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Abstract

We present a model featuring risk-averse investors with heterogeneous beliefs.

Individuals who are correct in hindsight, whether through luck or judgment, be-

come relatively wealthy. As a result, market sentiment is bullish following good

news and bearish following bad news. Sentiment drives up volatility, and hence

also risk premia. In a continuous-time Brownian limit, moderate investors trade

against market sentiment in the hope of capturing a variance risk premium created

by the presence of extremists. In a Poisson limit that features sudden arrivals of

information, CDS rates spike following bad news and decline during quiet times.
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In the short run, the market is a voting machine, but in the long run it

is a weighing machine.

—Benjamin Graham.

In this paper, we study the effect of heterogeneity in beliefs on asset prices. We work

with a frictionless dynamically complete market populated by a continuum of risk-averse

agents who differ in their beliefs about the probability of good news.

As a result, agents position themselves differently in the market. Optimistic investors

make leveraged bets on the market; pessimists go short. If the market rallies, the wealth

distribution shifts in favor of the optimists, whose beliefs become overrepresented in

prices. If there is bad news, money flows to pessimists and prices more strongly reflect

their pessimism going forward. At any point in time, one can define a representative

agent who chooses to invest fully in the risky asset, with no borrowing or lending—

our analog of Benjamin Graham’s “Mr. Market”—but the identity of the representative

agent changes every period, with his or her beliefs becoming more optimistic following

good news and more pessimistic following bad news. Thus market sentiment shifts

constantly despite the stability of individual beliefs.

All agents understand the importance of sentiment and take it into account in the

risk premia that they demand, as they correctly foresee that either good or bad news

will be amplified by a shift in sentiment. The idea that sentiment itself is a source

of systematic price risk appears in De Long et al. (1990), but in our model sentiment

emerges endogenously rather being modelled as random noise. The presence of sentiment

induces speculation: agents take temporary positions, at prices they do not perceive as

justified by fundamentals, in anticipation of adjusting their positions in the future.

We start in discrete time, providing a general pricing formula for arbitrary, exoge-

nously specified, terminal payoffs. We find the wealth distribution, prices, and agents’

investment decisions at every point in time, together with their subjective perceptions

of expected returns, volatilities, and Sharpe ratios; and other quantities of interest, such

as aggregate volume, leverage, and the level of the VIX index.

In our model, speculation can act in either direction, driving prices up in some states

and down in others. This feature is emphasized by Keynes (1936, Chapter 12); in

Harrison and Kreps (1978), by contrast, speculation drives prices above fundamental

value due to the presence of short sales constraints. We provide conditions that dictate

whether heterogeneity drives prices up or down relative to the homogeneous benchmark.

For a broad class of assets, including the discrete-time analog of the lognormal case
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in which asset payoffs are exponential in the number of up-moves, heterogeneity drives

prices down and risk premia up.

For most of the paper, we focus our attention on heterogeneity in beliefs by working

in the limit in which investors have dogmatic priors, as is broadly consistent with the

findings of Giglio et al. (2019) and Meeuwis et al. (2019). Although individual investors

do not learn in this limit, the market exhibits “the wisdom of the crowd,” in that the

redistribution of wealth between agents over time causes the market to behave as if it is

learning as a whole. That said, our most general formulation allows the agents to learn

over time by updating their heterogeneous priors according to Bayes’ rule. Following

good news, not only do optimists become relatively wealthier, as described above, but

also every individual updates his or her beliefs in an optimistic direction. Formalizing

this intuition, we show a precise sense in which learning tends to amplify the effect of

heterogeneity in beliefs.

We explore the key properties of the model in a series of examples. The first makes

the point that extreme states are much more important than they are in a homogeneous-

belief economy. A risky bond matures in 50 days, and will default, paying $30 rather

than the par value of $100, only in the “bottom” state of the world—that is, only if there

are 50 consecutive pieces of bad news. Investors’ beliefs about the probability, h, of an

up-move are uniformly distributed between 0 and 1. Initially, the representative investor

is the median agent, h = 0.5, who thinks the default probability is less than 10−15. And

yet we show that the bond trades at what might seem (given that the riskless interest

rate is zero) the remarkably low price of $95.63. Moreover, almost half the agents—

all agents with beliefs h below 0.48—initially go short at this price, though most will

reverse their position within two periods of bad news. The low price arises because all

agents understand that if there is bad news next period, pessimists’ trades will have

been profitable: their views will become overrepresented in the market, so the bond’s

price will decline sharply in the short run. Only agents with h < 0.006 stay short to the

bitter end.

In our second example, we modify the first by considering an asset with a high

payoff in the “top” state of the world. The presence of sentiment inflates the price of

such an asset relative to the homogeneous benchmark, and there are several interesting

differences in the dynamics relative to the risky bond case. First, sentiment becomes

increasingly important as time passes: if repeated good news arrives, the asset becomes

more and more bubbly. By contrast, sentiment has most impact early in the life of

the risky bond. Second, the risk premium perceived by the median investor is initially
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positive; becomes increasingly negative as the bubble grows; but then starts to rise and

ultimately turns positive again at the height of the bubble, just before the terminal

date. As a result, the median investor reverses position twice during the lifetime of the

bubble. Finally, implied volatility, as measured by the VIX index, rises as the bubble

grows, whereas the reverse happens in the risky bond example.

In our third example, we construct a stark situation in which there is no volatility if

beliefs are homogeneous: the asset is (until the final period) totally riskless. When beliefs

are heterogeneous, however, our investors’ short-termism induces them to speculate on

sentiment.1 Moreover, the resulting volatility is socially costly, in the sense that average

realized utility is lower than it would be if investors were prevented from speculating.

The fourth and fifth examples are continuous time limits that model information

as arriving continuously over time in small pieces (formally, as driven by a Brownian

motion), or as arriving infrequently in lumps (formally, as driven by a Poisson process).

In the Brownian limit, the risky asset has lognormal terminal payoffs. Sentiment

drives up true (P) and implied (Q) volatility, particularly in the short run, and hence

also risk premia; both types of volatility are lower at long horizons due to the moderating

influence of the terminal date at which pricing is dictated by fundamentals. “In the short

run, the market is a voting machine but in the long run it is a weighing machine.”

Extremists speculate increasingly aggressively as the market moves in their favor,

whereas moderate investors trade in contrarian fashion and capture a variance risk pre-

mium created by the presence of the extremists. Among moderates, there is a partic-

ularly interesting gloomy investor, who is somewhat more pessimistic than the median

investor and who perceives the lowest maximum attainable Sharpe ratio of all investors.

Despite believing that the risky asset earns zero instantaneous risk premium, he thinks

that a sizeable Sharpe ratio can be attained by exploiting what he views as irrational

exuberance on the up side and irrational pessimism on the down side. The gloomy

investor can therefore be thought of as supplying liquidity to the extremists.

Each investor has a target price—the ideal outcome for that investor, given his or her

beliefs and hence trading strategy—that can usefully be compared to what the investor

expects to happen. An extremist is happy if the market moves even more than he or she

1This echoes an observation of Keynes (1936, Chapter 12), who writes, “It might have been supposed
that competition between expert professionals . . . would correct the vagaries of the ignorant individual
left to himself. It happens, however, that the energies and skill of the professional investor and speculator
are mainly occupied otherwise. . . . They are concerned, not with what an investment is really worth
to a man who buys it ‘for keeps’, but with what the market will value it at, under the influence of mass
psychology, three months or a year hence.”
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expected. The gloomy investor, in contrast, hopes to be proved right: in a sense that

we make precise, the best outcome for him is the one that he expects.

In the second continuous time example—the Poisson limit—news arrives infrequently.

The jumps that occur at such times represent bad news, perhaps driven by credit or

catastrophe risk. Optimistic investors sell insurance against jumps to pessimists: as long

as things are quiet, wealth flows smoothly from pessimists to optimists, but at the time

of a jump there is a sudden shift in the pessimists’ favor. Optimists are in the position

in which derivative traders inside major financial institutions have traditionally found

themselves: short volatility, making money in quiet times but occasionally subject to

severe losses at times of market turmoil. As a result, even though all individuals perceive

constant jump arrival rates, the market-implied (i.e., risk-neutral) jump arrival rate—

which can be interpreted as a CDS rate—declines smoothly in the absence of jumps, but

spikes sharply after a jump occurs. Similar patterns have been documented empirically

in catastrophe insurance pricing by Froot and O’Connell (1999) and Born and Viscusi

(2006), among others.

Related literature. Our paper intersects with several strands of the large literature

on the effects of disagreement in financial markets. The closest antecedent of—and

the inspiration for—our paper is Geanakoplos (2010), whose paper studies disagreement

among risk-neutral investors (as do Harrison and Kreps, 1978; Scheinkman and Xiong,

2003). Risk-neutrality simplifies the analysis in some respects but complicates it in

others. For example, short sales must be restricted for equilibrium to exist. This is

natural in some settings, but not if one thinks of the risky asset as representing, say,

a broad stock market index; and the resulting kinked indirect utility functions are not

very tractable. Moreover, the aggressive trading behavior of risk-neutral investors leads

to extreme predictions: every time there is a down-move in the Geanakoplos model, all

agents who are invested in the risky asset go bankrupt.

In a variation on the Geanakoplos model, Simsek (2013) emphasizes the importance

of the type of disagreement: for example, an agent might be considered relatively opti-

mistic either because she perceives a high chance of some good outcome, or because she

perceives a low chance of a bad outcome. In our binomial setting there is no distinction

between these alternatives, as an agent who perceives a high chance of “up” must also

perceive a low chance of “down”, but Simsek allows for more than two—in fact, for

a continuum of—possible outcomes. (In the other direction, we have a continuum of

investor types whereas Simsek has two.) The mechanisms in the two papers are comple-

mentary: Simsek’s model features just one period, so his agents (who are risk-neutral)
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do not speculate in our sense.

Other strands of the literature have focussed on the role of disagreement in the

amplification of volatility and trading volume (Basak, 2005; Banerjee and Kremer, 2010;

Atmaz and Basak, 2018), in the evolution of the wealth distribution (Zapatero, 1998;

Jouini and Napp, 2007; Bhamra and Uppal, 2014), in amplifying the importance of

extremely unlikely states (Kogan et al., 2006), and in the pricing of options (Buraschi

and Jiltsov, 2006). Other papers generate similar asset-pricing effects by allowing for

heterogeneity in risk aversion rather than beliefs (Dumas, 1989; Chan and Kogan, 2002),

though of course they do not account for the direct evidence from surveys that individuals

have heterogeneous beliefs (Shiller, 1987; Ben-David et al., 2013).

A related literature addresses the question of which agents will survive into the

infinite future (Sandroni, 2000; Jouini and Napp, 2007; Borovička, 2020). Our paper

does not directly bear on this question, as we fix a finite terminal horizon. But as the

truth lies in the support of every agent’s prior in our extended model with learning, all

agents would in principle survive to infinity (Blume and Easley, 2006).

Most of the prior literature restricts to the diffusion setting (of the papers mentioned,

Dumas, 1989; Zapatero, 1998; Chan and Kogan, 2002; Scheinkman and Xiong, 2003;

Basak, 2005; Buraschi and Jiltsov, 2006; Kogan et al., 2006; Jouini and Napp, 2007;

Dumas et al., 2009; Cvitanić et al., 2011; Atmaz and Basak, 2018; Borovička, 2020);

while Banerjee and Kremer (2010) work with a CARA–Normal model, and Geanakoplos

(2010) and Simsek (2013) with one- or two-period models. (A notable exception is Chen

et al. (2012), who present a model with heterogeneity in beliefs about disaster risk.)

Our model is extremely tractable, which allows us to study all these issues analytically—

together with new results on the implied volatility surface, the variance risk premium,

individual investors’ trading strategies and attitudes to speculation and so forth—in

a simple framework that allows for learning and for general terminal payoffs. This

tractability is due in part to our use of log utility, which we view as a reasonable bench-

mark given the results of Martin (2017), Kremens and Martin (2019), and Martin and

Wagner (2019), and which implies (even in a non-diffusion setting) that the representa-

tive investor’s perceived risk premium is equal to risk-neutral variance so that our model

generates empirically plausible first and second moments of returns. It also reflects the

fact that we work with a continuum of beliefs, like Geanakoplos (2010) and Atmaz and

Basak (2018) but unlike the two-type models of, for example, Harrison and Kreps (1978);

Scheinkman and Xiong (2003); Basak (2005); Buraschi and Jiltsov (2006); Kogan et al.

(2006); Dumas et al. (2009); Banerjee and Kremer (2010); Simsek (2013); Bhamra and
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Uppal (2014); Borovička (2020). Aside from the evident desirability of having a real-

istic belief distribution, the identities of the representative investor and of the investor

who chooses to sit out of the market entirely then become smoothly varying equilibrium

objects that are determined endogenously in an intuitive and tractable way.

1 The model

We work in discrete time, t = 0, . . . , T . Uncertainty evolves on a binomial tree, so that

whatever the current state of the world, there are two possible successor states next

period: “up” and “down.” There is a risky asset, whose payoffs at the terminal date

T are specified exogenously. These payoffs must be strictly positive so that expected

utility is finite at every node, but they can otherwise be arbitrary. We will assume that

the binomial tree is recombining—i.e., that the terminal payoffs depend on the number

of total up- and down-moves rather than on the path by which the terminal node is

reached—but our approach generalizes to the non-recombining case. In our examples,

payoffs will be higher at nodes closer to the “top” of the tree, so we will think of an

up-move as good news, and of agents with higher values of h as being more optimistic.

We normalize the net interest rate to zero. This implies that any variation in expected

returns, across agents or over time, reflects variation in risk premia.

There is a unit mass of agents indexed by h ∈ (0, 1). Each agent has log utility over

terminal wealth, zero time-preference rate, and is initially endowed with one unit of the

risky asset, which we will think of as representing “the market,” so the risky asset is

in unit supply and the riskless asset is in zero net supply. Agent h believes that the

probability of an up-move is h; we often refer to h as the agent’s belief, for short. By

working with the open interval (0, 1), as opposed to the closed interval [0, 1], we ensure

that the investors agree on what events can possibly happen (more formally, their beliefs

are absolutely continuous with respect to each other). These assumptions imply that no

investor will allow his or her wealth to go to zero in any state of the world.

The mass of agents with belief h is f(h). We allow f(h) to be an arbitrary probability

density function (pdf) throughout Section 1.1 and in our main pricing Result 1. But

for much of the paper, we find it convenient to specify that the cross-section of beliefs

obeys a beta distribution, so that the pdf is

f(h) =
hα−1(1− h)β−1

B(α, β)
, (1)
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Figure 1: The distribution of beliefs for various choices of α and β.

where α > 0 and β > 0 are parameters and B(α, β) =
∫ 1

h=0
hα−1(1−h)β−1 dh is the beta

function.2 The beta distribution is the conjugate prior for the binomial distribution,

which makes the analysis tractable. The flexibility and tractability of the family of

beta distributions is particularly important in the continuous-time limits considered in

Sections 2.4 and 2.5.

Figure 1 illustrates beta distributions for a range of choices of α and β. If α = β then

the distribution of beliefs is symmetric with mean 1/2. In particular, if α = β = 1 then

f(h) = 1, so that beliefs are uniformly distributed over (0, 1); this is a useful case to keep

in mind as one works through the algebra. More generally, the case α 6= β allows for

asymmetric distributions with mean α/(α + β) and variance αβ/[(α + β)2(α + β + 1)].

Thus the distribution shifts toward 1 if α > β and toward 0 if α < β, and there is

little disagreement when α and β are large: if, say, α = 90 and β = 10 then beliefs are

concentrated around a mean of 0.9, with standard deviation 0.03.

1.1 Equilibrium

As agents have log utility over terminal wealth, they behave myopically; we can therefore

consider each period in isolation. We start by taking next-period prices at the up-

and down-nodes as given, and use these prices to determine the equilibrium price at

the current node. This logic will ultimately allow us to solve the model by backward

induction, and to express the price at time 0 in terms of the exogenous terminal payoffs.3

2The beta function is related to the gamma function by B(α, β) = Γ(α)Γ(β)/Γ(α + β). If α and β
are integers, then B(α, β) = (α− 1)!(β − 1)!/(α+ β − 1)!.

3A referee pointed out to us that we could also exploit dynamic completeness to solve our model as
a static Arrow–Debreu equilibrium. We lay out this approach, which gives a shorter proof of Result 1,
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Suppose, then, that the price of the risky asset will be either pd or pu next period.

Our problem, for now, is to determine the equilibrium price, p, at the current node; we

assume that pd 6= pu so that this pricing problem is nontrivial. (If pd = pu then the asset

is riskless so p = pd = pu.) Suppose also that agent h has wealth wh at the current node.

If he chooses to hold xh units of the asset, then his wealth next period is wh−xhp+xhpu

in the up-state and wh − xhp+ xhpd in the down-state. So the portfolio problem is

max
xh

h log [wh − xhp+ xhpu] + (1− h) log [wh − xhp+ xhpd] .

The agent’s first-order condition is therefore

xh = wh

(
h

p− pd
− 1− h
pu − p

)
. (2)

The sign of xh is that of p − pu for h = 0 and that of p − pd for h = 1. These must

have opposite signs to avoid an arbitrage opportunity, so at every node there are some

agents who are short and others who are long. The most optimistic agent4 levers up as

much as possible without risking default. From the perspective of an extreme optimist,

pd can be thought of as the liquidation value: when it is large, the optimist can get

more leverage. For, the first-order condition (2) implies that as h → 1, agent h holds

wh/(p − pd) units of the risky asset. This is the largest possible position that does not

risk default: to acquire it, the agent must borrow whp/(p− pd)−wh = whpd/(p− pd). If

the unthinkable (to this most optimistic agent!) occurs and the down state materialises,

the agent’s holdings are worth whpd/(p − pd), which is precisely what the agent owes

to his creditors. Correspondingly, the most pessimistic agent takes on the largest short

position possible that does not risk default if the good state occurs.

It will often be convenient to think in terms of the risk-neutral probability of an

up-move, h∗, defined by the property that the price can be interpreted as a risk-neutral

expected payoff, p = h∗pu + (1− h∗)pd. (There is no discounting, as the riskless rate is

zero.) Hence

h∗ =
p− pd
pu − pd

.

in the Online Appendix. We take the approach in the body of the paper for expositional reasons, as it
allows us to introduce quantities that will be important for understanding the dynamics of the model.

4This is an abuse of terminology: there is no ‘most optimistic agent’ since h lies in the open set (0, 1).
More formally, this discussion relates to the behavior of agents in the limit as h → 1. An agent with
h = 1 would want to take arbitrarily large levered positions in the risky asset, so there is a behavioral
discontinuity at h = 1 (and similarly at h = 0).
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In these terms, the first-order condition (2) becomes

xh =
wh

pu − pd
h− h∗

h∗(1− h∗)
,

for example. An agent whose h equals h∗ will have zero position in the risky asset: by

the defining property of the risk-neutral probability, such an agent perceives that the

risky asset has zero expected excess return.

Agent h’s wealth next period is therefore wh + xh(pu − p) = wh
h
h∗

in the up-state,

and wh − xh(p − pd) = wh
1−h
1−h∗ in the down-state. In either case, all agents’ returns on

wealth are linear in their beliefs. Moreover, this relationship applies at every node. It

follows that person h’s wealth at the current node is λpathh
m(1 − h)n, where λpath is a

constant that is independent of h but which can depend on the path travelled to the

current node, which we have assumed has m up and n down steps.

As aggregate wealth is equal to the value of the risky asset—which is in unit supply—

we must have ∫ 1

0

λpathh
m(1− h)nf(h) dh = p.

This enables us to solve for the value of λpath:

λpath =
p∫ 1

0
hm(1− h)nf(h) dh

Substituting back, agent h’s wealth equals

wh =
hm(1− h)np∫ 1

0
hm(1− h)nf(h) dh

.

This is maximized by h ≡ m/(m + n): the agent whose beliefs turned out to be most

accurate ex post ends up richest.

The wealth distribution—that is, the fraction of aggregate wealth held by type-h

agents—satisfies
whf(h)

p
=

hm(1− h)nf(h)∫ 1

0
hm(1− h)nf(h) dh

. (3)

The wealth-weighted cross-sectional average belief, H, therefore equals

H =

∫ 1

0

h
whf(h)

p
dh =

∫ 1

0
hm+1(1− h)nf(h) dh∫ 1

0
hm(1− h)nf(h) dh

(4)
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at time t, after m up-moves and n down-moves.5

These expressions take a particularly convenient form if f(h) = hα−1(1−h)β−1/B(α, β)

is the density function of the Beta(α, β) distribution. In that case equation (3) implies

that the wealth distribution is also a beta distribution with parameters α+m and β+n,

so that
whf(h)

p
=
hα+m−1(1− h)β+n−1

B(α +m,β + n)
. (5)

In this case the integrals in equation (4) can be evaluated, giving

H =
m+ α

t+ α + β
.

Example.—Let us now revisit Figure 1. For the sake of argument, suppose that

f(h) describes a beta distribution with α = β = 1 so that investor beliefs h ∈ (0, 1)

are uniformly distributed. If, by time 4, there have been m = 1 up-moves and n = 3

down-moves, then equation (5) implies that the new wealth distribution follows the line

labelled α = 2, β = 4. (Investors with h close to 0 or to 1 have been almost wiped out

by their aggressive trades; the best performers are moderate pessimists with h = 1/4,

whose beliefs happen to have been vindicated ex post.) At time 8, following three

more up-moves and one down-move, the new wealth distribution is indicated by the line

labelled α = β = 5. And if by time 12 there have been a further four up-moves then the

wealth distribution is given by the line labelled α = 9, β = 5. These shifts in the wealth

distribution are central to our model: they reflect the fact that money flows, over time,

toward investors whose beliefs appear correct in hindsight.

Now we solve for the equilibrium price using the first-order condition described in

(2). The price p adjusts to clear the market, so that aggregate demand for the asset by

5If there is a fixed true probability of an up-move, htrue, then investors with h 6= htrue will eventually
become irrelevant. Let us refer to the share of wealth (3) held by type-h agents as Ω(h,m, n). As the
elapsed number of periods, t, tends to infinity, m/t → htrue and n/t → 1− htrue almost surely, by the
strong law of large numbers, and the asymptotic rate of exponential decay in the type-h wealth share is

lim
t→∞

−1

t
log Ω(h, htruet, (1− htrue)t) = htrue log

htrue
h

+ (1− htrue) log
1− htrue

1− h
.

This holds for any belief distribution f(h). The decay rate is strictly positive when h 6= htrue, so
the wealth share of any incorrect investor declines exponentially fast. But investors who are roughly
correct will retain a substantial share of wealth for many periods. For example, the half-life for investor
h = 0.5—that is, log 2

decay rate , the time required for the investor’s wealth to halve—is more than 34 periods
for all values of htrue between 0.4 and 0.6. See the Online Appendix for a proof and more discussion.
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the agents equals the unit aggregate supply:∫ 1

0

xhf(h) dh =
p [H(pu − p)− (1−H)(p− pd)]

(pu − p)(p− pd)
= 1.

This has a unique solution with respect to p:

p =
pdpu

Hpd + (1−H)pu
. (6)

In equilibrium, therefore, the risk-neutral probability of an up-move is

h∗ =
Hpd

Hpd + (1−H)pu
. (7)

It follows that
pu
p

=
H

h∗
and

pd
p

=
1−H
1− h∗

. (8)

Hence h∗ is smaller than H if pu > pd and larger than H if pu < pd: in either case,

risk-neutral beliefs are more pessimistic than the wealth-weighted average belief.

The share of wealth an agent of type h invests in the risky asset is

xhp

wh
=

h− h∗

H − h∗
, (9)

using equations (2) and (8). We can use this equation to calculate the leverage of investor

h, which we define as the ratio of funds borrowed to wealth:

xhp− wh
wh

=
h−H
H − h∗

.

The agent with h = H can be thought of as the representative agent : by equation (9),

this is the agent who chooses to invest her wealth fully in the market, with no borrowing

or lending. Similarly, the investor with h = h∗ chooses to hold his or her wealth fully in

the bond. Pessimistic investors with h < h∗ choose to short the risky asset; moderate

investors with h∗ < h < H hold a balanced portfolio with long positions in both the

bond and the risky asset; and optimistic investors with h > H take on leverage, shorting

the bond to go long the risky asset.

In a homogeneous economy in which all agents agree on the up-probability, h = H,
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it is easy to check that

h∗ =
Hpd

Hpd + (1−H)pu
.

Comparing this expression with equation (7), we see that for short-run pricing purposes

our heterogeneous economy looks the same as a homogeneous economy featuring a rep-

resentative agent with belief H. But as the identity, H, of the representative agent

changes over time in our model, the similarity will disappear when we study the pricing

of multi-period claims.

To understand the expression for the wealth share (9), note that agent h perceives

an expected excess return

hpu + (1− h)pd
p

− 1 =
(h− h∗)(H − h∗)

h∗(1− h∗)
(10)

and that the risk-neutral variance of the asset return is

h∗
(
pu
p

)2

+ (1− h∗)
(
pd
p

)2

− 1 =
(H − h∗)2

h∗ (1− h∗)
. (11)

In particular, these expressions imply that the representative agent’s perceived risk pre-

mium equals risk-neutral variance. More generally, any individual’s risky share (9) equals

his or her perceived risk premium (10) divided by risk-neutral variance (11). Note, fur-

ther, that by combining equation (10) with the definition (4) of H, the representative

agent’s perceived risk premium equals the wealth-weighted cross-sectional average risk

premium, which is therefore positive. This object is distinct from the equally-weighted

cross-sectional average risk premium, which in the beta case (1) is given by equation

(10) with h replaced by α/(α + β), and which may be negative.6

We can calculate the level of the VIX index on similar lines.7 To do so, we use the

model-free relationship between VIX and risk-neutral entropy (see, e.g., Martin, 2017)

VIX2
t→t+1 = 2 (logE∗t Rt→t+1 − E∗t logRt→t+1), where Rt→t+1 is the gross return on the

risky asset from t to t + 1. As the net riskless rate is zero, we have E∗t Rt→t+1 = 1;

6For comparison, Atmaz and Basak (2018) study wealth-weighted average beliefs but not equally-
weighted average beliefs in their theoretical work, while Ben-David et al. (2013) use equal-weighted
measures in their empirical work.

7By definition, VIX2
t→t+1 ≡ 2Rf,t

(∫ Ft

0
1
K2 putt(K) dK +

∫∞
Ft

1
K2 callt(K) dK

)
, where Rf,t is the

gross one-period interest rate, Ft is the one-period-ahead forward price of the risky asset, and putt(K)
and callt(K) are time t prices of one-period put and call options with strike K.
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Figure 2: Left: p denotes the price in a homogeneous economy with H = 1/2; p is the
price in a heterogeneous economy with α = β = 1; and h∗ and H indicate the risk-
neutral probability of an up-move and the identity of the representative agent in the
heterogeneous economy. Right: The Sharpe ratio perceived by different agents in the
initial state (·), down state (d), and up state (u).

together with the equilibrium relationship (8), this implies that

VIX2
t→t+1 = 2

[
h∗ log

h∗

H
+ (1− h∗) log

1− h∗

1−H

]
. (12)

Thus the VIX index equals twice the relative entropy (or Kullback–Leibler divergence)

of the beliefs of the representative agent with respect to the beliefs of the agent who is

out of the market. When VIX is high, the two agents have very different beliefs.

The left panel of Figure 2 gives a numerical example with uniformly distributed

beliefs and T = 2. Sentiment in the heterogeneous belief economy is initially the same

as it would be in a homogeneous economy—H = 1/2 at the initial node—but the price

is lower because of sentiment risk. If bad news arrives, money flows to pessimists, the

representative agent and risk-neutral beliefs become more pessimistic, and the price

declines further than it would in a homogeneous economy.

The right panel plots the Sharpe ratios perceived by different investors in each of the

possible states. As person h’s subjectively perceived variance of the asset’s return is

h

(
pu
p

)2

+ (1− h)

(
pd
p

)2

−
(
hpu + (1− h)pd

p

)2

=
h(1− h) (H − h∗)2

h∗2(1− h∗)2
,

his or her perceived Sharpe ratio is

h− h∗√
h(1− h)

,
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which is increasing in h for all h∗. Extremists perceive extreme Sharpe ratios, reflecting

their perception that true volatility is close to zero. This might seem surprising, given

the heuristic that second moments of returns are relatively easy to measure empirically,

and hence relatively difficult to disagree upon. Indeed this is to some extent an artefact

of the two-period setting of the present example. In the Brownian limit of Section 2.4,

all agents disagree about expected returns, but agree on the volatility of returns.

The figure also shows that all investors believe that Sharpe ratios are high in bad

times and low in good times. Thus the model does not generate extrapolative beliefs

(as studied empirically by Greenwood and Shleifer (2014) and theoretically by Barberis

et al. (2015)) on the part of individual investors. But the representative investor (whose

identity in each state is indicated by dots in the right panel) is more optimistic, and

perceives a higher Sharpe ratio, in good times than in bad times. Our model generates

extrapolative behavior in a dollar-weighted sense: “Mr. Market” disagrees with every

individual investor about the behavior of Sharpe ratios in good and bad states.

1.2 The general case

From now on we will keep track of the current node by writing subscripts to indicate the

number of up-moves to date and total time elapsed. Thus, for example, pm,t is the price

at time t after m up-moves and n = t−m down-moves, and Hm,t and h∗m,t represent the

identities of the representative investor and of the investor who is fully invested in cash,

respectively. Translating the notation of the last section into this new notation, we have

p = pm,t, pu = pm+1,t+1, pd = pm,t+1, H = Hm,t, and h∗ = h∗m,t.

Writing zm,t = 1/pm,t, equation (6) implies that the following recurrence relation

holds at each node:

zm,t = Hm,tzm+1,t+1 + (1−Hm,t)zm,t+1. (13)

That is, the price at each node is the weighted harmonic mean of the next-period prices,

with weights given by the beliefs of the currently representative agent. This leads to our

main pricing result, whose proof is in the Appendix.

Result 1. If the risky asset has terminal payoffs pm,T at time T (for m = 0, . . . , T ),
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then its initial price is8

p0 =
1

T∑
m=0

cm
pm,T

, where cm =

(
T

m

)∫ 1

0

hm(1− h)T−mf(h) dh .

For reference, note that if the cross-section of beliefs obeys a beta distribution, as in

equation (1), then cm satisfies

cm =

(
T

m

)
B(α +m,β + T −m)

B(α, β)
.

Conversely, if beliefs are homogeneous and all agents perceive that the probability of an

up-move is H, then cm =
(
T
m

)
H
m (

1−H
)T−m

.

In our setting, pricing is the same as it would be if a single representative investor

with appropriately chosen prior beliefs learned over time about the probability of an

up-move. Although such a model is inconsistent with the evidence that individuals have

different beliefs, the link reveals a sense in which the market exhibits “the wisdom of

the crowd”, in that the redistribution of wealth between agents causes the market to

behave as if it is learning as a whole.9

Result 2 (The wisdom of the crowd). Pricing in the heterogeneous-agent economy is

identical to pricing in an economy with a representative agent with log utility whose prior

belief, as of time 0, about the probability of an up-move has distribution f(h), and who

updates his or her beliefs over time via Bayes’ rule.

The next result characterizes the effect of belief heterogeneity on prices for a broad

class of assets. In this result, and for the rest of the paper, we restrict attention to the

beta family of belief distributions, so that f(h) is the pdf given in equation (1).

Result 3. If the risky asset has terminal payoffs such that 1/pm,T is convex when viewed

as a function of m, then the asset’s time 0 price decreases as beliefs become more het-

erogeneous (that is, as the cross-sectional variance of h increases with its mean held

8It is of course also possible to represent the price as p0 =
∑T
m=0 q

∗
mpm,T for appropriately chosen

risk-neutral probabilities that we provide in the appendix. In equilibrium, these risk-neutral probabili-
ties are such that the formula in Result 1 holds.

9The existence of a representative investor in this sense is guaranteed by the results of Rubinstein
(1976). Our result makes explicit what the beliefs of such an investor must be. See Blume and Easley
(1993) and Blume and Easley (2010) for further discussion.
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constant). In particular, it is sufficient, though not necessary, that log pm,T be weakly

concave for the asset’s price to be decreasing in the degree of belief heterogeneity.

Conversely, if 1/pm,T is concave in m then the asset’s time 0 price increases as beliefs

become more heterogeneous.

Result 3 implies that if the risky asset’s terminal payoff pm,T is concave in m, then

its price declines as heterogeneity increases. But the same may be true even for assets

with convex payoffs—for example, if the asset’s payoffs are exponential in m then the

log payoff is linear, and hence weakly concave, in m. The examples of Sections 2.4 and

2.5 fall into this category. On the other hand,10 if the risky asset has highly convex

payoffs—as might be the case for a “growth” asset with a large payoff in some extreme

state of the world—then its price increases with heterogeneity. We explore the two cases

further via concrete examples in Sections 2.1 and 2.2.

Notice that if there were only one period, then—with only two possible terminal

payoffs—1/pm,T would be both convex and concave in m, and hence the asset’s price

would be independent of the degree of heterogeneity. Thus the dynamic aspect of our

model is critical for Result 3 to be interesting and nontrivial. It is therefore comple-

mentary to Simsek (2013, Theorems 4 and 5), who presents results with a superficially

similar flavor in a static, one-period, model: whereas Result 3 characterizes the impact

of heterogeneity in terms of the concavity or convexity of the asset’s payoffs, Simsek

emphasizes the importance of the degree of skewness of beliefs in the minds of investors.

1.3 Bayesian learning

We can extend our model to allow the heterogeneous individuals to update their beliefs

over time using Bayes’ rule. We continue to assume that each investor has a type

h ∈ (0, 1), and that types follow a beta distribution with parameters α and β, as in

equation (1). Now, however, investor h’s prior belief is that the probability of an up-

move is h̃ ∼ Beta (ζh, ζ(1− h)). This prior has mean h and variance h(1 − h)/(1 + ζ),

so is sharply peaked around h when the (positive) constant ζ is large. This structure

allows us to calibrate the disagreement across individuals in the population, which is

controlled by α and β, separately from the uncertainty in the mind of a fixed individual,

10The empirical evidence concerning the effect of belief dispersion on prices is mixed. Johnson (2004)
considers levered firms with option-like payoffs and finds that price is increasing in belief dispersion
(see also Chen et al., 2002; Yu, 2011) while Avramov et al. (2009), Banerjee (2011) and others find the
opposite result.
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which is controlled by ζ. In the limit as ζ tends to infinity, we recover the dogmatic

limiting case considered in the rest of the paper.

Result 4 (Pricing with belief heterogeneity and learning). If the risky asset has terminal

payoffs pm,T at time T (for m = 0, . . . , T ), then its initial price is

p0 =
1

T∑
m=0

c̃m
pm,T

, where c̃m =

(
T

m

)∫ 1

0

B(ζh+m, ζ(1− h) + T −m)

B(ζh, ζ(1− h))
f(h) dh ,

where f(h) is the pdf of a beta distribution, as defined in equation (1).

If the risky asset has terminal payoffs such that 1/pm,T is convex when viewed as a

function of m, then for any level of belief heterogeneity the asset’s time 0 price decreases

as investors’ prior uncertainty increases (i.e., as ζ decreases, with α/(α+β) held constant

so that the mean investor type is held constant). Conversely, if 1/pm,T is concave in m

then the asset’s time 0 price increases as investors’ prior uncertainty increases.

This result generalizes Results 1 and 2 in the case where f(h) is the beta pdf. (To

recover the former, let ζ tend to infinity; to recover the latter, set α = aN , β = bN , and

ζ = a + b, and let N tend to infinity.) It shows that the effect of learning compounds

the effect of sentiment, thereby putting Result 3 into a broader context. In the Online

Appendix, we show how the initial price of the risky asset depicted in the left panel of

Figure 2 varies when agents learn, for a range of values of ζ <∞; and we illustrate the

effect of learning in Figure 3 of the next section. Elsewhere, we focus on the dogmatic

limit case ζ →∞.

2 Some examples

We now explore the properties of the model via a series of examples. The first three

examples are highly stylized even by the standards of our highly stylized model: they

are intended to bring out certain features of the model in a stark way. The final two

examples are continuous-time limits that embed these features in a richer setting.

2.1 A risky bond

The dynamic that drives our model is particularly stark in the risky bond example

outlined in the introduction. Suppose that the terminal payoff is 1 in all states apart
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Figure 3: Left: The risky bond’s price over time in the heterogeneous and homogeneous
economies following consistently bad news. Right: The identity, at time t, following
consistently bad news, of the representative agent, Ht,t; and of the investor who is fully
invested in the riskless bond at time t, with zero position in the risky bond, h∗0,t.

from the very bottom one, in which the payoff is ε; the price of the asset is therefore 1

as soon as an up-move occurs. Writing pt for the price at time t following t consecutive

down-moves, Result 1 implies that11

p0,t =
1

1 + 1−ε
ε

Γ(β+T )Γ(α+β+t)
Γ(β+t)Γ(α+β+T )

. (14)

If the belief distribution is uniform, α = β = 1, we can simplify further, to

p0,t =
1

1 + 1−ε
ε

1+t
1+T

. (15)

We can calculate the risk-neutral probability of an up-move at time t, following 0

up- and t down-moves, h∗0,t, by applying (8) with p = p0,t and pu = 1 to find that

h∗0,t = H0,tp0,t =
αp0,t

α + β + t
.

Figure 3 illustrates these calculations with uniform beliefs (α = β = 1), T = 50

periods to go, and a recovery value of ε = 0.30. The panels show how the price,

risk-neutral probability, and the identity of the representative agent evolve if bad news

arrives each period. (The left panel also shows how the price evolves if investors have

11In this special case, we could argue directly: from equation (6), p0,t =
αp0,t+1+(t+β)p0,t+1

αp0,t+1+t+β
. Defining

yt ≡ 1/p0,t − 1, this can be rearranged as yt = β+t
α+β+tyt+1. Solving forward, imposing the terminal

condition that yT = (1− ε)/ε, and using the fact that Γ(z + 1)/Γ(z) = z for any z > 0, we have (14).
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heterogeneous priors and learn about the probability of a down-move as in Section 1.3.

We set ζ = 24 so that the standard deviation of the median investor’s prior belief about

the probability of an up-move is 10%.)

For comparison, in a homogeneous economy with H = 1/2 the price and risk-neutral

probability would be

p0,t =
1

1 + 1−ε
ε

2−(T−t) (16)

and h∗0,t = p0,t
2

, respectively. Thus with homogeneous beliefs the bond price is approx-

imately 1, and the risk-neutral probability of an up-move is approximately 1/2, until

shortly before the bond’s maturity.

From the perspective of time 0, the risk-neutral probability of default, δ∗, satisfies

p0,0 = 1 − δ∗ + δ∗ε, so δ∗ = (1 − p0,0)/(1 − ε). In the homogeneous case, therefore,

δ∗ = 1/
(
1 + ε

(
2T − 1

))
= O

(
2−T

)
, whereas in the heterogeneous case with uniform

belief distribution we have δ∗ = 1/ (1 + εT ) = O (1/T ). There is a qualitative difference

between the homogeneous economy, in which default is exponentially unlikely, and the

heterogeneous economy, in which default is only polynomially unlikely. More generally,

it is straightforward to show that δ∗ = O (T−α) for any α and β, using Stirling’s formula.

And the result remains true if ε > 1, as in the bubbly asset example of the next section:

the probability of the bubbly asset having a large payoff is exponentially small in the

homogeneous economy but only polynomially small in the heterogeneous belief economy.

To understand pricing in the heterogeneous economy, it is helpful to think through

the portfolio choices of individual investors. The median investor, h = 0.5, thinks the

probability that the bond will default—i.e., that the price will follow the path shown in

Figure 3 all the way to the end—is 2−50 < 10−15. Even so, he believes the price is right

at time zero (in the sense that he is the representative agent) because of the short-run

impact of sentiment. Meanwhile, a modestly pessimistic agent with h = 0.25 will choose

to short the bond at the price of 0.9563—and will remain short at time t = 1 before

reversing her position at t = 2—despite believing that the bond’s default probability

is less than 10−6. (Recall from equation (9) that h∗0,t is the belief of the agent who is

neither long nor short the asset. More optimistic agents, h > h∗0,t, are long, and more

pessimistic agents, h < h∗0,t, are short.) Following a few periods of bad news, almost

all investors are long; but the most pessimistic investors have become extraordinarily

wealthy.

The left panel of Figure 4 shows the holdings of the risky asset for a range of investors

with different beliefs, along the trajectory in which bad news keeps on coming. The
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Figure 4: Left: The number of units of the risky bond held by different agents, xh,t,
plotted against time. Right: The evolution of leverage for the median investor under
the optimal dynamic and static strategies. Both panels assume bad news arrives each
period.

optimistic investor h = 0.75 starts out highly leveraged so rapidly loses almost all his

money. The median investor, h = 0.5, initially invests fully in the risky bond without

leverage. If bad news arrives, this investor takes on leverage in order to be able to

increase the size of his position despite his losses; after about 10 periods, the median

investor is almost completely wiped out. Moderately bearish investors start out short.

For example, investor h = 0.25 starts out short about 10 units of the bond, despite

believing that the probability it defaults is less than one in a million, but reverses her

position after two down-moves. Investor h = 0.01, who thinks that there is more than

a 60% chance of default, is initially extremely short but eventually reverses position as

still more bearish investors come to dominate the market.

The right panel of Figure 4 shows how the median investor’s leverage changes over

time if he follows the optimal dynamic and static strategies. If forced to trade statically,

his leverage ratio is initially 0.457. This seemingly modest number is dictated by the

requirement that the investor avoid bankruptcy at the bottom node. If the median

investor can trade dynamically, by contrast, the optimal strategy is, initially, to invest

fully in the risky bond without leverage. Subsequently, however, optimal leverage rises

fast. Thus the dynamic investor keeps his powder dry by investing cautiously at first but

then aggressively exploiting further selloffs. We report further results on the evolution

of aggregate leverage and volume in the Online Appendix.
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2.2 A bubbly asset

We now modify the example of the previous section by considering the case in which the

extreme payoff ε is greater than 1. This seemingly trivial modification will reveal the

differing effects of sentiment on assets with left- and right-skewed payoffs. In this case

we refer to the asset as bubbly because—in contrast with the risky bond case—sentiment

will inflate the price of the risky asset when ε > 1, by Result 3.

As the extreme payoff now corresponds to a good, rather than bad, outcome, we will

think of the asset as paying ε > 1 in the “top” state, i.e. if there are T consecutive up

moves, and 1 otherwise. Hence the price of the asset is 1 if ever there is a down move.

But our interest now is in the evolution of the price if there is repeated good news.

For general α > 0 and β > 0, the price at time t, following t up moves, is

pt,t =
1

1 + 1−ε
ε

Γ(α+T )
Γ(α+t)

Γ(α+β+t)
Γ(α+β+T )

. (17)

Thus the price rises with each successive piece of good news. In part, of course, these

rises simply reflect good news about fundamentals, which would also cause price rises in

a homogeneous-belief economy.

To isolate the influence of belief heterogeneity on pricing, we therefore define the

sentiment multiplier as the ratio of the price (17) to the price that would prevail in a

homogeneous economy in which all agents perceive h = α/(α + β). Along the path on

which good news keeps on coming,

sentiment multipliert =
pt,t
pt,t

=
1 + 1−ε

ε

(
α

α+β

)T−t
1 + 1−ε

ε
Γ(α+T )
Γ(α+t)

Γ(α+β+t)
Γ(α+β+T )

. (18)

We define the sentiment multiplier for the risky bond analogously. Heterogeneity in

beliefs drives the bubbly asset’s price up but the risky bond’s price down, by Result 3,

so the sentiment multiplier is initially greater than 1 for the bubbly asset and less than

1 for the risky bond. In either case it equals 1 at the terminal time T (as the price is

then equal to the payoff whether or not there is heterogeneity in beliefs).

The left panel of Figure 5 shows the evolution of the sentiment multiplier over time

along the path in which the extreme outcome—the “top” outcome in the case of the

bubbly asset, and the “bottom” outcome in the case of the risky bond—remains possible.

Beliefs are uniformly distributed between zero and one, that is, α = β = 1. We set

ε = 25 for the bubbly asset and (symmetrically, from the point of view of a log investor)
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Figure 5: Left: Sentiment multipliers along the extreme paths. Log scale. Right: The
risk premium on the bubbly asset, as perceived by the median investor.

ε = 1/25 for the risky bond, and T = 20.

Sentiment has little effect on the pricing of the bubbly asset early in its life, but

becomes much more important following repeated good news: the multiplier is initially

only slightly greater than one, but accelerates—it is convex, even on a log scale—toward

a peak shortly before time T . Conversely, sentiment has a substantial effect on the

price of the risky bond early in its life. We provide a formal result along these lines for

arbitrary α and β below.

The risk premium perceived by the median investor is positive at first—though small

because, as we will see, volatility is initially very low. As the bubble emerges, the median

investor’s perceived risk premium turns negative and declines as sentiment drives the

asset’s price up. But it then starts to rise, and ultimately turns positive toward the

height of the bubble, as the terminal date T approaches (Figure 5, right panel).12

These facts have a striking implication: the median investor reverses his position

twice over the lifetime of the bubble. He starts out long, as the representative investor

at time 0. Following good news, he goes short as optimists drive the price higher than

he thinks reasonable. But if good news keeps coming, he reverses position a second time

to go long again at time T − 1.13

Implied volatility, as measured by the VIX index, rises as the bubbly asset experiences

repeated good news (Figure 6, left panel).14 Conversely, implied volatility declines as the

12By contrast, in the risky bond example, the median investor perceives that the risk premium rises
monotonically along the extreme price path.

13Somewhat more optimistic agents are long for a more extended period at both the beginning and
the end. For example, investor h = 0.80 starts out long, goes short in period 5, and reverses position
to go long again in period 15, as can be seen in Figure 6, right panel.

14The relationship between volatility and bubbles has been widely noted. For example, Cochrane
(2003) links high volatility to the high prices of growth stocks around the turn of the millennium; more
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Figure 6: Left: The evolution of the one-period VIX index, following consistently good
news along the same path. Right: The identity, t, following consistently good news, of
the representative agent, Ht,t (solid); and of the investor who is fully invested in the
riskless bond, h∗t,t (dashed).

risky bond experiences repeated bad news. The central asymmetry that separates the

two examples is that risk considerations drive the price down and toward the extreme

payoff for the risky bond, but down and away from the extreme payoff for the bubbly

asset.

We can interpret the behavior of the median investor through this lens. As shown in

equation (12), movements in VIX measure the difference in beliefs between the represen-

tative agent (h = Ht,t) and the investor who is out of the market and on the boundary

between the longs and shorts (h = h∗t,t). As there is a limit to how optimistic the rep-

resentative agent can become, h∗t,t must eventually decline to open the gap as VIX rises

along the bubble path (Figure 6, right panel, which should be contrasted with Figure 3,

right panel)—to the extent that the median agent ends up long, i.e., h∗t,t < 1/2.

We close this section with a result that applies for arbitrary values of α and β. In

order to formulate a clean statement, we consider the two extreme cases in which ε tends

to zero or to infinity. We refer to these as the risky bond limit and bubbly asset limit,

respectively. The result formalizes a sense in which sentiment has most effect early in

the life of a risky bond, but late in the life of a bubbly asset.

Result 5. Let α > 0 and β > 0 be arbitrary.

In the risky bond limit, the sentiment multiplier is less than 1 for 0 ≤ t ≤ T − 1. Sen-

timent becomes less important over time along the extreme path: the multiplier increases

monotonically from a minimum at time 0 to 1 at time T .

recently, Gao and Martin (2021) argue empirically that the high and rising level of implied volatility in
the late 1990s points to bubbliness in the stock market at the time.
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In the bubbly asset limit, the sentiment multiplier is greater than 1 for 0 ≤ t ≤ T −1.

Sentiment becomes more important over time along the extreme path: the multiplier

increases from time 0 toward a maximum at time T − 1, before dropping back to 1 at

time T .

2.3 Speculation on sentiment

Many authors have noted that markets exhibit more volatility than seems justified by

fundamental news; classic references include Shiller (1981) and Roll (1984). In our

setting, investors may speculate on sentiment even if there is essentially no news arriving

about fundamentals. In doing so, they generate excess volatility.

Consider an example in which the terminal payoff is up in the air until the very

last period. If there have been an even number of up-moves by the terminal date, the

asset pays off 1
1+ε

, where ε lies between 0 and 1; if there have been an odd number of

up-moves, the asset pays 1
1−ε . To streamline the analysis, suppose that T is odd (so that

there is an even number of terminal nodes).

In a homogeneous economy with H = 1/2, the asset trades at a price of 1 at every

node until the terminal payoff: there is therefore no volatility, and the asset is totally

riskless, until the very last period.

With heterogeneity in beliefs, it follows from Result 1 that the initial price is 1 if the

distribution of beliefs is symmetric around 1/2 in the sense that f(h) = f(1− h) for all

h.15 But sentiment creates volatility, and this volatility reflects changing risk premia in

the minds of all investors. Suppose that beliefs are uniformly distributed, as they are in

Figure 7, which illustrates with T = 3 and ε = 1/2. Then, at time 1, the risky asset’s

price rises to 1/(1 − ε/T ) if there is an up-move but drops to 1/(1 + ε/T ) if there is a

down-move.16

In equilibrium, our investors use the risky asset to speculate against each other. This

cannot end well for all of them. If we write Ẽ to indicate a cross-sectional mean and

R
(h)
0→T to denote the return on agent h’s chosen strategy, then we have ẼR(h)

0→T = R0→T ,

because (by market clearing) the cross-sectional average return on investors’ strategies

15This implies that cm = cT−m and hence, as T is odd,
∑T
m=0(−1)mcm = 0. Together with the fact

that
∑T
m=0 cm = 1, this gives the result. (The initial price is also 1 if there is learning, as c̃m, defined

in Result 3, also has the properties
∑T
m=0(−1)mc̃m = 0 and

∑T
m=0 c̃m = 1.)

16This follows from Lemma 1 in the Appendix. There is also an equilibrium in which the asset’s
price is 1 until time T − 1, as in the homogeneous economy. Then the market is incomplete, and agents
have no means of betting against one another. But this equilibrium is not robust to vanishingly small
generic perturbations of the terminal payoffs, which would restore market completeness.
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Figure 7: Speculation on sentiment. Heterogeneous-economy price (p), homogeneous-
economy price (p), and the cross-sectional average perceived excess return in the het-
erogeneous economy (ER).

equals the return on aggregate wealth. It follows, by Jensen’s inequality, that average

realized utility is lower than it would be if all agents held the risky asset statically:

Ẽ logR
(h)
0→T < log ẼR(h)

0→T = logR0→T .

In this sense, speculation is socially costly. Note, however, that every investor believes

that speculation is in his or her selfish interest: the ability to speculate raises expected

utility above what is attainable by statically holding the risky asset. We return to this

point in a more conventional example in Section 2.4.3.

2.4 A Brownian limit

In this section, we consider a natural continuous time limit by allowing the number of

periods to tend to infinity and specifying geometrically increasing terminal payoffs. This

is the setting of Cox et al. (1979), in which the option price formula of Black and Scholes

(1973) emerges in the corresponding limit with homogeneous beliefs.

We divide the time interval from time 0 to time T into 2N periods of length T/(2N).

(The choice of an even number of periods is unimportant, but it simplifies the notation

in some of our proofs.) Terminal payoffs are pm,T = e2σ
√

T
2N

(m−N), as in the Cox–Ross–

Rubinstein model. As we will see, σ can be interpreted as the volatility of log terminal

payoffs, on which all agents agree.

As the number of steps increases, the extent of disagreement over any individual

step must decline to generate sensible limiting results. We achieve this by setting α =

θN + η
√
N and β = θN − η

√
N in (1), which makes the distribution of h—that is,
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of investor beliefs about the probability of a single up-move—increasingly spiky as N

increases. Small values of θ correspond to substantial belief heterogeneity, while the

limit θ → ∞ represents the homogeneous case. The parameter η allows for asymmetry

in the distribution of beliefs. Using tildes to denote cross-sectional means and variances,

the cross-sectional mean of h satisfies Ẽ[h] = 1
2

+ η

2θ
√
N

and ṽar[h] = 1
8θN

+O
(

1
N2

)
.

Given that, by design, the cross-sectional variance of h shrinks toward zero, it

becomes convenient to parametrize an agent by the number of standard deviations,

z = (h− Ẽh)/
√

ṽarh, by which his or her belief deviates from the mean. Thus an agent

with z = 2 is two standard deviations more optimistic than the mean agent. Standard

results on the beta distribution imply that the cross-sectional distribution of z is asymp-

totically standard Normal. When we use this parametrization, we write superscripts z

rather than h: for example, E(z) rather than E(h).

Using Result 1 to price the asset, then taking the limit as N → ∞, we have the

following result.

Result 6. The price of the asset at time 0 is

p0 = exp

(
η

θ
σ
√

2T − θ + 1

2θ
σ2T

)
.

Consistent with Result 3, the price declines as beliefs become more heterogeneous

(i.e., as θ decreases with η/θ, and hence the mean level of optimism, held constant).

We now study agents’ return expectations.

Result 7. The return of the asset from time 0 to time t, from the perspective of agent

h = Ẽ[h] + z
√

ṽar[h] has a lognormal distribution with

E(z) logR0→t =
θ + 1

θ + t
T

(
zσ√
θT

+
θ + 1

2θ
σ2

)
t

var(z) logR0→t =

(
θ + 1

θ + t
T

)2

σ2t .

Thus agents agree on the second moment but disagree on the first moment of log returns.

Agents also agree that log returns are negatively autocorrelated:

corr(z) (logR0→t1 , logRt1→t2) = − 1√
1 + (θT+t1)2

t1(t2−t1)

.
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The annualized expected return of the asset from 0 to t is

1

t
logE(z) R0→t =

θ + 1

θ + t
T

[
zσ√
θT

+
θ + 1

2θ

2θ + t
T

θ + t
T

σ2

]
.

The cross-sectional mean (or median) expected return is

Ẽ
[

1

t
logE(z) R0→t

]
=

(θ + 1)2
(
θ + t

2T

)
θ
(
θ + t

T

)2 σ2.

Disagreement—that is, the cross-sectional standard deviation of 1
t

logE(z) R0→t—is√
ṽar

[
1

t
logE(z) R0→t

]
=
θ + 1

θ + t
T

σ√
θT

.

Note that if dynamic trade were shut down entirely, so that all agents had to trade

once at time 0 and then hold their positions statically to time T , then equilibrium would

not exist in the limit. To see this, write ψz for the share of wealth invested by agent z in

the risky asset. Given any positive time 0 price, R0→T is lognormal from every agent’s

perspective by Result 7 (which applies even in the static case at horizon T , because

the terminal payoff is specified exogenously). Hence we must have ψz ∈ [0, 1] for all z

to avoid the possibility of terminal wealth becoming negative. Market clearing requires

that ψz = 1 on average across agents, so we must in fact have ψz = 1 for all z. But there

is no positive price at which all agents choose to invest fully in the risky asset.

Our next result characterizes option prices. The unusual feature of the result is not

that options can be quoted in terms of the Black–Scholes formula, as this is always

possible, but that the associated implied volatilities σ̃t can be expressed in a simple yet

non-trivial closed form. (We denote risk-neutral variance with an asterisk in Result 8

and throughout the paper.)

Result 8. The time 0 price of a call option with maturity t and strike price K obeys

the Black–Scholes formula with maturity-dependent implied volatility σ̃t:

C(t,K) = p0 Φ

(
log p0

K
+ 1

2
σ̃2
t t

σ̃t
√
t

)
−K Φ

(
log p0

K
− 1

2
σ̃2
t t

σ̃t
√
t

)
, where σ̃t =

θ + 1√
θ(θ + t

T
)
σ .

It follows that the level of the VIX index (at time 0, for settlement at time t) is VIX0→t =
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Figure 8: Left: The term structures of implied and physical volatility. Right: Expected
excess returns on options of different strikes, K, as perceived by the median investor,
z = 0. Solid/dashed lines denote heterogeneous/homogeneous beliefs.

σ̃t, and that there is a variance risk premium, on which all agents agree:

1

T
(var∗ logR0→T − var logR0→T ) =

σ2

θ
.

In the limit as θ →∞, implied and physical volatility are each equal to σ and there

is no variance risk premium, as in Black and Scholes (1973). But with heterogeneity,

θ <∞, speculation boosts implied and physical volatility, particularly in the short run,

and opens up a gap between implied and physical volatility in the long run. The existence

of such a variance risk premium is a robust feature of the data; see, for example, Bakshi

and Kapadia (2003), Carr and Wu (2009), and Bollerslev et al. (2011). (Implied volatility

is constant across strikes here, but this is not a general property of our framework: the

Poisson limit of Section 2.5 generates a volatility “smirk.”)

To understand intuitively why there is a variance risk premium, note that for any

tradable payoff X and SDF M , one has the identity

var∗X − varX = Rf cov
[
M, (X − κ)2] , (19)

where Rf is the gross riskless rate and κ = (EX +E∗X)/2 is a constant. (This identity

requires only that there is no arbitrage; we are not aware of any prior references to it

in the literature.) In our setting, X = logR0→T and Rf = 1; different people perceive

different physical probabilities and SDFs but agree on physical variance, var logR0→T ,

29



as shown in Result 7; and κ = zσ
√
T/(2

√
θ) is person-specific, so (19) specializes to

var∗ logR0→T − var logR0→T = cov(z)

M (z)
0→T ,

(
logR0→T −

zσ
√
T

2
√
θ

)2
 .

From the perspective of the median agent (z = 0), for example, the presence of a variance

risk premium indicates that the SDF is positively correlated with (logR0→T )2, i.e., that

bad times are associated with extreme values of logR0→T .

To see why this is the case, we will study individual agents’ trading strategies in the

next section. For now, as a suggestive indication, the right panel of Figure 8 shows the

risk premia on options perceived by the median investor. In a homogeneous economy,

out-of-the-money call options have—as levered claims on the risky asset—high expected

excess returns. With heterogeneous beliefs, the median investor perceives that deep out-

of-the-money calls are so overvalued due to the presence of extremists that they earn

negative expected excess returns.17

A calibration.—We illustrate the predictions of the model in a simple calibration. We

do so with the obvious (but important) caveat that our model is highly stylized; more-

over, the results above show that the parameter θ, which controls belief heterogeneity,

simultaneously dictates several quantities that a priori need not be linked. The goal of

the exercise is merely to point out that a single value of θ can generate predictions of

broadly the right order of magnitude across multiple dimensions.

We set the horizon over which disagreement plays out to T = 10 years, and we

set σ, which equals the volatility of log fundamentals (i.e., payoffs), to 12%. In our

baseline calibration, we set θ = 1.8, which implies that one-month, one-year, and two-

year implied volatilities are 18.6%, 18.2%, and 17.7%, respectively, as shown in Table 1.

These numbers are close to their empirically observed counterparts: in the data of

Martin and Wagner (2019), mean implied volatility is 18.6%, 18.1%, and 17.9% at the

one-month, one-year, and two-year horizons.

The model-implied cross-sectional mean expected returns are 3.2% and 1.8% at the

one- and 10-year horizons. For comparison, in the survey data of Ben-David et al.

(2013), the corresponding time-series average levels of cross-sectional average expected

returns are 3.8% and 3.6%. The cross-sectional standard deviations of expected returns

17This perception is qualitatively consistent with the findings of Coval and Shumway (2001), who
“find considerable evidence that both call and put contracts earn exceedingly low expected returns. A
strategy of buying zero-beta straddles has an average return of around −3 percent per week.”
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Data Model (θ = 1.8) Model (θ = 0.2)

1mo implied vol 18.6% 18.6% 70.5%

1yr implied vol 18.1% 18.2% 58.8%

2yr implied vol 17.9% 17.7% 50.9%

1yr cross-sectional mean risk premium 3.8% 3.2% 28.8%

1yr disagreement 4.8% 4.2% 33.9%

10yr cross-sectional mean risk premium 3.6% 1.8% 5.0%

10yr disagreement 2.9% 2.8% 8.5%

Table 1: Observables in the model with θ = 1.8 (baseline) and θ = 0.2 (high disagree-
ment) and, time-averaged, in the data.

(“disagreement”) at the one- and 10-year horizons are 4.2% and 2.8% in the model and

4.8% and 2.9%, on average, in the data of Ben-David et al. (2013).

An alternative interpretation of our model would interpret time 0 as a time when

the market is preoccupied by some new phenomenon over which there is considerable

disagreement. With 2008 in mind, one might imagine agents disagreeing about the impli-

cations of the Lehman Brothers default and the likely severity of the ensuing recession;

in early 2020, the COVID-19 coronavirus is sweeping the world. On both occasions,

short-term measures of implied volatility rose to extraordinarily high levels. Within our

model, heightened belief heterogeneity (low θ) generates steeply downward-sloping term

structures of volatility and of risk premia. To capture scenarios such as these, the table

also reports results for a calibration with θ = 0.2. (For comparison, the implied volatility

measure SVIX, introduced in Martin (2017), rose to 74.1% at the one-month horizon

and 45.9% at the one-year horizon in late November 2008.) We plot the term structures

of physical and implied volatilities, and of the average risk premium and disagreement,

in the two calibrations in the Online Appendix.

2.4.1 Speculation in equilibrium

Our investors speculate using complicated dynamic trading strategies. These determine,

for each investor, an equilibrium return on wealth that is a function of the return on the

underlying risky asset. To express this in a convenient form, we make two definitions.

First, we refer to the investor

z = zg = −θ + 1√
θ
σ
√
T (20)
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as the gloomy investor. As we will see, the gloomy investor is an Eeyore-like figure (Milne,

1926) who has the lowest expected utility of all investors. There are, of course, more

pessimistic investors (z < zg), but they are less gloomy in the sense that they perceive

attractive opportunities associated with short positions in the risky asset. Second, we

introduce the notion of an investor-specific target return K(z) defined via18

logK(z) = E(z) logR0→T + (z − zg)σ
√
θT . (21)

The target return represents the ideal outcome for investor z: it is the realized return

on the risky asset that maximizes wealth, and hence utility, ex post.

Result 9. Agent z’s equilibrium return on wealth, R
(z)
0→T , can be expressed as a function

of the return on the risky asset, R0→T , as

R
(z)
0→T =

√
θ + 1

θ
exp

{
1

2
(z − zg)2 − 1

2(1 + θ)σ2T

[
log
(
R0→T/K

(z)
)]2}

. (22)

Thus agent z’s terminal wealth is maximized when R0→T = K(z), and as

E(z) logR
(z)
0→T =

1

2
log

θ + 1

θ
+

(z − zg)2 − 1

2(1 + θ)
,

the gloomy investor has the lowest expected utility of all investors.

Figure 9a shows how different investors’ outcomes depend on the risky asset’s real-

ized payoff. The best-case scenario for investor z is that the target return is attained,

R0→T = K(z), in which case R
(z)
0→T =

√
θ+1
θ

exp
{

1
2

(z − zg)2}. An extremist’s best-case

scenario is better than that of a moderate investor, because it is cheap to purchase claims

to states of the world that extremists consider likely, as few people are extremists. Fur-

thermore, the best case scenario for an optimistic agent z > 0 is better than that of

the symmetrically pessimistic investor—agent −z < 0—because there is more aggregate

wealth to go around in good states than in bad states.19

In our model, there is a useful distinction between what investors expect to happen

and what they would like to happen. (The distinction also exists, but is uninteresting,

in representative-agent models, as the target price is then infinity.) The gloomy investor

would like to be proved right in logs: by equation (21), his target log return equals his

18Result 7 expresses the expected log return in terms of exogenous parameters.

19Note that zg is negative, so that if z > 0 we have (z − zg)2 > (−z − zg)2.
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Figure 9: Left: Return on wealth, as a function of the realized return on the risky asset,
for different agents. Dots indicate the expected return on the risky asset perceived by
each investor. Right: All investors have U-shaped SDFs when beliefs are heterogeneous.
The figure shows the SDF of the median investor, together with the SDF that would
prevail in a homogeneous economy.

expected log return. Targets and expectations differ for all other investors. More opti-

mistic investors have a target return that exceeds their expectations—i.e., they are best

off if the risky asset modestly outperforms their expectations—while more pessimistic

investors are best off if the risky asset modestly underperforms their expectations. But

any investor does very poorly if the asset performs far better or worse than he or she

anticipated, consistent with the presence of a variance risk premium and the discussion

surrounding identity (19).

As our investors have log utility, their perceived SDFs satisfy M
(z)
0→T = 1/R

(z)
0→T .

(Note that SDFs differ across investors because they—the investors—disagree on true

probabilities but agree on asset prices.) As all investors’ wealth returns are decreasing

in the return on the risky asset once that return becomes sufficiently large, our model

therefore generates a U-shaped SDF (Aı̈t-Sahalia and Lo, 2000; Jackwerth, 2000) for

every investor. Figure 9b illustrates by plotting the median investor’s SDF as a function

of R0→T in the heterogeneous economy and, for comparison, in a homogeneous economy.

Thus far we have thought of investors’ strategies in dynamic terms. But their op-

timally chosen wealth return can also be implemented via a static trade, by holding

long (or short) positions in options in regions in which the wealth return is convex (or

concave) in the underlying risky asset return.

Result 10. The optimal wealth return can be implemented by holding put options at

strikes K < p0K
(z) and call options at strikes K > p0K

(z), with position size at strike K
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proportional to R
(z)′′

0→T (K); together with a riskless bond position. Thus investors are long

(short) options in regions in which R
(z)
0→T is convex (concave) as a function of R0→T .

In particular, moderate investors—including the gloomy investor, the median investor,

and those in between—are short options with strikes close to expE(z) log pT , whereas

extremists are long options with strikes in the corresponding range.

We can translate this result back to the dynamic setting to gain intuition for how

investors can implement their optimal strategy by timing the market. For, as is well

known, the exposure of a short option position to its underlying asset moves in the

opposite direction to the asset itself. As the underlying asset appreciates, the short

option position becomes less exposed to it (or more negatively exposed to it); conversely,

if the underlying asset sells off, the short option position becomes more exposed to it.

(In the option-trading jargon, short option positions have negative “gamma.”) Hence

Result 10 formalizes a sense in which moderate investors seek negative exposure to the

market in states of the world in which the market is high, and positive exposure in states

in which the market is low. That is, they trade in a contrarian fashion over the region

of possible outcomes that they consider likely to materialize.

2.4.2 Maximum-Sharpe-ratio strategies: a cautionary tale

As the log return on the risky asset is perceived as Normally distributed by all agents, we

can use equation (22) to calculate the first and second (subjectively perceived) moments

of each agent’s chosen return. These are

E(z)R
(z)
0→T =

1 + θ√
θ(2 + θ)

exp

{
(z − zg)2

2 + θ

}
and E(z)

[
R

(z)
0→T

2
]

=
1 + θ

θ

√
1 + θ

3 + θ
exp

{
3(z − zg)2

3 + θ

}
,

and they pin down the Sharpe ratio of agent z’s chosen investment strategy. Similarly,

the Sharpe ratio of a static investment in the risky asset can be calculated using Result 7.

We can contrast these with the maximum Sharpe ratios that investors perceive as

attainable. We use the Hansen and Jagannathan (1991) bound to compute the latter;

the bound can be attained as the market is dynamically complete.

Result 11. The maximum Sharpe ratio (MSR) perceived by investor z is MSR
(z)
0→t =√

var(z) M
(z)
0→t, where investor z’s SDF variance is finite for θ > 1 and equal to

var(z) M
(z)
0→t =

θ√
θ2 − (t/T )2

exp

{
(z − zg)2 t/T

θ − t/T

}
− 1 . (23)
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Figure 10: Left: The annualized Sharpe ratios, from 0 to T , that investors perceive on
their own chosen strategies (solid) and on a static position in the risky asset (dashed);
and the perceived maximum Sharpe ratio attainable through dynamic trading (dotted).
Baseline calibration. Right: Realized returns on the strategies chosen by investors z = 0
and 1 (solid) and the realized returns on their MSR strategies (dotted) as a function of
the realized return on the risky asset. Log scale on x-axis.

Hence the gloomy investor perceives the minimal maximum Sharpe ratio.

It follows that the annualized MSR perceived by agent z over very short horizons is

lim
t→0

1√
t
MSR

(z)
0→t =

|z − zg|√
θT

. (24)

(We annualize, here and in the figures below, by scaling the Sharpe ratio by 1√
t
.) This

equals the instantaneous Sharpe ratio of the risky asset. But over longer horizons, all

agents believe that there are dynamic strategies with Sharpe ratios strictly exceeding

that of the risky asset.

Although the gloomy investor perceives that it is impossible to earn positive Sharpe

ratios in the very short run, as is clear from equation (24), he perceives that positive

Sharpe ratios are attainable at longer horizons: by Result 11,

MSR
(zg)
0→T =

√
θ√

θ2 − 1
− 1 .

Figure 10a shows that the maximum attainable Sharpe ratio exceeds the Sharpe ratio

on a static position in the risky asset, indicating that all investors must trade dynamically

(that, must speculate) to achieve their perceived MSR. But the figure also shows that
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the Sharpe ratios that investors perceive on their own optimally chosen strategy are not

in general close to the maximum Sharpe ratio or to the Sharpe ratio of the market.

More strikingly, Result 11 implies that if there is substantial disagreement, θ ≤ 1, all

investors perceive that arbitrarily high Sharpe ratios are attainable at long horizons. At

first sight, this might seem obviously inconsistent with equilibrium. But our investors are

not mean-variance optimizers so Sharpe ratios do not adequately summarize investment

opportunities.20

To see why, we can study the strategies that achieve these maximal Sharpe ratios.

By the work of Hansen and Richard (1987), a MSR strategy for investor z must take

the form a− bM (z)
0→T for some constants a > 0 and b > 0, where a = 1 + bE(z)

[
M

(z)2
0→T

]
.

As the return on wealth chosen by investor z, which we derived in Result 9, reveals the

investor’s SDF, M
(z)
0→T = 1/R

(z)
0→T , we can write an MSR return as

R
(z)
MSR,0→T = 1 + b

(
var(z) M

(z)
0→T + 1

)
− b

R
(z)
0→T

, (25)

where var(z)M
(z)
0→T is provided in equation (23) and b can be any positive constant (the

free parameter reflects the fact that any strategy can be combined with a position in

the riskless asset without altering its Sharpe ratio). Figure 10b plots the realized return

R
(z)
MSR,0→T as a function of the risky return R0→T , for investors z = 0 and z = 1 in

the baseline calibration. The MSR strategies could be implemented dynamically via

a contrarian market-timing strategy that goes long if the market sells off and short

if the market rallies, thereby exploiting what investors view as irrational exuberance

on the upside and irrational pessimism on the downside; or statically—by the logic of

Result 10—via extremely short positions in out-of-the-money call and put options.

We view this as a cautionary tale. If betas are calculated with respect to the market

return, or to any investor’s optimally chosen return, then MSR strategies—or factors that

load up on tail risk—will earn large alphas. But our investors do not do mean–variance

analysis, so alphas are not useful or interesting measures for them, and although it is

possible to earn high Sharpe ratios via short option positions, these strategies are not

remotely attractive to our investors, who prefer to choose strategies that lie well inside

the mean–variance efficient frontier. Indeed, as MSR strategies feature the possibility of

unboundedly negative gross returns, our investors would prefer to invest fully in (say)

cash than to rebalance, even slightly, toward a MSR strategy.

20The correct risk-adjusted measure of the attractiveness of investment opportunities is, for our
investors, the expected log return. As shown in Result 9, this is finite for all investors for any θ > 0.
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Note, finally, that this is all true even in an ostensibly well-behaved setting in which

investors have log utility and returns are universally agreed to be lognormally distributed.

In Section 2.5, we will show that in a limit featuring jumps, all investors perceive that

arbitrarily high Sharpe ratios are attainable in any calibration.

2.4.3 Ex ante attitudes to speculation

We have seen that investors believe that substantial gains in Sharpe ratio can be achieved

by speculating. But Sharpe ratios do not adequately capture our investors’ attitudes to

speculation. A better measure is provided by agent z’s perceived gain from speculation,

ξ(z), which satisfies the equation E(z) logR
(z)
0→T = E(z) log

[(
1 + ξ(z)

)
R0→T

]
. This is the

proportional increase in wealth that would leave investor z as happy, holding the market,

as he or she would have been when allowed to speculate. More generally, we can ask what

investor z thinks investor x’s gain from speculation is. When we do so, we assume that

investor z uses his or her own beliefs in assessing investor x’s expected utility, and we

assume that other investors continue to trade, so that prices are unaffected by investor

x’s absence: thus we wish to solve

E(z) logR
(x)
0→T = E(z) log

[(
1 + ξ(z,x)

)
R0→T

]
(26)

for ξ(z,x). (Note that ξ(z) = ξ(z,z).) As ξ(z,x) is a dollar measure of the gain from

speculation, we can then aggregate over x to determine agent z’s view of the impact of

speculation on social welfare. In doing so, we are committing to the utilitarian idea of

cardinal utility that can be compared across people.21

Result 12 (Ex ante attitudes to speculation). Investor z’s perception of investor x’s

gain from speculation, ξ(z,x), is

ξ(z,x) =

√
θ + 1

θ
exp

{
z2 − 1

2(1 + θ)
− (z − x)2

2θ

}
− 1 .

This is positive for investor types x that are sufficiently close to z and negative otherwise.

Aggregating over x, investor z’s perception of the aggregate gain to speculation is

ξ = exp

{
− 1

2(1 + θ)

}
− 1 ,

21See, for example, Harsanyi (1955) on the use of cardinal utility in interpersonal welfare comparisons.
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which is independent of z and negative for all θ > 0.

Ex ante, all investors perceive that the ability to speculate is in their own interest

and in the interest of investors with beliefs sufficiently similar to their own, as ξ(z,z) > 0.

But they all also think that speculation is socially costly, as ξ < 0. In the terminology of

Brunnermeier et al. (2014), speculation is belief-neutral inefficient, despite every investor

finding it attractive.22 Moreover, as heterogeneity increases—that is, as θ decreases—the

degree of dissonance increases, in the sense that all investors perceive that speculation

is increasingly beneficial for them personally but increasingly costly for the population

as a whole.

2.4.4 Ex post regret and inequality

Ex post, there will always be some investors who are happy to have speculated—because

their chosen return R
(z)
0→T turned out to be higher than the static return R0→T—and

others who are regretful (that is, whose realized utility is lower as a result of speculating

than it would have been if they had held the risky asset statically).

On average, however, people are regretful, in the utilitarian sense that average real-

ized utility is lower than it would have been had all agents held a static position in the

risky asset. This is a direct consequence of inequality in the presence of risk aversion.

To see this, we can measure inequality using the Atkinson (1970) inequality index, A,

which satisfies23

log(1− A) = Ẽ logR
(z)
0→T − logR0→T . (27)

Average ex post regret, logR0→T − Ẽ logR
(z)
0→T , is therefore a function of ex post inequal-

ity, A. Equation (27) shows that the Atkinson index can be interpreted as the fraction

of wealth that could be sacrificed while holding social welfare constant, if wealth were

redistributed equally across the population ex post.

The extent of ex post inequality depends on how surprising the realized outcome is, in

the mind of the median investor—specifically, on the number of standard deviations by

22Brunnermeier et al. (2014) present some examples of economies with inefficient speculation in the
presence of heterogeneous beliefs, but their examples have no aggregate risk.

23Atkinson (1970) defined a family of indices indexed by an inequality aversion parameter, ε. In
equation (27) we are considering the case ε = 1, which is widely used in practice and which has a
natural interpretation in our equilibrium.
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which the realized log return on the risky asset exceeds the median investor’s expectation,

s =
logR0→T − E(0) logR0→T√

var(0) logR0→T
.

Result 13 (Ex post inequality). The Atkinson inequality index satisfies

A = 1−
√
θ + 1

θ
exp

{
− s2

2(1 + θ)
− 1

2θ

}
.

Thus inequality is minimized if the realized log return on the risky asset meets the

expectations of the median investor, and is high if the realized log return is far from the

median investor’s expectations.

2.5 A Poisson limit

We now consider an alternative continuous time limit in which the risky asset is subject

to jumps that arrive at times dictated (in the limit) by a Poisson process. We think

of this setting as representing a stylized model of insurance or credit markets in which

credit events or catastrophes arrive suddenly and cause large losses.

We divide the period from 0 to T into N steps, and we will let N tend to infinity.

We want the mean agent to perceive a jump arrival rate of λ, and the cross-sectional

standard deviation to be of a similar order of magnitude. These considerations dictate

that the distribution of agent types h should be concentrated around a mean of 1− λ dt
(so that the probability of a decline is λ dt, where we write dt = T/N) and should

have standard deviation ωλ dt. Exploiting the flexibility of the beta family of belief

distributions (1), we therefore set

αN =
N

ω2λT
and βN =

1

ω2
,

which achieves the desired mean and standard deviation in the limit as N →∞.

If there are no jumps, the terminal payoff is one; we assume that each jump causes the

same proportional loss to the terminal payoff, so that the payoffs are pm,T = e−(N−m)J

for some constant J . This setup might be viewed as a stylized model of a risky bond,

for example. Our next result applies Result 1 to characterize pricing in the limit as

N →∞. The price is only defined under an assumption that jumps are not too frequent
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or severe, and that there is not too much disagreement:

ω2λT
(
eJ − 1

)
< 1 . (28)

(We will treat J as positive, so that jumps represent bad news, but our results go through

for negative J , in which case a jump represents good news and (28) is always satisfied.)

As before, we parametrize investors by z, which indexes the number of standard devia-

tions more optimistic than the mean a given investor is; thus person z thinks that the

Poisson process has jump arrival rate λ(1− zω).

Result 14. The price at time t, if q jumps have occurred, is

pq,t = e−qJ
(

1− ω2λ(T − t)
1 + ω2λt

(
eJ − 1

))q+ 1
ω2

. (29)

Investor z’s SDF at time t is a function of q, the number of jumps that have occurred:

M
(z)
0→t =

Γ
(
q + 1

ω2

)
Γ
(

1
ω2

) [
1− ω2λT

(
eJ − 1

)] 1
ω2
[
1− ω2λT

(
eJ − 1

)
+ ω2λteJ

]−q− 1
ω2

[
ω2eJ

1− zω

]q
eλ(1−zω)t .

Expected utility is well defined for all investors because E(z) logR
(z)
0→T = −E(z) logM

(z)
0→T

is finite. But all investors perceive that arbitrarily high Sharpe ratios are attainable,

because M
(z)
0→t has infinite variance.

Agent z’s return on optimally invested wealth is R
(z)
0→t = 1/M

(z)
0→t, so the richest

agent at time t can be identified by minimizing M
(z)
0→t with respect to z, giving zrichest =

(λt− q)/(ωλt). This agent perceives arrival rate λrichest = q
t
, so has beliefs that appear

correct in hindsight.

We can calculate the risky asset share of agent z by comparing the return on wealth

with the return on the risky asset (which can be computed using the price (29)):

risky share
(z)
t = 1 +

ω

eJ − 1

[
1− ω2λ

1 + ω2λT
eJ(T − t)

]
︸ ︷︷ ︸

> 0 by assumption (28)

1 + ω2λt

1 + ω2q

[
ω(q − λt)
1 + ω2λt

+ z

]
.

The representative agent (with risky share equal to one) is therefore z = −ω(q−λt)
1+ω2λt

,

with perceived jump arrival rate λrep,t = λ + ω2λt
1+ω2λt

(
q
t
− λ
)
. Thus initially the mean

investor is representative. Subsequently, the representative investor’s perceived arrival

rate grows if the realized jump arrival rate is higher than expected (q/t > λ) and declines
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otherwise. For large t, the representative investor perceives an arrival rate close to the

historically realized arrival rate q/t.

The investor who is out of the market at time t perceives arrival rate

λ∗t =
1 + qω2

1− ω2λT (eJ − 1) + ω2λteJ
eJλ. (30)

Agents who are more pessimistic are short the risky asset. They lose money while

nothing happens, but experience sudden gains if a jump arrives. Conversely, agents who

are more optimistic are long, so do well if nothing happens but are exposed to jump risk;

one can think of the pessimists as having purchased jump insurance from the optimists.

It follows from equation (30) that if jumps are sufficiently large—if eJ − 1 ≥ 1—then

λ∗t ≥ λ for all t and q. In this case, the mean investor is never short the risky asset, no

matter what happens. By contrast, in any calibration of the Brownian limit there are

sample paths on which the mean investor goes short the risky asset.

The risk-neutral arrival rate measures the cost of insuring against a jump. We will

refer to it as the CDS rate, λ∗t , as it equals the price (scaled by the length of contract

horizon) of a very short-dated CDS contract that pays $1 if there is a jump:

λ∗t = lim
ε→0

1

ε
P∗t (at least one jump occurs in [t, t+ ε]) . (31)

We have already used λ∗t to denote the arrival rate (30) perceived by the investor who

is out of the market, but the next result shows that the two quantities coincide.

Result 15. The risk-neutral arrival rate, or CDS rate, is λ∗t as defined in equation (30).

The CDS rate jumps when there is a Poisson arrival and declines smoothly as t

increases during periods where there are no arrivals. (For comparison, the CDS rate is

constant over time in the homogeneous case: λ∗hom = eJλ.) Initially, when t = q = 0,

the CDS rate is unambiguously higher in the presence of belief heterogeneity:

λ∗0 =
1

1− ω2λT
(
eJ − 1

)︸ ︷︷ ︸
∈ (0, 1) by assumption (28)

eJ λ > λ∗hom.

By the terminal date, t = T , we have λ∗T = 1+qω2

1+λTω2 λ
∗
hom. Thus λ∗T may be larger or

smaller than λ∗hom, depending on whether the realized number of jumps exceeded the

mean agent’s expectations (q > λT ) or not.
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Figure 11: Left: The evolution of the representative agent’s subjectively perceived arrival
rate, and of the CDS rate (i.e., risk-neutral arrival rate), in the heterogeneous and
homogeneous economies, on a sample path with jumps occurring at times t = 4 and
t = 5. Right: The evolution over time of the wealth of four agents (z = −3,−2, 0, 0.9)
on the same sample path.

Figure 11 shows how the equilibrium evolves along a particular sample path on which

two jumps occur in quick succession, at times t = 4 and t = 5. We set ω = 1, λ = 0.05

and T = 10 and assume that half of the fundamental value is destroyed every time there

is a jump, that is, e−J = 1/2, or eJ − 1 = 1. The figure shows a relatively unlucky

sample path, on which the expectations of the pessimistic agent z = −3 are realized; for

comparison, the mean agent only expected 0.5 jumps over the ten years.

The left panel shows the evolution of the representative agent’s subjectively perceived

arrival rate, and of the CDS rate. These two quantities decline smoothly during quiet

periods with no jumps, but spike immediately after a jump arrives. (Similar patterns

have been documented in catastrophe insurance markets by Froot and O’Connell (1999)

and Born and Viscusi (2006), and have also been studied theoretically by Duffie (2010).)

By contrast, in a homogeneous economy, each would be constant over time.

As we have seen, the CDS rate reveals the identity of the investor who is out of the

market. More optimistic investors hold long positions in the risky asset, analogous to

selling insurance or shorting CDS contracts. They accumulate wealth in quiet times,

but experience sudden losses when bad news arrives. Pessimistic investors, who perceive

higher arrival rates than the CDS rate, are short the risky asset, which is analogous to

buying insurance or going long CDS. Their wealth bleeds away during quiet times, but

they experience sudden windfalls if bad news arrives.

The right panel plots the cumulative return on wealth for four different agents over

the same sample path. The figure shows two pessimists, who are two and three standard
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deviations below the mean, and who therefore perceive arrival rates of 0.15 and 0.20,

respectively; the mean investor, with perceived arrival rate 0.05; and an optimist who is

0.9 standard deviations above the mean, with perceived arrival rate 0.005. (All agents

must perceive a positive arrival rate, and this imposes a limit on how optimistic an agent

can be: as ω = 1 in our calibration, we must have z < 1.)

The optimist and the mean investor are both long the asset (i.e., short jump insur-

ance) throughout the sample path. The two pessimists buy or sell insurance depending

on whether the CDS rate is above or below their subjectively perceived arrival rates. By

the time of the first jump, both are short the asset—long jump insurance—so experience

sudden increases in wealth at t = 4. In this example, the positions of the four investors

in the wealth distribution are reversed as a result of the first jump. As the CDS rate

then spikes, the two pessimists reverse their positions temporarily, and are short jump

insurance between times 4 and 5. At the instant the jump occurs at time 5, the z = −3

pessimist is out of the market, so her wealth is unaffected by the jump. The z = −2

pessimist is still selling insurance, however, so experiences a loss.

We present an option-pricing formula for the Poisson limit in the Online Appendix.

Notably, the model generates a smile with high volatility at low strikes, and a hump-

shaped term structure of implied volatility.

3 Conclusion

We have presented a dynamic model in which individuals have heterogeneous beliefs.

Short sales are allowed; all agents are risk-averse; and all agents are marginal. Wealth

shifts toward agents whose beliefs are correct in hindsight, whether through luck or

judgment, so the identity of the representative investor, “Mr. Market,” changes con-

stantly over time, becoming more optimistic following good news and more pessimistic

following bad news. These shifts in sentiment induce speculation—that is, agents take

on positions they would not wish to hold to maturity.

The model can be interpreted as a stylized account of a single market episode, a

period during which investors are preoccupied by some phenomenon over whose impli-

cations there is considerable disagreement: examples include the aftermath of 9/11, the

subprime crisis of 2008–9, or the COVID-19 coronavirus which has spread across the

world as we write. Fuller models might allow such events to occur repeatedly, perhaps

at times dictated by a Poisson process; or for disagreement to be multi-dimensional. We

leave such extensions for future research.
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As our framework allows for general terminal payoffs, we can characterize conditions

under which increasing belief heterogeneity drives prices up or down. If the risky asset

is a “growth” asset with a high payoff in an extreme state, it will be overvalued relative

to the homogeneous benchmark; but for a wide class of payoffs sentiment has the effect

of driving prices lower, and risk premia higher. As the framework is also extremely

tractable, we are able to solve the model analytically rather than relying on numerical

solutions, and to go further than the prior literature in studying the interplay between

concrete quantities ranging from volume and leverage, to the level of the VIX index,

the variance risk premium or CDS rates, to the finer details of investors’ beliefs and

behaviors.
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Cvitanić, J., Jouini, E., Malamud, S., and Napp, C. (2011). Financial markets equilibrium
with heterogeneous agents. Review of Finance, 16(1):285–321.

De Long, J. B., Shleifer, A., Summers, L. H., and Waldmann, R. J. (1990). Noise trader risk
in financial markets. Journal of Political Economy, 98(4):703–738.

Duffie, D. (2010). Presidential address: Asset price dynamics with slow-moving capital. Journal
of Finance, 65(4):1237–1267.

Dumas, B. (1989). Two-person dynamic equilibrium in the capital market. The Review of
Financial Studies, 2(2):157–188.

Dumas, B., Kurshev, A., and Uppal, R. (2009). Equilibrium portfolio strategies in the presence
of sentiment risk and excess volatility. Journal of Finance, 64(2):579–629.

Froot, K. and O’Connell, P. (1999). The pricing of U.S. catastrophe reinsurance. In Froot,
K., editor, The Financing of Catastrophe Risk, pages 195–232. University of Chicago Press,
Chicago.

Gao, C. and Martin, I. W. R. (2021). Volatility, valuation ratios, and bubbles: An empirical
measure of market sentiment. Journal of Finance. forthcoming.

Geanakoplos, J. (2010). The leverage cycle. In Acemoglu, D., Rogoff, K., and Woodford, M.,
editors, NBER Macroeconomic Annual 2009, volume 24, pages 1–65. University of Chicago
Press, Chicago.

Giglio, S., Maggiori, M., Stroebel, J., and Utkus, S. (2019). Five facts about beliefs and
portfolios. Working paper.

Greenwood, R. and Shleifer, A. (2014). Expectations of returns and expected returns. Review
of Financial Studies, 27(3):714–746.

Hansen, L. P. and Jagannathan, R. (1991). Implications of security market data for models of
dynamic economies. Journal of Political Economy, 99(2):225–262.

Hansen, L. P. and Richard, S. F. (1987). The role of conditioning information in deducing
testable restrictions implied by dynamic asset pricing models. Econometrica, 55(3):587–613.

Harrison, J. M. and Kreps, D. M. (1978). Speculative investor behavior in a stock market with
heterogeneous expectations. Quarterly Journal of Economics, 92(2):323–336.

Harsanyi, J. C. (1955). Cardinal welfare, individualistic ethics, and interpersonal comparisons
of utility. Journal of Political Economy, 63(4):309–321.

Jackwerth, J. C. (2000). Recovering risk aversion from option prices and realized returns.
Review of Financial Studies, 13(2):433–451.

46



Johnson, T. C. (2004). Forecast dispersion and the cross section of expected returns. The
Journal of Finance, 59(5):1957–1978.

Jouini, E. and Napp, C. (2007). Consensus consumer and intertemporal asset pricing with
heterogeneous beliefs. The Review of Economic Studies, 74(4):1149–1174.

Keynes, J. M. (1936). The General Theory of Employment, Interest and Money. Palgrave
Macmillan.

Kogan, L., Ross, S. A., Wang, J., and Westerfield, M. M. (2006). The price impact and survival
of irrational traders. Journal of Finance, 61(1):195–229.

Kremens, L. and Martin, I. W. R. (2019). The quanto theory of exchange rates. American
Economic Review, 109(3):810–843.

Martin, I. W. R. (2017). What is the expected return on the market? Quarterly Journal of
Economics, 132(1):367–433.

Martin, I. W. R. and Wagner, C. (2019). What is the expected return on a stock? Journal of
Finance, 74(4):1887–1929.

Meeuwis, M., Parker, J. A., Schoar, A., and Simester, D. I. (2019). Belief disagreement and
portfolio choice. Working paper, MIT.

Milne, A. A. (1926). Winnie-the-Pooh. Methuen & Co. Ltd.

Paul, S. R. and Plackett, R. L. (1978). Inference sensitivity for Poisson mixtures. Biometrika,
65(3):591–602.

Roll, R. (1984). Orange juice and weather. American Economic Review, 74(5):861–880.

Rothschild, M. and Stiglitz, J. E. (1970). Increasing risk: I. A definition. Journal of Economic
Theory, 2(3):225–243.

Rubinstein, M. (1976). The strong case for the generalized logarithmic utility model as the
premier model of financial markets. The Journal of Finance, 31(2):551–571.

Sandroni, A. (2000). Do markets favor agents able to make accurate predictions? Economet-
rica, 68(6):1303–1341.

Scheinkman, J. A. and Xiong, W. (2003). Overconfidence and speculative bubbles. Journal of
Political Economy, 111(6):1183–1219.

Shiller, R. J. (1981). Do stock prices move too much to be justified by subsequent changes in
dividends? American Economic Review, 71(3):421–436.

Shiller, R. J. (1987). Investor behavior in the October 1987 stock market crash: Survey and
evidence. NBER Working Paper No. 2446.

Simsek, A. (2013). Belief disagreements and collateral constraints. Econometrica, 81(1):1–53.

47



Yu, J. (2011). Disagreement and return predictability of stock portfolios. Journal of Financial
Economics, 99(1):162–183.

Zapatero, F. (1998). Effects of financial innovations on market volatility when beliefs are
heterogeneous. Journal of Economic Dynamics and Control, 22(4):597–626.

A Proofs of results

Proof of Result 1. Observe from the recurrence relation (13) that z0,0 is a linear combination
of the reciprocals of the terminal payoffs,

z0,0 =
T∑

m=0

cmzm,T . (32)

Each constant cm is a sum of products of terms of the formHj,s and 1−Hj,s over appropriate
j and s. In order to better handle these products it will be helpful to introduce Jm,t(h) =

hm(1− h)t−mf(h) ∝ whf(h). Then
∫ 1

0 Jm,t(h) dh ∝
∫ 1

0 whf(h) dh = p and hence

Hm,t =

∫ 1
0 hwhf(h) dh

p
=

∫ 1
0 hJm,t(h) dh∫ 1
0 Jm,t(h) dh

=

∫ 1
0 Jm+1,t+1(h) dh∫ 1

0 Jm,t(h) dh
(33)

and

1−Hm,t =

∫ 1
0 Jm,t+1(h) dh∫ 1

0 Jm,t(h) dh
. (34)

We first show that path independence holds, so that all the possible ways of getting from
the initial node to node m at time T make an equal contribution to cm. It suffices to show
that, starting from any node, the risk-neutral probability of down-up equals the risk-neutral
probability of up-down—that is, for any m and t,

h∗m,t(1− h∗m+1,t+1) = (1− h∗m,t)h∗m,t+1 .

Rewriting equation (8) to insert subscripts, we have

h∗m,t = Hm,t
pm,t

pm+1,t+1
and 1− h∗m,t = (1−Hm,t)

pm,t
pm,t+1

. (35)

It follows that we have path independence if and only if Hm,t(1−Hm+1,t+1) = (1−Hm,t)Hm,t+1.
But this follows immediately from equations (33) and (34).

Path independence implies that we can evaluate cm by considering the path that travels
down for T −m periods and then up for m periods, and then multiplying by the number of
paths,

(
T
m

)
:

cm =

(
T

m

)
(1−H0,0) · · · (1−H0,T−m−1)H0,T−mH1,T−m+1 · · ·Hm−1,T−1.
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Equations (33) and (34) allow us to write cm as a telescoping product:

cm =

(
T

m

)∫ 1
0 Jm,T (h) dh∫ 1
0 J0,0(h) dh

=

(
T

m

)∫ 1

0
hm(1− h)T−mf(h) dh.

If f(h) is the pdf of a Beta(α, β) distribution, we can evaluate the integral explicitly to give

cm =

(
T

m

)
B(α+m,β + T −m)

B(α, β)
.

This quantity is the probability that a random variable with beta-binomial distribution with
parameters (T, α, β) equals m. Thus the price at time zero satisfies p−1

0,0 = E[p−1
m̃,T ], where the

expectation is over m̃ ∼ BetaBinomial(T, α, β).
The risk-neutral probability of ending at node (m,T ), q∗m, can be determined using (35)

and path-independence:

q∗m =

(
T

m

)
(1− h∗0,0) · · · (1− h∗0,T−m−1) · h∗0,T−mh∗1,T−m+1 · · ·h∗m−1,T−1

=

(
T

m

)
(1−H0,0)

p0,0

p0,1
· · · (1−H0,T−m−1)

p0,T−m−1

p0,T−m
·H0,T−m

p0,T−m
p1,T−m+1

· · ·Hm−1,T−1
pm−1,T−1

pm,T

= cm
p0,0

pm,T

We also have the following generalization of Result 1, which gives the (inverse of) the price
of the risky asset at node (m, t). We omit the proof, which is essentially identical to the above.

Lemma 1. We have zm,t =
∑T−t

j=0 cm,t,jzm+j,T , where j represents the number of further up-
moves after time t, and

cm,t,j =

(
T − t
j

)∫ 1
0 h

m+j(1− h)T−m−jf(h) dh∫ 1
0 h

m(1− h)t−mf(h) dh
.

If, in particular, f(h) is the pdf of a Beta(α, β) distribution, then

cm,t,j =

(
T − t
j

)
B(α+m+ j, β + T −m− j)

B(α+m,β + t−m)
.

This is the probability that a random variable with BetaBinomial(T − t, α + m,β + t − m)
distribution equals j ∈ {0, . . . , T − t}.

Moreover, the risk-neutral probability of ending up at node (m + j, T ) starting from node
(m, t) is given by

q∗m,t,j = cm,t,j
pm,t
pm+j,T

.

Proof of Result 2. At time t, following m up-moves, let the investor’s posterior belief about
the probability of an up-move be denoted by hm,t. In this general case we assume the belief h0

of the representative agent has a density function f(h). Then, using Bayes’ rule, the posterior
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density function, fm,t(·), satisfies

fm,t(h) =
hm(1− h)t−mf(h)∫ 1

0 h
m(1− h)t−mf(h) dh

.

If for instance f(h) is the density function of a Beta(α, β) distribution, then fm,t(h) is the
probability density function of a Beta(α + m,β + t − m) distribution. Thus, in particular,
using equation (33):

E [hm,t] =

∫ 1
0 h

m+1(1− h)t−mf(h)∫ 1
0 h

m(1− h)t−mf(h) dh
= Hm,t . (36)

That is, the expected belief of the representative agent is the same as the wealth-weighted
belief in the heterogeneous economy.

The agent’s portfolio problem at time t, following m up moves, is therefore

max
xh

E [hm,t log (wh − xhp+ xhpu) + (1− hm,t) log (wh − xhp+ xhpd)] ,

with associated first-order condition

xh = wh

(
E [hm,t]

p− pd
− 1− E [hm,t]

pu − p

)
.

Market clearing dictates that xh = 1 and wh = p. Thus

p =
pupd

E [hm,t] pd + (1− E [hm,t]) pu
.

By equation (36), this is equivalent to the price (6) in the heterogeneous economy.

Proof of Result 3. We use the fact (noted in the proof of Result 1) that the price at time zero
satisfies p−1

0,0 = E[p−1
m̃,T ], where the expectation is over m̃ ∼ BetaBinomial(T, α, β). Note that

an increase in belief heterogeneity corresponds to a decrease in α and β with α/β held constant.
The key to the proof is then the following lemma. We presume it is well known but have not
found a reference, so we include a proof in the Online Appendix.

Lemma 2. If m̃1 ∼ BetaBinomial(T, α, λα) and m̃2 ∼ BetaBinomial(T, α, λα), where α > α
and λ > 0, then m̃1 second order stochastically dominates m̃2.

If m̃1 second order stochastically dominates m̃2 then E[u(m̃1)] ≥ E[u(m̃2)] for any concave
function u(·) (Rothschild and Stiglitz, 1970). Therefore, if 1

pm,T
is convex (so that − 1

pm,T
is

concave) then E[ 1
pm̃1,T

] ≤ E[ 1
pm̃2,T

], from which the first part of the result follows. If instead
1

pm,T
is concave, then the inequality is reversed.

Finally, log-concavity of p is equivalent to (p′)2 ≥ pp′′. This implies that 2 (p′)2 ≥ pp′′,
which is equivalent to 1/p being convex.

Proof of Result 4. As the beta distribution is conjugate to the binomial distribution, investor
h’s posterior probability of an up move at node (m, t) follows the distribution h̃m,t ∼ Beta(ζh+
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m, ζ(1− h) + t−m); thus E[h̃m,t] = h+m/ζ
1+t/ζ . The agent’s first-order condition is therefore

xh = wh

 h+m
ζ

1+t/ζ

p− pd
−

1−
h+m

ζ

1+t/ζ

pu − p

 .

As in the main text, we have suppressed the dependence of asset demand xh (and, below, of p
and h∗) on m and t for notational convenience.

Starting from node (m, t), the wealth of an investor is wh + xh(pu − p) = wh
h+m/ζ
h∗(1+t/ζ)

following an up-move (i.e., at node (m+ 1, t+ 1)) or wh + xd(pd − p) = wh
1−h+m/ζ

1+t/ζ

1−h∗ following
a down-move (i.e., at node (m, t+ 1)). It follows, by induction, that the wealth of an investor
at node (m, t) is wh = λ̃path · Im,t(h), where

Im,t(h) = (1− h)

(
1− h

1 + 1
ζ

)
. . .

(
1− h

1 + t−m−1
ζ

)
︸ ︷︷ ︸

t−m down moves

(
h

1 + t−m
ζ

)
. . .

(
h+ m−1

ζ

1 + t−1
ζ

)
︸ ︷︷ ︸

m up moves

=
B(ζh+m, ζ(1− h) + t−m)

B(ζh, ζ(1− h))
. (37)

(The ordering of up- and down-moves is immaterial because E[1−h̃m,t]E[h̃m,t+1] = E[h̃m,t]E[1−
h̃m+1,t+1].) As initial wealth does not depend on h, we have I0(h) = 1. We can find the constant
λ̃path by equating aggregate wealth to the value of the risky asset:

p = λ̃path

∫ 1

0
Im,t(h)f(h) dh . (38)

To clear the market, we must have

1 = λ̃path

∫ 1

0
Im,t(h)

 h+m
ζ

1+t/ζ

p− pd
−

1−
h+m

ζ

1+t/ζ

pu − p

 f(h) dh

 . (39)

If we define

Gm,t =

∫ 1
0 Im,t(h)(h+ m

ζ )f(h) dh

(1 + t
ζ )
∫ 1

0 Im,t(h)f(h) dh
=

∫ 1
0 Im+1,t+1(h)f(h) dh∫ 1

0 Im,t(h)f(h) dh
(40)

then one can check that

1−Gm,t =

∫ 1
0 Im,t+1(h)f(h) dh∫ 1

0 Im,t(h)f(h) dh
. (41)

In these terms, equations (38) and (39) imply that

1

p
=

Gm,t
p− pd

− 1−Gm,t
pu − p

.
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Defining zm,t = 1/p, zm+1,t+1 = 1/pu, and zm,t+1 = 1/pd, we can rewrite this as

zm,t = Gm,tzm+1,t+1 + (1−Gm,t)zm,t+1.

By backward induction, and using the fact that (1−Gm,t)Gm,t+1 = Gm,t (1−Gm+1,t+1), we

have z0,0 =
∑T

m=0 c̃m·zm,T , where c̃m =
(
T
m

)
(1−G0,0) · · · (1−G0,T−m−1)G0,T−m · · ·Gm−1,T−1.

Using equations (40) and (41) to evaluate this as a telescoping product,

c̃m =

(
T

m

)∫ 1

0
Im,T (h)f(h) dh ,

which completes the proof of the first part of the Result.
To prove the second part of the result, note from (37) that

(
T
m

)
Im,T = P(m̃ = m) where m̃ ∼

BetaBinomial(T, ζh, ζ(1− h)), so z0,0 =
∫ 1

0 E[zm̃]f(h) dh. If m̃i ∼ BetaBinomial(T, ζih, ζi(1−
h)) for i = 1, 2, where ζ1 > ζ2, then m̃1 second order stochastically dominates m̃2 by Lemma

2. It follows that if zm is convex, E[zm̃1 ] < E[zm̃2 ] for all h, and hence p
(1)
0,0 > p

(2)
0,0. Also by

Lemma 2, the converse is true if zm is concave.

Proof of Result 5. We will repeatedly use the fact that Γ(z + 1)/Γ(z) = z without comment.
In the risky bond limit, (1− ε)/ε→∞, so the sentiment multiplier (18) simplifies to

g(t) =

(
α

α+ β

)T−t Γ(α+ t)Γ(α+ β + T )

Γ(α+ T )Γ(α+ β + t)
. (42)

It follows that g(t) is increasing:

g(t+ 1)

g(t)
=
α+ β

α

Γ(α+ t+ 1)

Γ(α+ t)

Γ(α+ β + t)

Γ(α+ β + t+ 1)
=
α+ β

α

α+ t

α+ β + t
≥ 1 .

In the bubbly asset limit, (1− ε)/ε→ −1, so the sentiment multiplier (18) simplifies to

g(t) =
1−

(
α

α+β

)T−t
1− Γ(α+T )

Γ(α+t)
Γ(α+β+t)
Γ(α+β+T )

. (43)

Let us write

x(t) =

(
α

α+ β

)T−t
and y(t) =

Γ(α+ T )

Γ(α+ t)

Γ(α+ β + t)

Γ(α+ β + T )
,

so that

g(t) =
1− x(t)

1− y(t)
and g(t+ 1) =

1− x(t+ 1)

1− y(t+ 1)
=

1− x(t)α+β
α

1− y(t)α+β+t
α+t

.

It follows that g(t+ 1) > g(t) if and only if

t

α+ t
x(t)y(t) +

α

α+ t
y(t) > x(t) . (44)

We can write

y(t) =
α+ t

α+ β + t

α+ t+ 1

α+ β + t+ 1
· · · α+ T − 1

α+ β + T − 1
,
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which immediately implies that

y(t) >

(
α+ t

α+ β + t

)T−t
. (45)

We can use this fact to establish that inequality (44) holds, as required:

t

α+ t
x(t)y(t) +

α

α+ t
y(t) >

t

α+ t

(
α

α+ β

α+ t

α+ β + t

)T−t
+

α

α+ t

(
α+ t

α+ β + t

)T−t
>

(
t

α+ t

α

α+ β

α+ t

α+ β + t
+

α

α+ t

α+ t

α+ β + t

)T−t
=

(
α

α+ β

)T−t
= x(t) .

The first inequality uses the definition of x(t) and (45); the second is Jensen’s inequality.

Proof of Result 6. As shown in equation (32), p−1
0,0 =

∑2N
j=0 cmzm,T . From Result 1, as we now

have 2N periods in total, we have cm =
(

2N
m

)B(α+m,β+2N−m)
B(α,β) . Hence we can write p−1

0,0 =

E [zm̃,T ] = E
[
e
−σ
√

2T m̃−N√
N

]
, where m̃ ∼ BetaBinomial(2N,α, β) and α = θN + η

√
N and

β = θN − η
√
N . Paul and Plackett (1978) show that m̃, appropriately shifted by mean and

scaled by standard deviation, converges in distribution and in MGF to a Normal random

variable:
m̃−N− η

θ

√
N√

1+θ
2θ

N
−→ Ψ ∼ N(0, 1). Thus

p−1
0,0 → E

[
e
−σ
√

2T

(
Ψ
√

1+θ
2θ

+ η
θ

)]
= exp

(
−η
θ
σ
√

2T +
θ + 1

2θ
σ2T

)
Proof of Result 7. We want to find the perceived expectation and variance of returns from 0
to t. To do so, we compute pm,t following the lines of the proof of Result 6, and then find its
limiting distribution from the perspective of investor h.

We fix t, so that we can drop subscripts whenever possible, and we define φ = t
T and

set m = φN + ψ
√
φN so that ψ is a convenient parametrization of m. At time t, we are

in the 2φN -th period, with 2(1 − φ)N periods remaining; hence (by Lemma 1) cm,t,j =(
2(1−φ)N

j

)B(m+α+j,2N−m+β−j)
B(m+α,2φN−m+β) . As zm+j,T = e

−σ
√

2T m+j−N√
N , we have

p−1
m,t = E

[
e
−σ
√

2T m+j̃−N√
N

]
(46)

where j̃ ∼ BetaBinomial
(

2(1− φ)N, (φ+ θ)N + (ψ
√
φ+ η)

√
N, (φ+ θ)N − (ψ

√
φ+ η)

√
N
)

.

By the result of Paul and Plackett (1978), the standardized version of j converges in
distribution and in MGF to a standard Normal random variable. Therefore we can find the
limiting expectation on the right hand side of (46) by considering the expectation under a
Normal distribution with the corresponding mean and variance. As N tends to infinity, we
will write pψ :≡ pm,t (where ψ = m−φN√

φN
), to emphasize that we are considering the continuous
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time limit, in which ψ becomes the relevant state variable. We get:

pψ = e−
1−φ
2

θ+1
φ+θ

σ2T+ 1−φ
φ+θ

ησ
√

2T+ θ+1
φ+θ

σ
√

2φTψ
. (47)

We know that m has a binomial distribution with mean 2φNh and variance 2φNh(1− h)
from the perspective of agent h. Hence, by the Central Limit Theorem or the de Moivre–
Laplace theorem (as stated in the Online Appendix), a standardized version of m converges in
distribution and in moment generating function to a standard Normal distribution:

m− 2φNh√
2φNh(1− h)

→ N(0, 1) or,
√

2

[
ψ −

√
φ

(
η

θ
+

z√
2θ

)]
→ ξ ∼ N(0, 1). (48)

We can rewrite equation (47) from the agent z’s perspective as pt = bte
θ+1
φ+θ

σ
√

2φT
(
ξ√
2

+
√
φ( η
θ

+ z√
2θ

)
)
,

where bt = e
− 1−φ

2
θ+1
φ+θ

σ2T+ 1−φ
φ+θ

ησ
√

2T
. Hence, the perceived expectation and variance of log pt

(in the limit as N →∞) are

E(z) log pt =
t(θ + 1) z√

θ
σ
√
T − 1

2(T − t)(θ + 1)σ2T

θT + t
+
η

θ
σ
√

2T and var(z) log pt = σ2t

(
θ + 1

θ + t
T

)2

.

Moreover, the expected return is:

E(z) [R0→t] = E(z)

[
pt
p0,0

]
= p−1

0,0 · bt · E
(z)

[
e
θ+1
φ+θ

σ
√

2φT
(
ξ√
2

+
√
φ( η
θ

+ z√
2θ

)
)]
.

Thus, after some algebra, E(z) [R0→t] = e
φ(θ+1)
θ+φ

[
z√
θ
σ
√
T+ θ+1

2
( 1
θ

+ 1
θ+φ

)σ2T
]
. Setting φ = t

T , and
using the fact that z has zero cross-sectional mean and unit variance we derive the cross-
sectional mean expectation and disagreement.

Finally, we find the autocorrelation of returns from the perspective of time 0. Letm andm+
j be the random variables representing the number of up-moves by times t1 and t2 respectively.
Then, as in equation (48), as N →∞ we have m−2φ1Nh√

2φ1Nh(1−h)
→ ξ1 and m+j−2φ2Nh√

2φ2Nh(1−h)
→ ξ2, where

ξ1, ξ2 are standard Normal random variables. We then have

cov(logR0→t1 , logRt1→t2) = cov(
θ + 1

φ1 + θ
σ
√
φ1Tξ1,

θ + 1

φ2 + θ
σ
√
φ2Tξ2 −

θ + 1

φ1 + θ
σ
√
φ1Tξ1).

Note that
√
φ2ξ2 =

√
φ1ξ1 +

√
φ2 − φ1Ξ, where Ξ ∼ N(0, 1) is independent of ξ1. It follows

that

cov(logR0→t1 , logRt1→t2) =
(θ + 1)2

(φ1 + θ)2

φ1 − φ2

φ2 + θ
σ2φ1T

As var[logR0→t1 ] = (θ+1)2

(φ1+θ)2
σ2φ1T , and using the fact that var[logRt1→t2 ] = var[log(pt1)] +

var[log(pt2)]− 2 cov(log(pt1), log(pt2)), we have

var[logRt1→t2 ] =
(θ + 1)2

(φ1 + θ)2(θ + φ2)2
σ2φ1T

[
(φ2 + θ)2 +

φ2

φ1
(φ1 + θ)2 − 2(φ1 + θ)(φ2 + θ)

]
.

Combining these, we find the expression given in the result.
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Proof of Result 8. Note that 2φN is the number of periods corresponding to t = φT . Writing
qm,t for the risk neutral probability of going from node (0, 0) to node (m, t), we have (as in

Lemma 1) qm,t =
p0,0
pm,t

cm,t, where cm,t =
(

2φN
m

)B(α+m,β+2φN−m)
B(α,β) . As the risk-free rate is 0, it

follows that the time zero price of a call option with strike K, maturing at time t, is

C(0, t;K) =

2φN∑
m=0

qm,t(pm,t−K)+ = p0

2φN∑
m=0

cm,t

(
1− K

pm,t

)+

→ p0 E

[(
1− K

bt
e
− θ+1
φ+θ

σ
√

2φTψ
)+
]
,

where the expectation is taken with respect to a BetaBinomial(2φN,α, β) distribution and
we have used (47), to substitute for pψ. By the result of Paul and Plackett (1978), m is
asymptotically Normal:

m− φN − η
θφ
√
N√

φ+θ
2θ φN

→ Ψ ∼ N(0, 1) , or
1√
φ+θ
2θ

(
ψ − η

θ

√
φ
)
→ Ψ ∼ N(0, 1) .

Thus

C(0, t;K) = p0 E

[(
1− K

bt
e
− θ+1
θ+φ

σ
√

2φT (Ψ
√
φ+θ
2θ

+ η
√
φ
θ

)
)+
]
.

(Convergence in distribution implies convergence in expectation by the Helly–Bray theorem,
as the function of Ψ inside the expectation is bounded and continuous.) The expectation is
standard, and we have

C(0, t;K) = p0

[
Φ

(
− log(X)

σ̃
√
t

)
− e

σ̃2t
2
K

bt
e
− θ+1
θ+φ

σ
√

2T ηφ
θ Φ

(
− log(X) + σ̃2t

σ̃
√
t

)]

where X = K
bt
e
− θ+1
θ+φ

σ
√

2T ηφ
θ and

σ̃2t =
(θ + 1)2

θ(θ + φ)
σ2t = var

[
log

(
K

bt
e
− θ+1
θ+φ

σ
√

2T (Ψ
√
φ+θ
2θ

φ+ ηφ
θ

)
)]

.

The result follows because p0e
σ̃2t
2
K
bt
e
− θ+1
θ+φ

σ
√

2T ηφ
θ = K.

Lastly, we can calculate the variance risk premium at arbitrary horizons t < T . We have

var∗ logR0→t = E∗
[
(logR0→t)

2
]
− [E∗ (logR0→t)]

2. Each of the risk-neutral expectations is

determined by the prices of options expiring at time t, by the logic of Breeden and Litzenberger
(1978). Hence risk-neutral variance is the same as in the Black–Scholes model with constant
volatility σ̃t. As is well known, this is σ̃2

t in annualized terms. Using the expression for
var logRt provided in Result 7, we have a generalization of the result given in the text:

1

t
(var∗ logR0→t − var logR0→t) =

(θ + 1)2 t
T

θ
(
θ + t

T

)2σ2

Proof of Result 9. As all investors have log utility, R
(z)
0→T is the growth optimal return from 0

to T as perceived by investor z, which equals R
(z)
0→T = 1/M

(z)
T , where M (z) is the SDF perceived

by investor z. The following lemma provides a formula for this quantity:
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Lemma 3. The SDF of investor z, M
(z)
t is given by:

M
(z)
t =

√
φ

θ + φ
exp

{
θ + φ

2(1 + θ)2σ2T

[
log
(
R0→t/K

(z)
t

)]2
− 1

2
(z − zg)2

}
. (49)

where logK
(z)
t = E(z) logR0→t + θ+1

θ+φ(z − zg)σ
√
θT .

Proof. Note that M (z) links investor’s perceived true probabilities to the objectively observed
risk-neutral probabilities, which we have computed in Lemma 1. In particular, the value of

agent z’s SDF if there have been m up-moves by time t is M
(z)
t (m) =

p0,0
pm,t

cm,t

π
(z)
t (m)

, where π
(z)
t (m)

is the probability that we will end up at node (m, t), as perceived by agent z at time 0. From

the proofs of Results 7, 8, we have established that cm,t, π
(z)
t (m) correspond to the probability

mass functions (pmf) of a beta-binomial distribution and of a binomial distribution, and hence
they both converge asymptotically to the probability density function of a Normal random
variable. In particular, using ψ to parametrize m, we get that cψ converges to the pdf of a

Normal with mean η
θ

√
φ and variance φ+θ

2θ , while π(z)(ψ) converges to the pdf of a Normal
with mean

√
φ(ηθ + z√

2θ
) and variance 1

2 . Therefore, we get the following characterization for

the SDF in the limit as N →∞:

M
(z)
t (ψ) =

√
θ

φ+ θ

1

R0→t
e
− θ

(φ+θ)
(ψ− η

θ

√
φ)2+(ψ−

√
φ( η
θ

+ z√
2θ

))2
, (50)

where ψ = m−φN√
φN

. Thus M
(z)
t is asymptotically equivalent to a function of the random variable

√
2(ψ −

√
φ(ηθ + z√

2θ
)) = logR0→t−E(z)[logR0→t]√

logR0→t
, which converges in distribution to a standard

normal from the perspective of any agent, as shown in equation (48). As this function is

continuous, M
(z)
t converges in distribution to the corresponding function of a standard Normal

random variable, by the continuous mapping theorem. Finally, after some algebra we can
rewrite the above in the form of equation (49).

Equation (22) and the remaining statements of the result follow immediately.

Proof of Result 10. We start by proving a lemma in the spirit of Breeden and Litzenberger
(1978). The lemma only relies on the absence of static arbitrage opportunities, and not on
market completeness or on the particular setting of this paper.

Lemma 4. Let W (·) be such that W (0) = 0. Then choosing terminal wealth W (pT ) is equiva-
lent to holding a portfolio that is (i) long W ′(K0) units of the underlying asset, (ii) long bonds
with face value W (K0)−K0W

′(K0), (iii) long W ′′(K) dK put options with strike K, for every
K < K0, and (iv) long W ′′(K) dK call options with strike K, for every K > K0. The constant
K0 > 0 can be chosen arbitrarily.

Proof of Lemma 4. Integrate W (pT ) =
∫∞

0 W ′(K)1{pT>K} dK by parts.

The claims in the first paragraph of the result follow by applying Lemma 4 with K0 = K(z),
and noting that W (z)′(K(z)) = 0 from the definition (21) of K(z).

56



To establish the truth of the second paragraph, note from (22) that

sign
[
W (z)′′

(
expE(z) log pT

)]
= sign

[
z2 − zgz −

θ + 1

θ

]
,

which is negative for moderate investors (including all investors with z between zg and zero),
and positive if |z| is sufficiently large.

Proof of Result 11. Note first that as the market is complete, there is a strategy that attains
the maximal Sharpe ratio (MSR) implied by the Hansen and Jagannathan (1991) bound.

In order to be able to take expectations of M2
t —for the rest of the proof, we suppress the

dependence on z in our notation—we will prove that the above sequence of random variables
is uniformly integrable. To do so, rewrite equation (50) as (M2

t )(N) := DeA(ψ(N))2+Bψ(N)+C to
denote a sequence of random variables whose limiting expectation we want to find (where we
include superscripts to emphasize the dependence on N). It suffices to show that there exists

an ε > 0 such that supN E[(eA(ψ(N))2+Bψ(N)+C)1+ε] <∞. Let us set ε = 1−A = 1− 2φ
φ+θ > 0.

By Hoeffding’s inequality,

P
(∣∣∣∣m− φN√

φN

∣∣∣∣ ≥ k) ≤ 2e−k
2

(51)

for any k > 0. For x > 0, the above implies that P
(
e

1
1+ε2

(m−φN)2

φN ≥ x
)
≤ 2

x1+ε2
. Therefore,

using that e
1

1+ε2
(m−φN)2

φN ≥ 1, we get:

E[e
1

1+ε2
ψ2

] = E[e
1

1+ε2
(m−φN)2

φN ] ≤
∫ ∞

0
P
(
e

1
1+ε2

(m−φN)2

φN ≥ x
)
dx ≤ 1 +

∫ ∞
1

2

x1+ε2
dx <∞ .

Finally, note that (1 + ε)A < 1/(1 + ε2). Thus there is a constant, K, such that (1 + ε)(Aψ2 +

Bψ + C) < 1
1+ε2

ψ2 + K, and therefore E[(eA(ψ(N))2+Bψ(N)+C)1+ε] < E[e
1

1+ε2
(ψ(N))2+K

] < ∞.
Thus our sequence is uniformly integrable, and hence there is convergence of expectations.

We can now find the variance of Mt from the perspective of agent z. The results above
imply that this problem reduces, as N → ∞, to finding the MGF of a chi-squared random
variable. By computing this expectation we find that

E[M2
t ] =

θ√
θ2 − φ2

exp

{[
z
√
θφ+ (θ + 1)σ

√
φT
]2

θ (θ − φ)

}

Proof of Result 12. Write r
(x)
0→T = logR

(x)
0→T and r0→T = logR0→T . Rearranging (22), we have

r
(x)
0→T =

1

2
log

θ + 1

θ
+

1

2
(x− zg)2− 1

2(1 + θ)

{
r0→T − E(z) r0→T

σ
√
T

+
E(z) r0→T − E(x) r0→T

σ
√
T

−
√
θ (x− zg)

}2

.

As E(z) r0→T − E(x) r0→T = (z − x)σ
√
T/
√
θ and r0→T−E(z) r0→T

σ
√
T

is a zero-mean, unit-variance
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random variable in the opinion of agent z,

E(z) r
(x)
0→T =

1

2
log

θ + 1

θ
+

1

2
(x− zg)2 − 1

2(1 + θ)

{
1 +

[
z − x√

θ
−
√
θ (x− zg)

]2
}
.

Result 7 showed that

E(z) r0→T =
zσ
√
T√
θ

+
θ + 1

2θ
σ2T = − zzg

θ + 1
+

1

2

z2
g

θ + 1
,

where we use the definition of zg in the second equality. It follows that

E(z)
(
r

(x)
0→T − r0→T

)
=

1

2
log

θ + 1

θ
+

z2 − 1

2(1 + θ)
− (z − x)2

2θ
,

which gives the first part of the result, because log
(
1 + ξ(z,x)

)
= E(z)

(
r

(x)
0→T − r0→T

)
.

Lastly, as the distribution of types x is asymptotically standard Normal, we have

ξ =

∫ ∞
x=−∞

ξ(z,x)g(x) dx

where g(x) is the standard Normal pdf, and evaluating the integral gives the result.

Proof of Result 13. From the definition (27), we see that log(1 − A) = 1
N

∑N
i=1 log yi − logµ,

where µ is cross-sectional average wealth. In our setting, with a continuum of investors,
this becomes log(1 − A) = Ẽ logW (z) − log ẼW (z). (As before, we use the notation Ẽ to
denote a cross-sectional expectation that averages across agents.) As ẼW (z) = p0R0→T equals

aggregate wealth, whereas logW (z) = log
(
p0R

(z)
0→T

)
equals the log return chosen by investor

z, we have log(1 − A) = Ẽ logR
(z)
0→T − logR0→T . Henceforth, we write r

(z)
0→T = logR

(z)
0→T and

r0→T = logR0→T , so that log(1−A) = Ẽ r(z)
0→T − r0→T .

Investor z’s log return r
(z)
0→T is a function of the market log return, r0→T : we can rewrite

equation (22) as

r
(z)
0→T =

1

2
log

θ + 1

θ
+

1

2
(z − zg)2 − 1

2(1 + θ)

r0→T − zσ
√

T
θ −

θ+1
2θ σ

2T

σ
√
T

−
√
θ (z − zg)

2

.

This expression is quadratic in z. As z has zero mean and unit variance, so that Ẽ z = 0 and
Ẽ z2 = 1, we have (after some algebra)

Ẽ r(z)
0→T =

1

2
log

θ + 1

θ
+

1

2

(
1 + z2

g

)
− 1

2(1 + θ)

{[
r0→T

σ
√
T
− θ + 1

2θ
σ
√
T − (θ + 1)σ

√
T

]2

+

(√
θ +

1√
θ

)2
}
.

Using the expression for zg given in equation (20) and simplifying, we find that

log(1−A) =
1

2

(
log

θ + 1

θ
− 1

θ

)
− 1

2(1 + θ)σ2T

(
r0→T −

1 + θ

2θ
σ2T

)2

.
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This is equivalent to the expression given in the text.

Proof of Result 14. There are N periods of length T/N . Let us write t = φT . Suppose
there have been n = q down-moves (jumps) and m = φN − q up-moves by time t. If q̃
of the remaining (1 − φ)N periods are down-moves and j are up-moves, then we must have

q̃+j = (1−φ)N . From Lemma 1, the price at time t is
{
E
[
e(q+q̃)J

]}−1
, where the expectation

is over q̃ ∼ BetaBinomial
(
(1− φ)N, q + 1/ω2, N/(ω2λT ) + φN − q

)
. We now use the fact

that as n→∞, a beta binomial distribution with parameters n, α, Cn approaches a negative
binomial distribution with r = α and p = 1/(1+C). Therefore, as N →∞, q̃ is asymptotically
distributed as a negative binomial distribution with parameters q+1/ω2 and ω2λT (1−φ)/(1+
ω2λT ). Using the formula for the MGF of a negative binomial distribution, the price equals

e−qJ

[
1− ω2λT

(
eJ − 1

)
+ ω2λteJ

1 + ω2λt

]q+ 1
ω2

.

Simplifying this expression gives the price (29).
As the riskless rate equals zero, agent z’s SDF equals the ratio of the risk-neutral proba-

bility of q jumps occurring by time t to the corresponding true probability (which is (λ(1 −
zω)t)qe−λ(1−zω)t/q!). As in the proof of Result 8, the risk-neutral probability of m = φN − q
up-moves having occurred during the first φN moves is (p0,0/pm,φN )xN , where xN is the prob-
ability of m realizations in a beta-binomial distribution with parameters φN , N/(ω2λT ), and
1/ω2 or, equivalently, the probability of φN −m = q realizations in a beta-binomial distribu-
tion with parameters (φN, 1/ω2, N/(ω2λT )). In the limit as N →∞, using the convergence of

this beta-binomial to a negative binomial distribution with parameters 1/ω2, ω2λφT
1+ω2λφT

, we find
that the probability xN is therefore equal to

Γ
(
q + 1

ω2

)
q! Γ

(
1
ω2

) ( 1

1 + ω2λt

) 1
ω2
(

ω2λt

1 + ω2λt

)q
.

Similarly, as N tends to infinity, p0,0/pm,φN tends to the reciprocal of the return from 0 to t
conditional on q jumps having occurred, as provided in Result 14. The SDF follows as stated.

To calculate E(z) logM
(z)
0→T , note that investor z perceives the number of jumps, q, that occur

by time T as distributed according to a Poisson distribution with parameter λ(1 − zω)T . As

Γ(z) = O(zz−1/2e−z), it follows that E(z) logM
(z)
0→T is finite but E(z)

[(
M

(z)
0→T

)2
]

is infinite.

Proof of Result 15. The risk-neutral probability inside the limit in (31) is the price of a security
with unit payoff if there is at least one jump in [t, t+ ε]. As the interest rate is zero, this price
equals 1−xε, where xε is the price of a security with unit payoff if there are no jumps between
t and t+ ε. A straightforward calculation gives

xε =

[
1 +

εω2λeJ

1− ω2λT (eJ − 1) + ω2λteJ

]−q−1/ω2

.

As λ∗t = limε→0
1−xε
ε , the result follows by the binomial theorem.
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