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Abstract

We consider a Bayesian persuasion model in which the receiver

takes multiple actions. We compare a simultaneous procedure, in

which the receiver takes all actions after the realization of a single

signal, to a sequential procedure in which the receiver receives infor-

mation gradually and takes the actions sequentially. We characterize

conditions under which the sequential procedure leads to a higher

payoff and when it achieves a maximal outcome despite potential in-

formation leakage. We also discuss the optimal ordering of actions.
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1 Introduction

In this paper, we study optimal persuasion when the receiver takes multiple

actions (or multiple receivers take actions). We characterize the optimal
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dynamic persuasion and show when and why gradual/sequential persuasion

improves upon one-time communication. Our model and results apply to

a wide range of situations, from a salesperson persuading a buyer to buy

multiple products to a company manager persuading various constituencies

(e.g., a regulator and investors).

Consider the classic example of Bayesian persuasion from the introduction

to Kamenica and Gentzkow (2011). A judge, who is the ’receiver,’ finds

a defendant guilty if and only if his belief that the defendant committed

a crime is above a certain threshold. The prosecutor, who is a ’sender,’

designs an objective test, and the judge will observe the realization of that

test. The sender’s objective is to maximize the probability of conviction.

In our model, the defendant is accused of (at least) two crimes, A and B.

The judge decides on both offenses. The prosecutor wishes to maximize the

expected number of convictions. We show how the multiplicity of actions

affects optimal persuasion and the benefits of gradual persuasion.

Our goal is to compare sequential with simultaneous procedures. In a

simultaneous procedure, the sender provides a single signal, and the receiver

decides simultaneously about both A and B. A sequential procedure has two

sequential steps. In the first step, the sender provides one signal, and the re-

ceiver decides on A. In the second step, the prosecutor reveals the realization

of a second signal, and the receiver decides on B. We assume that the receiver

cannot reverse an action he has taken. If he could reverse his decisions, there

would not be a difference between sequential and simultaneous procedures.

While a simultaneous procedure can be captured by the classic Bayesian

persuasion framework with a sufficiently rich decision/signal space, a sequen-

tial procedure cannot. When the priors regarding different actions are not

independent, there are feedback effects. Information on whether the defen-

dant has committed the first crime informs the judge about the possibility

that the defendant has committed the second crime. Similarly, the willing-

ness to buy good A is correlated with the willingness to buy good B. Such
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correlation affects the way the receiver behaves both in the simultaneous and

sequential procedure.

As we show, the sender weakly prefers a sequential procedure to a si-

multaneous one. Hence, our goal is to examine when and to what extent

a sequential procedure strictly outperforms the simultaneous one. We show

that the sequential procedure is strictly improving if and only if the optimal

simultaneous procedure fails to achieve a certain upper bound on sender pay-

offs. It is constructed by considering the minimal information leakage from

the persuasion that would be achieved if prior beliefs about the different

states were independent. We refer to that upper bound as the first best pay-

off, the best payoff the sender could have received if he faced no information

leakage constraints.

In the first part of the paper, we assume that the sequential procedure

is based on the order of actions predetermined by the sender. We later re-

lax this assumption and show that if the sender can choose the order of the

receiver’s decisions in reaction to the signals’ realizations, then the sender

can always achieve the first-best payoff. In particular, we construct a ’Pac-

man Procedure’ that enables the sender to achieve the first-best payoff via a

sequence of binary signals.

We finish by examining when a simple sequential procedure could achieve

the first-best payoff, and if so, what is the optimal order of persuasion.

To gain intuition about our model and results, we start with three exam-

ples.

1.1 Examples

In the following three examples, we consider a seller who wishes to sell two

goods, A and B. The goods are either of high or low quality. The seller has

zero value for the goods (regardless of quality). The buyer has zero value

for a low-quality good and a positive value for a high-quality good. Prices

are fixed and normalized to one. The buyer follows a threshold rule where
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he buys if his belief of high quality exceeds a certain threshold (so that the

expected value of the good is above the price). The seller’s payoff equals the

expected number of goods he sells.

Example 1. The buyer values a high-quality good at 1.25. So, he buys a

good if and only if his belief of high quality exceeds 1/1.25 = 0.8. The prior

is that exactly one of the two goods is of high quality and the other is low

quality. The probability that each of the two goods is of high quality is 0.5.

Consider first the simultaneous procedure. If the seller reveals no infor-

mation, the buyer does not buy any good, and the seller’s payoff is zero. If

instead, the seller provides full information, he would sell one of the goods,

and his payoff would be one. This is the optimal simultaneous procedure as

the buyer will never buy both goods. If he buys good A, then he believes that

with a probability of at least 0.8 it is of high quality. This implies that the

probability that B is of high quality does not exceed 0.2 and he does not buy

it.

Consider now a sequential procedure. As mentioned above, we assume

that a transaction cannot be reversed. The seller first provides a signal about

A. This signal induces a posterior belief that A has high quality of either 0 or

0.8 with probabilities 3/8 and 5/8, respectively. Conditional on the posterior

of 0, the buyer would not buy A in the first step but buy B in the second step.

Conditional on the posterior of 0.8, the buyer buys A in the first step, and

he assigns a probability of 0.2 that B’s quality is high. In the second step, the

seller can provide more information that, with some probability, will convince

the buyer also to buy B. In particular, given a prior of 0.2, he can induce a

posterior of 0.8 with probability 1/4. This sequential procedure induces the

buyer to always buy at least one of the goods and, in some cases buy both

goods. The expected number of goods sold is 3/8 + 5/8 ∗ (1 + 1/4) = 1.156.

Note that in this example, the upper bound for the sum of seller and buyer

payoffs is 1.25 (this is the total surplus if the trade is efficient). So 1.25 is also

an upper bound on the seller payoffs. In the optimal simultaneous procedure,
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the seller’s payoff is 1, and the buyer’s surplus is 0.25. In the sequential

procedure we described, the seller’s payoff is 1.156 while the buyer’s surplus

is 0.094 (the sum is still 1.25). While the seller does not extract the entire

surplus, we show in the appendix that it is the optimal sequential procedure

for the seller.

Example 2. Similar to example 1, but the value of high-quality good A is

5/3, and high-quality good B is 5/4. Hence, the thresholds for goods A and

B are 0.6 and 0.8, respectively. The prior is that the qualities are perfectly

correlated: good A has high quality if and only if good B does. The prior that

good A (and B) is of high quality is 0.5.

Consider first the simultaneous procedure. Given the perfect correlation,

the number of goods sold is a function of the probability that the common

quality is high. If it is lower than 0.6, then no goods will be sold. If it is

between 0.6 and 0.8, one good (good A) will be sold. If it exceeds 0.8, both

goods will be sold. Given the prior of 0.5, using the standard concavification

argument we conclude that the optimal procedure is to generate a posterior

of 0.8 with probability 5/8 and zero with a probability of 3/8. The expected

number of goods sold is then 2 ∗ 5/8 = 1.25.

Consider now a sequential procedure in which the seller tries first to sell

good A. In the first step, the seller induces a posterior of 0.6 with probability

5/6 and a posterior of 0 with probability 1/6. He thus sells good A with

a probability of 5/6. In the second step, if he induced a zero posterior, he

will not sell good B. If he has induced a prior of 0.6 then he can induce a

final posterior of 0.8 with a probability of 6/8 = 3/4 (and a posterior of 0

otherwise). Hence, good B is sold with probability (3/4) ∗ (5/6) = 5/8. The

expected total sales are 5/6 + 5/8 = 1.458. Note that this equals the total

available surplus, which is an upper bound for the seller’s payoff.

Example 3. Same as in example 2, but the qualities of the two goods are

independent. That is, each good is of high quality with a probability of 0.5, but

the quality of A is independent of B. Consider a simultaneous procedure in
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which the seller induces a posterior for A of 0.6 with probability 5/6 and zero

with probability 1/6. Given the independence, the seller can simultaneously

induce a posterior for B of 0.8 with probability 5/8 and zero with probability

3/8. The buyer then buys A with a probability 5/6 and B with a probability

3/4, for total expected sales of 1.458. As the seller extracts the total available

surplus, no sequential procedure can improve upon this.

Examples 1 and 2 highlight a key reason why a sequential procedure

generates a higher payoff for the sender: the buyer sometimes regrets his

decision in the first step. A key difference between the two examples is that

in the second example, the seller extracts the entire surplus in the sequential

procedure. In the first example, he does not.

The seller in example 3 extracts the entire surplus with both procedures.

The role of that example is to illustrate that the seller’s payoff in any prob-

lem is bounded from above by a payoff in a game with a modified prior.

Under that modified prior, the states are independent, and the marginal dis-

tributions are the same as in the original prior. We show formally (with

more decisions and arbitrary payoffs) that in the case of the modified prior

sender’s payoffs are the same for the optimal sequential and simultaneous

procedures. Moreover, these payoffs bound from above the sender’s pay-

offs from any of the two procedures for the original prior. The intuition is

that, when beliefs are independent, persuading the receiver on one of the

dimensions does not change the receiver’s beliefs about other dimensions. In

contrast, with a correlated prior, revealing information about one of the di-

mensions reveals information about another, imposing additional constraints

on the seller’s ability to persuade. We refer to this effect as the information

leakage problem.

In Section 3 we prove the main result of our paper, that the optimal

sequential procedure strictly dominates the optimal simultaneous one if and

only if the simultaneous procedure fails to achieve the first-best payoff (the

upper bound). The following table illustrates this result:
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Simultaneous Sequential First-Best

Example 1 1 1.156 1.25

Example 2 1.25 1.458 1.458

Example 3 1.458 1.458 1.458

It is important to note that (i) this result is not based on the optimal se-

quential procedure always achieving the first-best payoffs, as can be seen in

Example 1, and (ii) we prove this result for a general action space so this

extends beyond a buyer/seller interaction with binary decisions.

In the main model, we assume that in the sequential procedure the sender

first chooses the sequence of decisions and then releases (sequentially) infor-

mation. That is, in the examples above, the seller first chooses the sequence

of goods the buyer has to decide about and only then releases the informa-

tion. In Section 4 we allow even more complicated dynamic persuasion: the

sender is allowed to send many signals and choose the order of actions based

on the realizations of these signals. The main result in that section is that

this more flexible procedure always allows the sender to achieve the first-best

payoff, no matter the correlation between the states.

Finally, in Section 5 we discuss when the simple sequential procedure can

and cannot achieve the first-best payoff, and that also allows us to provide

some intuition about the optimal sequencing of actions.

1.2 Literature Review

Our paper contributes to the literature on information design and Bayesian

persuasion. Aumann et al. [1995], Kamenica and Gentzkow [2011], and

Bergemann and Morris [2016a,b] are some of the first models in this field. We

apply this methodology to settings where the decision maker takes multiple

irreversible actions and information can be provided sequentially.

By considering sequential persuasion of multiple actions, we contribute to

the literature on dynamic persuasion, such as Hörner and Skrzypacz [2016]
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and Ely [2017]. In that area, our work is particularly related to Ely and

Szydlowski [2020] and Orlov et al. [2020].1 These papers analyze the provision

of information in a dynamic setting where the decision maker’s actions are

irreversible. In those papers, the receiver decides in every period whether to

stop or continue (stop putting effort or take an irreversible decision to remove

a product from a market). The decisions to stop or continue are not reversible

because the receiver cannot get back in time. There are three main differences

between our model and those two models. Most importantly, in our model,

the set of actions available to the receiver in later steps does not depend

on the actions taken previously. In contrast, in those papers, if the receiver

stops in time t, he has no other choices to make at later times. Second,

we do not allow the sender to condition the past signals on the previous

actions taken by the receiver. In that sense, we do not allow information to

be used as a carrot. In Ely and Szydlowski [2020] and Orlov et al. [2020], a

major part of the intuition why gradual information release helps the sender

is precisely the carrot aspect of future information: the sender can entice

the receiver to delay stopping by promising additional information in the

future. In contrast, in our model, the receiver takes myopically optimal

action for every decision problem (because future payoffs do not depend

on the current action). In this way, we add to the intuitions in those two

papers: sequential information disclosure can help the sender beyond creating

a promise of future information.2

Our results are related to Bergemann and Morris [2016b] who show that if

the receiver has access to additional information, the set of feasible outcomes

is reduced. The connection to our paper is that since the sender provides in-

formation about multiple correlated states, information released about state

1See also Smolin [2017] who analyzes optimal evaluation policies for an agent who
decides when to quit.

2Two other differences between our model and those two papers is that we have no
discounting/delay costs and that we allow the sender to choose the order of actions, while
in those papers, the order is determined by the passage of time.
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one becomes a source of additional information about state two and vice

versa. This is what we relate to as the information leakage problem. Un-

like in Bergemann and Morris [2016b], our additional information is chosen

optimally by the sender, and the sender may decide not to follow optimal

persuasion for decision A in order to limit the indirect effect he creates for

decision B.

Li and Norman [2018] consider sequential information provision by mul-

tiple senders. They focus on the strategic interactions among senders and

analyze their implications for overall information provision. Thus, in Li and

Norman [2018] the sender’s ability to provide information is constrained by

the presence of other senders, whose preferences are not necessarily aligned.

In contrast, in our paper, the sender’s ability to design information is con-

strained because the state of the world has a correlation structure.

Finally, our paper is also related to the literature on multi-product firms

(Gamp [2016]) and products with multiple characteristics (Turlo [2018]),

where the sender determines the order for information acquisition. In our

paper, the sender decides the order in which the receiver takes her actions.

2 The Model

There are two players, a sender and a receiver. There are n binary states

{ωi}ni=1, where ωi ∈ {0, 1}. The common prior belief regarding these states

need not be symmetric or independent. We denote by xi the prior probability

of ωi = 1. When the receiver observes signal S (that can be correlated with

all or some states), he updates his beliefs about the n states. Let xs,i be the

updated belief about ωi conditional on observing S = s.

The receiver takes n actions {ai}ni=1. The receiver’s action ai depends on

the belief that ωi = 1. We denote his i’th action by the function ai(x).3

3Since we are focusing on the sender’s payoffs, we do not specify the receiver’s payoffs
for which these actions are optimal. How the optimal actions change with beliefs depends
on the receiver’s joint preferences over actions and states.
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The sender’s utility as a function of the action i is given by fi(ai). The

sender’s utility as a function of the expected action profile, {ai}ni=1, is additive

in the different actions and is given by:

n∑
i=1

fi(ai).

With some abuse of notation we sometimes refer to fi also as a function of

xi; that is, fi(xi) ≡ fi(ai(xi)). Finally, we let cavf denote the concavification

of function f.

We define two types of persuasion procedures: a simultaneous and se-

quential one.

Definition 1. A simultaneous procedure is described by a single signal S

that induces vector of posterior beliefs xi(s). For that procedure, the sender’s

expected payoff is:

ES[
n∑
i=1

fi(xs,i)].

Definition 2. A sequential procedure is described by a sequence of signals

{Si}ni=1 and a permutation π : {1..n} → {1..n} specifying the order of re-

ceiver decisions. In step i the sender sends signal Si and the receiver takes

action aπ(i) (as a function of the posterior beliefs generated by all the signal

realizations observed so far). Signal Si may depend on the realizations of

earlier signals, {sj}i−1j=1.

An important assumption about the sequential procedure is that once the

agent takes action i, he cannot change it later even if new information comes

to light and he regrets his earlier decision.

In the next section we compare these two procedures. Note that in the

sequential procedure, the permutation (the order in which the receiver makes

decisions) is chosen once ex-ante. Later we also consider a more flexible dy-

namic procedure, where the sender can adjust the order of decisions after
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each realization of the sequence of signals. However, we consider the proce-

dure with a predetermined order of decisions to be more realistic in many

applications.

Remark 1. We interpret the game as having one receiver taking multiple

actions. Equivalently, we could interpret it as having multiple receivers, each

taking one action. In the latter case, we assume that all communication

between the sender and the receivers is public. Even though each receiver

cares only about ’their’ dimension of the state, when the states are correlated,

they all pay attention to the whole signal. See also in the next section the

discussion of the upper bound on seller’s payoff, FB.

Remark 2. Throughout the paper, the sender cannot condition future signals

on the actions taken by the agent. We do not allow future information to

be used as an incentive to induce the receiver to take sub-optimal actions to-

day. This way our results identify a distinctively different benefit of dynamic

persuasion (reduction of information leakage) than the intuition of using the

information as a carrot in Ely and Szydlowski [2020] and Orlov et al. [2020].

When the game is interpreted as having a sequence of receivers, not allowing

the sender to condition future signals on current actions is without loss of

generality. If there is only one receiver, allowing the sender to commit to

conditioning future signals on past actions would further relax the problem.

3 Simultaneous versus Sequential Persuasion

We start by establishing an upper bound on the sender’s payoffs:

Lemma 1. For any procedure (simultaneous or sequential) the sender’s pay-

off is at most

FB({xi}) ≡
n∑
i=1

cavfi(xi).
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As we know from (Kamenica and Gentzkow 2011) cavfi(xi) equals the

optimal payoff that the sender could obtain from action i if it was the only

action it had to persuade. Hence, FB, which stands for first best, represents

the sum of payoffs if the sender could optimize each dimension separately.

It is an upper bound for any procedure, sequential or simultaneous, since no

procedure can achieve for dimension i a payoff greater than cavfi(xi).

Note that this payoff would be obtained by the optimal simultaneous

procedure if the prior beliefs about the states were independent. That is, if

we changed the prior to one defined by the following two properties:

• The marginal distribution for each state equals that of the original prior

(i.e., the xi’s are the same).

• The distributions of the all states are independent of one another.

With this modified prior there is no information leakage: when the sender

persuades the receiver about state ωi he can do it without changing the

beliefs about the other states. In contrast, providing information about state

ωi under the original prior reveals information about other states as well.

This information leakage constrains the sender’s ability to persuade optimally

in every dimension at once. Therefore, as we saw in our examples in the

introduction, when the correlation of states is strong enough the sender may

not be able to achieve the first-best payoff with either procedure.

Remark 3. The first-best payoff could be also achieved in a model with n

receivers and secret persuasion - each agent observing a private signal and

taking decisions without observing the signal realizations or actions of others.

Hence, a possible interpretation of our results is that they describe the cost of

persuasion of multiple receivers and how sequential procedures can mitigate

those costs.
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3.1 Strict Improvement from Sequential Procedure

We now ask when a sequential procedure can strictly improve upon the si-

multaneous one. Note that the outcome of any simultaneous procedure can

be replicated by a sequential procedure with all signals except for the first one

being uninformative. So, trivially the optimal sequential procedure weakly

dominates the simultaneous one. As we have seen in the examples above,

sometimes the improvement is strict.

Our main result is that what we observed in the examples is not a co-

incidence: if there exists a scope for improvement (i.e., the simultaneous

procedure cannot achieve the first-best bound), then the optimal sequential

procedure strictly improves upon the simultaneous one:

Theorem 1. The optimal sequential procedure strictly dominates (in terms

of the sender’s payoffs) the optimal simultaneous procedure if and only if the

latter fails to achieve the first-best payoff, FB({xi}).

Proof. The ‘only if’ direction follows from the fact that FB({xi}) is an upper

bound on both procedures. So we only need to prove the ‘if’ part. Consider

a simultaneous procedure with signal S that fails to achieve the first-best

outcome, FB({xi}). This implies that for at least one action, i:

ES[fi(xs,i)] < cavfi(xi).

We shall argue that there exists a sequential mechanism that improves the

payoff from action i while keeping the payoffs from all other actions un-

changed. Our proof is based on considering three cases:

• Case 1: fi(xi) = cavfi(xi).

In this case the expected payoff from action i is strictly lower when the

signal S is revealed, compared to case where it does not. Define the

sequential procedure as follows: in the first step the receiver takes ac-

tion ai based solely on the prior. In the second step, signal S (from the
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simultaneous procedure) is revealed (and there is no more information

revealed later). Then the receiver takes the remaining actions in an

arbitrary order.

Following case 1, we can assume that cavfi(xi) > fi(xi). Based on this,

there exist xLi , x
R
i ∈ [0, 1] such that xLi < xi < xRi and payoffs satisfy

cavfi(x
L
i ) = fi(x

L
i ), cavfi(x

R
i ) = fi(x

R
i ), xi = λ · xLi + (1 − λ) · xRi , and

cavfi(xi) = λ · fi(xLi ) + (1 − λ) · fi(xRi ). Moreover, for any xi ∈ (xLi , x
R
i ),

fi(xi) < cavfi(xi).
4

• Case 2: For some realizations S = s, we have xs,i ∈ (xLi , x
R
i ).

Since fi(xs,i) < cavfi(xs,i) we construct a sequential mechanism where

action i is the last step. All other actions are taken based on the original

signal S. In the last step, conditional on observing S = s the procedure

provides more information regarding state i, which induces posteriors

of xLi and xRi for state ωi.

• Case 3: For all realizations S = s we have xs,i /∈ (xLi , x
R
i ).

Now, in the the sequential procedure, action i is taken first. This

action is based on a signal S ′, which is a garbling of S. By Lemma 2,

there exists a garbling S ′ of S which has two realizations: s′1, s
′
2 so that

xs′1,i = xLi and xs′2,i = xRi . We construct a sequential procedure where

action i is taken first after S ′ is realized. The original S is revealed

in the second step, and the receiver takes all other actions. While the

original signal does not achieve cavfi(xi), this new sequential procedure

does (and leaves the payoffs for all other dimensions unchanged).

4Generically, xL
i , x

R
i are unique. In case they are not, we define them to be the closest

points to xi.
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Figure 1: Proof of Theorem 1, Case 1

Figure 2: Proof of Theorem 1, Case 2
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Figure 3: Proof of Theorem 1, Case 3

Lemma 2. Suppose that X is a random variable and there are two val-

ues x1 < x2 ∈ R such that Pr(X < x1) > 0, P r(X > x2) > 0, P r(X ∈
(x1, x2)) = 0 and E[X] ∈ (x1, x2). Then there exists a binary random vari-

able X ′ with realizations x′1, x
′
2 which is a garbling of X where E[X|X ′ =

x′1] = x1, E[X|X ′ = x′2] = x2.

3.2 Two Purchase Decisions

To understand better the conditions under which the simultaneous proce-

dure achieves the first-best payoff, we consider a setup that is based on our

examples in the introduction with two binary actions (buy, not buy). We

assume that the threshold belief for buying is the same for both actions: α.

We allow for imperfect correlation of the states. We assume without loss of

generality that x1 ≥ x2 and focus on the case where x2 ≤ x1 < α (so the

seller would like to persuade both actions).

To describe the prior belief, we introduce the following notation. The

overall state of the world is ω = (ω1, ω2). It can take the following values:

ωij = (ω1 = i, ω2 = j) and the prior belief is xij = Pr(ω = ωij). For example,

x10 is the prior probability that ω1 = 1 and ω2 = 0.

In this setup our result is that the simultaneous procedure fails to achieve
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the first-best outcome, if and only if α > 1
2

and ω1 and ω2 are sufficiently

strongly negatively correlated. Formally we argue that:

Proposition 1. The simultaneous procedure achieves the first-best outcome

if and only if one of the following two inequalities hold:

(i) x11 ≥ x01
2α−1
1−α , or

(ii) x10 + x01 ≤ x00
α

1−α + 2x11
1−α
2α−1 .

While we provide a formal proof in the Appendix, we shall next introduce

the logic behind it. A simultaneous procedure is equivalent to choosing a joint

distribution of signal S and state of the world ω. A simultaneous procedure

achieves the first-best outcome if and only if the support of the marginal

distribution of the posterior ω, conditional on S = sij, is {0, α}.
Consider the following joint distribution of S and ω for some parameters

{b, c, d, e, g}:

S\ω ω11 ω10 ω01 ω00

s11 x11 b b c

s10 0 x10 − b 0 d

s01 0 0 x01 − b e

s00 0 0 0 g

If there exists a joint distribution that achieves the first-best payoff, then

there exists a signal S that has distribution of this form (for appropriate

values of of the parameters) that also achieves the first-best payoff. To see

this, note that if it is possible to achieve the first-best payoff, it is sufficient to

do it with a signal S that has at most four realizations that correspond to the

posteriors that induce the buyer to take one of the four action combinations.

He buys both products if the signal is s11, only product A if the signal is

s10, only product B if the signal is s01, nothing if the signal is s00. For the

first-best payoff it has to be that when he buys nothing his posterior belief

is that the state is for sure ω00, which explains the necessity of the last row
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of this joint probability distribution. Similarly, when he buys only one of

the goods, he has to have a belief that that good is of high quality with

probability α and the other good is of high quality with probability 0, which

explains the other zeros in the table.

Finally, consider the joint probability Pr(s11 ∩ ω11) (the top left entry in

the table). The reason it must be equal to x11 is that when the state is ω11 in

the first best outcome, the buyer buys both products for sure. If that entry

were not equal to x11, there would be a signal realization after which the

buyer would not buy at least one of the goods, despite assigning a positive

probability to both products being of high quality. Such a procedure would

fail to achieve the first best.

With this observation, the rest of the proof of Lemma 1 consists of identi-

fying conditions in terms of α and the prior distribution of ω for which there

exist parameters {b, c, d, e, g} such that such a joint distribution is feasible

and achieves the first-best outcome.

4 Flexible Sequential Persuasion

So far, we have assumed that the sender predetermines the order of actions in

a sequential procedure. This section considers sequential procedures where

the order of actions is contingent on the realized signals. We name such

procedures “flexible sequential” and show that the optimal procedure of that

kind can always achieve the first-best payoff, FB.

To illustrate this, consider Example 1 from the introduction. The seller

can achieve the first-best payoff by employing the following persuasion strat-

egy. In the first step, the seller induces two posterior beliefs that A is of

high quality: 0.8 or 0.2. Given the perfect negative correlation, the signal

induces a posterior belief of 0.2 and 0.8 respectively, that B is of high quality.

The buyer is then asked to buy the good with the higher posterior. Suppose

the buyer buys the good A in the first step. After that, there is still a 20%
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chance that good B has high quality. The seller then induces a posterior of

0.8 that B has high quality with a probability of 0.25. Since he sells with

certainty in the first step and with probability 0.25 in the second step, his

expected payoff equals 1.25, which is the first-best payoff.

A flexible sequential procedure is a sequential procedure where the order

actions can depend on the value of realized signals. Formally, we define it as:

Definition 3. A flexible sequential procedure is a sequence of k signals

{Si}ki=1 and a conditional action order π(S1...Si) ∈ {0, 1, ...n}, that speci-

fies sequence of receiver actions conditional on the signals realized so far. In

step i, conditional on the realizations of signals S1, ...Si−1, the sender sends

signal Si and the receiver takes action aπ(S1...Si). When π(S1...Si) = 0 the

receiver takes no action in step i. The number of steps, k, can be random

but is finite almost surely.

Implicit in this definition is that for a flexible sequential procedure to be

well-defined, each dimension must eventually be chosen. That is, for every

possible sequence of signal realizations, the conditional order π(S1...Sk) has

to select each dimension once. Also, note that we allow for k ≥ n. That is,

we allow the sender to choose a procedure where the receiver takes no action

in some steps.

4.1 The Pacman procedure

An optimal flexible sequential procedure can be described as a ’Pacman pro-

cedure.’ We shall assume that for all i we have that cavfi(xi) > fi(xi).

If this is not the case, and cavfi(xi) = fi(xi), then the optimal sequential

procedure starts with dimension i and the receiver is asked to take action i

without receiving any information.

Recall from the proof of Theorem 1 that xLi , x
R
i denote the optimal con-

cavification beliefs for action i (they depend on the prior, but we suppress

that notation). Let xLi < xi < xRi . The Pacman procedure that achieves the
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first-best payoff is based on a sequence of signals and a contingent sequence

of actions with the following property. The receiver takes action i only when

xs,i ∈ {xLi , xRi } (we abuse notation by writing xs,i as the posterior belief

given the realized sequence of signals). The idea is to construct a dynamic

Bayesian persuasion procedure where, as we disclose information about some

dimensions, the belief regarding all states i ∈ {1, ..., n} remains in every step

in the interval [xLi , x
R
i ]. When the belief hits one of the boundaries of these

intervals, the receiver is asked to take action ai (and we remove that di-

mension from the continuation problem). This ensures that the procedure

achieves the first-best payoff, provided that it ends in a finite time because

from the ex-ante perspective, beliefs are a martingale, and actions are taken

exactly at the concavification points.

For any i, consider some signal S that is correlated with ωi and condi-

tionally on ωi independent of any other ωj. Suppose that the signal S is rich

in the sense that for every p ∈ [0, 1] there exists s such that xs,i = p. Finally

for that signal define hi,j(p) ≡ Pr(ωj = 1|xs,i = p). This function describes

how sensitive the beliefs about dimension j are in response to signals about

dimension i. The following technical lemma shows that this sensitivity is at

most one:

Lemma 3. |h′i,j(p)| ≤ 1.

To construct an optimal flexible sequential procedure (that achieves the

first-best payoff FB), define:

∆i = min{xHi − xi, xi − xLi }

∆ = min
i

∆i

i∗ = arg min
i

∆i.

Without loss of generality, assume that the minimization in ∆i∗ is achieved

by xRi∗ (that is, xRi∗ − xi∗ ≤ xi∗ − xLi∗).
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We now construct the Pacman procedure that approximates in finitely

many steps the FB. In step 1 of the procedure, we choose a signal conditional

on ωi∗ (and conditionally independent of the other states) that generates

posterior beliefs about ωi∗ of xi∗ ± ∆, each with probability 0.5. Consider

the posteriors for all other states and denote the posterior for ωi by xs,1.

Lemma 3 implies that for both realizations of the signal in step 1:

∀i, s : xs,i ∈ [xLi , x
R
i ].

Conditional on the posterior for ωi∗ being xi∗ + ∆ = xRi∗ , we ask the receiver

to take action i∗ (otherwise we tell the receiver not to take any actions). We

then iterate on this procedure. If action i∗ is taken, we remove it from the

consideration set. Given the posteriors from the previous step, we redefine

∆ and i∗ and repeat.

To see that this procedure achieves the first-best payoff, note that in each

step, the receiver acts in one of the remaining dimensions with probability 0.5

and takes actions only at the optimal concavification thresholds. It implies

that the procedure ends in finite time almost surely. This proves the following

theorem:

Theorem 2. The Pacman procedure achieves the first-best payoff.

While we construct the Pacman procedure to take more rounds than the

number of dimensions, it is possible to reduce the number of steps. Namely,

we can create a more complex sequence of signals to take n steps and achieve

the first-best payoff exactly. The intuition is that when the first signal real-

ization moves the beliefs to xLi∗ , the sender does not need to reveal the signal.

Instead, he can automatically compute the next optimal signal and reveal it

jointly with the first signal realization. If the realization of the second signal

also does not move beliefs to any of the concavification thresholds, we iterate.

In the limit, we obtain a random variable such that every realization moves

the beliefs to at least one of the optimal concavification thresholds without
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moving any beliefs outside the [xLi , x
R
i ] region. So in every step, one of the

actions is taken, and information leakage never moves beliefs ’too far.’

Finally, the Pacman procedure helps us understand an optimal sequence

of persuasion. With this procedure, it is optimal to rank decisions based on

the distance between the prior and the nearest concavification threshold (the

∆i’s) and then persuade based on this order. The only caveat is that the

ranking of ∆i’s can change due to the disclosed information, so the order

of persuasion depends not only on the ex-ante parameters but also on the

information learned in the process of persuasion. The other takeaway from

this construction is that with a flexible procedure, the order of information

matters less than disclosing information gradually and then choosing the

proper order of actions. The most important thing about this procedure

is that information is disclosed gradually to ensure that a concavification

threshold is not jumped over in any step.

5 Simple versus Flexible Sequential Persua-

sion and Optimal Order of Persuasion.

We now turn to when the optimal flexible sequential procedure can strictly

improve upon the simple sequential procedure we introduced in the two pre-

vious sections. Since the flexible sequential procedure always achieves the

first-best payoff, the question is under what conditions the simple sequential

procedure can achieve it too. In order to provide a partial answer to this

question, we start with the special case of perfectly correlated states. That

was the case in Examples 1 and 2 in the Introduction and, in general, makes

it the hardest to achieve the first-best payoff. Analyzing this case also sheds

some light on the optimal order of persuasion.
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5.1 Perfectly Correlated States

Let x denote the (common) prior belief that all states are ωi = 1. Without

loss of generality, we assume perfect positive correlation. If some states are

perfectly negatively correlated with state 1, then we switch the definition of

those states, inducing a positive correlation. For example, in Example 1, we

flip the meaning of the state for good B to mean that state 1 represents low

quality. After that transformation, the buyer purchases good B if and only

if the belief about state B is below 0.2.

The payoff of the optimal simultaneous procedure is:

U∗Sim(x) = cav(
n∑
i=1

fi)(x). (1)

The payoff from a sequential procedure when there are two actions and

the receiver takes first action 1 and then action 2 is cav(f1 + cavf2)(x). The

intuition is that if the sender induces in the first stage posterior x̂, in the

second stage, the persuasion payoff is cavf2(x̂). Taking this into account, the

sender realizes that the total payoff as a function of the first-period posterior

is (f1 + cavf2)(x̂). This, in turn, is maximized in stage 1 by the standard

concavification at the prior, yielding cav(f1 + cavf2)(x).

For more states and some permutation π : {1..n} → {1..n}, the optimal

sequential procedure that follows this order of actions yields a payoff that

can be defined recursively:

Hn(π) ≡ cavfπ(n)

Hi(π) ≡ cav(fπ(i) +Hi+1(π)).

The payoff of the optimal sequential procedure given prior x can therefore

be expressed as:

U∗Seq(x) = maxπH1(π)(x). (2)
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The result in Theorem 1 in the case of perfect correlation of states can be

viewed as the comparison of (1) to (2)). In particular, whenever U∗Sim(x) <

FB(x) then U∗Sim(x) < U∗Seq(x).

This characterization can be used to show that the sequential procedure

in Example 1 is optimal despite not achieving the first-best payoff (see the

Appendix).

Our goal in this section is to examine when the simple sequential proce-

dure achieves the first-best payoff. Define

∆L
i ≡ x− xLi

∆H
i ≡ xHi − x,

where recall that xLi and xHi are the optimal concavification thresholds to the

left and to the right of the prior for dimension i (given the prior). Let πL be

the list of i′s in the order of ∆L
i and analogously define πH . For example if

n = 3 and the vectors are ∆L = (0.1, 0.3, 0.2) and ∆H = (0.4, 0.1, 0.2), then

πL = (1, 3, 2) and πH = (2, 3, 1). In words, πL and πH are the orderings of the

dimensions in terms of the ranking of the optimal concavification thresholds

to the left and to the right of the prior, respectively. Note that if there are

ties in some ∆i’s (see Example 2), these orderings are not unique (all ways

of resolving these ties are allowed).

Proposition 2. If states are perfectly (positively) correlated, the optimal

sequential procedure achieves the first-best payoff if and only if there exist

orderings such that πL = πH (i.e., for at least one resolution of ties).

When this condition is satisfied, the optimal sequence of persuasion fol-

lows these orderings: the sender persuades first about the good with the small-

est ∆H
i , then the second smallest, and so on.

Proof. Suppose this condition is satisfied. That means that the concavifi-

cation thresholds are nested around the prior. Moving in the proposed se-

quence, in every step, we reach one of the two concavification thresholds for
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one of the dimensions, eliminating them deterministically one by one. Specif-

ically, let i = πL(1). In step 1 choose a binary signal S1 inducing posteriors

xs ∈ {xLi , xHi }. Let the receiver take action i and remove that dimension from

the consideration set. Next, redefine i = πL(2) and again choose a binary

signal that induces posteriors xs ∈ {xLi , xHi }. Since the thresholds are nested,

in step k + 1 the posteriors remain interior to [xLj , x
H
j ] for every dimension j

later in the sequence than dimension πL(k). That allows the sender to induce

posterior beliefs equal to the corresponding optimal thresholds in every step,

proving that this order achieves the first-best payoff.

If the two orderings are not the same, then this implies that there are

two dimensions i, j such that ∆L
i < ∆L

j but ∆H
i > ∆H

j (as in Example 1).

In that case it is not possible to achieve the first-best payoff with the simple

sequential procedure, since if the sender chooses an order of actions such that

the receiver has to take action i before action j (without loss of generality)

then to achieve the first-best payoff for dimension i we need to induce with

positive probability the belief xHi > xHj . That in turn means that we do not

obtain cavfj(x) on dimension j.

5.2 Imperfectly Correlated States

Proposition 2 allows us to also provide intuition about the imperfectly cor-

related case. Given priors xi define generalize the definition:

∆L
i ≡ xi − xLi

∆H
i ≡ xHi − xi,

and define the orderings πL = πH as before.

First, suppose that all the states are positively correlated (in the sense

that all h′i,j(p) described in Lemma 3 are non-negative). If the orderings of

dimensions in terms of ranking of ∆L
i and ∆H

i are the same (πL = πH), then

the simultaneous procedure achieves the first-best payoff for all priors and
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(positive) correlations. Furthermore, if the orderings are not the same, no

sequential procedure can reach the first-best payoff for a sufficiently high cor-

relation. The intuition is the same as in the proof of Proposition 2. We can

start with the dimension with the smallest ∆i and induce the concavification

thresholds. Since the ∆′is are nested, we do not “jump over” the concavifi-

cation thresholds for other dimensions even with perfect correlation. When

correlation is imperfect, the posteriors on the other dimensions are even closer

to the starting priors.

Second, when the correlations are negative, having the dimensions ranked

in the same order in both directions is not enough.5 The reason is that when

we move xi to xHi , even though we are guaranteed not to overshoot any xHj , we

may overshoot some xLj . In that case, a sufficient condition for the sequential

procedure to achieve the first-best payoff for all correlations is that for all

i, j, if ∆H
i < ∆H

j , then both ∆L
i < ∆L

j and ∆H
i < ∆L

j . That condition is also

tight in the following sense. If one of the inequalities is reversed, for some

correlation structure (positive or negative), the optimal sequential procedure

does not achieve the first-best payoff.

6 Conclusions

We have characterized the benefits of sequential persuasion of a receiver

who takes multiple irreversible actions with arbitrary correlations between

binary states and arbitrary sender’s payoffs. Correlations between states

constrain the sender in the sense that when he sends information about

one of the states, he necessarily reveals some information about other states.

This information leakage may prevent the sender from receiving the first-best

payoff that he could obtain if the states were independent.

Our first main result is that whenever the information leakage problem

5Note that if there are more than two dimensions and general imperfect negative cor-
relation, it may be impossible to change the definition of states to assure that all pairwise
correlations are positive.
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is harmful to the sender, the sender can do strictly better with some simple

sequential procedure. This benefit of dynamic persuasion is distinct from the

information-as-a-carrot benefit stressed in the earlier literature. Our second

main result is that if the seller could use a flexible sequential procedure, he

can always completely mitigate the information leakage problem. Finally, we

provide intuition about the optimal sequencing of the persuasion. We provide

a mathematical foundation for the heuristic that optimal persuasion starts

with the action that requires the least persuasion (in the sense of moving the

beliefs by the smallest amount).

Admittedly, in some situations opposing forces not captured by our model

could push in favor of one-time, simultaneous persuasion. One such force is

that taking decisions could reveal additional information to the receiver. For

example, if in Example 2, the receiver learns the value of the good immedi-

ately upon purchase, then sequential persuasion can make the information

leakage problem worse.

7 Appendix

Proof that the sequential procedure in Example 1 is optimal.

Proof. As we discussed in Section 5.1, when the states are perfectly corre-

lated, the highest payoff from sequential persuasion is

U∗Seq(x) = max{cav(f1 + cavf2)(x), cav(f2 + cavf1)(x)},

Since in this problem the two actions are symmetric, we need only consider

a single order. We have

(f1 + cavf2)(x) = 1 +
x

0.8
if x ≤ 0.2

= min{ x
0.8

, 1} if x > 0.2
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Concavification of that function gives us:

cav(f1 + cavf2)(x) = 1 +
x

0.8
if x ≤ 0.2

= 1 +
1

4

1− x
0.8

if x > 0.2

In particular, if we start with a prior x = 1
2

the highest sequential payoff

is

U∗Seq (p) = 1 +
1

4

1− 0.5

0.8
= 1. 1563.

Proof of Lemma 2

We first argue that without loss of generality we can consider binary signals

S with only two realizations a and b where a ≤ x1 < x2 ≤ b. This follows

from the fact that we can define a signal Ŝ where Ŝ = E(S|S ≤ x1) when

S ≤ x1 and Ŝ = E(S|S ≥ x2) where S ≥ x2. Since, Ŝ is garbling of S,

garbling of Ŝ is also garbling of S.

Consider a signal Sz indexed by z; the signal is binary with realizations

{s1, s2} that occur with probabilities {1− z, z}, respectively. Specifically, s2

occurs with probability α · z when S = a and with probability (1 − α) · z
when S = b where α ∈ [0, 1] is defined by:

x2 = (1− α) · a+ α · b

As a result we have that ∀z : E(S|Sz = s2) = x2. The feasible range for z

is [0,min{Pr(S=x2)
α

, Pr(S=x1)
1−α }]. We first note that Pr(S=x2)

α
≤ Pr(S=x1)

1−α . This

implies that the feasible range for z is [0, Pr(S=x2)
α

]. To see why this holds

note that:

Pr(S = x2)

α
>
Pr(S = x1)

1− α
⇒ Pr(S = x2)

Pr(S = x1)
>

α

1− α

This would imply that E(S) > x2 which is a contradiction. Consider the
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other realization s1 and let H(z) ≡ E(S|Sz = s1). The claim follows from

the intermediate value theorem as H(0) = E(S) and H(Pr(S=x2)
α

) = a < x1.

Hence, we conclude that there exists z∗ so that H(z∗) = E(S|S∗z = s1) =

x1.

Proof of Proposition 1

Proof. ‘If’ direction.

Say condition (i) x11 ≥ x01
2α−1
1−α holds. Then the following signal is feasi-

ble: b = x01, c = x11
1−α
α

+x01
1−2α
α

, d = [x10−p01]1−αα , e = 0 and g = x00−c−d.

First we show that the suggested signal satisfies the obedience constraints.

xs11,i =
x11 + x01

x11 + x01 + x01 + x11
1−α
α

+ x01
1−2α
α

=
x11 + x01

(x11 + x01)
1
α

= α (3)

xs10,1 =
x10 − x01

(x10 − x01) + (x10 − x01)1−αα
=

x10 − x01
(x10 − x01) 1

α

= α (4)

Equation (3), for example, shows that given the signal realization s11

expectation for dimension i is α, for i = 1, 2.

Now we show that the suggested signal is also a feasible joint distribu-

tion. To do this we must show that c + d + e ≤ x00. Expressing x00 as a

complementary probability, yields x00 = 1− x11 − x10 − x01.
Therefore, c+ d+ e ≤ x00 ⇐⇒

x11
1− α
α

+ x01
1− 2α

α
+ [x10 − x01]

1− α
α
≤ 1− x11 − x10 − x01. (5)

This expression simplifies to:

x11
1

α
+ x10

1

α
≤ 1, (6)

which holds, since we assume that xi ≤ α.
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Now suppose that (i) is violated, but condition (ii) : x10 +x01 ≤ x00
α

1−α +

2x11
1−α
2α−1 is satisfied. Then the following signal is feasible: b = x11

1−α
2α−1 , c = 0,

d = (x10 − x11 1−α
2α−1)(1−α

α
) and e = (x01 − x11 1−α

2α−1)(1−α
α

).

First, we show that obedience constraints are satisfied.

xs11,i =
x11 + x11

1−α
2α−1

x11 + x11
1−α
2α−1 + x11

1−α
2α−1

= α (7)

xs10,1 =
x10 − x11 1−α

2α−1

x10 − x11 1−α
2α−1 + (x10 − x11 1−α

2α−1)1−α
α

=
1

1 + 1−α
α

= α (8)

xs01,2 =
x01 − x11 1−α

2α−1

x01 − x11 1−α
2α−1 + (x01 − x11 1−α

2α−1)1−α
α

=
1

1 + 1−α
α

= α (9)

Feasibility means that d+ e ≤ x00, i.e.:

(x10 − x11
1− α
2α− 1

)(
1− α
α

) + (x01 − x11
1− α
2α− 1

)(
1− α
α

) ≤ x00 (10)

which is equivalent to condition (ii):

x10 + x01 ≤ x00
α

1− α
+ 2x11

1− α
2α− 1

. (11)

‘Only if’ direction.

If both conditions (i) and (ii) do not hold, then, for any feasible signal

(S), at least one of the obedience constraints does not bind. This is so,

because if all constraints bind, then c+ d+ e > x00, i.e., the signal (S) is not

a feasible joint distribution. We now prove this claim.

Since condition (i) is violated, we consider the following recommendation

rule:

b = x11
1−α
2α−1 , c = 0, d = (x10−x11 1−α

2α−1)(1−α
α

) and e = (x01−x11 1−α
2α−1)(1−α

α
).

We have shown in equations 7− 9, that the suggested signal satisfies the

obedience constraints. The feasibility constraint becomes: c + d + e ≤ x00,
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which upon substituting for c+ d+ e yields

(x10 − x11
1− α
2α− 1

)(
1− α
α

) + (x01 − x11
1− α
2α− 1

)(
1− α
α

) ≤ x00. (12)

(12) is equivalent to condition (ii), which is a contradiction.

Now we show that there does not exist any other feasible signal that

achieves the first-best payoff. Thus, we consider a signal with c = c′ > 0.

Then following is true:

c′ + d′ + e′ > c+ d+ e > x00, (13)

where c′ > 0 and d′ and e′ are the values of the suggested new signal and

c = 0, d = (x10 − x11 1−α
2α−1)(1−α

α
) and e = (x01 − x11 1−α

2α−1)(1−α
α

). Condition

(13) holds, because for any signal that achieves the first-best payoff, b is

decreasing in c, whereas d and e are decreasing in b. Say c = c′ > 0, then

b′ < b = x11
1−α
2α−1 . If not, then

xs11,i =
x11 + x11

1−α
2α−1

x11 + x11
1−α
2α−1 + x11

1−α
2α−1 + c′

< α (14)

and the obedience constraint for s11 is violated. If a recommendation

rule achieves the first-best payoff, then d′ = (x10 − b′)(1−αα ) and e′ = (x01 −
b′)(1−α

α
), i.e., the obedience constraints for s10 and s01 bind. This completes

the argument.

This means that if both conditions are violated, then there does not

exist a feasible signal that induces a distribution of marginal posteriors with

support {0, α}. QED

Proof of Lemma 3
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Proof. Note that:

hi,j(p) = p · Pr(ωj = 1|ωi = 1) + (1− p) · Pr(ωj = 1|ωi = 0)

= Pr(ωj = 1|ωi = 0) + p · [Pr(ωj = 1|ωi = 1)− Pr(ωj = 1|ωi = 0)]

The proof then follows from Pr(ωj = 1|ωi = 1), P r(ωj = 1) ∈ [0, 1].
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