Seminar: Robust Moral Hazard and Information Availability
Room 7-208, 7/F, Lau Ming Wai Academic Building

We propose a distribution-free approach to solving a moral hazard model in which a max-min principal hires an agent who selects the outcome distribution subject to moment constraints. Our formulation reveals that the model has an alternative interpretation of two-sided ambiguity where the principal and agent have opposing robust decision rules but form congruent expectations on the distribution selected by nature. The congruent expectation enables a reformulation of the problem into a linear program which provides a tractable approach to solving the robust contract without requiring Mirrlees-Rogerson conditions. The robust optimal contract is linear when the principal only knows the mean of the effort-outcome relationship. However, when the principal’s available information also includes the variance, a quadratic contract is robustly optimal and achieves the first best.

Event Speaker
Dr. Erick Li

Erick (Zhaolin) Li received a Ph.D. in Business Administration from The Pennsylvania State University, a Master of Commerce in Accounting from The University of New South Wales, and a Bachelor of Engineering in Materials Science & Industrial Engineering from Shanghai Jiao Tong University. Dr. Li has been with The University of Sydney Business School since January 2009. Before moving to Sydney, he had worked in Ernst & Young LLP, Southern Arkansas University, and City University of Hong Kong. According to Babbar et al., (2017, 2018), Dr. Li is among Asia’s top 25 scholars in Operations Management (OM) and Supply Chain Management (SCM).