Seminar: Panning for gold: Model-free knockoffs for high-dimensional controlled variable selection
Many contemporary large-scale applications involve building interpretable models linking a large set of potential covariates to a response in a nonlinear fashion, such as when the response is binary. Although this modeling problem has been extensively studied, it remains unclear how to effectively control the fraction of false discoveries even in high-dimensional logistic regression, not to mention general high-dimensional nonlinear models.