA.10 of the Online Appendix, we show that our findings are robust to alternative
industry classifications. Specifically, we choose peer firms based on the text-based network
industry classifications (TNIC) developed by Hoberg and Phillips (2010, 2016), and we
show that the within-industry spillover effects remain robust. In Table OA.11 of the
Online Appendix, we show that the within-industry spillover effects remain robust when

14For example, Barrot and Sauvagnat (2016) show that natural disaster shocks dampen sales growth for
the customers of treated firms for about 2 years. In Section 4.3.3, we show that the within-industry spillover
effect we document here cannot be explained by the production network externality, a channel that is the
main focus of Barrot and Sauvagnat (2016).
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Table 14: Heterogeneity across industries with different levels of entry barriers.

(1) (2) (3) (4) (5) (6) (7) (8)

Distressi,t DDi,t PMi,t Markupi,t

Industry entry barriers High Low High Low High Low High Low

Treati,t × Posti,t 0.017 0.027∗ −0.047 −0.120∗ 0.000 −0.003 −0.001 −0.004
[0.955] [1.682] [−0.667] [−1.776] [0.061] [−0.825] [−0.066] [−0.779]

Treati,t 0.003 −0.025 −0.036 0.170∗∗ −0.004 0.004 −0.003 0.002
[0.161] [−1.584] [−0.507] [2.526] [−0.713] [0.876] [−0.346] [0.376]

Posti,t 0.087∗∗∗ 0.020∗∗ −0.178∗∗∗ −0.051 −0.016∗∗∗ 0.002 −0.023∗∗∗ 0.002
[6.821] [1.962] [−3.647] [−1.295] [−2.863] [0.792] [−3.225] [0.664]

Ln(1 + n(Ci,t)) 0.068∗∗∗ −0.021∗ −0.138∗∗ −0.041 −0.021∗∗∗ 0.002 −0.027∗∗∗ 0.003
[4.653] [−1.795] [−2.562] [−0.812] [−4.039] [0.678] [−4.262] [0.907]

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 61456 68595 52995 57509 64598 70413 64558 70340
R-squared 0.598 0.573 0.701 0.674 0.720 0.798 0.765 0.809

Test p-value: β1 + β3 = 0 <10−3 <10−3 <10−3 0.002 <10−3 0.727 <10−3 0.706

Note: This table examines the within-industry spillover effects following major natural disasters across industries with different
levels of entry barriers. The regression specification is: Yi,t = β1Treati,t × Posti,t + β2Treati,t + β3Posti,t + β4Ln(1 + n(Ci,t)) + θi +
δt + εi,t. Definition for the dependent and independent variables are given in Table 12. We present results from DID analysis in
industries with high entry barriers (top tertile) and low entry barriers (middle and bottom tertiles). The entry barrier of a four-digit
SIC industry is measured by the sales-weighted average of fixed assets across firms in this industry. We sort industries into tertiles
based on the industry-level entry barriers 1 year prior to natural disaster shocks. The number of firm-year observations in the
subsample of low entry barriers is not exactly twice that in the subsample of high entry barriers because the number of treated firms
is not uniformly distributed across industries. The sample spans from 1994 to 2018. Standard errors are clustered at the firm level.
We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

we use an alternative measure, ln(1 +Di,t), to capture the cross-industry spillover effects,
which is the natural log of 1 plus the average amount of property damage (in millions of
dollars) caused by major natural disasters in year t across industries that are connected to
firm i’s industry through competition networks, denoted by Di,t. In Table OA.12 of the
Online Appendix, we show that the within-industry spillover effects remain robust when
we use net profit margin to measure profitability.

Because we have focused on the major natural disasters in the US, it is helpful to check
whether our findings of the spillover effects are indeed driven by industries whose profits
mainly come from the domestic market. This is because firms primarily compete in the
foreign markets should be less likely affected by shocks in the US. In Table OA.13 of
the Online Appendix, we exclude from the DID analysis the industries with the highest
fraction of foreign profits (i.e., top quintile), and we show that the spillover effects remain
robust. In fact, the economic magnitudes of the spillover effects become larger compared
to those in Table 12. These findings further validate our identification strategy.

4.3.2 Heterogeneity in Spillover Effects within An Industry

We expect the within-industry spillover effects to be stronger in industries with higher
entry barriers. As shown by Chen et al. (2020), firms will compete more aggressively
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with their distressed peers in these industries because the winners of a price war in
these industries enjoy larger economic rents after pushing out their competitors who
are unlikely to be replaced by new entrants. To test this prediction, we measure the
entry barrier of a four-digit SIC industry using the sales-weighted average fixed assets,
following previous studies (e.g., Li, 2010). We then sort industries into tertiles based on
the industry-level entry barriers 1 year prior to natural disaster shocks and then examine
the within-industry spillover effects in the industries with high entry barriers (top tertile)
and low entry barriers (middle and bottom tertiles) using DID analysis. Table 14 tabulates
the results. Consistent with our prediction, we find that the within-industry spillover
effects captured by coefficient β3 mostly concentrate in industries with high entry barriers,
while they are almost absent in industries with low entry barriers. Examining the patterns
of total treatment effects (captured by the sum of β1 and β3) offers additional insights
on the heterogeneity of spillover effects. The total treatment effects are significant for
all industries when we examine the distress levels of treated firms (see the last row of
columns 1 to 4 in Table 14). This is because natural disasters make the treated firms more
distressed in all industries. However, the total treatment effects for profit margin are
only significant in industries with high entry barriers (see the last row of columns 5 to
8 in Table 14), suggesting that the distressed treated firms engage in price competition
only in industries with high entry barriers. As illustrated by our model in the collusive
Nash equilibrium, it is the intensified product market competition that increases the
distress levels of the industry peers. Consistent with our model, we observe strong
within-industry spillover effects of distress only in industries with high entry barriers.

We also expect the within-industry spillover effects to be stronger in industries whose
market leaders are more likely to tacitly collude with each other. To test this prediction, we
proxy the prevalence of tacit collusion by the levels profitability comovement, which is the
average pairwise correlation of the net profitability for top four firms ranked by sales in
this industry. The pairwise correlation between two firms is calculated as the correlation
coefficient of their net profitability in the previous ten years. We then sort industries into
two groups based on the industry-level profitability comovement 1 year prior to natural
disaster shocks and then examine the within-industry spillover effects in the industries
with high profitability comovement (above median) and low profitability comovement
(below median) using DID analysis. Table 15 tabulates the results. Consistent with our
prediction, we find that the within-industry spillover effects captured by coefficient β3

mostly concentrate in industries with high profitability comovement, while they are much
weaker in industries with low profitability comovement.

Finally, we expect the within-industry spillover effects to be stronger in industries with
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Table 15: Heterogeneity across industries with different levels of profitability comovement.

(1) (2) (3) (4) (5) (6) (7) (8)

Distressi,t DDi,t PMi,t Markupi,t

Profitability comovement High Low High Low High Low High Low

Treati,t × Posti,t 0.013 0.028 −0.085 −0.087 −0.006 0.004 −0.007 0.004
[0.755] [1.565] [−1.249] [−1.190] [−0.877] [0.755] [−0.875] [0.681]

Treati,t −0.015 −0.023 0.065 0.171∗∗ −0.004 0.002 −0.001 0.001
[−0.864] [−1.294] [0.880] [2.089] [−0.726] [0.399] [−0.100] [0.083]

Posti,t 0.071∗∗∗ 0.039∗∗∗ −0.181∗∗∗ −0.034 −0.011∗∗ −0.003 −0.017∗∗ −0.004
[5.557] [3.381] [−3.694] [−0.744] [−2.116] [−0.965] [−2.443] [−1.089]

Ln(1 + n(Ci,t)) 0.038∗∗∗ 0.001 −0.067 −0.067 −0.016∗∗∗ 0.002 −0.022∗∗∗ 0.002
[2.860] [0.075] [−1.353] [−1.383] [−3.738] [0.481] [−3.877] [0.555]

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 60279 60576 52734 49305 63231 62122 63180 62062
R-squared 0.590 0.606 0.704 0.696 0.706 0.803 0.769 0.814

Test p-value: β1 + β3 = 0 <10−3 <10−3 <10−3 0.043 <10−3 0.867 <10−3 0.976

Note: This table examines the within-industry spillover effects following major natural disasters across industries with different
levels of profitability comovement. The regression specification is: Yi,t = β1Treati,t × Posti,t + β2Treati,t + β3Posti,t + β4Ln(1 +
n(Ci,t)) + θi + δt + εi,t. Definition for the dependent and independent variables are given in Table 12. We present results from DID
analysis in industries with high profitability comovement (above median) and low profitability comovement (below median). The
profitability comovement of a four-digit SIC industry is measured as the average pairwise correlation of the net profitability for top
four firms ranked by sales in this industry. The pairwise correlation between two firms is calculated as the correlation coefficient of
their net profitability in the previous ten years. The sample spans from 1994 to 2018. Standard errors are clustered at the firm level.
We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

worse economic and financial conditions prior to natural disasters. This is because firms
in these industries are effectively less patient and thus have more incentive to compete
after the arrival of negative shocks. To test this prediction, we measure the economic
condition of a four-digit SIC industry using the change of the return on assets (ROA) in
the industry from the previous year. We then sort industries into two groups based on
the industry-level economic conditions 1 year prior to the natural disaster shocks and
then examine the within-industry spillover effects in the industries with good economic
conditions (top half) and bad economic conditions (bottom half) using DID analysis.
Panel A of Table 16 tabulates the results. Consistent with our prediction, we find that
the within-industry spillover effects captured by coefficient β3 mostly concentrate in
industries with bad economic conditions, while they are almost absent in industries with
good economic conditions. The total treatment effects are significant in all industries
when we examine the distress levels of treated firms (see the last row of columns 1 to
4 in panel A), but they are only significant in industries with bad economic conditions
when we examine the profit margins of the treated firms (see the last row of columns 5 to
8 in panel A). These findings are consistent with the prediction of our model, and they
suggest that distressed treated firms engage in price competition only in industries with
bad economic conditions, which leads to distress propagation to their industry peers.

We measure the financial constraint of a four-digit SIC industry using the sales-
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Table 16: Heterogeneity across industries with different economic and financial conditions.

Panel A: Heterogeneity across industry economic conditions

(1) (2) (3) (4) (5) (6) (7) (8)

Distressi,t DDi,t PMi,t Markupi,t

Industry economic conditions Bad Good Bad Good Bad Good Bad Good

Treati,t × Posti,t 0.027 0.021 −0.070 −0.146∗∗ −0.002 −0.002 −0.008 0.002
[1.500] [1.207] [−1.013] [−2.142] [−0.340] [−0.279] [−0.985] [0.357]

Treati,t −0.035∗∗ −0.020 0.129∗ 0.165∗∗ 0.001 0.001 0.001 0.001
[−1.971] [−1.186] [1.685] [2.200] [0.112] [0.123] [0.106] [0.071]

Posti,t 0.078∗∗∗ 0.023∗ −0.209∗∗∗ 0.004 −0.017∗∗∗ 0.005 −0.019∗∗∗ 0.002
[6.115] [1.864] [−4.374] [0.087] [−3.192] [1.564] [−2.866] [0.494]

Ln(1 + n(Ci,t)) 0.034∗∗∗ 0.004 −0.120∗∗∗ −0.092∗∗ −0.014∗∗∗ −0.002 −0.018∗∗∗ −0.004
[2.966] [0.370] [−2.635] [−2.034] [−3.543] [−0.584] [−3.784] [−0.904]

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 64345 61829 54606 52132 66381 64702 66304 64664
R-squared 0.607 0.583 0.695 0.698 0.768 0.773 0.789 0.805

Test p-value: β1 + β3 = 0 <10−3 0.002 <10−3 0.012 <10−3 0.340 <10−3 0.365

Panel B: Heterogeneity across industry financial constraints

(1) (2) (3) (4) (5) (6) (7) (8)

Distressi,t DDi,t PMi,t Markupi,t

Industry financial constraints High Low High Low High Low High Low

Treati,t × Posti,t 0.012 0.037∗∗ 0.046 −0.096 0.000 0.000 −0.001 −0.000
[0.470] [2.103] [0.458] [−1.281] [0.039] [0.092] [−0.099] [−0.011]

Treati,t −0.024 −0.033∗∗ 0.084 0.152∗ 0.005 0.008∗ 0.012 0.011∗

[−0.962] [−1.987] [0.809] [1.929] [0.706] [1.658] [1.158] [1.894]

Posti,t 0.115∗∗∗ 0.002 −0.302∗∗∗ −0.063 −0.029∗∗∗ 0.004 −0.036∗∗∗ 0.004
[5.526] [0.166] [−4.034] [−1.352] [−2.934] [1.208] [−3.003] [1.218]

Ln(1 + n(Ci,t)) 0.035∗∗ −0.001 −0.120∗∗ −0.087∗ −0.019∗∗∗ −0.006∗ −0.022∗∗∗ −0.007∗

[1.984] [−0.070] [−2.026] [−1.674] [−3.045] [−1.916] [−2.783] [−1.648]

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 31326 59310 27545 48609 32923 61851 32911 61792
R-squared 0.625 0.608 0.735 0.707 0.730 0.805 0.787 0.827

Test p-value: β1 + β3 = 0 <10−3 0.007 0.002 0.009 <10−3 0.277 <10−3 0.354

Note: This table examines the within-industry spillover effects following major natural disasters across industries with different
economic and financial conditions prior to the natural disasters. The regression specification is: Yi,t = β1Treati,t× Posti,t + β2Treati,t +
β3Posti,t + β4Ln(1 + n(Ci,t)) + θi + δt + εi,t. Definitions for the dependent and independent variables are given in Table 12. Panel
A presents the results in industries with good economic conditions (top half) and bad economic conditions (bottom half) prior to
the natural disasters. The economic condition of a four-digit SIC industry is measured by the change of the return on assets (ROA)
in the industry from the previous year. We sort industries into two groups based on the industry-level economic conditions 1 year
prior to the natural disaster shocks. Panel B presents the results in industries with high financial constraint (top tertile) and low
financial constraint (middle and bottom tertiles) prior to the natural disasters. The financial constraint of a four-digit SIC industry
is measured by the sales-weighted average of the delay investment score in the industry (Hoberg and Maksimovic, 2015). We sort
industries into tertiles based on the industry-level financial constraints 1 year prior to natural disaster shocks. The sample spans
from 1994 to 2018 in panel A, while it spans from 1998 to 2016 in panel B due to shorter sample period of the delay investment score.
Standard errors are clustered at the firm level. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% levels, respectively.

weighted average of the delay investment score (Hoberg and Maksimovic, 2015). This
measure is constructed based on textual analysis of firms’ 10-K filings and thus captures
the degree of financial constraints directly. We sort industries into tertiles based on
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the industry-level financial constraints 1 year prior to natural disaster shocks and then
examine the within-industry spillover effects in the industries with high financial con-
straints (top tertile) and low financial constraints (middle and bottom tertiles) using DID
analysis. Panel B of Table 16 tabulates the results. Again, consistent with our prediction,
we find that the within-industry spillover effects mostly concentrate in industries with
high financial constraints. The total treatment effects are significant in all industries when
we examine the distress levels of treated firms (see the last row of columns 1 to 4 in panel
B) but they are only significant in industries with high financial constraints when we
examine the profit margins of the treated firms (see the last row of columns 5 to 8 in
panel B). These findings suggest that distressed treated firms engage in price competition
only in industries with high levels of financial constraints.

4.3.3 Testing Alternative Explanations

In this section, we test a list of alternative explanations. We show that the within-
industry spillover effects we have documented above are unlikely explained by demand
commonality, production network externality, credit lending channel, or blockholder
commonality.

Demand Commonality. The first alternative explanation that we test is demand com-
monality. This alternative explanation argues that natural disasters lead to negative
demand shocks directly hurting both the treated firms and their industry peers, and thus
the within-industry spillover effects can be potentially explained by demand commonality.
We present a set of evidence suggesting that this is unlikely to be the case.15

We first require the matched peer firms to be geographically far from the natural
disaster areas in the DID analysis. Specifically, we require the matched peer firms to have
headquarters and major establishments located more than 100 miles from any zip code
negatively affected by major natural disasters in a given year. By doing this, we exclude
a set of peer firms that are more susceptible to the negative demand shocks caused by
natural disasters. As shown in panel A of Table OA.14 in the Online Appendix, our
findings of the within-industry spillover effects remain robust.

Although a matched peer firm is geographically far from the natural disaster areas,

15Note that we do not aim to rule out the possibility that negative demand shocks make firms directly
affected by natural disasters more distressed. In fact, demand shock is one of the channels through which
natural disasters can lead to economic and financial distress of treated firms. The alternative explanation
we aim to rule out here is that the demand shocks caused by natural disasters also make the non-treated
industry peers more distressed. In other words, demand commonality drives the within-industry spillover
effects in the alternative explanation.
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its customers may mainly come from these areas, and thus, this peer firm may still be
directly affected by the demand shocks. To rule out this possibility, we further require the
matched peer firms to have no customers negatively affected by natural disasters. We
consider both business customers and individual consumers in our analysis. We identify
firms’ business customers and their geographic locations using Compustat customer
segment data and Factset Revere data. We identify firms’ individual consumers and their
geographic locations using a detailed dataset from Baker, Baugh and Sammon (2020),
which provides firms’ sales to individual consumers at the city level.16 In panel B of
Table OA.14, we require that the matched peer firms to (i) be far away from natural
disaster areas, (ii) have no business customers affected by natural disasters, and (iii) have
no individual customers from areas affected by natural disasters. The within-industry
spillover effects are still robust, suggesting that demand commonality is unlikely to be
the main driver for the within-industry spillover effects.

Production Network Externality. The second alternative explanation that we test is
production network externality. This alternative explanation argues that the within-
industry spillover effects are driven by spillovers along supply chains. We present a set
of evidence suggesting that this is unlikely to be the case.

First, we note that in the baseline DID test shown in Table 12, we have already required
the matched peer firms not to be either suppliers or customers of the treated firms. The
fact that we find strong within-industry spillover effects in Table 12 suggests that these
effects are unlikely caused by suppliers or customers of the treated firms. Second, to
strengthen our results, in Table OA.15 of the Online Appendix, we further require that the
matched peer firms do not share any common customers or any common suppliers with
treated firms. By doing so, we rule out the alternative explanation that the within-industry
spillover effects are caused by common customers or suppliers of both treated firms and
their industry peers.17 Moreover, we also remove the matched peer firms that are related
to the treated firms vertically in the DID analysis. By doing so, we drop firms that are
potential customers or suppliers of the treated firms from the pool of matched firms. We

16The full dataset contains more than two million users from 2010 to 2015. We make the assumption that
firms with sales to individual consumers in a city in 2010 (2015) have sales to individual consumers in this
city before 2010 (after 2015).

17In this alternative explanation, natural disaster shocks make the customers of the treated firms more
distressed, which in turn increases the distress risk of other suppliers of these customer firms. Similarly,
natural disaster shocks can make the suppliers of the treated firms more distressed, which in turn increases
the distress risk of other customers of these supplier firms. If the firms shocked by natural disasters and
their peer firms share common customers or suppliers, it is possible that the observed within-industry
spillover effects are driven by product network externality rather than by the competition mechanism
illustrated by our model.
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define two firms as connected vertically if their vertical relatedness scores are ranked in
the top 10% among the scores of all firm pairs (see, Frésard, Hoberg and Phillips, 2020).
As shown in Table OA.15, the within-industry spillover effects remain robust.

Lender Commonality. The third alternative explanation that we test is the channel of
lender commonality. This alternative explanation argues that non-treated industry peers
may borrow from lenders that have heavy exposure to disaster firms, and as a result these
firms suffer from financial distress when their lenders are negatively affected.

To test this possibility, we require the matched peer firms to share no common
lenders with the treated firms in the DID analysis. We also control for firms’ exposure to
natural disasters through lenders (Lender_Exposurei,t−1). We identify the borrower-lender
relationship and construct Lender_Exposurei,t−1 using the LPC DealScan database in two
steps. First, we find out each lender l’s exposure to natural disasters in year t, which
is the outstanding loans issued by lender l from t− 5 to t− 1 to firms that experience
natural disasters in year t normalized by the total amount of outstanding loans issued by
lender l from t− 5 to t− 1.18 Second, for each firm i, we compute Lender_Exposurei,t−1 by
averaging the lender-level exposure across all lenders of the firm. The average is weighted
based on the amount of outstanding loans borrowed from different lenders. As shown
in Table OA.16 of the Online Appendix, our findings remain robust after controlling
for Lender_Exposurei,t−1 and removing the matched peer firms that share any common
lender with the treated firms, suggesting that lender commonality unlikely explains the
within-industry spillover effects.19

Institutional Blockholder Commonality. The last alternative explanation that we test is
institutional blockholder commonality. This alternative explanation argues that when
firms are hit by natural disasters, their institutional blockholders such as mutual funds
may experience fire sales (e.g., Coval and Stafford, 2007). If these institutional blockholders
also hold a large number of shares of firms’ industry peers, the stock prices of the peer
firms may be negatively affected during the fire sales, which in turn may cause economic
and financial distress for these firms.

To test this possibility, we require the matched peer firms to share no common

18We focus on loans issued in the preceding 5-year window following the literature (e.g., Bharath et al.,
2007). When there is more than one lender funding a loan, we focus on the lead lenders following previous
studies (e.g., Schwert, 2018; Chodorow-Reich and Falato, 2021).

19Because DealScan data are mainly collected from commitment letters and credit agreements drawn
from SEC filings, the database mainly covers medium to large-size loans (e.g., Carey, Post and Sharpe,
1998). We limit our analysis in Table OA.16 of the Online Appendix to the firms covered by the DealScan
data because we cannot accurately measure lender exposure for the firms outside of the DealScan universe.
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institutional blockholders with the treated firms in the DID analysis based on 13F
institutional holdings data. Following previous studies (e.g., Hadlock and Schwartz-Ziv,
2019), we define blockholders of a firm as the owners that hold 5% of the firm’s market
cap or above. As shown in Table OA.17 of the Online Appendix, the within-industry
spillover effects remain robust, suggesting that institutional blockholder commonality
unlikely explains our findings.

Controlling for All Alternative Channels Simultaneously. In Table OA.18 of the Online
Appendix, we examine the within-industry spillover effects by controlling for multiple
alternative channels simultaneously. For each treated firm, we match it with up to
five non-treated peer firms in the same four-digit SIC industry. We construct a set
dummy variables to label the matched peer firms that share common demand with the
treated firms (Common_Demandi,t), that are connected to the treated firms through the
production networks (Production_Networki,t), that share common lenders with the treated
firms (Common_Lenderi,t), and that share common institutional blockholders with the
treated firms (Common_Lenderi,t). We then add these dummies and their interactions with
the Posti,t term to regression specification (4.5). We find that within-industry spillover
effects captured by the coefficient for Posti,t remain robust after controlling for all four
alternative channels simultaneously.

4.4 Cross-Industry Contagion Effects with Natural Disaster Shocks

In Section 4.3.1 above, we provide some evidence for cross-industry spillover effects. In
particular, panel B of Table 12 shows that the coefficient for the cross-industry spillover
term (i.e., β4 in equation 4.5) is statistically significant, with the signs consistent with the
predictions of our model in the collusive Nash equilibrium. In this section, we further
study cross-industry spillover effects by highlighting the role of the common market
leaders in transmitting shocks across industries.

Regression Specifications. We examine cross-industry contagion effects in two steps. In
the first step, we estimate the impact of natural disaster shocks of market leaders on the
profit margins of common market leaders in the same industry. The dataset is a panel
with each cross section containing the industry pairs in which the common market leaders
operate. We run the following panel regression using industry pair-year observations:

Y
(ci,j)
t =

3

∑
m=1

βmND_mild(m)
j,t +

3

∑
s=1

βsND_severe(s)j,t + ε
(ci,j)
t . (4.7)
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Dependent variable Y
(ci,j)
t is the distress risk and profit margin of common market leader

ci,j, which is a market leader in both industry i and industry j. The independent variables,

ND_mild(m)
j,t , are indicator variables that equal 1 if the mth (m = 1, 2, 3) largest firm

(ranked by sales) in industry j in year t experiences mild damage during natural disaster
shocks. Similarly, ND_severe(s)j,t , are indicator variables that equal 1 if the sth (s = 1, 2, 3)
largest firm (ranked by sales) in industry j in year t experiences severe damage during
natural disaster shocks.20 We include both the ND_mild(m)

j,t and ND_severe(s)j,t dummies to
reflect the fact that the impact of natural disasters depends on the magnitude of damage
caused.

Our regression specification (4.7) essentially estimates the impact of idiosyncratic
natural disaster shocks to the top three market leaders in industry j on the distress risk
and profit margin of the common market leader (i.e., ci,j) in year t. We compute fitted

value ̂IdShock
(ci,j)

j,t as follows:

̂IdShock
(ci,j)

j,t = Ŷ
(ci,j)
t =

3

∑
m=1

β̂mND_mild(m)
j,t +

3

∑
s=1

β̂sND_severe(s)j,t . (4.8)

Fitted value ̂IdShock
(ci,j)

j,t intuitively captures changes in the distress risk and profit margin
of common market leader ci,j attributed to idiosyncratic shocks of the top three market
leaders in industry j.

In the second step, we estimate the cross-industry distress contagion effect based
on the first-step estimates. In particular, for each industry i in year t, we identify all
industries j ∈ Ii,t that are connected to industry i through common market leaders. After
that, we construct the changes in distress risk or profit margin of common market leaders
in industry i, attributed to idiosyncratic shocks to market leaders in other industries as
follows:

̂IdShock−i,t =
1

n(Ii,t)
∑

j∈Ii,t

̂IdShock
(cj,i)

j,t , (4.9)

where variable n(Ii,t) is the number of industries in set Ii,t.
We then run the following panel regression using all industry-year observations in the

20We define ND_mild(m)
j,t as 1 if the county in which the mth (m = 1, 2, 3) largest firm is located experiences

more than $0.25 million but less than $50 million in property losses. We define ND_severe(s)j,t as 1 if the

county in which the sth (s = 1, 2, 3) largest firm is located experiences more than $50 million in property
losses.
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Table 17: Distress spillover effects across industries

Panel A: Construction of ̂IdShock
(ci,j)

j,t (first step)

(1) (2) (3) (4)
Distress

ci,j
t DD

ci,j
t PM

ci,j
t Markup

ci,j
t

ND_mild(1)j,t −0.038 0.258 −0.012∗ −0.020∗

[−1.191] [1.100] [−1.694] [−1.798]
ND_severe(1)j,t 0.149∗∗ −1.277∗∗∗ −0.032∗∗∗ −0.047∗∗∗

[2.480] [−3.189] [−2.792] [−2.691]
ND_mild(2)j,t 0.051 −0.135 −0.007 −0.010

[1.635] [−0.636] [−1.054] [−1.038]
ND_severe(2)j,t 0.057∗ −0.200 −0.030∗∗∗ −0.047∗∗∗

[1.943] [−1.449] [−2.749] [−2.881]
ND_mild(3)j,t 0.028 0.040 0.004 0.008

[0.905] [0.193] [0.651] [0.750]
ND_severe(3)j,t 0.122∗∗ −0.927∗∗∗ −0.030∗∗∗ −0.049∗∗∗

[2.156] [−2.706] [−2.999] [−3.299]
Observations 7058 6882 7166 7166

R-squared 0.003 0.004 0.006 0.006

Panel B: Cross-industry contagion (second step)

(1) (2) (3) (4) (5) (6) (7) (8)
Distress(−c)

i,t DD(−c)
i,t PM(−c)

i,t Markup(−c)
i,t

̂IdShock−i,t 0.798∗∗ 0.765∗∗ 0.519∗∗ 0.483∗∗ 0.547∗∗ 0.548∗∗ 0.540∗∗ 0.544∗∗

[2.305] [2.232] [2.537] [2.244] [2.392] [2.355] [2.243] [2.249]

̂IdShock−i,t × Forward_Con−i,i,t −14.069 3.746 −23.335 −32.280
[−0.265] [0.199] [−1.098] [−1.287]

̂IdShock−i,t × Backward_Con−i,i,t 56.248 18.988 20.027 22.222
[0.808] [0.729] [0.949] [1.099]

Forward_Con−i,i,t −100.239 −17.781 7.840 14.219
[−0.250] [−0.148] [1.171] [1.408]

Backward_Con−i,i,t 425.600 −120.534 −6.318 −8.858
[0.808] [−0.739] [−0.979] [−1.140]

Observations 5152 5148 5020 5016 5264 5260 5264 5260
R-squared 0.001 0.005 0.001 0.002 0.001 0.003 0.001 0.005

Note: This table reports the results of the two-step estimation of the cross-industry distress spillover effects. In panel A, we estimate

the first-step specification: Y
(ci,j)

t = ∑3
m=1 βm ND_mild(m)

j,t + ∑3
s=1 βs ND_severe(s)j,t + ε

(ci,j)

t and denote the fitted value by ̂IdShock
(ci,j)

i,t .

The dependent variables Distress
(ci,j)

t , DD
(ci,j)

t , PM
(ci,j)

t , and Markup
(ci,j)

t are the distress risk, distance to default, profit margin, and

markup of common market leader ci,j, respectively. The independent variables, ND_mild(m)
j,t , are indicator variables that equal 1 if

the mth (m = 1, 2, 3) largest firm (ranked by sales) in industry j in year t experiences mild damage during natural disaster shocks.

Similarly, ND_severe(s)j,t , are indicator variables that equal 1 if the sth (s = 1, 2, 3) largest firm (ranked by sales) in industry j in year t ex-
periences severe damage during natural disaster shocks. In panel B, we use the fitted value of the first step to construct independent

variable ̂IdShock−i,t as the simple average of ̂IdShock
(cj,i)

j,t over all industries connected to industry i through competition networks.

The regression specification is: Y(−c)
i,t = β1 ̂IdShock−i,t + β2 ̂IdShock−i,t × Forward_Con−i,i,t + β3 ̂IdShock−i,t × Backward_Con−i,i,t +

β4Forward_Con−i,i,t + β5Backward_Con−i,i,t + εi,t. The industry-level dependent variables Y(−c)
i,t are sales weighted across all firms

excluding the common market leaders in year t. Variables Forward_Con−i,i,t and Backward_Con−i,i,t are the simple average of

Forward_Con
(cj,i)

j,t and Backward_Con
(cj,i)

j,t over all industries (indexed by j) connected to industry i through competition networks,

respectively. Forward_Con
(cj,i)

j,t and Backward_Con
(cj,i)

j,t are the forward- and backward- connectedness measures between industry j
and industry i (Fan and Lang, 2000). Forward_Con−i,i,t captures the value of industry i’s output used to produce $1 of output for the
industries connected through competition networks. Backward_Con−i,i,t captures the output value of the connected industries used
to produce $1 of industry i’s output. The sample spans the period from 1994 to 2018. Standard errors are clustered at the industry
level. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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competition network:

Y(−c)
i,t = β1 ̂IdShock−i,t + εi,t, (4.10)

where Y(−c)
i,t is the distress risk or profit margin of industry i sales-weighted across firms in

industry i excluding the common market leaders in year t. Coefficient β1 is the coefficient
of interest, and it intuitively captures how industry i’s profit margin responds to other
industries’ idiosyncratic shocks that propagate to industry i through some common
market leaders.

Cross-Industry Contagion Effects. We present the estimation results for the cross-
industry contagion analysis in Table 17 and the corresponding summary statistics in
Table OA.19 of the Online Appendix. Panel A of Table 17 presents the results from the
first-step regressions. We find that the common leaders’ distress risk (profit margin)
is positively (negatively) associated with the natural disaster shocks to the top market
leaders in the same industries. This pattern is more pronounced for severe natural disas-
ter shocks. Panel B presents the second-step estimates on the cross-industry contagion
effect. The coefficient of ̂IdShock−i,t is positive and statistically significant, indicating
that the distress risk and profit margin of industry i are positively associated with other
industries’ idiosyncratic shocks that propagate to industry i through common market
leaders. In summary, our results suggest that adverse idiosyncratic shocks in one industry
can be transmitted to another industry through the common leaders that operate in both
industries. These findings are consistent with the predictions of our model in the collusive
Nash equilibrium.

We further show that the cross-industry contagion results cannot be explained away
by production network externality. Specifically, we control for the interaction between
industry-level connectedness and predicted idiosyncratic shocks. The industry-level
connectedness measures are constructed following Fan and Lang (2000), and they capture
the production network connectedness between two industries. As shown by panel
B of Table 17, the coefficient for the predicted idiosyncratic shocks remains positive
and statistically significant when the production network connectedness measure is
zero, suggesting that the cross-industry contagion effect cannot be explained away by
production network externality.

In addition, we show that the cross-industry spillover effects remain robust after
excluding industries whose common market leaders are mainly superstar firms (i.e., top
50 firms ranked by sales). Specifically, we exclude an industry from our analysis if half or
more than half of the links between this industry and other industries in the competition
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network are connected through superstar firms. As shown in Table OA.20 of the Online
Appendix, the coefficient of ̂IdShock−i,t remains positive and statistically significant after
dropping these industries, suggesting that the cross-industry spillover effects are not
simply driven by superstar firms.

Heterogeneity in Contagion Effects across Industries. In our model with the collusive
Nash equilibrium, cross-industry contagion effects rely critically on proper functioning of
the internal capital market of common leaders. When the internal capital market breaks
down, the distress of one segment of a given common leader will not lead to changes
of product market behaviors in other segments of the common leader, because different
segments do not share the balance sheet as a whole. Therefore, we expect cross-industry
contagion effects to be stronger in industries with higher efficiency of the internal capital
markets of common leaders. To test this prediction, we measure the efficiency of internal
capital market of a four-digit SIC industry using the absolute value added by allocation
in Rajan, Servaes and Zingales (2000) averaged across all common leaders in this industry.
We sort industries into tertiles based on the industry-level efficiency 1 year prior to natural
disaster shocks and then examine cross-industry contagion effects in the industries with
high efficiency (top and middle tertile) and low efficiency (bottom tertile) of internal
capital market. Table 18 tabulates the results. Consistent with the prediction of our model
in the collusive Nash equilibrium, we find that cross-industry contagion effects captured
by the coefficient of ̂IdShock−i,t mostly concentrate in industries with high efficiency of
internal capital market of common leaders, while they are almost absent in industries
with low efficiency of internal capital market of common leaders. These findings are
robust both with and without controlling for production network connectedness.

4.5 Evidence from Two Additional Quasi-Natural Experiments

We provide collaborative evidence from two additional quasi-natural experiment settings
in this section. In Section 4.5.1, we exploit the setting of the AJCA tax holiday to
investigate the impact of a reduction in financial distress (i.e., positive distress shock) on
industry peers. In Section 4.5.2, we exploit the setting of the Lehman crisis and examine
the impact of an increase in financial distress (i.e., negative distress shock) on industry
peers. Different from natural disasters, both the AJCA tax holiday and the Lehman crisis
are one-time economy-wide shocks. Therefore, we use the econometric specification of
heterogeneous average spillover effects across different industries to identify the spillover
effects.
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Table 18: Heterogeneous cross-industry spillover effects across efficiency of the internal
capital markets of common leaders.

Panel A: Without controlling for production network connectedness

(1) (2) (3) (4) (5) (6) (7) (8)
Distress(−c)

i,t DD(−c)
i,t PM(−c)

i,t Markup(−c)
i,t

Internal capital market efficiency High Low High Low High Low High Low

̂IdShock−i,t 0.898∗∗ 0.498 0.680∗∗∗ 0.073 0.772∗∗∗ 0.195 0.733∗∗ 0.215
[2.339] [0.701] [2.630] [0.208] [2.831] [0.545] [2.536] [0.587]

Observations 3335 1609 3266 1554 3406 1640 3406 1640
R-squared 0.001 0.001 0.002 0.001 0.003 0.001 0.002 0.001

Panel B: Controlling for production network connectedness

(1) (2) (3) (4) (5) (6) (7) (8)
Distress(−c)

i,t DD(−c)
i,t PM(−c)

i,t Markup(−c)
i,t

Internal capital market efficiency High Low High Low High Low High Low

̂IdShock−i,t 0.839∗∗ 0.458 0.635∗∗ −0.003 0.780∗∗∗ 0.168 0.715∗∗ 0.241
[2.072] [0.606] [2.342] [−0.007] [2.812] [0.447] [2.447] [0.644]

̂IdShock−i,t × Forward_Con−i,i,t 3.819 2.869 9.212 17.267 −22.076 −30.671 −24.986 −40.425
[0.039] [0.064] [0.257] [0.643] [−0.774] [−1.371] [−0.873] [−1.587]

̂IdShock−i,t × Backward_Con−i,i,t 108.290 −44.596 27.342 14.047 −0.222 50.533∗ 10.602 41.902
[1.145] [−0.488] [0.852] [0.323] [−0.006] [1.758] [0.299] [1.624]

Forward_Con−i,i,t 35.895 26.031 −57.268 −92.880 7.456 10.059 11.285 17.374∗

[0.049] [0.078] [−0.247] [−0.563] [0.830] [1.418] [0.982] [1.667]

Backward_Con−i,i,t 815.981 −328.059 −169.438 −103.431 −0.016 −15.668∗ −4.242 −16.551
[1.138] [−0.473] [−0.816] [−0.389] [−0.001] [−1.772] [−0.306] [−1.631]

Observations 3331 1609 3262 1554 3402 1640 3402 1640
R-squared 0.007 0.007 0.003 0.003 0.004 0.003 0.006 0.005

Note: This table reports the heterogeneous cross-industry spillover effects across efficiency of the internal capital markets of

common leaders. The regression specification of panel A is: Y(−c)
i,t = β1 ̂IdShock−i,t + εi,t. The regression specification of

panel B is: Y(−c)
i,t = β1 ̂IdShock−i,t + β2 ̂IdShock−i,t × Forward_Con−i,i,t + β3 ̂IdShock−i,t × Backward_Con−i,i,t + β4Forward_Con−i,i,t +

β5Backward_Con−i,i,t + εi,t. Definitions of the dependent and independent variables are given in Table 17. We present results in
industries with high efficiency of internal capital market of common leaders (top tertile and middle tertile) and low efficiency of
internal capital market of common leaders (bottom tertile). The efficiency of internal capital market is measured by the absolute
value added by allocation in Rajan, Servaes and Zingales (2000). We sort industries into tertiles based on the average efficiency
across all common leaders in the industry 1 year prior to natural disaster shocks. The sample spans the period from 1994 to 2018.
Standard errors are clustered at the industry level. We include t-statistics in brackets. *, **, and *** indicate statistical significance at
the 10%, 5%, and 1% levels, respectively.

4.5.1 Evidence from the AJCA Tax Holiday

In this section, we study the impact of reduced financial distress on firms’ product market
behaviors and the distress levels of their peer firms. Specifically, we examine the impact
of AJCA, in which firms are allowed to repatriate foreign profits to the US at a 5.25%
tax rate, rather than the existing 35% corporate tax rate. The passage of AJCA reduces
the distress levels of treated firms (i.e., those with a significant amount of pretax income
from abroad), especially for those that were financially constrained prior to AJCA (see
Faulkender and Petersen, 2012). Consistent with the prediction of our model, we find that
(i) firms that were financially constrained prior to AJCA compete less aggressively in the
product market after the passage of AJCA, and (ii) the distress levels of the non-treated
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Table 19: Spillover effects in the AJCA tax holiday setting.

(1) (2) (3) (4) (5) (6) (7) (8)

Distressi,t DDi,t PMi,t Markupi,t

AJCAi −0.267∗∗∗ −0.261∗∗∗ 0.433 0.387 0.053 0.050 0.024 0.017
[−2.963] [−2.872] [0.699] [0.618] [1.325] [1.252] [0.312] [0.222]

AJCAi,t −0.525∗∗∗ −0.382∗∗ 2.969∗∗∗ 2.209∗ 0.316∗∗∗ 0.213∗∗ 0.466∗∗∗ 0.254∗

[−2.809] [−1.993] [3.084] [1.942] [3.720] [2.453] [3.124] [1.712]

High_Cross_Ind_Shocksi,t −0.110 0.742∗ 0.076∗∗ 0.158∗∗∗

[−1.511] [1.916] [2.497] [2.987]

Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 2166 2166 1806 1806 2303 2303 2292 2292
R-squared 0.127 0.129 0.143 0.147 0.029 0.038 0.016 0.028

Note: This table examines the spillover effects in the AJCA tax holiday setting. The data sample is a firm-year panel that spans
5 years after the passage of AJCA (i.e., 2004 to 2008). We focus our analysis on the financially constrained firms (i.e., those with
financial constraint ranked in the top quintile) prior to the passage of AJCA. Financially constraint is measured as the average delay
investment score of Hoberg and Maksimovic (2015) in the 5-year window prior to the the passage of AJCA (i.e., 1999 to 2003). The
regression specification is: Yi,t = β1 AJCAi + β2 AJCAi,t + β3 High_Cross_Ind_Shocksi,t + δt + εi,t. The dependent variables are the
distress risk (Distressi,t), distance to default (DDi,t), gross profit margin (PMi,t), and markup (Markupi,t). We follow Grieser and
Liu (2019) to define AJCAi is an indicator variable that equals 1 if firm i has more than 33% pretax income from abroad during
the period from 2001 to 2003. AJCAi,t is the industry treatment intensity which is the fraction of firms in firm i’s industry with an
AJCAi indicator that equals 1. High_Cross_Ind_Shocksi,t captures the strength of cross-industry spillover effects via the competition
network, and it is a dummy variable that equals one if the average industry treatment intensity for the industries connected to firm
i’s industry through competition networks is higher than 20% in year t. The term δt represents year fixed effects. Standard errors
are clustered at the firm level. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1%
levels, respectively.

industry peers that were financially constrained prior to AJCA reduce significantly after
the passage of AJCA.

Different from natural disasters, the AJCA tax holiday is a one-time shock. Therefore,
we cannot use the DID specification (4.5) to identify the spillover effect because we will
not be able to separate the spillover effects caused by AJCA from unrelated aggregate time-
series changes. To overcome this empirical challenge, we use the method highlighted by
Berg, Reisinger and Streitz (2021) and identify spillover effects by exploiting the variation
in the fraction of treated firms across industries. Specifically, we run the following
regression:

Yi,t =β1AJCAi + β2AJCAi,t + β3High_Cross_Ind_Shocksi,t + δt + εi,t, (4.11)

where AJCAi is an indicator variable that equals 1 if firm i has more than 33% pretax
income from abroad during the period from 2001 to 2003 following the definition in
Grieser and Liu (2019). AJCAi,t is the industry treatment intensity which is the fraction of
firms in firm i’s industry with an AJCAi indicator that equals 1. High_Cross_Ind_Shocksi,t

captures the strength of cross-industry spillover effects via the competition network, and
it is a dummy variable that equals one if the average industry treatment intensity for the
industries connected to firm i’s industry through competition networks is higher than
20% in year t. Our data sample is a firm-year panel that spans 5 years after the passage
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of AJCA (i.e., 2004 to 2008). Because AJCA mainly altered the operating behaviors (e.g.,
investment) of the most constrained firms (e.g., Faulkender and Petersen, 2012; Grieser
and Liu, 2019), we focus our analysis on the firms that are most financially constrained
prior to the passage of AJCA. Specifically, we measure financial constraint using the delay
investment score of Hoberg and Maksimovic (2015) averaged across the 5-year period
prior to the the passage of AJCA (i.e., 1999 to 2003) and focus on the firms ranked in the
top quintile based on the average constraint scores.

Table 19 tabulates the results from the regressions. Coefficient β2 represents the
within-industry spillover effects. It is positive and statistically significant for profit margin
(see columns 5 and 6), and markup (see columns 7 and 8), suggesting that firms that
are financially distressed prior to AJCA compete less aggressively in the product market
when a larger fraction of firms in the industry are shocked by the passage of AJCA.
Coefficient β2 is negative and statistically significant for distress (see columns 1 and
2), and it is positive and statistically significant for distance to default (see columns 3
and 4), suggesting that firms that are financially distressed prior to AJCA become less
distressed when a larger fraction of firms in the industry are shocked by the passage
of AJCA. These results are consistent with the predictions of our model in the collusive
equilibrium and demonstrate the existence of the within-industry spillover effects. In
Table OA.21 of the Online Appendix, we further examine the within-industry spillover
effects by allowing the treated firms and non-treated firms to have heterogenous spillover
effects (see Berg, Reisinger and Streitz, 2021). We find that the spillover effects mainly
exist from treated firms to non-treated firms, rather than from treated firms to other
treated firms. We examine distress risk using bond yield spread and CDS spread as
two additional measures. Because the limited coverage of the spread data in the cross
section, we do not limit our analysis to financially constrained firms and instead use the
full sample. As shown in Table OA.22 of the Online Appendix, we again find that the
within-industry spillover effects are robust in both bond yield spread and CDS spread.

Table 19 also speaks to the cross-industry spillover effects. Coefficient β3 is positive
for profit margin (see columns 5 and 6), and markup (see columns 7 and 8), suggesting
that when more industries connected to the focal industry via the competition network
are shocked by the passage of AJCA, the firms in the focal industries compete less
aggressively in the product market. Coefficient β3 is negative for distress (see columns 1
and 2), and it is positive for distance to default (see columns 3 and 4), suggesting that
when more industries connected to the focal industry via the competition network are
shocked by the passage of AJCA, the distress levels of the firms in the focal industries are
reduced more. These results are also consistent with the predictions of our model and
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demonstrate the existence of the cross-industry spillover effects.

4.5.2 Evidence from the Lehman Crisis

For both idiosyncratic shocks and systematic shocks, our model has the same predictions
for the spillover effects. In this subsection, we exploit the Lehman crisis as a quasi-
experiment for systematic shocks (Chodorow-Reich, 2014; Chodorow-Reich and Falato,
2021) and examine the spillover effects via competition network.

Kim (2021) exploits the same setting and studies the output price dynamics around the
Lehman crisis. Using cross-sectional regressions, he finds that firms experiencing more
negative credit supply shocks decrease their output prices more after the Lehman crisis,
a finding that is consistent with our model. Here, we go one step beyond and further
examine the existence of spillover effects. Specifically, we run the following cross-sectional
regression:

∆Yi =β1Lehmani + β2Lehmani + β3High_Cross_Ind_Shocksi + εi, (4.12)

where ∆Yi represents the the changes of the dependent variables of firm i after the
Lehman crisis. Lehmani is an indicator variable that equals 1 if firm i experiences a below-
median credit supply shock during the Lehman crisis. The method we use to construct
the measure of firm-specific credit supply shock is the same as that of Chodorow-Reich
(2014), and it is explained in Online Appendix F. A lower level of credit supply shock
implies that the lender health of the firm deteriorated more during the Lehman crisis.
Lehmani,t is the industry treatment intensity which is the fraction of firms in firm i’s
industry with an Lehmani indicator that equals 1. High_Cross_Ind_Shocksi,t captures the
strength of cross-industry spillover effects via the competition network, and it is a dummy
variable that equals one if the average industry treatment intensity for the industries
connected to firm i’s industry through competition networks is higher than 20% in year t.

Table 20 tabulates the results from the regressions. Coefficient β2 represents the
within-industry spillover effects. It is negative and statistically significant for profit
margin (see columns 5 and 6), and markup (see columns 7 and 8), suggesting that firms
compete more aggressively in the product market when a larger fraction of firms in the
industry experience adverse credit-supply shocks during the Lehman crisis. Coefficient β2

is positive and statistically significant for distress (see columns 1 and 2), and it is negative
and statistically significant for distance to default (see columns 3 and 4), suggesting that
firms become more distressed when a larger fraction of firms in the industry experience
adverse credit-supply shocks during the Lehman crisis. These results are consistent with
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Table 20: Spillover effects in the Lehman crisis setting.

(1) (2) (3) (4) (5) (6) (7) (8)

∆Distressi ∆DDi ∆PMi ∆Markupi

Lehmani 0.009 0.008 −0.356 −0.353 0.019 0.020 0.021 0.021
[0.187] [0.174] [−1.298] [−1.287] [0.590] [0.612] [1.102] [1.122]

Lehmani 0.509∗∗∗ 0.456∗∗∗ −1.173∗∗∗ −0.947∗∗ −0.321∗∗∗ −0.221∗∗∗ −0.113∗∗∗ −0.068∗∗

[5.345] [4.656] [−2.597] [−2.012] [−4.621] [−4.170] [−3.123] [−2.153]

High_Cross_Ind_Shocksi 0.057 −0.188 −0.101∗∗∗ −0.046∗∗

[1.520] [−0.804] [−2.662] [−2.354]

Observations 2401 2401 1920 1920 2583 2583 2580 2580
R-squared 0.017 0.018 0.008 0.009 0.005 0.008 0.002 0.004

Note: This table examines the spillover effects in the Lehman crisis setting. The regression specification is: ∆Yi = β1Lehmani +

β2Lehmani + β3 High_Cross_Ind_Shocksi + εi . The dependent variables are the changes of distress risk (∆Distressi,t), changes of
distance to default (∆DDi,t), changes of gross profit margin (∆PMi,t), and changes of markup (∆Markupi,t) from 2005 to 2009.
Lehmani is an indicator variable that equals 1 if firm i experiences a below-median credit supply shock during the Lehman crisis.
The method we use to construct the measure of firm-specific credit supply shock is the same as that of Chodorow-Reich (2014), and
it is explained in Online Appendix F. A lower level of credit supply shock implies that the lender health of the firm deteriorated
more during the Lehman crisis. Lehmani,t is the industry treatment intensity which is the fraction of firms in firm i’s industry
with an Lehmani indicator that equals 1. High_Cross_Ind_Shocksi,t captures the strength of cross-industry spillover effects via the
competition network, and it is a dummy variable that equals one if the average industry treatment intensity for the industries
connected to firm i’s industry through competition networks is higher than 20% in year t. We include t-statistics in brackets. *, **,
and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

the predictions of our model in the collusive equilibrium and demonstrate the existence
of the within-industry spillover effects.

5 Conclusion

In this paper, we build a competition network that links industries through common
major players in horizontal competition of product markets. Using the network structure,
we show that industries with higher competition network centrality are more exposed to
cross-industry spillover effects of distress shocks, which can lead to aggregate fluctuations,
thereby have higher expected stock returns. To test the core mechanism, we examine
the causal effects of firms’ distress risk on their product market behaviors and the
propagation of these firm-specific distress shocks through the competition network. We
identify idiosyncratic distress risk by exploiting the occurrence of local natural disasters.
We find that firms hit by disasters exhibit increased distress and then compete more
aggressively in product markets by cutting their profit margins. In response, their industry
peers also engage in more aggressive competition and exhibit their own increased distress,
especially in industries with high entry barriers. Importantly, distress risk can propagate
to other industries through common market leaders operating in multiple industries.
These results cannot be explained by demand commonality or other network externality.
We also find consistent results by examining the impact of the passage of AJCA in 2004
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and the Lehman crisis in 2008, which lead to a reduction and an increase in the distress
levels of the treated firms, respectively.
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Online Appendix

A Proofs

A.1 Proof for Proposition 2.1
To fix ideas, we consider industry i with market leaders ai and ci. We first describe the equilibrium in the
state of non-collusive Nash equilibrium as follows:

qN
ai ,i =

a− 2ω(xai ) + ω(xci )

3b
and qN

ci ,i =
a− 2ω(xci ) + ω(xai )

3b
, (A.1)

and

πN
ai ,i =

[a− 2ω(xai ) + ω(xci )]2

9b
and πN

ci ,i =
[a− 2ω(xci ) + ω(xai )]2

9b
. (A.2)

The profit margins of market leader ai and ci from industry i are

θN
ai ,i =

πN
ai ,i

pN
i qN

ai ,i

=
a− 2ω(xai ) + ω(xci )

a + ω(xai ) + ω(xci )
and θN

ci ,i =
πN

ci ,i

pN
i qN

ci ,i

=
a− 2ω(xci ) + ω(xai )

a + ω(xai ) + ω(xci )
. (A.3)

Thus, it holds that
∂θN

ai ,i

∂εai
=

∂θN
ai ,i

∂xai

∂xai

∂εai
< 0 and

∂θN
ci ,i

∂εai
=

∂θN
ci ,i

∂xai

∂xai

∂εai
> 0. (A.4)

Now, we consider the collusive Nash equilibrium. For firm ai and ci in industry i with the collusive
profit levels πC

ai ,i and πC
ci ,i, the gain of deviation to reap more profits in the current period and the loss of

deviation to lose the benefits of future cooperation for firm ai are characterized as follows:

Benefits of deviation for firm ai = πC
ci ,iδe

ηπC
ci ,i , and (A.5)

Costs of deviation for firm ai =
∞

∑
t=1

λ(xai , πC
ai ,i)

t
[
1− λ(xai , πC

ai ,i)
]

tπC
ai ,i (A.6)

= πC
ai ,i

λ(xai , πC
ai ,i)

1− λ(xai , πC
ai ,i)

, respectively. (A.7)

To ensure that firm ai will not deviate from the collusive profit level πC
ai ,i, it must hold that

πC
ai ,iδe

ηπC
ci ,i ≤ πC

ai ,i

λ(xai , πC
ai ,i)

1− λ(xai , πC
ai ,i)

. (A.8)

Plugging (2.1) into (A.8) and rearranging terms lead to the IC constraint for firm i in industry i as follows:

πC
ai ,iδe

ηπC
ci ,i ≤ πC

ai ,ie
−xai+γπC

ai ,i (A.9)

which further leads to
πC

ci ,i ≤ η−1
[
− ln(δ)− xai + γπC

ai ,i

]
. (A.10)
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On the other hand, for firm ci in industry i with the collusive profit level πC
ci ,i, the gain of deviation to

reap more profits in the current period and the loss of deviation to lose the benefits of future cooperation
are characterized as follows:

Benefits of deviation for firm ci = πC
ci ,iδe

ηπC
ai ,i , and (A.11)

Costs of deviation for firm ci =
∞

∑
t=1

λ(xci , πC
ci )

t
[
1− λ(xci , πC

ci )
]

tπC
ci ,i (A.12)

= πC
ci ,i

λ(xci , πC
ci )

1− λ(xci , πC
ci )

, respectively. (A.13)

Because firm ci operates in both industries i and c, it holds that πC
ci = πC

ci ,i + πC
ci ,c, which leads to

Costs of deviation of firm ci = πC
ci ,i

λ(xci , πC
ci ,i + πC

ci ,c)

1− λ(xci , πC
ci ,i + πC

ci ,c)
. (A.14)

To ensure that firm ci will not deviate from the collusive profit level πC
ci ,i, it must hold that

πC
ci ,iδe

ηπC
ai ,i ≤ πC

ci ,i

λ(xci , πC
ci ,i + πC

ci ,c)

1− λ(xci , πC
ci ,i + πC

ci ,c)
. (A.15)

Plugging (2.1) into (A.15) and rearranging terms lead to the IC constraint for firm ci in industry i as follows:

πC
ci ,iδe

ηπC
ai ,i ≤ πC

ci ,ie
−xci+γ(πC

ci ,i
+πC

ci ,c
)
, (A.16)

which further leads to
πC

ai ,i ≤ η−1
[
− ln(δ)− xci + γ(πC

ci ,i + πC
ci ,c)
]

. (A.17)

Similar to Opp, Parlour and Walden (2014), Dou, Ji and Wu (2021a,b), and Chen et al. (2020), we assume
that the firms collude on the highest profit level in the sense that the IC constraint is binding:

πC
ci ,i = η−1

[
− ln(δ)− xai + γπC

ai ,i

]
, (A.18)

πC
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]

. (A.19)

Similarly, the following equilibrium conditions can be derived:
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[
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]

, (A.20)
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, (A.22)
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. (A.23)

Let −→π C = (πC
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cj ,j
)T and −→x ≡ (xai , xci , xcj , xaj)T . Then, equations (A.18) – (A.23)

can be rewritten as
H(−→x ) = Γ−→π C, (A.24)
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where

H(−→x ) ≡ η−1



ln(δ) + xai

ln(δ) + xci
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and Γ ≡
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, with µ ≡ η−1γ. (A.25)

Therefore, the profit levels of all firms in the collusive Nash equilibrium is

−→π C = Γ−1H(−→x ), (A.26)

where

Γ−1 =
−1

det Γ



3µ4 − 4µ2 + 1 µ5 − 3µ3 + µ −2µ4 + µ2 −µ5 + µ3 µ4 µ5
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and

det Γ = −µ6 + 6µ4 − 5µ2 + 1.

It is obvious that all elements of ∂−→π C/∂−→x are negative when µ is sufficiently small. Therefore, for any two
market leaders f and p in industry k ∈ K, firm f ’s profit level πC

f decreases with its idiosyncratic distress
level ε f , and peer firm p’s profit level πC

p also decreases with firm f ’s idiosyncratic distress level ε f as a
spillover effect; i.e.

∂πC
f ,k

∂x f
≤ 0 and

∂πC
p,k

∂x f
≤ 0, (A.27)

and thus
∂πC

f ,k

∂ε f
≤ 0 and

∂πC
p,k

∂ε f
≤ 0. (A.28)

Higher ε f leads to lower collusion capacity, thus causes lower price level pC
k and higher outputs (qC

f ,k, qC
p,k) in

the tacit collusion. Consequently, the profit margins θC
f ,k ≡ πC

f ,k/[πC
f ,k + ω(x f )qC

f ,k] and θC
p,k ≡ πC

p,k/[πC
p,k +

ω(xp)qC
p,k] are both decreasing in ε f .

A.2 Proof for Proposition 2.2
The cross-industry spillover effect is actually proved above in the proof of Proposition 2.1. Take industries i
and c as an example. The solution in (A.26) implies that

∂πC
ai ,i

∂εcj
=

−µ3 + µ

η(µ6 − 6µ4 + 5µ2 − 1)
. (A.29)
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Clearly, ∂πC
ai ,i/∂εcj < 0 as long as µ ≤ 1/3. Higher εcj leads to lower collusion capacity of market

leaders in industry i, thus causes lower price level pC
i and higher outputs (qC

ai ,i, qC
ci ,i) in the tacit collusion.

Consequently, the profit margins θC
ci ,i ≡ πC

ai ,i/[π
C
ai ,i + ω(xai )qC

ai ,i] decreases in εcj .

A.3 Proof for Proposition 2.3
According to (A.26), it follows that

∂−→π C

∂x
=
−1

η det Γ



µ5 + 2µ4 − 2µ3 − 3µ2 + µ + 1
µ5 + µ4 − 4µ3 − 2µ2 + 2µ + 1
−µ4 − 3µ3 − µ2 + 2µ + 1
−µ4 − 3µ3 − µ2 + 2µ + 1

µ5 + µ4 − 4µ3 − 2µ2 + 2µ + 1
µ5 + 2µ4 − 2µ3 − 3µ2 + µ + 1


, with µ ≡ η−1γ. (A.30)

Therefore, the industry-level profits in the collusive Nash equilibrium are

1
∂x

 ∂πC
i

∂πC
c

∂πC
j

 =
−β

η det Γ

 2µ5 + 3µ4 − 6µ3 − 5µ2 + 3µ + 2
−2µ4 − 6µ3 − 2µ2 + 4µ + 2

2µ5 + 3µ4 − 6µ3 − 5µ2 + 3µ + 2

 . (A.31)

Thus, the difference between industries’ exposures to the economy-wide degree of financial constraints is

∂πC
c

∂x
−

∂πC
i

∂x
=

β(−2µ5 − 5µ4 + 3µ2 + µ)

η(µ6 − 6µ4 + 5µ2 − 1)
. (A.32)

When µ is sufficiently small, ∂πC
c /∂x is more negative than ∂πC

i /∂x. Specifically, ∂πC
c /∂x− ∂πC

i /∂x < 0
as long as µ ≤ 1/3. Higher x leads to lower collusion capacity of market leaders in all industries, and it
reduces πC

c to a greater extent than πC
i , thereby lowering pC

c and pushing up qC
c to a greater extent than pC

i
and qC

i , respectively. Consequently, the profit margin θC
c ≡ πC

c /[πC
c + ω(xci )qC

ci ,c + ω(xcj)qC
cj ,c

] decreases in

x faster than θC
i ≡ πC

i /[πC
i + ω(xai )qC

ai ,i + ω(xci )qC
ci ,i].

B Measures for Distress Risk
We use two empirical measures to examine firms’ distress risk: the distress risk measure of Campbell,
Hilscher and Szilagyi (2008) and the distance to default measure of Bharath and Shumway (2008).

Distress Risk. We follow Campbell, Hilscher and Szilagyi (2008) in measuring distress risk (Distressi,t).
Specifically, based on the third column in Table IV of Campbell, Hilscher and Szilagyi (2008), we define
distress risk as follows:

Distressi,t =− 9.164− 20.264NIMTAAVGi,t + 1.416TLMTAi,t − 7.129EXRETAVGi,t

+ 1.411SIGMAi,t − 0.045RSIZEi,t − 2.132CASHMTAi,t + 0.075MBi,t − 0.058PRICEi,t. (B.1)

OA-4



Here, NIMTAAVG is the moving average of the ratio between net income and market total assets. TLMTA
is the ratio between total liabilities and market value of total assets. EXRETAVG is the moving average of
stock returns in excess of the returns of the S&P 500 index. SIGMA is the annualized standard deviation
of daily returns over the past 3 months. RSIZE is the relative size measured as the log ratio of a firm’s
market equity to that of the S&P 500 index. CASHMTA is the ratio between cash and market value of
total asset. MB is the ratio between market equity and book equity. PRICE is the log of the stock price,
truncated above at $15. A higher level of Distressi,t implies a higher probability of bankruptcy or failure.

Distance to Default. We follow Bharath and Shumway (2008) in constructing the distance to default
measure using the naive Merton default probability (DDi,t). Specifically, we define the distance to default
with a 1-year forecasting horizon following equation 12 of Bharath and Shumway (2008):

DDi,t =
ln ((Ei,t + Fi,t)/Fi,t) + (ri,t − 0.5σ2

i,t)

σi,t
.

where E is the market value of the firm’s equity and F is the face value of the firm’s debt. Variable ri,t

represents the firm’s stock return over the year. Variable σi,t represents the total volatility of the firm, which
is approximated by:

σi,t =
Ei,t

Ei,t + Fi,t
σE

i,t +
Ei,t

Ei,t + Fi,t
σD

i,t ,

where σE
i,t is the annualized stock volatility computed based on daily stock returns over the year, and σD

i,t is
approximated by σD

i,t = 0.05 + 0.25σE
i,t. The distance to default measure negatively captures the distress risk.

A lower level of DDi,t implies a higher probability of bankruptcy or failure.

C Natural Disasters and Distress Risk

C.1 Disaster Losses Are Only Partially Offset by Insurance
Insurance coverage and public disaster assistance can only partially offset firms’ losses in natural disasters.
Froot (2001) documents that disaster insurance premiums are much higher than the value of expected losses,
because the catastrophe insurance market is highly concentrated. Consistent with this finding, it is shown
that (i) about half of the firms with significant exposure to natural disasters do not take out insurance
policies (Henry et al., 2013), and (ii) about half of the natural disaster losses over the 1980 to 2018 period
are not insured (see Figure OA.1). Even for insured firms, the coverage is far from complete. Garmaise and
Moskowitz (2009) show that insured firms only partially cover risks, bringing disruptive effect to firms’
investment activities. Aretz, Banerjee and Pryshchepa (2019) show that delays in the settlement of insurance
claims imply that insured firms experience economic and financial distress until eventual compensation.
Similarly, public disaster assistance takes time to arrive. According to the Federal Emergency Management
Agency (FEMA) Disaster Declarations Database, the average duration of public disaster assistance may last
up to 6 years from the announcement date of a presidential disaster declaration (e.g., Seetharam, 2018).
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Note: This figure plots the overall and insured losses from US natural disasters from 1980 to 2018. The figure is taken from
the research report titled “Facts + Statistics: US catastrophes” by the Insurance Information Institution, available at www.iii.org/
fact-statistic/facts-statistics-us-catastrophes.

Figure OA.1: Overall and insured losses from US natural disasters from 1980 to 2018.

C.2 Hurricanes Harvey and Irma: An Anecdotal Example
Hurricanes Harvey and Irma caused huge amount of damage to the US oil refinery industry. More than
a dozen major oil refineries located on the Gulf Coast suffered great losses from the two hurricanes. In
responses to the damage caused by the natural disasters, both gasoline price and crude oil price increased
sharply (see panel A of Figure OA.2). However, the amount of increase in gasoline price (in percentage
terms) was much lower than that of crude oil. As a result, the profit margin of the oil refinery industry
reduced significantly after the hurricanes (see panel B of Figure OA.2), suggesting that refinery firms did
not simply pass the increased input costs to their customers; instead, they internalized some of the increased
costs. This finding is consistent with our theory that predicts intensified product market competition in
response to firms’ increased distress risk.

D Measures for Network Centrality
We explain the mathematical definition of the four network centrality measures (degree, closeness, between-
ness, and eigenvector centrality) in this section. We use an example network taken from El-Khatib, Fogel
and Jandik (2015) to help with the illustration (see Figure OA.3).

Degree Centrality. Degree centrality is the number of direct links a node has with other nodes in the
network. The more links the node has, the more central this node is in the network. The mathematical
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Note: Panel A of this figure shows the gasoline price and crude oil price around Hurricanes Harvey and Irma. Both prices are
obtained from the Federal Reserve Economic Data. Panel B of this figure plots the ratio between gasoline price and the crude oil
price. The gray areas in both panels represent the period of Hurricanes Harvey and Irma.

Figure OA.2: Profitability in the oil refinery industry around Hurricanes Harvey and
Irma.

Figure OA.3: An example network.

definition for degree centrality is:

Degreei = ∑
j 6=i

xi,j, (D.1)

where xi,j is an indicator variable that equals 1 if node i and node j are connected. For the network shown
in Figure OA.3, the degree centrality for nodes A to H is 2, 3, 1, 3, 2, 3, 1, and 1, respectively.

Closeness Centrality. Closeness centrality is the inverse of the sum of the (shortest) weighted distances
between a node and all other nodes in a given network. It indicates how easily a node can be affected by
other disturbances to other nodes in the network. The mathematical definition for closeness centrality is:

Closenessi =
n− 1

∑j 6=i di,j
× n

N
, (D.2)

OA-7



where di,j is the shortest distance between nodes i and j. Variable n is the size of the component to which
node i belongs, and variable N is the size of the entire network. In the network example shown in Figure
OA.3, there are two components in the network: one with a size of six nodes (nodes A to F) and the other
with a size of two nodes (nodes G and H). The closeness centrality for nodes A to H is 0.469, 0.536, 0.341,
0.536, 0.417, 0.469, 0.250, and 0.250, respectively.

Betweenness Centrality. Betweenness centrality gauges how often a node lies on the shortest path
between any other two nodes of the network. Hence, it indicates how much control a node could have on
the spillover effect on the network, because a node located between two other nodes can either dampen
or amplify the spillover effect between those two nodes through the network links. The mathematical
definition for betweenness centrality is:

Betweennessi = ∑
i<j 6=k∈N

gi,j,(k)/gi,j

(n− 1)(n− 2)/2
, (D.3)

where gi,j is 1 for any geodesic connecting nodes i and j, and gi,j,(k) is 1 if the geodesic between nodes i and
j also passes through node k. Variable n is the size of the component to which node i belongs, and variable
N is the size of the entire network. For the network shown in Figure OA.3, the betweenness centrality for
nodes A to H is 0.1, 0.45, 0, 0.3, 0, 0.15, 0, and 0, respectively.

Eigenvector Centrality. Eigenvector centrality is a measure of the importance of a node in the
network. It takes into account the extent to which a node is connected with other highly connected nodes.
Eigenvector centrality is solved by satisfying the following equation:

λE′E = E′AE, (D.4)

where E is an eigenvector of connection matrix A, and λ is its corresponding eigenvector. The eigenvector
centrality for node i is thus the elements of eigenvector E∗ associated with A’s principal eigenvalue λ∗. For
the network shown in Figure OA.3, the eigenvector centrality for nodes A to H is 0.358, 0.408, 0.161, 0.516,
0.401, 0.502, 0, and 0, respectively.

E Competition Networks with Public and Private Firms

Table OA.1: Connected four-digit SIC pairs of the competition networks with and without
private firms.

Competition network with public firms only

0 1 Total

Competition network with
0 547, 410 78 547, 488

both public and private firms
1 77 1, 063 1, 140

Total 547, 487 1, 141 548, 628

In the main text, we construct the competition network based on Compustat historical segment data.
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Because Compustat only covers public firms, it is possible that the competition network we construct is
not an accurate representation of the competition network in the economy. In this section, we incorporate
private firms in constructing the competition network. We show that the resulting competition network
is very similar to the one constructed based on public firms only. We also show that the asset pricing
implications of the competition network centrality measure remain robust after taking private firms into
consideration.

Figure OA.4: Node degree of the competition networks with and without private firms at
the four-digit SIC industry level in 1994.

We obtain information about private firms from Capital IQ, which is one of the most comprehensive
datasets covering private firms. Capital IQ provides the total sales of the private firms and the list of
four-digit SIC industries in which firms operate ranked by the relative importance of these industries. The
limitation of Capital IQ is that, unlike Compustat historical segment data, Capital IQ does not provide a
breakdown of the industry-level sales within firms because the disclosure of private firms is in general
less detailed. To overcome this limitation, we estimate the breakdown of the industry-level sales within
firms using the weights computed based on public firms in the Compustat data. Specifically, for firms
that operate in two industries, we assign 80% of sales to the primary industries and assign 20% of sales to
the secondary industries. For firms that operate in three or more industries, we assign 68% of sales to the
primary industries, 23% of sales to the secondary industries, and 9% of sales to the tertiary industries. Our
findings remain robust if we assign sales to all industries in which the firms operate based on the weights
estimated from public firms in the Compustat data.

Table OA.1 tabulates the connected four-digit SIC pairs of the competition networks with and without
private firms in 1994. Adding private firms only causes a minor change to the competition network. More
than 93% of the links remain the same after we take private firms into consideration in forming the network.
Figure OA.4 shows the distribution of node degree of the competition networks with and without private
firms in 1994. Again, we find that the distribution remains largely unchanged after adding private firms.
We compare the competition networks with and without private firms in other snapshots and we find that
the two sets of competition network are highly similar throughout our sample period.
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Table OA.2: Excess industry returns and alphas sorted on the centrality of the competition
network constructed using both public and private firms.

Panel A: Excess returns for the quintile portfolios sorted on competition network centrality

Q1 (low) Q2 Q3 Q4 Q5 (high) Q5 − Q1

5.84∗ 4.53 7.75∗∗ 8.25∗∗∗ 9.17∗∗∗ 3.33∗∗

[1.81] [1.36] [2.15] [2.62] [2.78] [2.04]

Panel B: Alphas of the long-short portfolios sorted on competition network centrality

CAPM model Fama-French
three-factor model

Pástor-Stambaugh
liquidity-

factor model

Stambaugh-Yuan
mispricing-

factor model

Hou-Xue-Zhang
q-factor model

Fama-French
five-factor model

2.75∗ 2.91∗ 3.01∗ 4.95∗∗∗ 4.79∗∗∗ 5.41∗∗∗

[1.85] [1.89] [1.92] [2.77] [2.79] [2.71]

Note: Panel A of this table shows the average excess returns for the industry quintile portfolios sorted on the centrality of the
competition network constructed using both public and private firms. Panel B of this table shows the alphas of the long-short
industry quintile portfolio sorted on the centrality of the competition network with both public and private firms. The competition
network centrality is the PC1 of the four centrality measures of the competition network (i.e., degree centrality, closeness centrality,
betweenness centrality, and eigenvector centrality). In June of each year t, we sort industries into quintiles based on the centrality
measure in year t− 1. Once the portfolios are formed, their monthly returns are tracked from July of year t to June of year t + 1.
Because common leaders and conglomerates operate in more than one industry, we exclude them in computing industry returns.
Industry returns are value-weighted from stock returns of the stand-alone firms in the industries based on firms’ 1-month lagged
market capitalization. We exclude from the analysis financial and utility industries and very small industries that contain fewer than
three firms. Newey-West standard errors are estimated with one lag. We annualize average excess returns by multiplying them by
12. The sample period of the data is from July 1977 to June 2018. We include t-statistics in brackets. *, **, and *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively.

We next study the asset-pricing implications of the centrality of the competition networks constructed
using both public and private firms. Table OA.2 shows that the excess returns and alphas are higher
for industries with higher centrality in the competition network. Table OA.3 presents the results from
Fama-MacBeth regressions and we again find that competition network centrality is positively priced in the
cross section of industries.

F Credit Supply Shocks During the Lehman Crisis
We follow Chodorow-Reich (2014) to construct the measure of firm-specific credit supply shocks during the
Lehman crisis. Specifically, we first define:

∆L−i,b =
∑j 6=i αb,j,crisisLb,j,crisis

0.5 ∑j 6=i αb,j,normal Lb,j,normal
. (F.1)

where Lb,j,t is a dummy variable that equals to 1 if bank b lends to borrow j in period t, and αb,j,t denotes
bank b’s share in each syndicated loan that is made to firm j in period t.21 Because Dealscan only reports
lender shares for about one-third of loans, we impute the missing lender shares using the same method of
Chodorow-Reich (2014). The crisis period refers to the 9-month period from October 2008 to June 2009,
and the pre-crisis normal period refers to the 18-month period containing October 2005 to June 2006 and
October 2006 to June 2007. We multiply the denominator by 0.5 to account for the fact that the crisis period
consists of 9 months while the pre-crisis normal period consists of 18 months. ∆L−i,b captures the quantity

21The syndicated loan data come from Thomson Reuters LPC DealScan and we focus on loans with
either primary or secondary purpose listed as "working capital" or "corporate purpose".
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Table OA.3: Fama-MacBeth regressions on the centrality of the competition network
constructed using both public and private firms.

(1) (2) (3) (4) (5) (6)
Reti,t (%)

Competition_Centralityi,t−1 0.149∗∗∗ 0.151∗∗∗ 0.102∗∗∗ 0.089∗∗∗ 0.092∗∗∗ 0.156∗∗∗

[2.908] [2.905] [3.067] [2.721] [2.905] [3.423]

Production_Centralityi,t−1 0.082 −0.014 −0.028 −0.027 −0.017
[1.428] [−0.243] [−0.513] [−0.491] [−0.221]

LnSalesi,t−1 0.274∗∗∗ 0.303∗∗∗ 0.287∗∗∗ 0.358∗∗∗

[3.891] [4.281] [4.136] [3.537]

LnBEMEi,t−1 0.064 0.083 0.201∗∗

[0.922] [1.182] [2.027]

GPi,t−1 0.113∗∗ 0.259∗∗∗

[1.995] [2.924]

HHIi,t−1 −0.017
[−0.282]

Constant 0.987∗∗∗ 0.963∗∗∗ 0.878∗∗∗ 0.849∗∗∗ 0.847∗∗∗ 0.658∗∗

[3.763] [3.390] [3.003] [2.886] [2.885] [2.264]

Average obs/month 204 204 199 199 199 98
Average R-squared 0.005 0.010 0.026 0.041 0.052 0.096

Note: This table reports the slope coefficients and test statistics from Fama-MacBeth regressions that regress monthly
industry returns (Reti,t) on the centrality of the competition network constructed using both public and private firms
(Competition_Centralityi,t−1). Other control variables include production centrality (Production_Centralityi,t−1), natural log of in-
dustry revenue (LnSalesi,t−1), natural log of industry book-to-market ratio (LnBEMEi,t−1), industry gross profitability (GPi,t−1), and
industry concentration ratio (HHIi,t−1). The competition network centrality is the PC1 of the four centrality measures of the com-
petition network (i.e., degree centrality, closeness centrality, betweenness centrality, and eigenvector centrality). The production
network centrality is the PC1 of the same four centrality measures of the production network. Industry book-to-market ratio is
the ratio between the book equity and the market equity of an industry. Industry gross profitability is constructed as gross profits
(revenue minus cost of goods sold) scaled by assets, following the definition of Novy-Marx (2013). Industry-level revenue, cost of
goods sold, book assets, book equity, and market equity are the sum of the corresponding firm-level measures for firms in the same
industry. Industry concentration ratio is the HHI index of the top 50 firms. The concentration ratio data come from US Census which
covers manufacturing industries. All the independent variables are standardized to have means of 0 and standard deviations of 1.
Because common leaders and conglomerates operate in more than one industries, we exclude them in computing industry returns
and characteristics. Industry returns are value-weighted from stock returns of the stand-alone firms in the industries based on firms’
one-month lagged market capitalization. We exclude financial and utility industries and very small industries that contain fewer
than three firms from the analysis. The sample period of the data is from 1977 to 2018. *, **, and *** indicate statistical significance
at the 10%, 5%, and 1% levels, respectively.

of loans made by bank b to all borrowers other than firm i relative to the pre-crisis normal period.
Next, we aggregate ∆L−i,b across all lenders that lend to firm i for the last syndicated loan that firm i

borrowed before the Lehman crisis:

∆L̃i = ∑
b∈si

αb,i,last∆L−i,b. (F.2)

where αb,i,last is bank b’s share in the last syndicated loan taken by firm i before the Lehman crisis and si

denotes the set of banks that lend to firm i in that syndicated loan. ∆L̃i captures the credit supply shocks to
firm i during the Lehman crisis. A lower level of of ∆L̃i implies that the lender health of firm i deteriorated
more during the Lehman crisis.
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G Evidence from Enforcement Against Financial Fraud
We follow Karpoff et al. (2017) and examine firms that have been prosecuted by the SEC and DOJ for
Section 13(b) violations. Because violating firms face legal punishment and penalties imposed by the
market, their distress risk increases significantly (e.g., Graham, Li and Qiu, 2008; Karpoff, Lee and Martin,
2008), which provides us a nice setting to examine the reaction of their industry peers.22

We assemble financial fraud data following Karpoff et al. (2017). First, we collect all enforcement
actions brought by the SEC and the US Department of Justice (DOJ) for violations of Section 13(b) of the
Securities Exchange Act of 1934. We then match violating firms to the Compustat-CRSP based on firm
names. For each financial fraud case, we hand-collect the date of the first public announcement revealing
to investors that a future enforcement action is possible (i.e., trigger date) by examining firms’ 8-K filings
downloaded from the EDGAR system and other news releases covered by the Factiva database and the
RavenPack database. Our merged sample spans the period from 1976 to 2018 and it covers 838 unique
violating firms that operate in non-financial industries.

Similar to the natural disaster setting, we use DID analysis to study the spillover effects from distressed
firms to their industry peers. For each violating firm, we match it with up to 10 non-violating peer firms in
the same four-digit SIC industry based on firm asset size, tangibility, and age. We require that the matched
peer firms are not suppliers or customers of the violating firms. For each firm, we include four yearly
observations (i.e., 2 years before and 2 years after the year of fraud revelation) in the analysis. Different
from natural disasters, financial fraud does not occur exogenously. In particular, it has been shown that
financial fraud tends to peak toward the end of a boom and is then revealed in the ensuing bust (e.g., Povel,
Singh and Winton, 2007). To control for business cyclicality, we add past average ROA and stock returns as
additional control variables in the DID regressions. Our regression specification is:

Yi,t =β1Treati,t × Posti,t + β2Treati,t + β3Posti,t + β4Ln(1 + n(Ci,t))

+ β5ROAi,t−3:t−1 + β6StockReti,t−3:t−1 + θi + δt + εi,t, (G.1)

where Treati,t is an indicator variable that equals 1 if firm i is a firm that commits financial fraud. Posti,t is
an indicator variable that equals 1 for observations after the trigger date, which is the date of the first public
announcement revealing to investors that future enforcement action is possible. Ln(1 + n(Ci,t)) captures
the strength of cross-industry spillover via the competition network. ROAi,t−3:t−1 is the average ROA of
firm i from year t− 3 to year t− 1. StockReti,t−3:t−1 is the average stock returns of firm i from year t− 3 to
year t− 1. The term θi represents firm fixed effects, and the term δt represents year fixed effects.

Table OA.4 in the Online Appendix presents the findings from the DID analysis. Consistent with the
natural disaster setting, we find that coefficient β3 is significantly positive for distress risk and significantly
negative for distance to default, suggesting that industry peers of the violating firms become more distressed.
Coefficient β3 is significantly negative for gross profitability and markup, suggesting that industry peers of
the violating firms engage in more aggressive product market competition after the revelation of fraud.
In Figures OA.5 and OA.6 of the Online Appendix, we examine the dynamics of the spillover effects. We
find that the spillover effect emerges only after the revelation of fraud. There is no significant change in
the distress risk or distance to default prior to the trigger dates, which provides evidence supporting the

22We limit our analysis to fraud cases in which firms receive at least $0.25 million in monetary fines from
the US government to ensure that the violating firms face sizable legal penalties. Our findings are robust to
other cutoffs.
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A: Within-industry spillover of distress risk
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B: Within-industry spillover of distance to default

Note: This figure plots the within-industry spillover effects of distress risk around legal enforcement actions against financial fraud.
For each violating firm, we match it with up to 10 non-violating peer firms in the same four-digit SIC industry based on firm asset
size, tangibility, and age. We require that the matched peer firms are not suppliers or customers of the treated firms. For each
firm, we include six yearly observations in the analysis. Specifically, for each firm, we include 3 years before and 3 years after the
trigger date, which is the date of the first public announcement revealing to investors that a future enforcement action is possible.
To estimate the dynamics of the spillover effect, we consider the yearly regression specification as follows: Yi,t = ∑2

τ=−3 β1,τ ×
Treati,t × Fraudi,t−τ + β2 × Treati,t + ∑2

τ=−3 β3,τ × Fraudi,t−τ + β4Ln(1 + n(Ci,t)) + β5ROAi,t−3:t−1 + β6StockReti,t−3:t−1 + θi + δt + εi,t.
The dependent variable (Yi,t) is the distress risk (Distressi,t) and the distance to default (DDi,t) in panels A and B, respectively.
Treati,t is an indicator variable that equals 1 if firm i is a firm that commits financial fraud. Fraudi,t−τ is an indicator variable that
equals 1 if the trigger date of the legal enforcement action against firm i (when firm i is a treated firm) or the treated firm to which
firm i is matched (when firm i is a matched non-treated firm) takes place in year t − τ. Ln(1 + n(Ci,t)) captures the strength of
cross-industry spillover effect, and it is the natural log of 1 plus the number of industries connected to firm i’s industry through
competition networks and containing violating firms in year t. ROAi,t−3:t−1 is the average ROA of firm i from year t− 3 to year t− 1.
StockReti,t−3:t−1 is the average stock returns of firm i from year t− 3 to year t− 1. The term θi represents firm fixed effects, and the
term δt represents year fixed effects. When running the regression, we impose β1,−1 = β3,−1 = 0 to avoid collinearity in categorical
regressions, and by doing this, we set the years immediately preceding the years of the trigger date as the benchmark. The sample
of this figure spans from 1976 to 2018. We exclude firms in financial industries from the analysis. We plot estimated coefficients β3,τ
with τ = −3,−2, · · · , 2, as well as their 90% confidence intervals with standard errors clustered at the firm level. The vertical dashed
lines represent the trigger dates of the legal enforcement actions against financial fraud.

Figure OA.5: Within-industry spillover effects of distress risk in the financial fraud setting.

parallel trend assumption for the DID analysis. Finally, we should point out that the fraud setting has a
caveat because there are on average fewer than 20 violating firms per year in our sample. The sparsity of
the treated firms prevents us from studying the cross-industry spillover effects. Consistent with this caveat,
the coefficient for the cross-industry spillover term (i.e., β4) is statistically insignificant as shown in Table
OA.4.

H Supplementary Empirical Results
Similar to Boehmer, Jones and Zhang (2020), we identify the total treatment effect of the treated firms and
the spillover effect to the non-treated peer firms simultaneously using the DID approach. Specifically, we
match each treated firm with up to 5 non-treated peer firms in the same four-digit SIC industry with similar
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Table OA.4: Evidence from legal enforcement actions against financial frauds.

(1) (2) (3) (4) (5) (6) (7) (8)

Distressi,t DDi,t PMi,t Markupi,t

Treati,t × Posti,t 0.358∗∗∗ 0.358∗∗∗ −1.057∗∗∗ −1.058∗∗∗ −0.008 −0.008 −0.020 −0.020
[4.856] [4.855] [−3.725] [−3.730] [−1.202] [−1.204] [−1.554] [−1.558]

Treati,t −0.030 −0.030 −0.260 −0.262 0.003 0.003 0.012 0.012
[−0.455] [−0.453] [−0.699] [−0.704] [0.383] [0.382] [0.636] [0.632]

Posti,t 0.068∗∗∗ 0.065∗∗∗ −0.283∗∗∗ −0.256∗∗∗ −0.008∗∗∗ −0.008∗∗∗ −0.015∗∗∗ −0.014∗∗

[3.561] [3.359] [−3.341] [−3.037] [−2.631] [−2.512] [−2.488] [−2.280]

Ln(1 + n(Ci,t)) 0.019 −0.142 −0.001 −0.005
[0.588] [−1.210] [−0.324] [−0.615]

ROAi,t−3:t−1 0.223∗∗ 0.222∗∗ 0.578∗∗ 0.582∗∗ −0.011 −0.011 −0.032 −0.032
[2.452] [2.447] [1.975] [1.989] [−0.501] [−0.500] [−0.786] [−0.784]

StockReti,t−3:t−1 −0.104∗∗ −0.103∗∗ 0.462∗∗∗ 0.459∗∗∗ 0.006 0.006 0.011 0.011
[−2.058] [−2.053] [2.902] [2.894] [0.954] [0.947] [0.884] [0.872]

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 9284 9284 8009 8009 9817 9817 9813 9813
R-squared 0.653 0.653 0.775 0.775 0.878 0.878 0.892 0.892

Test p-value: β1 + β3 = 0 <10−3 <10−3 <10−3 <10−3 0.016 0.018 0.004 0.006

Note: This table presents the results of a DID analysis examining the response of distress risk and gross profit margin to legal
enforcement actions against financial fraud of peer firms. For each violating firm, we match it with up to 10 non-violating peer firms
in the same four-digit SIC industry based on firm asset size, tangibility, and age. We use a relatively high matching ratio to reduce
noise because there are on average fewer than 20 violating firms per year in our sample. We require that the matched peer firms are
not suppliers or customers of the violating firms. For each firm, we include four yearly observations in the analysis. Specifically, for
each firm, we include 2 years before and 2 years after the trigger date, which is the date of the first public announcement revealing
to investors that a future enforcement action is possible. The regression specification is: Yi,t = β1Treati,t × Posti,t + β2Treati,t +
β3Posti,t + β4Ln(1 + n(Ci,t)) + β5ROAi,t−3:t−1 + β6StockReti,t−3:t−1 + θi + δt + εi,t. The dependent variables in columns (1) to (4) are
the distress risk (Distressi,t), distance to default (DDi,t), gross profit margin (PMi,t), and markup (Markupi,t), respectively. Treati,t is
an indicator variable that equals 1 if firm i is a firm that commits financial fraud. Posti,t is an indicator variable that equals 1 for
observations after the trigger dates. Ln(1 + n(Ci,t)) captures the strength of cross-industry spillover effects, and it is the natural log
of 1 plus the number of industries connected to firm i’s industry through competition networks and containing violating firms in
year t. ROAi,t−3:t−1 is the average ROA of firm i from year t− 3 to year t− 1. StockReti,t−3:t−1 is the average stock returns of firm i
from year t− 3 to year t− 1. The term θi represents firm fixed effects, and the term δt represents year fixed effects. In the last row
of the table, we present the p-value for the null hypothesis that the total treatment effect for the treated firms is zero (i.e., β1 + β3
= 0). The sample of this table spans from 1976 to 2018. We exclude firms in financial industries from the analysis. Standard errors
are clustered at the firm level. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1%
levels, respectively.

asset size, tangibility, and age.23 Because we are interested in studying the spillover effect, it is important
for us to make sure that the matched peer firms are not directly affected by major natural disaster shocks.
In particular, we require the matched peer firms to have no establishment (including headquarters) in any
county that experiences any positive amount of property damage during a major natural disaster. To make
sure that the spillover effects we document are distinct from production network externality, we require
that the matched peer firms are not suppliers or customers of the treated firms.

23If the treated firm is a common leader, we match it to non-treated peer firms in all four-digit SIC
industries in which this treated firm is a common leader.
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B: Spillover of markup

Note: This figure plots the within-industry spillover effects of profit margin around legal enforcement actions against financial
fraud. For each violating firm, we match it with up to 10 non-violating peer firms in the same four-digit SIC industry based on
firm asset size, tangibility, and age. We require that the matched peer firms are not suppliers or customers of the treated firms.
For each firm, we include 16 quarterly observations in the analysis. Specifically, for each firm, we include eight quarters before
and eight quarters after the trigger date, which is the date of the first public announcement revealing to investors that a future
enforcement action is possible. To estimate the dynamics of the spillover effect, we consider the quarterly regression specification
as follows: Yi,t = ∑7

τ=−8 β1,τ × Treati,t × Fraudi,t−τ + β2 × Treati,t + ∑7
τ=−8 β3,τ × Fraudi,t−τ + β4Ln(1 + n(Ci,t)) + β5ROAi,t−12:t−1 +

β6StockReti,t−12:t−1 + θi + δt + εi,t. The dependent variable (Yi,t) is the gross profit margin (PMi,t) and markup (Markupi,t) in panels
A and B, respectively. Treati,t is an indicator variable that equals 1 if firm i is a firm that commits financial fraud. Fraudi,t−τ is an
indicator variable that equals 1 if the trigger date of the legal enforcement actions against firm i (when firm i is a treated firm) or
the treated firm to which firm i is matched (when firm i is a matched non-treated firm) takes place in quarter t− τ. Ln(1 + n(Ci,t))
captures the strength of cross-industry spillover effect, and it is the natural log of 1 plus the number of industries connected to
firm i’s industry through competition networks and containing violating firms in year t. ROAi,t−12:t−1 is the average ROA of firm
i from quarter t − 12 to quarter t − 1. StockReti,t−12:t−1 is the average stock returns of firm i from quarter t − 12 to quarter t − 1.
The term θi represents firm fixed effects, and the term δt represents quarter fixed effects. When running the regression, we impose
β1,−1 = β3,−1 = 0 to avoid collinearity in categorical regressions, and by doing this, we set the quarters immediately preceding the
quarters of the trigger date as the benchmark. The sample of this figure spans from 1976 to 2018. We exclude firms in the financial
industries from the analysis. We plot estimated coefficients β3,τ with τ = −8,−7, · · · , 7, as well as their 90% confidence intervals
with standard errors clustered at the firm level. The vertical dashed lines represent the trigger dates of the legal enforcement actions
against financial frauds.

Figure OA.6: Within-industry spillover effects of profit margin in the financial fraud
setting.

OA-15



Note: This figure presents the frequency of major natural disaster for each county in the US mainland from 1994 to 2018. The list
of counties affected by each major natural disaster is obtained from the SHELDUS database. Table OA.8 describes the major natural
disasters included in the sample.

Figure OA.7: Frequency of major natural disasters by US county.
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Table OA.5: Relation between competition network centrality and industry characteristics

Panel A: Summary statistics of the industry characteristics

Mean Median SD p10 p25 p75 p90

Centralityi,t 2.971 2.350 2.077 1.156 1.654 3.702 5.669
Production_Centralityi,t 1.731 1.543 0.958 0.889 1.416 1.893 2.344
LnSalesi,t 7.747 7.691 1.940 5.293 6.412 9.074 10.448
LnBEMEi,t −0.531 −0.548 0.700 −1.336 −0.966 −0.105 0.298
GPi,t 0.346 0.323 0.213 0.097 0.185 0.473 0.622
HHIi,t 0.068 0.049 0.061 0.018 0.030 0.082 0.148

Panel B: Industry characteristics across portfolios sorted on competition network centrality

Mean Median

Centralityi,t quintiles Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

Centralityi,t 1.070 1.935 2.379 3.293 6.247 1.157 1.903 2.241 3.250 5.655
Production_Centralityi,t 1.680 1.734 1.766 1.702 1.777 1.534 1.624 1.523 1.524 1.543
LnSalesi,t 7.633 7.624 7.782 7.850 7.877 7.520 7.591 7.759 7.735 7.834
LnBEMEi,t −0.601 −0.537 −0.513 −0.473 −0.527 −0.623 −0.543 −0.520 −0.496 −0.537
GPi,t 0.402 0.314 0.308 0.354 0.352 0.378 0.284 0.277 0.335 0.326
HHIi,t 0.066 0.064 0.068 0.066 0.073 0.048 0.044 0.054 0.049 0.051

Panel C: Relation between competition network centrality and industry characteristics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Competition_Centralityi,t

Production_Centralityi,t 0.046 0.036 0.050∗ 0.024 0.052∗ 0.027 0.053∗ 0.028 0.040 0.006
[1.566] [1.021] [1.689] [0.683] [1.743] [0.777] [1.759] [0.781] [0.665] [0.088]

LnSalesi,t −0.013 0.040 −0.008 0.042 −0.008 0.042 0.135 0.171
[−0.373] [0.929] [−0.206] [0.939] [−0.223] [0.946] [1.315] [1.525]

LnBEMEi,t 0.047∗ 0.024 0.045∗ 0.016 −0.001 −0.028
[1.792] [0.871] [1.790] [0.592] [−0.013] [−0.539]

GPi,t −0.009 −0.028 −0.163∗ −0.174∗

[−0.250] [−0.760] [−1.809] [−1.936]

HHIi,t 0.091 0.096
[0.961] [1.009]

Year FE No Yes No Yes No Yes No Yes No Yes
Observations 9195 9195 9186 9186 8840 8840 8840 8840 3327 3327
R-squared 0.002 0.020 0.002 0.021 0.005 0.022 0.005 0.023 0.036 0.066

Note: This table shows the relation between competition network centrality and industry characteristics. Competition_Centralityi,t
is the competition network centrality measure, which is the PC1 of the four centrality measures of the competition networks (i.e.,
degree centrality, closeness centrality, betweenness centrality, and eigenvector centrality). Production_Centralityi,t is the production
network centrality, which is the PC1 of four centrality measures of the production networks. LnSalesi,t is the natural log of industry
revenue. LnBEMEi,t is the natural log of industry book-to-market ratio, which is the ratio between the book equity and the market
equity of an industry. GPi,t is industry gross profitability, which is the gross profits (revenue minus cost of goods sold) scaled
by assets, following the definition of Novy-Marx (2013). Industry-level revenue, cost of goods sold, book assets, book equity, and
market equity are the sum of the corresponding firm-level measures for firms in the same industry. HHIi,t is the HHI of the top 50
firms. The concentration ratio data come from the US Census, which covers manufacturing industries. Panel A tabulates summary
statistics of the industry characteristics. P10, p25, p75, and p90 are the 10th, 25th, 75th, and 90th percentiles. Panel B tabulates the
mean and median values of the industry characteristics across industry quintile portfolios sorted on competition network centrality.
The sorting is performed at yearly frequency. Panel C performs panel regressions which regress industry-level competition network
centrality on various industry characteristics. The dependent variable and all the independent variables are standardized to have
means of 0 and standard deviations of 1. Because common leaders and conglomerates operate in more than one industry, we exclude
them in computing industry characteristics. We exclude from the analysis financial and utility industries and very small industries
that contain fewer than three firms. The sample period of the data is from 1977 to 2018. *, **, and *** indicate statistical significance
at the 10%, 5%, and 1% levels, respectively.
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Table OA.6: Excess returns of the double-sort analysis.

Q1 (low) Q2 Q3 Q4 Q5 (high) Q5 − Q1

Panel A: Double sort on production network centrality

6.34∗ 6.69∗ 5.45 6.86∗∗ 9.77∗∗∗ 3.43∗∗

[1.93] [1.93] [1.62] [2.20] [2.97] [2.20]

Panel B: Double sort on industry size

5.90∗ 6.46∗ 5.56∗ 7.62∗∗ 9.65∗∗∗ 3.75∗∗

[1.78] [1.90] [1.66] [2.43] [2.96] [2.37]

Panel C: Double sort on industry book-to-market ratio

5.73∗ 6.93∗∗ 5.73∗ 7.22∗∗ 9.54∗∗∗ 3.80∗∗

[1.75] [1.98] [1.70] [2.34] [2.91] [2.25]

Panel D: Double sort on industry gross profitability

5.58 6.23∗ 6.52∗ 7.79∗∗ 8.93∗∗∗ 3.35∗∗

[1.63] [1.83] [1.95] [2.52] [2.75] [2.04]

Panel E: Double sort on industry concentration ratio

3.54 6.81∗ 7.88∗∗ 7.80∗∗ 9.29∗∗∗ 5.75∗∗∗

[1.06] [1.93] [2.47] [2.38] [2.93] [3.46]

Note: This table shows the average excess returns for the industry portfolios sorted on competition network centrality after con-
trolling for various industry characteristics using the double-sort analysis. In each June, we first sort industries into five groups
based on their 1-year lagged characteristics including production centrality (panel A), size (panel B), book-to-market ratio (panel
C), profitability (panel D), and concentration ratio (panel E). Next, we sort industries within each group into quintiles based on
their 1-year lagged competition network centrality, which is the PC1 of the four centrality measures of the competition networks
(i.e., degree centrality, closeness centrality, betweenness centrality, and eigenvector centrality). We then pool the industries in the
same competition network centrality quintiles together across the industry groups. Thus, in each June, we effectively sort industries
into competition network centrality quintiles controlling for various industry characteristics. Once the portfolios are formed, their
monthly returns are tracked from July of year t to June of year t + 1. Because common leaders and conglomerates operate in more
than one industry, we exclude them in computing industry returns. Industry returns are value-weighted from stock returns of the
stand-alone firms in the industries based on firms’ 1-month lagged market capitalization. We exclude from the analysis financial
and utility industries and very small industries that contain fewer than three firms. The production network centrality is computed
based on the PC1 of four centrality measures of the production networks. The industry size is the measured by the revenue of an
industry. The industry book-to-market ratio is the ratio between the book equity and the market equity of an industry. The industry
gross profitability is constructed as gross profits (revenue minus cost of goods sold) scaled by assets, following the definition of
Novy-Marx (2013). The industry-level revenue, cost of goods sold, book assets, book equity, and market equity are the sum of the
corresponding firm-level measures for firms in the same industry. Industry concentration ratio is the HHI index of the top 50 firms.
The concentration ratio data come from the US Census, which covers manufacturing industries. Newey-West standard errors are
estimated with one lag. We annualize average excess returns by multiplying them by 12. The sample period of the data is from
July 1977 to June 2018. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels,
respectively.
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Table OA.7: Alphas of the double-sort analysis.

CAPM model Fama-French
three-factor model

Pástor-Stambaugh
liquidity-

factor model

Stambaugh-Yuan
mispricing-

factor model

Hou-Xue-Zhang
q-factor model

Fama-French
five-factor model

Panel A: Double sort on production network centrality

3.35∗∗ 3.05∗ 2.98∗ 3.92∗∗ 4.21∗∗ 3.42∗∗

[2.11] [1.87] [1.77] [2.20] [2.10] [2.04]

Panel B: Double sort on industry size

3.74∗∗ 3.69∗∗ 3.64∗∗ 4.18∗∗ 5.20∗∗ 4.52∗∗∗

[2.33] [2.19] [2.11] [2.27] [2.49] [2.60]

Panel C: Double sort on industry book-to-market ratio

3.49∗∗ 3.77∗∗ 3.77∗∗ 4.66∗∗ 5.28∗∗ 4.76∗∗

[2.04] [2.11] [2.06] [2.35] [2.38] [2.58]

Panel D: Double sort on industry profitability

3.47∗∗ 3.74∗∗ 3.84∗∗ 3.96∗∗ 4.45∗∗ 4.16∗∗

[2.11] [2.20] [2.20] [2.02] [2.00] [2.30]

Panel E: Double sort on industry concentration ratio

5.93∗∗∗ 5.94∗∗∗ 5.84∗∗∗ 6.46∗∗∗ 6.84∗∗∗ 6.45∗∗∗

[3.54] [3.44] [3.30] [3.38] [3.18] [3.58]

Note: This table shows the alphas of the long-short industry quintile portfolio sorted on competition network centrality after
controlling for various industry characteristics using the double-sort analysis. In each June, we first sort industries into five groups
based on their 1-year lagged characteristics including production centrality (panel A), size (panel B), book-to-market ratio (panel
C), profitability (panel D), and concentration ratio (panel E). Next, we sort industries within each group into quintiles based on
their 1-year lagged competition network centrality, which is the PC1 of the four centrality measures of the competition networks
(i.e., degree centrality, closeness centrality, betweenness centrality, and eigenvector centrality). We then pool the industries in the
same competition network centrality quintiles together across the industry groups. Thus, in each June, we effectively sort industries
into competition network centrality quintiles controlling for various industry characteristics. Once the portfolios are formed, their
monthly returns are tracked from July of year t to June of year t + 1. Because common leaders and conglomerates operate in more
than one industry, we exclude them in computing industry returns. Industry returns are value-weighted from stock returns of the
stand-alone firms in the industries based on firms’ 1-month lagged market capitalization. We exclude from the analysis financial
and utility industries and very small industries that contain fewer than three firms. The production network centrality is computed
based on the PC1 of four centrality measures of the production networks. Industry size is measured by the revenue of an industry.
Industry book-to-market ratio is the ratio between the book equity and the market equity of an industry. Industry gross profitability
is constructed as gross profits (revenue minus cost of goods sold) scaled by assets, following the definition of Novy-Marx (2013). The
industry-level revenue, cost of goods sold, book assets, book equity, and market equity are the sum of the corresponding firm-level
measures for firms in the same industry. Industry concentration ratio is the HHI index of the top 50 firms. The concentration ratio
data come from the US Census which covers manufacturing industries. Newey-West standard errors are estimated with one lag. We
annualize alphas by multiplying them by 12. The sample period of the data is from July 1977 to June 2018. We include t-statistics in
brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table OA.8: List of major natural disasters.

Disasters Year Affected States

Northridge Earthquake 1994 CA
Tropical Storm Alberto 1994 AL, FL, GA
Hurricane Opal 1995 AL, FL, GA, LA, MS, NC, SC
North American Blizzard of 1996 1996 CT, DE, IN, KY, MA, MD, NC, NJ, NY, PA, VA, WV
Hurricane Fran 1996 NC, SC, VA, WV
North American Ice Storm of 1998 1998 ME, NH, NY, VT
Hurricane Bonnie 1998 NC, VA
Tropical Storm Frances 1998 LA, TX
Hurricane Georges 1998 AL, FL, LA, MS
Hurricane Floyd 1999 CT, DC, DE, FL, MD, ME, NC, NH, NJ, NY, PA, SC, VA, VT
Tropical Storm Allison 2001 AL, FL, GA, LA, MS, PA, TX
Hurricane Isabel 2003 DE, MD, NC, NJ, NY, PA, RI, VA, VT, WV
Southern California Wildfires 2003 CA
Hurricane Charley 2004 FL, GA, NC, SC
Hurricane Frances 2004 AL, FL, GA, KY, MD, NC, NY, OH, PA, SC, VA, WV
Hurricane Ivan 2004 AL, FL, GA, KY, LA, MA, MD, MS, NC, NH, NJ, NY, PA, SC, TN, WV
Hurricane Jeanne 2004 DE, FL, GA, MD, NC, NJ, PA, SC, VA
Hurricane Dennis 2005 AL, FL, GA, MS, NC
Hurricane Katrina 2005 AL, AR, FL, GA, IN, KY, LA, MI, MS, OH, TN
Hurricane Rita 2005 AL, AR, FL, LA, MS, TX
Hurricane Wilma 2005 FL
Midwest Floods 2008 IA, IL, IN, MN, MO, NE, WI
Hurricane Gustav 2008 AR, LA, MS
Hurricane Ike 2008 AR, LA, MO, TN, TX
Groundhog Day Blizzard 2011 CT, IA, IL, IN, KS, MA, MO, NJ, NM, NY, OH, OK, PA, TX, WI
Hurricane Irene 2011 CT, MA, MD, NC, NJ, NY, VA, VT
Tropical Storm Lee 2011 AL, CT, GA, LA, MD, MS, NJ, NY, PA, TN, VA
Hurricane Isaac 2012 FL, LA, MS
Hurricane Sandy 2012 CT, DE, MA, MD, NC, NH, NJ, NY, OH, PA, RI, VA, WV
Illinois Flooding 2013 IL, IN, MO
Colorado Flooding 2013 CO
Louisiana Flooding 2016 LA
Hurricane Matthew 2016 FL, GA, NC, SC
Western California Wildfires 2017 CA
Hurricane Harvey 2017 TX
Hurricane Irma 2017 FL, PR
Hurricane Maria 2017 PR
Western California Wildfires 2018 CA
Hurricane Florence 2018 NC, SC
Hurricane Michael 2018 FL, GA, NC, SC, VA

Note: This table lists the major natural disasters from 1994 to 2018. Following Barrot and Sauvagnat (2016), we define a major
natural disaster as one that causes at least $1 billion in total estimated property damage and that lasts fewer than 30 days. The
property damage data are from SHELDUS.
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Table OA.9: Alternative matching ratios between treated firms and non-treated peer
firms.

Panel A: Matching 1 treated firm with up to 10 non-treated peer firms

(1) (2) (3) (4) (5) (6) (7) (8)

Distressi,t DDi,t PMi,t Markupi,t

Treati,t × Posti,t 0.028∗∗ 0.029∗∗ −0.086∗ −0.087∗ −0.005 −0.006 −0.005 −0.006
[2.221] [2.251] [−1.715] [−1.738] [−0.957] [−0.991] [−0.925] [−0.965]

Treati,t −0.015 −0.015 0.090∗ 0.091∗ 0.001 0.001 −0.001 −0.001
[−1.368] [−1.382] [1.903] [1.914] [0.119] [0.135] [−0.287] [−0.270]

Posti,t 0.047∗∗∗ 0.045∗∗∗ −0.124∗∗∗ −0.120∗∗∗ −0.008∗∗ −0.007∗ −0.012∗∗∗ −0.011∗∗

[5.723] [5.643] [−4.155] [−4.056] [−1.971] [−1.831] [−2.713] [−2.553]

Ln(1 + n(Ci,t)) 0.020∗∗ −0.050 −0.010∗∗ −0.012∗∗∗

[2.005] [−1.331] [−2.206] [−2.634]

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 197257 197257 164136 164136 205140 205140 204972 204972
R-squared 0.554 0.554 0.657 0.657 0.737 0.737 0.760 0.760

Test p-value: β1 + β3 = 0 <10−3 <10−3 <10−3 <10−3 0.001 0.002 <10−3 <10−3

Panel B: Matching 1 treated firm with up to 3 non-treated peer firms

(1) (2) (3) (4) (5) (6) (7) (8)

Distressi,t DDi,t PMi,t Markupi,t

Treati,t × Posti,t 0.019 0.019 −0.087 −0.077 −0.000 −0.000 −0.000 −0.000
[1.452] [1.463] [−1.662] [−1.681] [−0.060] [−0.073] [−0.080] [−0.093]

Treati,t −0.017 −0.017 0.093∗ 0.093∗ 0.001 0.001 0.001 0.001
[−1.440] [−1.443] [1.718] [1.726] [0.315] [0.318] [0.163] [0.166]

Posti,t 0.056∗∗∗ 0.055∗∗∗ −0.129∗∗∗ −0.123∗∗∗ −0.006∗∗∗ −0.006∗∗ −0.010∗∗∗ −0.010∗∗∗

[6.153] [6.077] [−3.727] [−3.581] [−2.645] [−2.544] [−2.978] [−2.879]

Ln(1 + n(Ci,t)) 0.015∗ −0.070∗ −0.004 −0.005
[1.707] [−1.913] [−1.630] [−1.581]

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 95804 95804 82652 82652 99489 99489 99409 99409
R-squared 0.569 0.569 0.673 0.673 0.759 0.759 0.786 0.786

Test p-value: β1 + β3 = 0 <10−3 <10−3 <10−3 <10−3 0.003 0.005 <10−3 0.001

Note: This table examines the spillover effects of the major natural disasters with alternative matching ratios between treated firms
and non-treated peer firms. In panel A, we match each treated firm with up to 10 non-treated peer firms in the same four-digit SIC
industry based on firm asset size, tangibility, and age. In panel B, we match each treated firm with up to 3 non-treated peer firms.
The regression specification and the definition of the dependent and independent variables are explained in Table 12 of the main
text. The sample of this table spans from 1994 to 2018. Standard errors are clustered at the firm level. We include t-statistics in
brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table OA.10: Matching industry peers with text-based network industry classifications.

(1) (2) (3) (4)

Distressi,t DDi,t PMi,t Markupi,t

Treati,t × Posti,t 0.013 −0.025 −0.005 −0.006
[1.094] [−0.541] [−1.005] [−1.231]

Treati,t −0.012 0.027 0.007∗ 0.011∗∗

[−1.108] [0.556] [1.708] [2.166]

Posti,t 0.044∗∗∗ −0.154∗∗∗ −0.007∗∗ −0.010∗∗

[5.597] [−5.165] [−2.051] [−2.536]

Firm FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 211770 176763 219133 218988
R-squared 0.543 0.639 0.742 0.766

Test p-value: β1 + β3 = 0 <10−3 <10−3 0.002 <10−3

Note: This table examines the within-industry spillover effects of the major natural disasters based on TNIC (Hoberg and Phillips,
2010, 2016). We perform a DID analysis. Specifically, we match each treated firm with up to 10 non-treated peer firms in its TNIC
industry based on firm asset size, tangibility, and age. We require that the matched peer firms are not suppliers or customers of the
treated firms. For each firm, we include four yearly observations (i.e., 2 years before and 2 years after major natural disaster) in the
analysis. The regression specification is: Yi,t = β1Treati,t × Posti,t + β2Treati,t + β3Posti,t + θi + δt + εi,t. The dependent variables are
the distress risk (Distressi,t), distance to default (DDi,t), gross profit margin (PMi,t), and markup (Markupi,t). Treati,t is an indicator
variable that equals 1 if firm i is a treated firm. Posti,t is an indicator variable that equals 1 for observations after major natural
disasters. The term θi represents firm fixed effects, and the term δt represents year fixed effects. In the last row of the panel, we
present the p-value for the null hypothesis that the total treatment effect for the treated firms is 0 (i.e., β1 + β3 = 0). The sample of
this table spans from 1994 to 2018. Standard errors are clustered at the firm level. We include t-statistics in brackets. *, **, and ***
indicate statistical significance at the 10%, 5%, and 1% levels, respectively.

Table OA.11: Alternative measure to control for cross-industry spillover effects.

(1) (2) (3) (4) (5) (6) (7) (8)

Distressi,t DDi,t PMi,t Markupi,t

Treati,t × Posti,t 0.019 0.027∗∗ −0.087∗ −0.103∗ −0.001 0.000 −0.001 0.000
[1.538] [2.130] [−1.717] [−1.933] [−0.196] [0.098] [−0.267] [0.011]

Treati,t −0.014 −0.017 0.096∗ 0.092∗ −0.001 −0.001 −0.001 −0.000
[−1.250] [−1.436] [1.940] [1.775] [−0.189] [−0.162] [−0.151] [−0.023]

Posti,t 0.053∗∗∗ 0.046∗∗∗ −0.122∗∗∗ −0.098∗∗∗ −0.007∗∗ −0.007∗∗ −0.010∗∗∗ −0.011∗∗∗

[6.498] [5.597] [−3.882] [−3.063] [−2.283] [−2.370] [−2.649] [−2.673]

Ln(1 +Di,t) 0.005∗∗ −0.025∗∗ −0.002∗ −0.002∗

[1.960] [−2.325] [−1.821] [−1.909]

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 130099 119053 110581 101308 135037 124047 134924 123949
R-squared 0.565 0.579 0.667 0.676 0.745 0.748 0.773 0.777

Test p-value: β1 + β3 = 0 <10−3 <10−3 <10−3 <10−3 0.004 0.012 <10−3 0.003

Note: This table uses an alternative measure to control for cross-industry spillover effects. Different from Table 12 of the main text,
we capture the strength of cross-industry spillover effects using Ln(1 +Di,t), which is the natural log of 1 plus the average amount
of property damage (in millions of dollars) caused by major natural disasters in year t across industries that are connected to firm i’s
industry through competition networks. The regression specification is: Yi,t = β1Treati,t × Posti,t + β2Treati,t + β3Posti,t + β4Ln(1 +
Di,t) + θi + δt + εi,t. The definition of the dependent and other independent variables are explained in Table 12. The sample of this
table spans from 1994 to 2018. Standard errors are clustered at the firm level. We include t-statistics in brackets. *, **, and *** indicate
statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table OA.12: Net profit margin.

(1) (2) (3) (4) (5) (6) (7) (8)

NPMi,t NPMi,t NPMi,t NPMi,t

Sample Full sample High entry
barrier

Low entry
barrier

Bad
economic
condition

Good
economic
condition

High
financial

constraint

Low
financial

constraint

Treati,t × Posti,t −0.003 −0.003 −0.004 −0.005 0.001 −0.009 0.004 −0.000
[−0.717] [−0.736] [−0.478] [−1.148] [0.082] [−1.495] [0.391] [−0.068]

Treati,t 0.002 0.002 −0.000 0.006 0.004 0.003 −0.007 0.010∗

[0.498] [0.505] [−0.030] [1.233] [0.512] [0.474] [−0.765] [1.810]

Posti,t −0.007∗∗∗ −0.006∗∗ −0.017∗∗∗ 0.005∗ −0.025∗∗∗ 0.015∗∗∗ −0.034∗∗∗ 0.007∗∗

[−2.119] [−2.013] [−3.052] [1.770] [−4.696] [3.966] [−3.709] [2.111]

Ln(1 + n(Ci,t)) −0.006∗ −0.024∗∗∗ 0.006 −0.012∗∗∗ −0.003 −0.020∗∗∗ −0.007∗

[−1.800] [−3.910] [1.623] [−2.649] [−1.049] [−2.628] [−1.811]

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 135468 135468 64714 70729 66698 64811 32927 61835
R-squared 0.778 0.778 0.750 0.832 0.808 0.796 0.771 0.820

Test p-value: β1 + β3 = 0 0.002 0.003 <10−3 0.935 <10−3 0.188 <10−3 0.117

Note: This table examines the within-industry spillover effects in net profit margin following major natural disasters. The regression
specification is: NPMi,t = β1Treati,t × Posti,t + β2Treati,t + β3Posti,t + β4Ln(1 + n(Ci,t)) + θi + δt + εi,t. Net profit margins (NPMi,t)
are computed as the difference between sales and total costs of operating the firm (i.e., sales − cost of goods sold − selling, general
and administrative expenses − depreciation − interest expenses) divided by sales. Definition for the independent variables are
given in Table 12. Columns (1) and (2) present results in the full sample. Columns (3) and (4) present results from DID analysis in
industries with high entry barriers (top tertile) and low entry barriers (middle and bottom tertiles), respectively. The entry barrier
of a four-digit SIC industry is measured by the sales-weighted average of fixed assets across firms in this industry. Columns (5) and
(6) present results in industries with good economic conditions (top half) and bad economic conditions (bottom half) prior to the
natural disasters, respectively. The economic condition of a four-digit SIC industry is measured by the change of the return on assets
(ROA) in the industry from the previous year. Columns (7) and (8) present results in industries with high financial constraint (top
tertile) and low financial constraint (middle and bottom tertiles) prior to the natural disasters. The financial constraint of a four-digit
SIC industry is measured by the sales-weighted average of the delay investment score in the industry (Hoberg and Maksimovic,
2015). We sort industries into groups based on the industry-level entry barriers, economic conditions, and financial constraints 1
year prior to natural disaster shocks. The sample spans from 1994 to 2018 in Columns (1) to (6), while it spans from 1998 to 2016 in
Columns (7) to (8) due to shorter sample period of the delay investment score. Standard errors are clustered at the firm level. We
include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table OA.13: Excluding industries with high fraction of profits from foreign countries.

(1) (2) (3) (4) (5) (6) (7) (8)

Distressi,t DDi,t PMi,t Markupi,t

Treati,t × Posti,t 0.006 0.007 −0.044 −0.045 0.003 0.003 0.002 0.002
[0.464] [0.482] [−0.787] [−0.804] [0.656] [0.633] [0.313] [0.288]

Treati,t −0.018 −0.019 0.122∗∗ 0.122∗∗ 0.001 0.001 0.001 0.001
[−1.415] [−1.425] [2.118] [2.127] [0.173] [0.188] [0.237] [0.250]

Posti,t 0.068∗∗∗ 0.066∗∗∗ −0.156∗∗∗ −0.151∗∗∗ −0.011∗∗∗ −0.010∗∗∗ −0.015∗∗∗ −0.015∗∗∗

[7.165] [7.087] [−4.274] [−4.198] [−2.934] [−2.822] [−3.259] [−3.130]

Ln(1 + n(Ci,t)) 0.021∗∗ −0.056 −0.007∗∗ −0.010∗∗

[2.118] [−1.412] [−2.192] [−2.341]

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 102012 102012 87622 87622 105457 105457 105367 105367
R-squared 0.582 0.582 0.682 0.682 0.768 0.768 0.797 0.797

Test p-value: β1 + β3 = 0 <10−3 <10−3 <10−3 <10−3 0.007 0.011 <10−3 <10−3

Note: This table examines the within-industry spillover effects of the major natural disasters by excluding industries with high
fraction of profits from foreign countries. The fraction of foreign profits of an industry is the ratio between the industry-level foreign
pre-taxable income and the industry-level total pre-tax income. The industry-level foreign (total) pre-taxable income is the sum
of the firm-level foreign (total) pre-taxable income across firms in the industry, of which the data come from Compustat. We sort
industries into quintiles based on the fraction of foreign profits each year. We control for the entry costs of the industry in the sorting
to make sure the quintile assignment is orthogonal to entry costs. We exclude the industries in the top foreign profits quintile in the
DID tests. The regression specification and the definition of the dependent and independent variables are explained in Table 12 of
the main text. The merged sample of this table spans from 1994 to 2018. Standard errors are clustered at the focal firm level. We
include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table OA.14: Testing the demand commonality channel.

Panel A: Matched non-treated firms far from the disaster area (i.e., ≥ 100 miles)

(1) (2) (3) (4) (5) (6) (7) (8)

Distressi,t DDi,t PMi,t Markupi,t

Treati,t × Posti,t 0.011 0.011 −0.089 −0.089 0.004 0.004 0.009 0.009
[0.656] [0.660] [−1.346] [−1.360] [0.812] [0.804] [0.928] [0.923]

Treati,t −0.016 −0.016 0.113∗ 0.114∗ −0.003 −0.003 −0.004 −0.004
[−1.036] [−1.052] [1.681] [1.703] [−0.778] [−0.762] [−0.465] [−0.454]

Posti,t 0.073∗∗∗ 0.070∗∗∗ −0.154∗∗∗ −0.145∗∗∗ −0.012∗∗ −0.012∗∗ −0.028∗∗∗ −0.027∗∗∗

[4.720] [4.596] [−3.182] [−3.015] [−2.553] [−2.480] [−2.862] [−2.830]

Ln(1 + n(Ci,t)) 0.034∗∗ −0.103∗∗ −0.007∗ −0.010
[2.460] [−2.297] [−1.815] [−1.288]

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 99857 99857 84697 84697 104064 104064 103967 103967
R-squared 0.594 0.594 0.685 0.685 0.773 0.774 0.779 0.779

Test p-value: β1 + β3 = 0 <10−3 <10−3 <10−3 <10−3 0.004 0.006 <10−3 0.001

Panel B: Matched non-treated firms far from the disaster area + without affected business and retailed customers

(1) (2) (3) (4) (5) (6) (7) (8)

Distressi,t DDi,t PMi,t Markupi,t

Treati,t × Posti,t 0.013 0.013 −0.064 −0.065 0.001 0.001 0.004 0.004
[0.709] [0.724] [−0.895] [−0.911] [0.217] [0.202] [0.343] [0.332]

Treati,t −0.023 −0.023 0.119∗ 0.120∗ 0.001 0.001 0.004 0.004
[−1.383] [−1.410] [1.664] [1.685] [0.163] [0.187] [0.407] [0.426]

Posti,t 0.070∗∗∗ 0.067∗∗∗ −0.164∗∗∗ −0.158∗∗∗ −0.012∗∗ −0.012∗∗ −0.027∗∗∗ −0.026∗∗∗

[4.372] [4.237] [−3.006] [−2.907] [−2.166] [−2.126] [−2.594] [−2.588]

Ln(1 + n(Ci,t)) 0.038∗∗ −0.075 −0.008∗ −0.012
[2.512] [−1.565] [−1.662] [−1.324]

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 93108 93108 78781 78781 97199 97199 97097 97097
R-squared 0.605 0.605 0.692 0.692 0.778 0.778 0.783 0.783

Test p-value: β1 + β3 = 0 <10−3 <10−3 <10−3 <10−3 0.005 0.007 0.001 0.002

Note: This table tests the demand commonality channel. In panel A, we perform DID analysis by requiring the headquarters and
the major establishments of the matched peer firms to be more than 100 miles away from any zip code negatively affected by major
natural disaster in a given year. In panel B, we further require the matched peer firms to have no customers negatively affected
by natural disaster. We identify firms’ business customers using Compustat customer segment data and Factset Revere data. We
identify firms’ retail customers based on the household-level financial transaction data constructed by Baker, Baugh and Sammon
(2020). The regression specification and the definition of the dependent and independent variables are explained in Table 12 of the
main text. The merged sample of this table spans from 1994 to 2018. Standard errors are clustered at the focal firm level. We include
t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table OA.15: Testing the production network externality channel.

(1) (2) (3) (4) (5) (6) (7) (8)

Distressi,t DDi,t PMi,t Markupi,t

Treati,t × Posti,t 0.025∗ 0.025∗ −0.111∗∗ −0.112∗∗ −0.002 −0.002 −0.001 −0.001
[1.771] [1.778] [−1.987] [−2.004] [−0.259] [−0.269] [−0.114] [−0.127]

Treati,t −0.028∗∗ −0.028∗∗ 0.146∗∗∗ 0.146∗∗∗ 0.002 0.002 0.000 0.000
[−2.068] [−2.072] [2.590] [2.600] [0.304] [0.308] [0.014] [0.020]

Posti,t 0.051∗∗∗ 0.050∗∗∗ −0.123∗∗∗ −0.116∗∗∗ −0.010∗∗ −0.009∗ −0.014∗∗∗ −0.013∗∗

[5.208] [5.165] [−3.327] [−3.187] [−2.019] [−1.942] [−2.599] [−2.496]

Ln(1 + n(Ci,t)) 0.017 −0.085∗∗ −0.008 −0.011∗∗

[1.487] [−1.967] [−1.598] [−2.125]

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 106886 106886 88542 88542 111387 111387 111270 111270
R-squared 0.562 0.562 0.668 0.669 0.740 0.740 0.763 0.763

Test p-value: β1 + β3 = 0 <10−3 <10−3 <10−3 <10−3 0.009 0.013 0.001 0.002

Note: This table tests the production network externality channel. As in Table 12 of the main text, we require that the matched peer
firms are not suppliers or customers of the treated firms. We also require that the matched peer firms do not share any common
customers or any common suppliers with the treated firms. Different from Table 12, we further remove matched peer firms related
to the treated firms vertically in the DID analysis. We define two firms as connected vertically if their vertical relatedness scores
are within top 10% of all firm pairs (see, Frésard, Hoberg and Phillips, 2020). The regression specification and the definition of the
dependent and independent variables are explained in Table 12. The merged sample of this table spans from 1994 to 2018. Standard
errors are clustered at the focal firm level. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%,
5%, and 1% levels, respectively.

Table OA.16: Testing the lender commonality channel.

(1) (2) (3) (4) (5) (6) (7) (8)

Distressi,t DDi,t PMi,t Markupi,t

Treati,t × Posti,t 0.034∗ 0.034∗ −0.171∗∗ −0.172∗∗ 0.001 0.001 −0.001 −0.001
[1.750] [1.769] [−2.291] [−2.317] [0.115] [0.111] [−0.114] [−0.120]

Treati,t 0.000 0.000 0.067 0.067 −0.003 −0.003 −0.004 −0.004
[0.001] [0.003] [0.982] [0.987] [−0.683] [−0.691] [−0.695] [−0.703]

Posti,t 0.071∗∗∗ 0.066∗∗∗ −0.143∗∗∗ −0.129∗∗∗ −0.012∗ −0.011∗ −0.015∗∗ −0.014∗∗

[5.218] [5.026] [−3.032] [−2.794] [−1.925] [−1.809] [−2.257] [−2.129]

Lender_Exposurei,t−1 0.163∗∗ 0.160∗ 0.085 0.088 −0.002 −0.002 0.002 0.003
[1.979] [1.942] [0.278] [0.287] [−0.087] [−0.058] [0.065] [0.100]

Ln(1 + n(Ci,t)) 0.051∗∗∗ −0.152∗∗∗ −0.014∗∗∗ −0.018∗∗∗

[3.628] [−2.988] [−3.385] [−3.322]

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 49517 49517 46842 46842 50788 50788 50772 50772
R-squared 0.590 0.590 0.704 0.704 0.752 0.752 0.839 0.840

Test p-value: β1 + β3 = 0 <10−3 <10−3 <10−3 <10−3 0.007 0.017 0.001 0.004

Note: This table tests the lender commonality channel. We require the matched peer firms to share no common lenders with the
treated firms in the DID analysis. We also control for firms’ exposure to natural disasters through lenders (Lender_Exposurei,t−1). We
identify the borrower-lender relationship and construct Lender_Exposurei,t−1 using the LPC DealScan database in two steps. First,
we find out each lender l’s exposure to natural disasters in year t, which is the outstanding loans issued by lender l from t− 5 to
t − 1 to firms that experience natural disasters in year t normalized by the total amount of outstanding loans issued by lender l
from t − 5 to t − 1. We focus on loans issued in the preceding 5-year window following the literature (e.g., Bharath et al., 2007).
Second, for each firm i, we compute Lender_Exposurei,t−1 by averaging the lender-level exposure across all lenders of this firm. The
average is weighted based on the amount of outstanding loans borrowed from different lenders. The regression specification and
the definition of the dependent and independent variables are explained in Table 12 of the main text. The merged sample of this
table spans from 1994 to 2018. Standard errors are clustered at the focal firm level. We include t-statistics in brackets. *, **, and ***
indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
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Table OA.17: Testing the institutional blockholder commonality channel.

(1) (2) (3) (4) (5) (6) (7) (8)

Distressi,t DDi,t PMi,t Markupi,t

Treati,t × Posti,t 0.022 0.022 −0.102∗∗ −0.103∗∗ −0.001 −0.001 −0.001 −0.001
[1.615] [1.628] [−1.963] [−1.984] [−0.258] [−0.275] [−0.166] [−0.188]

Treati,t −0.024∗ −0.024∗ 0.132∗∗∗ 0.133∗∗∗ 0.001 0.001 0.001 0.001
[−1.884] [−1.889] [2.579] [2.591] [0.313] [0.319] [0.164] [0.171]

Posti,t 0.054∗∗∗ 0.052∗∗∗ −0.111∗∗∗ −0.104∗∗∗ −0.009∗∗ −0.008∗∗ −0.012∗∗∗ −0.011∗∗∗

[5.872] [5.833] [−3.427] [−3.265] [−2.138] [−2.054] [−2.696] [−2.575]

Ln(1 + n(Ci,t)) 0.015 −0.079∗∗ −0.007∗ −0.010∗∗

[1.455] [−2.132] [−1.751] [−2.238]

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 118636 118636 100840 100840 124472 124472 124344 124344
R-squared 0.561 0.561 0.663 0.663 0.755 0.755 0.773 0.773

Test p-value: β1 + β3 = 0 <10−3 <10−3 <10−3 <10−3 0.005 0.007 0.001 0.003

Note: This table tests the institutional blockholder commonality channel. We require the matched peer firms to share no common
institutional blockholders with the treated firms in the DID analysis. Institutional blockholders of a firm are 13F institutions that
hold 5% of the firm’s market cap or above. The regression specification and the definition of the dependent and independent
variables are explained in Table 12 of the main text. The merged sample of this table spans from 1994 to 2018. Standard errors are
clustered at the focal firm level. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and
1% levels, respectively.
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Table OA.18: Controlling for all alternative channels simultaneously.

(1) (2) (3) (4) (5) (6) (7) (8)

Distressi,t DDi,t PMi,t Markupi,t

Treati,t × Posti,t 0.016 0.017 −0.039 −0.041 0.001 0.001 0.003 0.003
[1.008] [1.020] [−0.610] [−0.629] [0.471] [0.446] [0.558] [0.536]

Treati,t −0.023 −0.023 0.081 0.082 −0.004 −0.003 −0.005 −0.005
[−1.481] [−1.487] [1.218] [1.233] [−1.174] [−1.163] [−0.918] [−0.909]

Posti,t 0.054∗∗∗ 0.053∗∗∗ −0.165∗∗∗ −0.158∗∗∗ −0.006∗∗ −0.006∗∗ −0.011∗∗ −0.011∗∗

[4.085] [4.020] [−3.191] [−3.075] [−2.150] [−2.039] [−2.234] [−2.143]

Posti,t × Common_Demandi,t −0.013 −0.013 0.065 0.065 0.004 0.004 0.007 0.007
[−0.795] [−0.798] [1.030] [1.035] [1.142] [1.142] [1.283] [1.282]

Posti,t × Production_Networki,t 0.014 0.014 −0.011 −0.011 −0.003 −0.003 −0.005 −0.005
[1.021] [1.017] [−0.199] [−0.202] [−1.402] [−1.402] [−1.137] [−1.137]

Posti,t × Common_Lenderi,t 0.006 0.005 0.039 0.040 0.007 0.007 0.011 0.011
[0.310] [0.302] [0.520] [0.528] [1.559] [1.563] [1.510] [1.513]

Posti,t × Common_Blockholderi,t 0.014 0.014 0.022 0.020 0.001 0.001 0.000 0.000
[0.882] [0.898] [0.359] [0.340] [0.188] [0.169] [0.063] [0.047]

Common_Demandi,t −0.015 −0.015 0.001 0.001 −0.003 −0.003 −0.006 −0.005
[−0.940] [−0.942] [0.015] [0.019] [−0.901] [−0.895] [−0.912] [−0.907]

Production_Networki,t −0.002 −0.002 −0.010 −0.010 0.002 0.002 0.002 0.002
[−0.190] [−0.170] [−0.172] [−0.189] [0.858] [0.829] [0.539] [0.513]

Common_Lenderi,t 0.051∗∗∗ 0.051∗∗∗ −0.244∗∗∗ −0.243∗∗∗ −0.013∗∗∗ −0.013∗∗∗ −0.022∗∗∗ −0.022∗∗∗

[3.081] [3.073] [−3.275] [−3.263] [−3.767] [−3.754] [−3.783] [−3.772]

Common_Blockholderi,t −0.023∗ −0.024∗ 0.082 0.083 0.002 0.002 0.007 0.007
[−1.874] [−1.892] [1.487] [1.514] [0.837] [0.859] [1.298] [1.316]

Lender_Exposurei,t−1 0.157∗∗∗ 0.157∗∗∗ −0.231 −0.233 −0.011 −0.011 −0.017 −0.017
[2.776] [2.783] [−0.988] [−0.997] [−1.251] [−1.268] [−1.151] [−1.166]

Ln(1 + n(Ci,t)) 0.017∗ −0.081∗∗ −0.005∗∗∗ −0.008∗∗∗

[1.874] [−2.226] [−3.156] [−2.827]

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 130387 130387 110883 110883 135322 135322 135209 135209
R-squared 0.565 0.565 0.667 0.667 0.793 0.793 0.805 0.805

Test p-value: β1 + β3 = 0 <10−3 <10−3 <10−3 <10−3 0.002 0.003 0.001 0.003

Note: This table examine the within-industry spillover effects by controlling for all four alternative channels simultaneously. For
each treated firm, we match it with up to five non-treated peer firms in the same four-digit SIC industry. We perform the matching
based on the values of three matching variables (i.e., firm asset size, tangibility, and age) prior to natural disaster shocks using
the shortest distance method. Common_Demandi,t is a dummy variable that equals one for the matched peer firms that i) located
within 100 miles from any zip code negatively affected by major natural disaster in a given year, 2) or have any business customers
or individual consumers which are located in the areas affected by the natural disasters. We identify firms’ business customers
using Compustat customer segment data and Factset Revere data. We identify firms’ retail customers based on the household-level
financial transaction data constructed by Baker, Baugh and Sammon (2020). Production_Networki,t is a dummy variable that equals
one for the matched peer firms that i) are suppliers or customers of the treated firms, or ii) share common suppliers or customers
with the treated firms, or iii) have high vertical relatedness scores (Frésard, Hoberg and Phillips, 2020) with the treated firms (i.e.,
within top 10% of all firm pairs). Common_Lenderi,t is a dummy variable that equals one for the matched peer firms that share
common lenders with the treated firms. Common_Blockholderi,t is a dummy variable that equals one for the matched peer firms that
share common institutional blockholders with the treated firms. Lender_Exposurei,t−1 captures firms’ exposure to natural disasters
through lenders as explained in Table OA.16. The merged sample of this table spans from 1994 to 2018. Standard errors are clustered
at the focal firm level. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels,
respectively.
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Table OA.19: Summary statistics for the cross-industry contagion analysis.

Obs. # Mean Median SD p10th p25th p75th p90th

Distress
(ci,j)

t 7058 −7.567 −7.727 0.702 −8.325 −8.091 −7.203 −6.437

DD
(ci,j)

t 6882 6.405 5.666 4.630 0.629 2.748 9.560 14.109

PM
(ci,j)

t 7166 0.314 0.300 0.140 0.131 0.200 0.412 0.538

Markup
(ci,j)

t 7166 0.400 0.356 0.220 0.141 0.223 0.530 0.773
ND_mild(1)i,t 8415 0.081 0 0.273 0 0 0 0

ND_severe(1)i,t 8415 0.023 0 0.150 0 0 0 0

ND_mild(2)i,t 8415 0.086 0 0.280 0 0 0 0

ND_severe(2)i,t 8415 0.023 0 0.150 0 0 0 0

ND_mild(3)i,t 8415 0.087 0 0.281 0 0 0 0

ND_severe(3)i,t 8415 0.028 0 0.164 0 0 0 0

Distress(−c)
i,t 5152 −7.193 −7.489 1.033 −8.215 −7.912 −6.793 −5.515

DD(−c)
i,t 5020 5.966 5.484 3.635 1.480 3.240 8.225 11.462

PM(−c)
i,t 5264 0.324 0.308 0.132 0.154 0.222 0.416 0.528

Markup(−c)
i,t 5264 0.427 0.379 0.222 0.171 0.257 0.557 0.794

̂IdShock−i,t(Distress) 5152 −7.566 −7.578 0.036 −7.578 −7.578 −7.571 −7.527
̂IdShock−i,t(DD) 5020 6.407 6.453 0.249 6.318 6.453 6.453 6.515
̂IdShock−i,t(PM) 5264 0.314 0.317 0.009 0.305 0.315 0.317 0.317
̂IdShock−i,t(Markup) 5264 0.400 0.405 0.014 0.385 0.401 0.405 0.405

Forward_Con−i,i,t 5260 0.002 0 0.011 0 0 0 0
Backward_Con−i,i,t 5260 0.001 0 0.007 0 0 0 0

Note: This table reports the summary statistics for the variables in Table 17 of the main text.

Table OA.20: Cross-industry spillover effects after excluding industries whose common
market leaders are mainly superstar firms

(1) (2) (3) (4) (5) (6) (7) (8)
Distress(−c)

i,t DD(−c)
i,t PM(−c)

i,t Markup(−c)
i,t

̂IdShock−i,t 0.698∗∗ 0.698∗∗ 0.467∗∗ 0.394∗∗ 0.484∗∗ 0.440∗∗ 0.491∗∗ 0.431∗

[2.198] [2.140] [2.279] [2.070] [2.157] [2.061] [2.192] [1.856]

̂IdShock−i,t × Forward_Con−i,i,t 22.488 40.563 −9.660 −9.140
[0.244] [1.220] [−0.224] [−0.204]

̂IdShock−i,t × Backward_Con−i,i,t 10.431 40.566 41.000 47.559
[0.124] [1.225] [1.102] [1.364]

Forward_Con−i,i,t 175.560 −251.160 3.413 4.642
[0.251] [−1.172] [0.249] [0.255]

Backward_Con−i,i,t 77.652 −235.689 −12.399 −18.209
[0.122] [−1.112] [−1.067] [−1.318]

Observations 4849 4847 4717 4715 4950 4948 4950 4948
R-squared 0.001 0.003 0.001 0.004 0.001 0.002 0.001 0.003

Note: This table reports the cross-industry spillover effects after excluding industries whose common market leaders are mainly
superstar firms (i.e., top 50 firms ranked by sales). Specifically, we exclude an industry from our analysis if half or more than half
of the links between this industry and other industries in the competition network are connected through superstar firms. The

regression specification of panel A is: Y(−c)
i,t = β1 ̂IdShock−i,t + εi,t. The regression specification of panel B is: Y(−c)

i,t = β1 ̂IdShock−i,t +

β2 ̂IdShock−i,t × Forward_Con−i,i,t + β3 ̂IdShock−i,t × Backward_Con−i,i,t + β4Forward_Con−i,i,t + β5Backward_Con−i,i,t + εi,t. Defini-
tions of the dependent and independent variables are given in Table 17. The sample spans the period from 1994 to 2018. Standard
errors are clustered at the industry level. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the 10%,
5%, and 1% levels, respectively.
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Table OA.21: Heterogenous spillover effects in the AJCA tax holiday setting.

(1) (2) (3) (4) (5) (6) (7) (8)

Distressi,t DDi,t PMi,t Markupi,t

AJCAi −0.410∗∗∗ −0.391∗∗∗ 1.052 0.909 0.175∗∗∗ 0.164∗∗∗ 0.241∗∗∗ 0.215∗∗∗

[−4.007] [−3.811] [1.546] [1.330] [4.148] [3.829] [2.994] [2.630]

AJCAi,t × AJCAi −0.148 −0.087 1.337 0.849 −0.016 −0.055 −0.124 −0.212∗∗

[−0.907] [−0.512] [1.234] [0.770] [−0.357] [−1.095] [−1.378] [−2.152]

AJCAi,t × (1− AJCAi) −1.095∗∗∗ −0.935∗∗∗ 5.467∗∗∗ 4.277∗∗ 0.787∗∗∗ 0.686∗∗∗ 1.310∗∗∗ 1.080∗∗∗

[−3.327] [−2.668] [3.670] [2.449] [6.113] [4.770] [5.487] [4.145]

High_Cross_Ind_Shocksi,t −0.077 0.604 0.048 0.109∗∗

[−1.047] [1.489] [1.550] [2.016]

Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 2166 2166 1806 1806 2303 2303 2292 2292
R-squared 0.131 0.132 0.148 0.150 0.056 0.059 0.044 0.050

Note: This table examines the heterogenous spillover effects in the AJCA tax holiday setting. The data sample is a firm-year panel
that spans 5 years after the passage of AJCA (i.e., 2004 to 2008). We focus our analysis on the financially constrained firms (i.e., those
with financial constraint ranked in the top quintile) prior to the passage of AJCA. Financially constraint is measured as the average
delay investment score of Hoberg and Maksimovic (2015) in the 5-year window prior to the the passage of AJCA (i.e., 1999 to 2003).
The regression specification is: Yi,t = β1 AJCAi + β2 AJCAi,t × AJCAi + β3 AJCAi,t × (1− AJCAi) + β4 High_Cross_Ind_Shocksi,t +
δt + εi,t. The dependent variables are the distress risk (Distressi,t), distance to default (DDi,t), gross profit margin (PMi,t), and markup
(Markupi,t). We follow Grieser and Liu (2019) to define AJCAi is an indicator variable that equals 1 if firm i has more than 33%
pretax income from abroad during the period from 2001 to 2003. AJCAi,t is the industry treatment intensity which is the fraction of
firms in firm i’s industry with an AJCAi indicator that equals 1. High_Cross_Ind_Shocksi,t captures the strength of cross-industry
spillover effects via the competition network, and it is a dummy variable that equals one if the average industry treatment intensity
for the industries connected to firm i’s industry through competition networks is higher than 20% in year t. The term δt represents
year fixed effects. Standard errors are clustered at the firm level. We include t-statistics in brackets. *, **, and *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively.

Table OA.22: Spillover effects of bond yield spread and CDS spread in the AJCA tax
holiday setting.

(1) (2) (3) (4)

Bond_yield_spreadi,t(%) CDS_spreadi,t(%)

AJCAi −0.423 −0.389 −0.239 −0.227
[−1.629] [−1.506] [−1.426] [−1.363]

AJCAi,t −0.926∗∗ −0.776∗∗ −0.753∗∗∗ −0.636∗∗

[−2.476] [−2.051] [−3.179] [−2.582]

High_Cross_Ind_Shocksi,t −0.503∗∗ −0.254
[−2.002] [−1.329]

Year FE Yes Yes Yes Yes
Observations 2419 2419 2779 2779
R-squared 0.421 0.423 0.159 0.160

Note: This table examines the spillover effects of bond yield spread and CDS spread in the AJCA tax holiday setting. The
data sample is a firm-year panel that spans 5 years after the passage of AJCA (i.e., 2004 to 2008). The regression specification
is: Yi,t = β1 AJCAi + β2 AJCAi,t + β3 High_Cross_Ind_Shocksi,t + δt + εi,t. The dependent variables are the bond yield spread
(Bond_yield_spreadi,t) and CDS spread (CDS_spreadi,t). Because the limited coverage of the spread data in the cross section, un-
like in Table 19 of the main text, we do not limit our analysis to financially constrained firms and instead use the full sample.
Standard errors are clustered at the firm level. We include t-statistics in brackets. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% levels, respectively.
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